recfunctions.py 55.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
"""
Collection of utilities to manipulate structured arrays.

Most of these functions were initially implemented by John Hunter for
matplotlib.  They have been rewritten and extended for convenience.

"""
from __future__ import division, absolute_import, print_function

import sys
import itertools
import numpy as np
import numpy.ma as ma
from numpy import ndarray, recarray
from numpy.ma import MaskedArray
from numpy.ma.mrecords import MaskedRecords
from numpy.core.overrides import array_function_dispatch
from numpy.lib._iotools import _is_string_like
from numpy.compat import basestring
from numpy.testing import suppress_warnings

if sys.version_info[0] < 3:
    from future_builtins import zip

_check_fill_value = np.ma.core._check_fill_value


__all__ = [
    'append_fields', 'apply_along_fields', 'assign_fields_by_name',
    'drop_fields', 'find_duplicates', 'flatten_descr',
    'get_fieldstructure', 'get_names', 'get_names_flat',
    'join_by', 'merge_arrays', 'rec_append_fields',
    'rec_drop_fields', 'rec_join', 'recursive_fill_fields',
    'rename_fields', 'repack_fields', 'require_fields',
    'stack_arrays', 'structured_to_unstructured', 'unstructured_to_structured',
    ]


def _recursive_fill_fields_dispatcher(input, output):
    return (input, output)


@array_function_dispatch(_recursive_fill_fields_dispatcher)
def recursive_fill_fields(input, output):
    """
    Fills fields from output with fields from input,
    with support for nested structures.

    Parameters
    ----------
    input : ndarray
        Input array.
    output : ndarray
        Output array.

    Notes
    -----
    * `output` should be at least the same size as `input`

    Examples
    --------
    >>> from numpy.lib import recfunctions as rfn
    >>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', np.int64), ('B', np.float64)])
    >>> b = np.zeros((3,), dtype=a.dtype)
    >>> rfn.recursive_fill_fields(a, b)
    array([(1, 10.), (2, 20.), (0,  0.)], dtype=[('A', '<i8'), ('B', '<f8')])

    """
    newdtype = output.dtype
    for field in newdtype.names:
        try:
            current = input[field]
        except ValueError:
            continue
        if current.dtype.names is not None:
            recursive_fill_fields(current, output[field])
        else:
            output[field][:len(current)] = current
    return output


def _get_fieldspec(dtype):
    """
    Produce a list of name/dtype pairs corresponding to the dtype fields

    Similar to dtype.descr, but the second item of each tuple is a dtype, not a
    string. As a result, this handles subarray dtypes

    Can be passed to the dtype constructor to reconstruct the dtype, noting that
    this (deliberately) discards field offsets.

    Examples
    --------
    >>> dt = np.dtype([(('a', 'A'), np.int64), ('b', np.double, 3)])
    >>> dt.descr
    [(('a', 'A'), '<i8'), ('b', '<f8', (3,))]
    >>> _get_fieldspec(dt)
    [(('a', 'A'), dtype('int64')), ('b', dtype(('<f8', (3,))))]

    """
    if dtype.names is None:
        # .descr returns a nameless field, so we should too
        return [('', dtype)]
    else:
        fields = ((name, dtype.fields[name]) for name in dtype.names)
        # keep any titles, if present
        return [
            (name if len(f) == 2 else (f[2], name), f[0])
            for name, f in fields
        ]


def get_names(adtype):
    """
    Returns the field names of the input datatype as a tuple.

    Parameters
    ----------
    adtype : dtype
        Input datatype

    Examples
    --------
    >>> from numpy.lib import recfunctions as rfn
    >>> rfn.get_names(np.empty((1,), dtype=int))
    Traceback (most recent call last):
        ...
    AttributeError: 'numpy.ndarray' object has no attribute 'names'

    >>> rfn.get_names(np.empty((1,), dtype=[('A',int), ('B', float)]))
    Traceback (most recent call last):
        ...
    AttributeError: 'numpy.ndarray' object has no attribute 'names'
    >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])])
    >>> rfn.get_names(adtype)
    ('a', ('b', ('ba', 'bb')))
    """
    listnames = []
    names = adtype.names
    for name in names:
        current = adtype[name]
        if current.names is not None:
            listnames.append((name, tuple(get_names(current))))
        else:
            listnames.append(name)
    return tuple(listnames)


def get_names_flat(adtype):
    """
    Returns the field names of the input datatype as a tuple. Nested structure
    are flattened beforehand.

    Parameters
    ----------
    adtype : dtype
        Input datatype

    Examples
    --------
    >>> from numpy.lib import recfunctions as rfn
    >>> rfn.get_names_flat(np.empty((1,), dtype=int)) is None
    Traceback (most recent call last):
        ...
    AttributeError: 'numpy.ndarray' object has no attribute 'names'
    >>> rfn.get_names_flat(np.empty((1,), dtype=[('A',int), ('B', float)]))
    Traceback (most recent call last):
        ...
    AttributeError: 'numpy.ndarray' object has no attribute 'names'
    >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])])
    >>> rfn.get_names_flat(adtype)
    ('a', 'b', 'ba', 'bb')
    """
    listnames = []
    names = adtype.names
    for name in names:
        listnames.append(name)
        current = adtype[name]
        if current.names is not None:
            listnames.extend(get_names_flat(current))
    return tuple(listnames)


def flatten_descr(ndtype):
    """
    Flatten a structured data-type description.

    Examples
    --------
    >>> from numpy.lib import recfunctions as rfn
    >>> ndtype = np.dtype([('a', '<i4'), ('b', [('ba', '<f8'), ('bb', '<i4')])])
    >>> rfn.flatten_descr(ndtype)
    (('a', dtype('int32')), ('ba', dtype('float64')), ('bb', dtype('int32')))

    """
    names = ndtype.names
    if names is None:
        return (('', ndtype),)
    else:
        descr = []
        for field in names:
            (typ, _) = ndtype.fields[field]
            if typ.names is not None:
                descr.extend(flatten_descr(typ))
            else:
                descr.append((field, typ))
        return tuple(descr)


def _zip_dtype(seqarrays, flatten=False):
    newdtype = []
    if flatten:
        for a in seqarrays:
            newdtype.extend(flatten_descr(a.dtype))
    else:
        for a in seqarrays:
            current = a.dtype
            if current.names is not None and len(current.names) == 1:
                # special case - dtypes of 1 field are flattened
                newdtype.extend(_get_fieldspec(current))
            else:
                newdtype.append(('', current))
    return np.dtype(newdtype)


def _zip_descr(seqarrays, flatten=False):
    """
    Combine the dtype description of a series of arrays.

    Parameters
    ----------
    seqarrays : sequence of arrays
        Sequence of arrays
    flatten : {boolean}, optional
        Whether to collapse nested descriptions.
    """
    return _zip_dtype(seqarrays, flatten=flatten).descr


def get_fieldstructure(adtype, lastname=None, parents=None,):
    """
    Returns a dictionary with fields indexing lists of their parent fields.

    This function is used to simplify access to fields nested in other fields.

    Parameters
    ----------
    adtype : np.dtype
        Input datatype
    lastname : optional
        Last processed field name (used internally during recursion).
    parents : dictionary
        Dictionary of parent fields (used interbally during recursion).

    Examples
    --------
    >>> from numpy.lib import recfunctions as rfn
    >>> ndtype =  np.dtype([('A', int),
    ...                     ('B', [('BA', int),
    ...                            ('BB', [('BBA', int), ('BBB', int)])])])
    >>> rfn.get_fieldstructure(ndtype)
    ... # XXX: possible regression, order of BBA and BBB is swapped
    {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']}

    """
    if parents is None:
        parents = {}
    names = adtype.names
    for name in names:
        current = adtype[name]
        if current.names is not None:
            if lastname:
                parents[name] = [lastname, ]
            else:
                parents[name] = []
            parents.update(get_fieldstructure(current, name, parents))
        else:
            lastparent = [_ for _ in (parents.get(lastname, []) or [])]
            if lastparent:
                lastparent.append(lastname)
            elif lastname:
                lastparent = [lastname, ]
            parents[name] = lastparent or []
    return parents


def _izip_fields_flat(iterable):
    """
    Returns an iterator of concatenated fields from a sequence of arrays,
    collapsing any nested structure.

    """
    for element in iterable:
        if isinstance(element, np.void):
            for f in _izip_fields_flat(tuple(element)):
                yield f
        else:
            yield element


def _izip_fields(iterable):
    """
    Returns an iterator of concatenated fields from a sequence of arrays.

    """
    for element in iterable:
        if (hasattr(element, '__iter__') and
                not isinstance(element, basestring)):
            for f in _izip_fields(element):
                yield f
        elif isinstance(element, np.void) and len(tuple(element)) == 1:
            for f in _izip_fields(element):
                yield f
        else:
            yield element


def _izip_records(seqarrays, fill_value=None, flatten=True):
    """
    Returns an iterator of concatenated items from a sequence of arrays.

    Parameters
    ----------
    seqarrays : sequence of arrays
        Sequence of arrays.
    fill_value : {None, integer}
        Value used to pad shorter iterables.
    flatten : {True, False},
        Whether to
    """

    # Should we flatten the items, or just use a nested approach
    if flatten:
        zipfunc = _izip_fields_flat
    else:
        zipfunc = _izip_fields

    if sys.version_info[0] >= 3:
        zip_longest = itertools.zip_longest
    else:
        zip_longest = itertools.izip_longest

    for tup in zip_longest(*seqarrays, fillvalue=fill_value):
        yield tuple(zipfunc(tup))


def _fix_output(output, usemask=True, asrecarray=False):
    """
    Private function: return a recarray, a ndarray, a MaskedArray
    or a MaskedRecords depending on the input parameters
    """
    if not isinstance(output, MaskedArray):
        usemask = False
    if usemask:
        if asrecarray:
            output = output.view(MaskedRecords)
    else:
        output = ma.filled(output)
        if asrecarray:
            output = output.view(recarray)
    return output


def _fix_defaults(output, defaults=None):
    """
    Update the fill_value and masked data of `output`
    from the default given in a dictionary defaults.
    """
    names = output.dtype.names
    (data, mask, fill_value) = (output.data, output.mask, output.fill_value)
    for (k, v) in (defaults or {}).items():
        if k in names:
            fill_value[k] = v
            data[k][mask[k]] = v
    return output


def _merge_arrays_dispatcher(seqarrays, fill_value=None, flatten=None,
                             usemask=None, asrecarray=None):
    return seqarrays


@array_function_dispatch(_merge_arrays_dispatcher)
def merge_arrays(seqarrays, fill_value=-1, flatten=False,
                 usemask=False, asrecarray=False):
    """
    Merge arrays field by field.

    Parameters
    ----------
    seqarrays : sequence of ndarrays
        Sequence of arrays
    fill_value : {float}, optional
        Filling value used to pad missing data on the shorter arrays.
    flatten : {False, True}, optional
        Whether to collapse nested fields.
    usemask : {False, True}, optional
        Whether to return a masked array or not.
    asrecarray : {False, True}, optional
        Whether to return a recarray (MaskedRecords) or not.

    Examples
    --------
    >>> from numpy.lib import recfunctions as rfn
    >>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.])))
    array([( 1, 10.), ( 2, 20.), (-1, 30.)],
          dtype=[('f0', '<i8'), ('f1', '<f8')])

    >>> rfn.merge_arrays((np.array([1, 2], dtype=np.int64),
    ...         np.array([10., 20., 30.])), usemask=False)
     array([(1, 10.0), (2, 20.0), (-1, 30.0)],
             dtype=[('f0', '<i8'), ('f1', '<f8')])
    >>> rfn.merge_arrays((np.array([1, 2]).view([('a', np.int64)]),
    ...               np.array([10., 20., 30.])),
    ...              usemask=False, asrecarray=True)
    rec.array([( 1, 10.), ( 2, 20.), (-1, 30.)],
              dtype=[('a', '<i8'), ('f1', '<f8')])

    Notes
    -----
    * Without a mask, the missing value will be filled with something,
      depending on what its corresponding type:

      * ``-1``      for integers
      * ``-1.0``    for floating point numbers
      * ``'-'``     for characters
      * ``'-1'``    for strings
      * ``True``    for boolean values
    * XXX: I just obtained these values empirically
    """
    # Only one item in the input sequence ?
    if (len(seqarrays) == 1):
        seqarrays = np.asanyarray(seqarrays[0])
    # Do we have a single ndarray as input ?
    if isinstance(seqarrays, (ndarray, np.void)):
        seqdtype = seqarrays.dtype
        # Make sure we have named fields
        if seqdtype.names is None:
            seqdtype = np.dtype([('', seqdtype)])
        if not flatten or _zip_dtype((seqarrays,), flatten=True) == seqdtype:
            # Minimal processing needed: just make sure everythng's a-ok
            seqarrays = seqarrays.ravel()
            # Find what type of array we must return
            if usemask:
                if asrecarray:
                    seqtype = MaskedRecords
                else:
                    seqtype = MaskedArray
            elif asrecarray:
                seqtype = recarray
            else:
                seqtype = ndarray
            return seqarrays.view(dtype=seqdtype, type=seqtype)
        else:
            seqarrays = (seqarrays,)
    else:
        # Make sure we have arrays in the input sequence
        seqarrays = [np.asanyarray(_m) for _m in seqarrays]
    # Find the sizes of the inputs and their maximum
    sizes = tuple(a.size for a in seqarrays)
    maxlength = max(sizes)
    # Get the dtype of the output (flattening if needed)
    newdtype = _zip_dtype(seqarrays, flatten=flatten)
    # Initialize the sequences for data and mask
    seqdata = []
    seqmask = []
    # If we expect some kind of MaskedArray, make a special loop.
    if usemask:
        for (a, n) in zip(seqarrays, sizes):
            nbmissing = (maxlength - n)
            # Get the data and mask
            data = a.ravel().__array__()
            mask = ma.getmaskarray(a).ravel()
            # Get the filling value (if needed)
            if nbmissing:
                fval = _check_fill_value(fill_value, a.dtype)
                if isinstance(fval, (ndarray, np.void)):
                    if len(fval.dtype) == 1:
                        fval = fval.item()[0]
                        fmsk = True
                    else:
                        fval = np.array(fval, dtype=a.dtype, ndmin=1)
                        fmsk = np.ones((1,), dtype=mask.dtype)
            else:
                fval = None
                fmsk = True
            # Store an iterator padding the input to the expected length
            seqdata.append(itertools.chain(data, [fval] * nbmissing))
            seqmask.append(itertools.chain(mask, [fmsk] * nbmissing))
        # Create an iterator for the data
        data = tuple(_izip_records(seqdata, flatten=flatten))
        output = ma.array(np.fromiter(data, dtype=newdtype, count=maxlength),
                          mask=list(_izip_records(seqmask, flatten=flatten)))
        if asrecarray:
            output = output.view(MaskedRecords)
    else:
        # Same as before, without the mask we don't need...
        for (a, n) in zip(seqarrays, sizes):
            nbmissing = (maxlength - n)
            data = a.ravel().__array__()
            if nbmissing:
                fval = _check_fill_value(fill_value, a.dtype)
                if isinstance(fval, (ndarray, np.void)):
                    if len(fval.dtype) == 1:
                        fval = fval.item()[0]
                    else:
                        fval = np.array(fval, dtype=a.dtype, ndmin=1)
            else:
                fval = None
            seqdata.append(itertools.chain(data, [fval] * nbmissing))
        output = np.fromiter(tuple(_izip_records(seqdata, flatten=flatten)),
                             dtype=newdtype, count=maxlength)
        if asrecarray:
            output = output.view(recarray)
    # And we're done...
    return output


def _drop_fields_dispatcher(base, drop_names, usemask=None, asrecarray=None):
    return (base,)


@array_function_dispatch(_drop_fields_dispatcher)
def drop_fields(base, drop_names, usemask=True, asrecarray=False):
    """
    Return a new array with fields in `drop_names` dropped.

    Nested fields are supported.

    ..versionchanged: 1.18.0
        `drop_fields` returns an array with 0 fields if all fields are dropped,
        rather than returning ``None`` as it did previously.

    Parameters
    ----------
    base : array
        Input array
    drop_names : string or sequence
        String or sequence of strings corresponding to the names of the
        fields to drop.
    usemask : {False, True}, optional
        Whether to return a masked array or not.
    asrecarray : string or sequence, optional
        Whether to return a recarray or a mrecarray (`asrecarray=True`) or
        a plain ndarray or masked array with flexible dtype. The default
        is False.

    Examples
    --------
    >>> from numpy.lib import recfunctions as rfn
    >>> a = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
    ...   dtype=[('a', np.int64), ('b', [('ba', np.double), ('bb', np.int64)])])
    >>> rfn.drop_fields(a, 'a')
    array([((2., 3),), ((5., 6),)],
          dtype=[('b', [('ba', '<f8'), ('bb', '<i8')])])
    >>> rfn.drop_fields(a, 'ba')
    array([(1, (3,)), (4, (6,))], dtype=[('a', '<i8'), ('b', [('bb', '<i8')])])
    >>> rfn.drop_fields(a, ['ba', 'bb'])
    array([(1,), (4,)], dtype=[('a', '<i8')])
    """
    if _is_string_like(drop_names):
        drop_names = [drop_names]
    else:
        drop_names = set(drop_names)

    def _drop_descr(ndtype, drop_names):
        names = ndtype.names
        newdtype = []
        for name in names:
            current = ndtype[name]
            if name in drop_names:
                continue
            if current.names is not None:
                descr = _drop_descr(current, drop_names)
                if descr:
                    newdtype.append((name, descr))
            else:
                newdtype.append((name, current))
        return newdtype

    newdtype = _drop_descr(base.dtype, drop_names)

    output = np.empty(base.shape, dtype=newdtype)
    output = recursive_fill_fields(base, output)
    return _fix_output(output, usemask=usemask, asrecarray=asrecarray)


def _keep_fields(base, keep_names, usemask=True, asrecarray=False):
    """
    Return a new array keeping only the fields in `keep_names`,
    and preserving the order of those fields.

    Parameters
    ----------
    base : array
        Input array
    keep_names : string or sequence
        String or sequence of strings corresponding to the names of the
        fields to keep. Order of the names will be preserved.
    usemask : {False, True}, optional
        Whether to return a masked array or not.
    asrecarray : string or sequence, optional
        Whether to return a recarray or a mrecarray (`asrecarray=True`) or
        a plain ndarray or masked array with flexible dtype. The default
        is False.
    """
    newdtype = [(n, base.dtype[n]) for n in keep_names]
    output = np.empty(base.shape, dtype=newdtype)
    output = recursive_fill_fields(base, output)
    return _fix_output(output, usemask=usemask, asrecarray=asrecarray)


def _rec_drop_fields_dispatcher(base, drop_names):
    return (base,)


@array_function_dispatch(_rec_drop_fields_dispatcher)
def rec_drop_fields(base, drop_names):
    """
    Returns a new numpy.recarray with fields in `drop_names` dropped.
    """
    return drop_fields(base, drop_names, usemask=False, asrecarray=True)


def _rename_fields_dispatcher(base, namemapper):
    return (base,)


@array_function_dispatch(_rename_fields_dispatcher)
def rename_fields(base, namemapper):
    """
    Rename the fields from a flexible-datatype ndarray or recarray.

    Nested fields are supported.

    Parameters
    ----------
    base : ndarray
        Input array whose fields must be modified.
    namemapper : dictionary
        Dictionary mapping old field names to their new version.

    Examples
    --------
    >>> from numpy.lib import recfunctions as rfn
    >>> a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))],
    ...   dtype=[('a', int),('b', [('ba', float), ('bb', (float, 2))])])
    >>> rfn.rename_fields(a, {'a':'A', 'bb':'BB'})
    array([(1, (2., [ 3., 30.])), (4, (5., [ 6., 60.]))],
          dtype=[('A', '<i8'), ('b', [('ba', '<f8'), ('BB', '<f8', (2,))])])

    """
    def _recursive_rename_fields(ndtype, namemapper):
        newdtype = []
        for name in ndtype.names:
            newname = namemapper.get(name, name)
            current = ndtype[name]
            if current.names is not None:
                newdtype.append(
                    (newname, _recursive_rename_fields(current, namemapper))
                    )
            else:
                newdtype.append((newname, current))
        return newdtype
    newdtype = _recursive_rename_fields(base.dtype, namemapper)
    return base.view(newdtype)


def _append_fields_dispatcher(base, names, data, dtypes=None,
                              fill_value=None, usemask=None, asrecarray=None):
    yield base
    for d in data:
        yield d


@array_function_dispatch(_append_fields_dispatcher)
def append_fields(base, names, data, dtypes=None,
                  fill_value=-1, usemask=True, asrecarray=False):
    """
    Add new fields to an existing array.

    The names of the fields are given with the `names` arguments,
    the corresponding values with the `data` arguments.
    If a single field is appended, `names`, `data` and `dtypes` do not have
    to be lists but just values.

    Parameters
    ----------
    base : array
        Input array to extend.
    names : string, sequence
        String or sequence of strings corresponding to the names
        of the new fields.
    data : array or sequence of arrays
        Array or sequence of arrays storing the fields to add to the base.
    dtypes : sequence of datatypes, optional
        Datatype or sequence of datatypes.
        If None, the datatypes are estimated from the `data`.
    fill_value : {float}, optional
        Filling value used to pad missing data on the shorter arrays.
    usemask : {False, True}, optional
        Whether to return a masked array or not.
    asrecarray : {False, True}, optional
        Whether to return a recarray (MaskedRecords) or not.

    """
    # Check the names
    if isinstance(names, (tuple, list)):
        if len(names) != len(data):
            msg = "The number of arrays does not match the number of names"
            raise ValueError(msg)
    elif isinstance(names, basestring):
        names = [names, ]
        data = [data, ]
    #
    if dtypes is None:
        data = [np.array(a, copy=False, subok=True) for a in data]
        data = [a.view([(name, a.dtype)]) for (name, a) in zip(names, data)]
    else:
        if not isinstance(dtypes, (tuple, list)):
            dtypes = [dtypes, ]
        if len(data) != len(dtypes):
            if len(dtypes) == 1:
                dtypes = dtypes * len(data)
            else:
                msg = "The dtypes argument must be None, a dtype, or a list."
                raise ValueError(msg)
        data = [np.array(a, copy=False, subok=True, dtype=d).view([(n, d)])
                for (a, n, d) in zip(data, names, dtypes)]
    #
    base = merge_arrays(base, usemask=usemask, fill_value=fill_value)
    if len(data) > 1:
        data = merge_arrays(data, flatten=True, usemask=usemask,
                            fill_value=fill_value)
    else:
        data = data.pop()
    #
    output = ma.masked_all(
        max(len(base), len(data)),
        dtype=_get_fieldspec(base.dtype) + _get_fieldspec(data.dtype))
    output = recursive_fill_fields(base, output)
    output = recursive_fill_fields(data, output)
    #
    return _fix_output(output, usemask=usemask, asrecarray=asrecarray)


def _rec_append_fields_dispatcher(base, names, data, dtypes=None):
    yield base
    for d in data:
        yield d


@array_function_dispatch(_rec_append_fields_dispatcher)
def rec_append_fields(base, names, data, dtypes=None):
    """
    Add new fields to an existing array.

    The names of the fields are given with the `names` arguments,
    the corresponding values with the `data` arguments.
    If a single field is appended, `names`, `data` and `dtypes` do not have
    to be lists but just values.

    Parameters
    ----------
    base : array
        Input array to extend.
    names : string, sequence
        String or sequence of strings corresponding to the names
        of the new fields.
    data : array or sequence of arrays
        Array or sequence of arrays storing the fields to add to the base.
    dtypes : sequence of datatypes, optional
        Datatype or sequence of datatypes.
        If None, the datatypes are estimated from the `data`.

    See Also
    --------
    append_fields

    Returns
    -------
    appended_array : np.recarray
    """
    return append_fields(base, names, data=data, dtypes=dtypes,
                         asrecarray=True, usemask=False)


def _repack_fields_dispatcher(a, align=None, recurse=None):
    return (a,)


@array_function_dispatch(_repack_fields_dispatcher)
def repack_fields(a, align=False, recurse=False):
    """
    Re-pack the fields of a structured array or dtype in memory.

    The memory layout of structured datatypes allows fields at arbitrary
    byte offsets. This means the fields can be separated by padding bytes,
    their offsets can be non-monotonically increasing, and they can overlap.

    This method removes any overlaps and reorders the fields in memory so they
    have increasing byte offsets, and adds or removes padding bytes depending
    on the `align` option, which behaves like the `align` option to `np.dtype`.

    If `align=False`, this method produces a "packed" memory layout in which
    each field starts at the byte the previous field ended, and any padding
    bytes are removed.

    If `align=True`, this methods produces an "aligned" memory layout in which
    each field's offset is a multiple of its alignment, and the total itemsize
    is a multiple of the largest alignment, by adding padding bytes as needed.

    Parameters
    ----------
    a : ndarray or dtype
       array or dtype for which to repack the fields.
    align : boolean
       If true, use an "aligned" memory layout, otherwise use a "packed" layout.
    recurse : boolean
       If True, also repack nested structures.

    Returns
    -------
    repacked : ndarray or dtype
       Copy of `a` with fields repacked, or `a` itself if no repacking was
       needed.

    Examples
    --------

    >>> from numpy.lib import recfunctions as rfn
    >>> def print_offsets(d):
    ...     print("offsets:", [d.fields[name][1] for name in d.names])
    ...     print("itemsize:", d.itemsize)
    ...
    >>> dt = np.dtype('u1, <i8, <f8', align=True)
    >>> dt
    dtype({'names':['f0','f1','f2'], 'formats':['u1','<i8','<f8'], 'offsets':[0,8,16], 'itemsize':24}, align=True)
    >>> print_offsets(dt)
    offsets: [0, 8, 16]
    itemsize: 24
    >>> packed_dt = rfn.repack_fields(dt)
    >>> packed_dt
    dtype([('f0', 'u1'), ('f1', '<i8'), ('f2', '<f8')])
    >>> print_offsets(packed_dt)
    offsets: [0, 1, 9]
    itemsize: 17

    """
    if not isinstance(a, np.dtype):
        dt = repack_fields(a.dtype, align=align, recurse=recurse)
        return a.astype(dt, copy=False)

    if a.names is None:
        return a

    fieldinfo = []
    for name in a.names:
        tup = a.fields[name]
        if recurse:
            fmt = repack_fields(tup[0], align=align, recurse=True)
        else:
            fmt = tup[0]

        if len(tup) == 3:
            name = (tup[2], name)

        fieldinfo.append((name, fmt))

    dt = np.dtype(fieldinfo, align=align)
    return np.dtype((a.type, dt))

def _get_fields_and_offsets(dt, offset=0):
    """
    Returns a flat list of (dtype, count, offset) tuples of all the
    scalar fields in the dtype "dt", including nested fields, in left
    to right order.
    """

    # counts up elements in subarrays, including nested subarrays, and returns
    # base dtype and count
    def count_elem(dt):
        count = 1
        while dt.shape != ():
            for size in dt.shape:
                count *= size
            dt = dt.base
        return dt, count

    fields = []
    for name in dt.names:
        field = dt.fields[name]
        f_dt, f_offset = field[0], field[1]
        f_dt, n = count_elem(f_dt)

        if f_dt.names is None:
            fields.append((np.dtype((f_dt, (n,))), n, f_offset + offset))
        else:
            subfields = _get_fields_and_offsets(f_dt, f_offset + offset)
            size = f_dt.itemsize

            for i in range(n):
                if i == 0:
                    # optimization: avoid list comprehension if no subarray
                    fields.extend(subfields)
                else:
                    fields.extend([(d, c, o + i*size) for d, c, o in subfields])
    return fields


def _structured_to_unstructured_dispatcher(arr, dtype=None, copy=None,
                                           casting=None):
    return (arr,)

@array_function_dispatch(_structured_to_unstructured_dispatcher)
def structured_to_unstructured(arr, dtype=None, copy=False, casting='unsafe'):
    """
    Converts and n-D structured array into an (n+1)-D unstructured array.

    The new array will have a new last dimension equal in size to the
    number of field-elements of the input array. If not supplied, the output
    datatype is determined from the numpy type promotion rules applied to all
    the field datatypes.

    Nested fields, as well as each element of any subarray fields, all count
    as a single field-elements.

    Parameters
    ----------
    arr : ndarray
       Structured array or dtype to convert. Cannot contain object datatype.
    dtype : dtype, optional
       The dtype of the output unstructured array.
    copy : bool, optional
        See copy argument to `ndarray.astype`. If true, always return a copy.
        If false, and `dtype` requirements are satisfied, a view is returned.
    casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
        See casting argument of `ndarray.astype`. Controls what kind of data
        casting may occur.

    Returns
    -------
    unstructured : ndarray
       Unstructured array with one more dimension.

    Examples
    --------

    >>> from numpy.lib import recfunctions as rfn
    >>> a = np.zeros(4, dtype=[('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)])
    >>> a
    array([(0, (0., 0), [0., 0.]), (0, (0., 0), [0., 0.]),
           (0, (0., 0), [0., 0.]), (0, (0., 0), [0., 0.])],
          dtype=[('a', '<i4'), ('b', [('f0', '<f4'), ('f1', '<u2')]), ('c', '<f4', (2,))])
    >>> rfn.structured_to_unstructured(a)
    array([[0., 0., 0., 0., 0.],
           [0., 0., 0., 0., 0.],
           [0., 0., 0., 0., 0.],
           [0., 0., 0., 0., 0.]])

    >>> b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
    ...              dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
    >>> np.mean(rfn.structured_to_unstructured(b[['x', 'z']]), axis=-1)
    array([ 3. ,  5.5,  9. , 11. ])

    """
    if arr.dtype.names is None:
        raise ValueError('arr must be a structured array')

    fields = _get_fields_and_offsets(arr.dtype)
    n_fields = len(fields)
    if n_fields == 0 and dtype is None:
        raise ValueError("arr has no fields. Unable to guess dtype")
    elif n_fields == 0:
        # too many bugs elsewhere for this to work now
        raise NotImplementedError("arr with no fields is not supported")

    dts, counts, offsets = zip(*fields)
    names = ['f{}'.format(n) for n in range(n_fields)]

    if dtype is None:
        out_dtype = np.result_type(*[dt.base for dt in dts])
    else:
        out_dtype = dtype

    # Use a series of views and casts to convert to an unstructured array:

    # first view using flattened fields (doesn't work for object arrays)
    # Note: dts may include a shape for subarrays
    flattened_fields = np.dtype({'names': names,
                                 'formats': dts,
                                 'offsets': offsets,
                                 'itemsize': arr.dtype.itemsize})
    with suppress_warnings() as sup:  # until 1.16 (gh-12447)
        sup.filter(FutureWarning, "Numpy has detected")
        arr = arr.view(flattened_fields)

    # next cast to a packed format with all fields converted to new dtype
    packed_fields = np.dtype({'names': names,
                              'formats': [(out_dtype, dt.shape) for dt in dts]})
    arr = arr.astype(packed_fields, copy=copy, casting=casting)

    # finally is it safe to view the packed fields as the unstructured type
    return arr.view((out_dtype, (sum(counts),)))


def _unstructured_to_structured_dispatcher(arr, dtype=None, names=None,
                                           align=None, copy=None, casting=None):
    return (arr,)

@array_function_dispatch(_unstructured_to_structured_dispatcher)
def unstructured_to_structured(arr, dtype=None, names=None, align=False,
                               copy=False, casting='unsafe'):
    """
    Converts and n-D unstructured array into an (n-1)-D structured array.

    The last dimension of the input array is converted into a structure, with
    number of field-elements equal to the size of the last dimension of the
    input array. By default all output fields have the input array's dtype, but
    an output structured dtype with an equal number of fields-elements can be
    supplied instead.

    Nested fields, as well as each element of any subarray fields, all count
    towards the number of field-elements.

    Parameters
    ----------
    arr : ndarray
       Unstructured array or dtype to convert.
    dtype : dtype, optional
       The structured dtype of the output array
    names : list of strings, optional
       If dtype is not supplied, this specifies the field names for the output
       dtype, in order. The field dtypes will be the same as the input array.
    align : boolean, optional
       Whether to create an aligned memory layout.
    copy : bool, optional
        See copy argument to `ndarray.astype`. If true, always return a copy.
        If false, and `dtype` requirements are satisfied, a view is returned.
    casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
        See casting argument of `ndarray.astype`. Controls what kind of data
        casting may occur.

    Returns
    -------
    structured : ndarray
       Structured array with fewer dimensions.

    Examples
    --------

    >>> from numpy.lib import recfunctions as rfn
    >>> dt = np.dtype([('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)])
    >>> a = np.arange(20).reshape((4,5))
    >>> a
    array([[ 0,  1,  2,  3,  4],
           [ 5,  6,  7,  8,  9],
           [10, 11, 12, 13, 14],
           [15, 16, 17, 18, 19]])
    >>> rfn.unstructured_to_structured(a, dt)
    array([( 0, ( 1.,  2), [ 3.,  4.]), ( 5, ( 6.,  7), [ 8.,  9.]),
           (10, (11., 12), [13., 14.]), (15, (16., 17), [18., 19.])],
          dtype=[('a', '<i4'), ('b', [('f0', '<f4'), ('f1', '<u2')]), ('c', '<f4', (2,))])

    """
    if arr.shape == ():
        raise ValueError('arr must have at least one dimension')
    n_elem = arr.shape[-1]
    if n_elem == 0:
        # too many bugs elsewhere for this to work now
        raise NotImplementedError("last axis with size 0 is not supported")

    if dtype is None:
        if names is None:
            names = ['f{}'.format(n) for n in range(n_elem)]
        out_dtype = np.dtype([(n, arr.dtype) for n in names], align=align)
        fields = _get_fields_and_offsets(out_dtype)
        dts, counts, offsets = zip(*fields)
    else:
        if names is not None:
            raise ValueError("don't supply both dtype and names")
        # sanity check of the input dtype
        fields = _get_fields_and_offsets(dtype)
        if len(fields) == 0:
            dts, counts, offsets = [], [], []
        else:
            dts, counts, offsets = zip(*fields)

        if n_elem != sum(counts):
            raise ValueError('The length of the last dimension of arr must '
                             'be equal to the number of fields in dtype')
        out_dtype = dtype
        if align and not out_dtype.isalignedstruct:
            raise ValueError("align was True but dtype is not aligned")

    names = ['f{}'.format(n) for n in range(len(fields))]

    # Use a series of views and casts to convert to a structured array:

    # first view as a packed structured array of one dtype
    packed_fields = np.dtype({'names': names,
                              'formats': [(arr.dtype, dt.shape) for dt in dts]})
    arr = np.ascontiguousarray(arr).view(packed_fields)

    # next cast to an unpacked but flattened format with varied dtypes
    flattened_fields = np.dtype({'names': names,
                                 'formats': dts,
                                 'offsets': offsets,
                                 'itemsize': out_dtype.itemsize})
    arr = arr.astype(flattened_fields, copy=copy, casting=casting)

    # finally view as the final nested dtype and remove the last axis
    return arr.view(out_dtype)[..., 0]

def _apply_along_fields_dispatcher(func, arr):
    return (arr,)

@array_function_dispatch(_apply_along_fields_dispatcher)
def apply_along_fields(func, arr):
    """
    Apply function 'func' as a reduction across fields of a structured array.

    This is similar to `apply_along_axis`, but treats the fields of a
    structured array as an extra axis. The fields are all first cast to a
    common type following the type-promotion rules from `numpy.result_type`
    applied to the field's dtypes.

    Parameters
    ----------
    func : function
       Function to apply on the "field" dimension. This function must
       support an `axis` argument, like np.mean, np.sum, etc.
    arr : ndarray
       Structured array for which to apply func.

    Returns
    -------
    out : ndarray
       Result of the recution operation

    Examples
    --------

    >>> from numpy.lib import recfunctions as rfn
    >>> b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
    ...              dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
    >>> rfn.apply_along_fields(np.mean, b)
    array([ 2.66666667,  5.33333333,  8.66666667, 11.        ])
    >>> rfn.apply_along_fields(np.mean, b[['x', 'z']])
    array([ 3. ,  5.5,  9. , 11. ])

    """
    if arr.dtype.names is None:
        raise ValueError('arr must be a structured array')

    uarr = structured_to_unstructured(arr)
    return func(uarr, axis=-1)
    # works and avoids axis requirement, but very, very slow:
    #return np.apply_along_axis(func, -1, uarr)

def _assign_fields_by_name_dispatcher(dst, src, zero_unassigned=None):
    return dst, src

@array_function_dispatch(_assign_fields_by_name_dispatcher)
def assign_fields_by_name(dst, src, zero_unassigned=True):
    """
    Assigns values from one structured array to another by field name.

    Normally in numpy >= 1.14, assignment of one structured array to another
    copies fields "by position", meaning that the first field from the src is
    copied to the first field of the dst, and so on, regardless of field name.

    This function instead copies "by field name", such that fields in the dst
    are assigned from the identically named field in the src. This applies
    recursively for nested structures. This is how structure assignment worked
    in numpy >= 1.6 to <= 1.13.

    Parameters
    ----------
    dst : ndarray
    src : ndarray
        The source and destination arrays during assignment.
    zero_unassigned : bool, optional
        If True, fields in the dst for which there was no matching
        field in the src are filled with the value 0 (zero). This
        was the behavior of numpy <= 1.13. If False, those fields
        are not modified.
    """

    if dst.dtype.names is None:
        dst[...] = src
        return

    for name in dst.dtype.names:
        if name not in src.dtype.names:
            if zero_unassigned:
                dst[name] = 0
        else:
            assign_fields_by_name(dst[name], src[name],
                                  zero_unassigned)

def _require_fields_dispatcher(array, required_dtype):
    return (array,)

@array_function_dispatch(_require_fields_dispatcher)
def require_fields(array, required_dtype):
    """
    Casts a structured array to a new dtype using assignment by field-name.

    This function assigns from the old to the new array by name, so the
    value of a field in the output array is the value of the field with the
    same name in the source array. This has the effect of creating a new
    ndarray containing only the fields "required" by the required_dtype.

    If a field name in the required_dtype does not exist in the
    input array, that field is created and set to 0 in the output array.

    Parameters
    ----------
    a : ndarray
       array to cast
    required_dtype : dtype
       datatype for output array

    Returns
    -------
    out : ndarray
        array with the new dtype, with field values copied from the fields in
        the input array with the same name

    Examples
    --------

    >>> from numpy.lib import recfunctions as rfn
    >>> a = np.ones(4, dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'u1')])
    >>> rfn.require_fields(a, [('b', 'f4'), ('c', 'u1')])
    array([(1., 1), (1., 1), (1., 1), (1., 1)],
      dtype=[('b', '<f4'), ('c', 'u1')])
    >>> rfn.require_fields(a, [('b', 'f4'), ('newf', 'u1')])
    array([(1., 0), (1., 0), (1., 0), (1., 0)],
      dtype=[('b', '<f4'), ('newf', 'u1')])

    """
    out = np.empty(array.shape, dtype=required_dtype)
    assign_fields_by_name(out, array)
    return out


def _stack_arrays_dispatcher(arrays, defaults=None, usemask=None,
                             asrecarray=None, autoconvert=None):
    return arrays


@array_function_dispatch(_stack_arrays_dispatcher)
def stack_arrays(arrays, defaults=None, usemask=True, asrecarray=False,
                 autoconvert=False):
    """
    Superposes arrays fields by fields

    Parameters
    ----------
    arrays : array or sequence
        Sequence of input arrays.
    defaults : dictionary, optional
        Dictionary mapping field names to the corresponding default values.
    usemask : {True, False}, optional
        Whether to return a MaskedArray (or MaskedRecords is
        `asrecarray==True`) or a ndarray.
    asrecarray : {False, True}, optional
        Whether to return a recarray (or MaskedRecords if `usemask==True`)
        or just a flexible-type ndarray.
    autoconvert : {False, True}, optional
        Whether automatically cast the type of the field to the maximum.

    Examples
    --------
    >>> from numpy.lib import recfunctions as rfn
    >>> x = np.array([1, 2,])
    >>> rfn.stack_arrays(x) is x
    True
    >>> z = np.array([('A', 1), ('B', 2)], dtype=[('A', '|S3'), ('B', float)])
    >>> zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
    ...   dtype=[('A', '|S3'), ('B', np.double), ('C', np.double)])
    >>> test = rfn.stack_arrays((z,zz))
    >>> test
    masked_array(data=[(b'A', 1.0, --), (b'B', 2.0, --), (b'a', 10.0, 100.0),
                       (b'b', 20.0, 200.0), (b'c', 30.0, 300.0)],
                 mask=[(False, False,  True), (False, False,  True),
                       (False, False, False), (False, False, False),
                       (False, False, False)],
           fill_value=(b'N/A', 1.e+20, 1.e+20),
                dtype=[('A', 'S3'), ('B', '<f8'), ('C', '<f8')])

    """
    if isinstance(arrays, ndarray):
        return arrays
    elif len(arrays) == 1:
        return arrays[0]
    seqarrays = [np.asanyarray(a).ravel() for a in arrays]
    nrecords = [len(a) for a in seqarrays]
    ndtype = [a.dtype for a in seqarrays]
    fldnames = [d.names for d in ndtype]
    #
    dtype_l = ndtype[0]
    newdescr = _get_fieldspec(dtype_l)
    names = [n for n, d in newdescr]
    for dtype_n in ndtype[1:]:
        for fname, fdtype in _get_fieldspec(dtype_n):
            if fname not in names:
                newdescr.append((fname, fdtype))
                names.append(fname)
            else:
                nameidx = names.index(fname)
                _, cdtype = newdescr[nameidx]
                if autoconvert:
                    newdescr[nameidx] = (fname, max(fdtype, cdtype))
                elif fdtype != cdtype:
                    raise TypeError("Incompatible type '%s' <> '%s'" %
                                    (cdtype, fdtype))
    # Only one field: use concatenate
    if len(newdescr) == 1:
        output = ma.concatenate(seqarrays)
    else:
        #
        output = ma.masked_all((np.sum(nrecords),), newdescr)
        offset = np.cumsum(np.r_[0, nrecords])
        seen = []
        for (a, n, i, j) in zip(seqarrays, fldnames, offset[:-1], offset[1:]):
            names = a.dtype.names
            if names is None:
                output['f%i' % len(seen)][i:j] = a
            else:
                for name in n:
                    output[name][i:j] = a[name]
                    if name not in seen:
                        seen.append(name)
    #
    return _fix_output(_fix_defaults(output, defaults),
                       usemask=usemask, asrecarray=asrecarray)


def _find_duplicates_dispatcher(
        a, key=None, ignoremask=None, return_index=None):
    return (a,)


@array_function_dispatch(_find_duplicates_dispatcher)
def find_duplicates(a, key=None, ignoremask=True, return_index=False):
    """
    Find the duplicates in a structured array along a given key

    Parameters
    ----------
    a : array-like
        Input array
    key : {string, None}, optional
        Name of the fields along which to check the duplicates.
        If None, the search is performed by records
    ignoremask : {True, False}, optional
        Whether masked data should be discarded or considered as duplicates.
    return_index : {False, True}, optional
        Whether to return the indices of the duplicated values.

    Examples
    --------
    >>> from numpy.lib import recfunctions as rfn
    >>> ndtype = [('a', int)]
    >>> a = np.ma.array([1, 1, 1, 2, 2, 3, 3],
    ...         mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype)
    >>> rfn.find_duplicates(a, ignoremask=True, return_index=True)
    (masked_array(data=[(1,), (1,), (2,), (2,)],
                 mask=[(False,), (False,), (False,), (False,)],
           fill_value=(999999,),
                dtype=[('a', '<i8')]), array([0, 1, 3, 4]))
    """
    a = np.asanyarray(a).ravel()
    # Get a dictionary of fields
    fields = get_fieldstructure(a.dtype)
    # Get the sorting data (by selecting the corresponding field)
    base = a
    if key:
        for f in fields[key]:
            base = base[f]
        base = base[key]
    # Get the sorting indices and the sorted data
    sortidx = base.argsort()
    sortedbase = base[sortidx]
    sorteddata = sortedbase.filled()
    # Compare the sorting data
    flag = (sorteddata[:-1] == sorteddata[1:])
    # If masked data must be ignored, set the flag to false where needed
    if ignoremask:
        sortedmask = sortedbase.recordmask
        flag[sortedmask[1:]] = False
    flag = np.concatenate(([False], flag))
    # We need to take the point on the left as well (else we're missing it)
    flag[:-1] = flag[:-1] + flag[1:]
    duplicates = a[sortidx][flag]
    if return_index:
        return (duplicates, sortidx[flag])
    else:
        return duplicates


def _join_by_dispatcher(
        key, r1, r2, jointype=None, r1postfix=None, r2postfix=None,
        defaults=None, usemask=None, asrecarray=None):
    return (r1, r2)


@array_function_dispatch(_join_by_dispatcher)
def join_by(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2',
            defaults=None, usemask=True, asrecarray=False):
    """
    Join arrays `r1` and `r2` on key `key`.

    The key should be either a string or a sequence of string corresponding
    to the fields used to join the array.  An exception is raised if the
    `key` field cannot be found in the two input arrays.  Neither `r1` nor
    `r2` should have any duplicates along `key`: the presence of duplicates
    will make the output quite unreliable. Note that duplicates are not
    looked for by the algorithm.

    Parameters
    ----------
    key : {string, sequence}
        A string or a sequence of strings corresponding to the fields used
        for comparison.
    r1, r2 : arrays
        Structured arrays.
    jointype : {'inner', 'outer', 'leftouter'}, optional
        If 'inner', returns the elements common to both r1 and r2.
        If 'outer', returns the common elements as well as the elements of
        r1 not in r2 and the elements of not in r2.
        If 'leftouter', returns the common elements and the elements of r1
        not in r2.
    r1postfix : string, optional
        String appended to the names of the fields of r1 that are present
        in r2 but absent of the key.
    r2postfix : string, optional
        String appended to the names of the fields of r2 that are present
        in r1 but absent of the key.
    defaults : {dictionary}, optional
        Dictionary mapping field names to the corresponding default values.
    usemask : {True, False}, optional
        Whether to return a MaskedArray (or MaskedRecords is
        `asrecarray==True`) or a ndarray.
    asrecarray : {False, True}, optional
        Whether to return a recarray (or MaskedRecords if `usemask==True`)
        or just a flexible-type ndarray.

    Notes
    -----
    * The output is sorted along the key.
    * A temporary array is formed by dropping the fields not in the key for
      the two arrays and concatenating the result. This array is then
      sorted, and the common entries selected. The output is constructed by
      filling the fields with the selected entries. Matching is not
      preserved if there are some duplicates...

    """
    # Check jointype
    if jointype not in ('inner', 'outer', 'leftouter'):
        raise ValueError(
                "The 'jointype' argument should be in 'inner', "
                "'outer' or 'leftouter' (got '%s' instead)" % jointype
                )
    # If we have a single key, put it in a tuple
    if isinstance(key, basestring):
        key = (key,)

    # Check the keys
    if len(set(key)) != len(key):
        dup = next(x for n,x in enumerate(key) if x in key[n+1:])
        raise ValueError("duplicate join key %r" % dup)
    for name in key:
        if name not in r1.dtype.names:
            raise ValueError('r1 does not have key field %r' % name)
        if name not in r2.dtype.names:
            raise ValueError('r2 does not have key field %r' % name)

    # Make sure we work with ravelled arrays
    r1 = r1.ravel()
    r2 = r2.ravel()
    # Fixme: nb2 below is never used. Commenting out for pyflakes.
    # (nb1, nb2) = (len(r1), len(r2))
    nb1 = len(r1)
    (r1names, r2names) = (r1.dtype.names, r2.dtype.names)

    # Check the names for collision
    collisions = (set(r1names) & set(r2names)) - set(key)
    if collisions and not (r1postfix or r2postfix):
        msg = "r1 and r2 contain common names, r1postfix and r2postfix "
        msg += "can't both be empty"
        raise ValueError(msg)

    # Make temporary arrays of just the keys
    #  (use order of keys in `r1` for back-compatibility)
    key1 = [ n for n in r1names if n in key ]
    r1k = _keep_fields(r1, key1)
    r2k = _keep_fields(r2, key1)

    # Concatenate the two arrays for comparison
    aux = ma.concatenate((r1k, r2k))
    idx_sort = aux.argsort(order=key)
    aux = aux[idx_sort]
    #
    # Get the common keys
    flag_in = ma.concatenate(([False], aux[1:] == aux[:-1]))
    flag_in[:-1] = flag_in[1:] + flag_in[:-1]
    idx_in = idx_sort[flag_in]
    idx_1 = idx_in[(idx_in < nb1)]
    idx_2 = idx_in[(idx_in >= nb1)] - nb1
    (r1cmn, r2cmn) = (len(idx_1), len(idx_2))
    if jointype == 'inner':
        (r1spc, r2spc) = (0, 0)
    elif jointype == 'outer':
        idx_out = idx_sort[~flag_in]
        idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)]))
        idx_2 = np.concatenate((idx_2, idx_out[(idx_out >= nb1)] - nb1))
        (r1spc, r2spc) = (len(idx_1) - r1cmn, len(idx_2) - r2cmn)
    elif jointype == 'leftouter':
        idx_out = idx_sort[~flag_in]
        idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)]))
        (r1spc, r2spc) = (len(idx_1) - r1cmn, 0)
    # Select the entries from each input
    (s1, s2) = (r1[idx_1], r2[idx_2])
    #
    # Build the new description of the output array .......
    # Start with the key fields
    ndtype = _get_fieldspec(r1k.dtype)

    # Add the fields from r1
    for fname, fdtype in _get_fieldspec(r1.dtype):
        if fname not in key:
            ndtype.append((fname, fdtype))

    # Add the fields from r2
    for fname, fdtype in _get_fieldspec(r2.dtype):
        # Have we seen the current name already ?
        # we need to rebuild this list every time
        names = list(name for name, dtype in ndtype)
        try:
            nameidx = names.index(fname)
        except ValueError:
            #... we haven't: just add the description to the current list
            ndtype.append((fname, fdtype))
        else:
            # collision
            _, cdtype = ndtype[nameidx]
            if fname in key:
                # The current field is part of the key: take the largest dtype
                ndtype[nameidx] = (fname, max(fdtype, cdtype))
            else:
                # The current field is not part of the key: add the suffixes,
                # and place the new field adjacent to the old one
                ndtype[nameidx:nameidx + 1] = [
                    (fname + r1postfix, cdtype),
                    (fname + r2postfix, fdtype)
                ]
    # Rebuild a dtype from the new fields
    ndtype = np.dtype(ndtype)
    # Find the largest nb of common fields :
    # r1cmn and r2cmn should be equal, but...
    cmn = max(r1cmn, r2cmn)
    # Construct an empty array
    output = ma.masked_all((cmn + r1spc + r2spc,), dtype=ndtype)
    names = output.dtype.names
    for f in r1names:
        selected = s1[f]
        if f not in names or (f in r2names and not r2postfix and f not in key):
            f += r1postfix
        current = output[f]
        current[:r1cmn] = selected[:r1cmn]
        if jointype in ('outer', 'leftouter'):
            current[cmn:cmn + r1spc] = selected[r1cmn:]
    for f in r2names:
        selected = s2[f]
        if f not in names or (f in r1names and not r1postfix and f not in key):
            f += r2postfix
        current = output[f]
        current[:r2cmn] = selected[:r2cmn]
        if (jointype == 'outer') and r2spc:
            current[-r2spc:] = selected[r2cmn:]
    # Sort and finalize the output
    output.sort(order=key)
    kwargs = dict(usemask=usemask, asrecarray=asrecarray)
    return _fix_output(_fix_defaults(output, defaults), **kwargs)


def _rec_join_dispatcher(
        key, r1, r2, jointype=None, r1postfix=None, r2postfix=None,
        defaults=None):
    return (r1, r2)


@array_function_dispatch(_rec_join_dispatcher)
def rec_join(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2',
             defaults=None):
    """
    Join arrays `r1` and `r2` on keys.
    Alternative to join_by, that always returns a np.recarray.

    See Also
    --------
    join_by : equivalent function
    """
    kwargs = dict(jointype=jointype, r1postfix=r1postfix, r2postfix=r2postfix,
                  defaults=defaults, usemask=False, asrecarray=True)
    return join_by(key, r1, r2, **kwargs)