efficientnet_b0_condconv.yaml
431 Bytes
model:
type: efficientnet-b0
condconv_num_expert: 8 # if this is greater than 1(eg. 4), it activates condconv.
dataset: imagenet
aug: fa_reduced_imagenet
cutout: 0
batch: 128 # per gpu
epoch: 350
lr: 0.008 # 0.256 for 4096 batch
lr_schedule:
type: 'efficientnet'
warmup:
multiplier: 1
epoch: 5
optimizer:
type: rmsprop
decay: 0.00001
clip: 0
ema: 0.9999
ema_interval: -1
lb_smooth: 0.1
mixup: 0.2