_ode.py
46.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
# Authors: Pearu Peterson, Pauli Virtanen, John Travers
"""
First-order ODE integrators.
User-friendly interface to various numerical integrators for solving a
system of first order ODEs with prescribed initial conditions::
d y(t)[i]
--------- = f(t,y(t))[i],
d t
y(t=0)[i] = y0[i],
where::
i = 0, ..., len(y0) - 1
class ode
---------
A generic interface class to numeric integrators. It has the following
methods::
integrator = ode(f, jac=None)
integrator = integrator.set_integrator(name, **params)
integrator = integrator.set_initial_value(y0, t0=0.0)
integrator = integrator.set_f_params(*args)
integrator = integrator.set_jac_params(*args)
y1 = integrator.integrate(t1, step=False, relax=False)
flag = integrator.successful()
class complex_ode
-----------------
This class has the same generic interface as ode, except it can handle complex
f, y and Jacobians by transparently translating them into the equivalent
real valued system. It supports the real valued solvers (i.e not zvode) and is
an alternative to ode with the zvode solver, sometimes performing better.
"""
from __future__ import division, print_function, absolute_import
# XXX: Integrators must have:
# ===========================
# cvode - C version of vode and vodpk with many improvements.
# Get it from http://www.netlib.org/ode/cvode.tar.gz
# To wrap cvode to Python, one must write extension module by
# hand. Its interface is too much 'advanced C' that using f2py
# would be too complicated (or impossible).
#
# How to define a new integrator:
# ===============================
#
# class myodeint(IntegratorBase):
#
# runner = <odeint function> or None
#
# def __init__(self,...): # required
# <initialize>
#
# def reset(self,n,has_jac): # optional
# # n - the size of the problem (number of equations)
# # has_jac - whether user has supplied its own routine for Jacobian
# <allocate memory,initialize further>
#
# def run(self,f,jac,y0,t0,t1,f_params,jac_params): # required
# # this method is called to integrate from t=t0 to t=t1
# # with initial condition y0. f and jac are user-supplied functions
# # that define the problem. f_params,jac_params are additional
# # arguments
# # to these functions.
# <calculate y1>
# if <calculation was unsuccessful>:
# self.success = 0
# return t1,y1
#
# # In addition, one can define step() and run_relax() methods (they
# # take the same arguments as run()) if the integrator can support
# # these features (see IntegratorBase doc strings).
#
# if myodeint.runner:
# IntegratorBase.integrator_classes.append(myodeint)
__all__ = ['ode', 'complex_ode']
__version__ = "$Id$"
__docformat__ = "restructuredtext en"
import re
import warnings
from numpy import asarray, array, zeros, int32, isscalar, real, imag, vstack
from . import vode as _vode
from . import _dop
from . import lsoda as _lsoda
# ------------------------------------------------------------------------------
# User interface
# ------------------------------------------------------------------------------
class ode(object):
"""
A generic interface class to numeric integrators.
Solve an equation system :math:`y'(t) = f(t,y)` with (optional) ``jac = df/dy``.
*Note*: The first two arguments of ``f(t, y, ...)`` are in the
opposite order of the arguments in the system definition function used
by `scipy.integrate.odeint`.
Parameters
----------
f : callable ``f(t, y, *f_args)``
Right-hand side of the differential equation. t is a scalar,
``y.shape == (n,)``.
``f_args`` is set by calling ``set_f_params(*args)``.
`f` should return a scalar, array or list (not a tuple).
jac : callable ``jac(t, y, *jac_args)``, optional
Jacobian of the right-hand side, ``jac[i,j] = d f[i] / d y[j]``.
``jac_args`` is set by calling ``set_jac_params(*args)``.
Attributes
----------
t : float
Current time.
y : ndarray
Current variable values.
See also
--------
odeint : an integrator with a simpler interface based on lsoda from ODEPACK
quad : for finding the area under a curve
Notes
-----
Available integrators are listed below. They can be selected using
the `set_integrator` method.
"vode"
Real-valued Variable-coefficient Ordinary Differential Equation
solver, with fixed-leading-coefficient implementation. It provides
implicit Adams method (for non-stiff problems) and a method based on
backward differentiation formulas (BDF) (for stiff problems).
Source: http://www.netlib.org/ode/vode.f
.. warning::
This integrator is not re-entrant. You cannot have two `ode`
instances using the "vode" integrator at the same time.
This integrator accepts the following parameters in `set_integrator`
method of the `ode` class:
- atol : float or sequence
absolute tolerance for solution
- rtol : float or sequence
relative tolerance for solution
- lband : None or int
- uband : None or int
Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+uband.
Setting these requires your jac routine to return the jacobian
in packed format, jac_packed[i-j+uband, j] = jac[i,j]. The
dimension of the matrix must be (lband+uband+1, len(y)).
- method: 'adams' or 'bdf'
Which solver to use, Adams (non-stiff) or BDF (stiff)
- with_jacobian : bool
This option is only considered when the user has not supplied a
Jacobian function and has not indicated (by setting either band)
that the Jacobian is banded. In this case, `with_jacobian` specifies
whether the iteration method of the ODE solver's correction step is
chord iteration with an internally generated full Jacobian or
functional iteration with no Jacobian.
- nsteps : int
Maximum number of (internally defined) steps allowed during one
call to the solver.
- first_step : float
- min_step : float
- max_step : float
Limits for the step sizes used by the integrator.
- order : int
Maximum order used by the integrator,
order <= 12 for Adams, <= 5 for BDF.
"zvode"
Complex-valued Variable-coefficient Ordinary Differential Equation
solver, with fixed-leading-coefficient implementation. It provides
implicit Adams method (for non-stiff problems) and a method based on
backward differentiation formulas (BDF) (for stiff problems).
Source: http://www.netlib.org/ode/zvode.f
.. warning::
This integrator is not re-entrant. You cannot have two `ode`
instances using the "zvode" integrator at the same time.
This integrator accepts the same parameters in `set_integrator`
as the "vode" solver.
.. note::
When using ZVODE for a stiff system, it should only be used for
the case in which the function f is analytic, that is, when each f(i)
is an analytic function of each y(j). Analyticity means that the
partial derivative df(i)/dy(j) is a unique complex number, and this
fact is critical in the way ZVODE solves the dense or banded linear
systems that arise in the stiff case. For a complex stiff ODE system
in which f is not analytic, ZVODE is likely to have convergence
failures, and for this problem one should instead use DVODE on the
equivalent real system (in the real and imaginary parts of y).
"lsoda"
Real-valued Variable-coefficient Ordinary Differential Equation
solver, with fixed-leading-coefficient implementation. It provides
automatic method switching between implicit Adams method (for non-stiff
problems) and a method based on backward differentiation formulas (BDF)
(for stiff problems).
Source: http://www.netlib.org/odepack
.. warning::
This integrator is not re-entrant. You cannot have two `ode`
instances using the "lsoda" integrator at the same time.
This integrator accepts the following parameters in `set_integrator`
method of the `ode` class:
- atol : float or sequence
absolute tolerance for solution
- rtol : float or sequence
relative tolerance for solution
- lband : None or int
- uband : None or int
Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+uband.
Setting these requires your jac routine to return the jacobian
in packed format, jac_packed[i-j+uband, j] = jac[i,j].
- with_jacobian : bool
*Not used.*
- nsteps : int
Maximum number of (internally defined) steps allowed during one
call to the solver.
- first_step : float
- min_step : float
- max_step : float
Limits for the step sizes used by the integrator.
- max_order_ns : int
Maximum order used in the nonstiff case (default 12).
- max_order_s : int
Maximum order used in the stiff case (default 5).
- max_hnil : int
Maximum number of messages reporting too small step size (t + h = t)
(default 0)
- ixpr : int
Whether to generate extra printing at method switches (default False).
"dopri5"
This is an explicit runge-kutta method of order (4)5 due to Dormand &
Prince (with stepsize control and dense output).
Authors:
E. Hairer and G. Wanner
Universite de Geneve, Dept. de Mathematiques
CH-1211 Geneve 24, Switzerland
e-mail: ernst.hairer@math.unige.ch, gerhard.wanner@math.unige.ch
This code is described in [HNW93]_.
This integrator accepts the following parameters in set_integrator()
method of the ode class:
- atol : float or sequence
absolute tolerance for solution
- rtol : float or sequence
relative tolerance for solution
- nsteps : int
Maximum number of (internally defined) steps allowed during one
call to the solver.
- first_step : float
- max_step : float
- safety : float
Safety factor on new step selection (default 0.9)
- ifactor : float
- dfactor : float
Maximum factor to increase/decrease step size by in one step
- beta : float
Beta parameter for stabilised step size control.
- verbosity : int
Switch for printing messages (< 0 for no messages).
"dop853"
This is an explicit runge-kutta method of order 8(5,3) due to Dormand
& Prince (with stepsize control and dense output).
Options and references the same as "dopri5".
Examples
--------
A problem to integrate and the corresponding jacobian:
>>> from scipy.integrate import ode
>>>
>>> y0, t0 = [1.0j, 2.0], 0
>>>
>>> def f(t, y, arg1):
... return [1j*arg1*y[0] + y[1], -arg1*y[1]**2]
>>> def jac(t, y, arg1):
... return [[1j*arg1, 1], [0, -arg1*2*y[1]]]
The integration:
>>> r = ode(f, jac).set_integrator('zvode', method='bdf')
>>> r.set_initial_value(y0, t0).set_f_params(2.0).set_jac_params(2.0)
>>> t1 = 10
>>> dt = 1
>>> while r.successful() and r.t < t1:
... print(r.t+dt, r.integrate(r.t+dt))
1 [-0.71038232+0.23749653j 0.40000271+0.j ]
2.0 [0.19098503-0.52359246j 0.22222356+0.j ]
3.0 [0.47153208+0.52701229j 0.15384681+0.j ]
4.0 [-0.61905937+0.30726255j 0.11764744+0.j ]
5.0 [0.02340997-0.61418799j 0.09523835+0.j ]
6.0 [0.58643071+0.339819j 0.08000018+0.j ]
7.0 [-0.52070105+0.44525141j 0.06896565+0.j ]
8.0 [-0.15986733-0.61234476j 0.06060616+0.j ]
9.0 [0.64850462+0.15048982j 0.05405414+0.j ]
10.0 [-0.38404699+0.56382299j 0.04878055+0.j ]
References
----------
.. [HNW93] E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary
Differential Equations i. Nonstiff Problems. 2nd edition.
Springer Series in Computational Mathematics,
Springer-Verlag (1993)
"""
def __init__(self, f, jac=None):
self.stiff = 0
self.f = f
self.jac = jac
self.f_params = ()
self.jac_params = ()
self._y = []
@property
def y(self):
return self._y
def set_initial_value(self, y, t=0.0):
"""Set initial conditions y(t) = y."""
if isscalar(y):
y = [y]
n_prev = len(self._y)
if not n_prev:
self.set_integrator('') # find first available integrator
self._y = asarray(y, self._integrator.scalar)
self.t = t
self._integrator.reset(len(self._y), self.jac is not None)
return self
def set_integrator(self, name, **integrator_params):
"""
Set integrator by name.
Parameters
----------
name : str
Name of the integrator.
integrator_params
Additional parameters for the integrator.
"""
integrator = find_integrator(name)
if integrator is None:
# FIXME: this really should be raise an exception. Will that break
# any code?
warnings.warn('No integrator name match with %r or is not '
'available.' % name)
else:
self._integrator = integrator(**integrator_params)
if not len(self._y):
self.t = 0.0
self._y = array([0.0], self._integrator.scalar)
self._integrator.reset(len(self._y), self.jac is not None)
return self
def integrate(self, t, step=False, relax=False):
"""Find y=y(t), set y as an initial condition, and return y.
Parameters
----------
t : float
The endpoint of the integration step.
step : bool
If True, and if the integrator supports the step method,
then perform a single integration step and return.
This parameter is provided in order to expose internals of
the implementation, and should not be changed from its default
value in most cases.
relax : bool
If True and if the integrator supports the run_relax method,
then integrate until t_1 >= t and return. ``relax`` is not
referenced if ``step=True``.
This parameter is provided in order to expose internals of
the implementation, and should not be changed from its default
value in most cases.
Returns
-------
y : float
The integrated value at t
"""
if step and self._integrator.supports_step:
mth = self._integrator.step
elif relax and self._integrator.supports_run_relax:
mth = self._integrator.run_relax
else:
mth = self._integrator.run
try:
self._y, self.t = mth(self.f, self.jac or (lambda: None),
self._y, self.t, t,
self.f_params, self.jac_params)
except SystemError:
# f2py issue with tuple returns, see ticket 1187.
raise ValueError('Function to integrate must not return a tuple.')
return self._y
def successful(self):
"""Check if integration was successful."""
try:
self._integrator
except AttributeError:
self.set_integrator('')
return self._integrator.success == 1
def get_return_code(self):
"""Extracts the return code for the integration to enable better control
if the integration fails.
In general, a return code > 0 implies success while a return code < 0
implies failure.
Notes
-----
This section describes possible return codes and their meaning, for available
integrators that can be selected by `set_integrator` method.
"vode"
=========== =======
Return Code Message
=========== =======
2 Integration successful.
-1 Excess work done on this call. (Perhaps wrong MF.)
-2 Excess accuracy requested. (Tolerances too small.)
-3 Illegal input detected. (See printed message.)
-4 Repeated error test failures. (Check all input.)
-5 Repeated convergence failures. (Perhaps bad Jacobian
supplied or wrong choice of MF or tolerances.)
-6 Error weight became zero during problem. (Solution
component i vanished, and ATOL or ATOL(i) = 0.)
=========== =======
"zvode"
=========== =======
Return Code Message
=========== =======
2 Integration successful.
-1 Excess work done on this call. (Perhaps wrong MF.)
-2 Excess accuracy requested. (Tolerances too small.)
-3 Illegal input detected. (See printed message.)
-4 Repeated error test failures. (Check all input.)
-5 Repeated convergence failures. (Perhaps bad Jacobian
supplied or wrong choice of MF or tolerances.)
-6 Error weight became zero during problem. (Solution
component i vanished, and ATOL or ATOL(i) = 0.)
=========== =======
"dopri5"
=========== =======
Return Code Message
=========== =======
1 Integration successful.
2 Integration successful (interrupted by solout).
-1 Input is not consistent.
-2 Larger nsteps is needed.
-3 Step size becomes too small.
-4 Problem is probably stiff (interrupted).
=========== =======
"dop853"
=========== =======
Return Code Message
=========== =======
1 Integration successful.
2 Integration successful (interrupted by solout).
-1 Input is not consistent.
-2 Larger nsteps is needed.
-3 Step size becomes too small.
-4 Problem is probably stiff (interrupted).
=========== =======
"lsoda"
=========== =======
Return Code Message
=========== =======
2 Integration successful.
-1 Excess work done on this call (perhaps wrong Dfun type).
-2 Excess accuracy requested (tolerances too small).
-3 Illegal input detected (internal error).
-4 Repeated error test failures (internal error).
-5 Repeated convergence failures (perhaps bad Jacobian or tolerances).
-6 Error weight became zero during problem.
-7 Internal workspace insufficient to finish (internal error).
=========== =======
"""
try:
self._integrator
except AttributeError:
self.set_integrator('')
return self._integrator.istate
def set_f_params(self, *args):
"""Set extra parameters for user-supplied function f."""
self.f_params = args
return self
def set_jac_params(self, *args):
"""Set extra parameters for user-supplied function jac."""
self.jac_params = args
return self
def set_solout(self, solout):
"""
Set callable to be called at every successful integration step.
Parameters
----------
solout : callable
``solout(t, y)`` is called at each internal integrator step,
t is a scalar providing the current independent position
y is the current soloution ``y.shape == (n,)``
solout should return -1 to stop integration
otherwise it should return None or 0
"""
if self._integrator.supports_solout:
self._integrator.set_solout(solout)
if self._y is not None:
self._integrator.reset(len(self._y), self.jac is not None)
else:
raise ValueError("selected integrator does not support solout,"
" choose another one")
def _transform_banded_jac(bjac):
"""
Convert a real matrix of the form (for example)
[0 0 A B] [0 0 0 B]
[0 0 C D] [0 0 A D]
[E F G H] to [0 F C H]
[I J K L] [E J G L]
[I 0 K 0]
That is, every other column is shifted up one.
"""
# Shift every other column.
newjac = zeros((bjac.shape[0] + 1, bjac.shape[1]))
newjac[1:, ::2] = bjac[:, ::2]
newjac[:-1, 1::2] = bjac[:, 1::2]
return newjac
class complex_ode(ode):
"""
A wrapper of ode for complex systems.
This functions similarly as `ode`, but re-maps a complex-valued
equation system to a real-valued one before using the integrators.
Parameters
----------
f : callable ``f(t, y, *f_args)``
Rhs of the equation. t is a scalar, ``y.shape == (n,)``.
``f_args`` is set by calling ``set_f_params(*args)``.
jac : callable ``jac(t, y, *jac_args)``
Jacobian of the rhs, ``jac[i,j] = d f[i] / d y[j]``.
``jac_args`` is set by calling ``set_f_params(*args)``.
Attributes
----------
t : float
Current time.
y : ndarray
Current variable values.
Examples
--------
For usage examples, see `ode`.
"""
def __init__(self, f, jac=None):
self.cf = f
self.cjac = jac
if jac is None:
ode.__init__(self, self._wrap, None)
else:
ode.__init__(self, self._wrap, self._wrap_jac)
def _wrap(self, t, y, *f_args):
f = self.cf(*((t, y[::2] + 1j * y[1::2]) + f_args))
# self.tmp is a real-valued array containing the interleaved
# real and imaginary parts of f.
self.tmp[::2] = real(f)
self.tmp[1::2] = imag(f)
return self.tmp
def _wrap_jac(self, t, y, *jac_args):
# jac is the complex Jacobian computed by the user-defined function.
jac = self.cjac(*((t, y[::2] + 1j * y[1::2]) + jac_args))
# jac_tmp is the real version of the complex Jacobian. Each complex
# entry in jac, say 2+3j, becomes a 2x2 block of the form
# [2 -3]
# [3 2]
jac_tmp = zeros((2 * jac.shape[0], 2 * jac.shape[1]))
jac_tmp[1::2, 1::2] = jac_tmp[::2, ::2] = real(jac)
jac_tmp[1::2, ::2] = imag(jac)
jac_tmp[::2, 1::2] = -jac_tmp[1::2, ::2]
ml = getattr(self._integrator, 'ml', None)
mu = getattr(self._integrator, 'mu', None)
if ml is not None or mu is not None:
# Jacobian is banded. The user's Jacobian function has computed
# the complex Jacobian in packed format. The corresponding
# real-valued version has every other column shifted up.
jac_tmp = _transform_banded_jac(jac_tmp)
return jac_tmp
@property
def y(self):
return self._y[::2] + 1j * self._y[1::2]
def set_integrator(self, name, **integrator_params):
"""
Set integrator by name.
Parameters
----------
name : str
Name of the integrator
integrator_params
Additional parameters for the integrator.
"""
if name == 'zvode':
raise ValueError("zvode must be used with ode, not complex_ode")
lband = integrator_params.get('lband')
uband = integrator_params.get('uband')
if lband is not None or uband is not None:
# The Jacobian is banded. Override the user-supplied bandwidths
# (which are for the complex Jacobian) with the bandwidths of
# the corresponding real-valued Jacobian wrapper of the complex
# Jacobian.
integrator_params['lband'] = 2 * (lband or 0) + 1
integrator_params['uband'] = 2 * (uband or 0) + 1
return ode.set_integrator(self, name, **integrator_params)
def set_initial_value(self, y, t=0.0):
"""Set initial conditions y(t) = y."""
y = asarray(y)
self.tmp = zeros(y.size * 2, 'float')
self.tmp[::2] = real(y)
self.tmp[1::2] = imag(y)
return ode.set_initial_value(self, self.tmp, t)
def integrate(self, t, step=False, relax=False):
"""Find y=y(t), set y as an initial condition, and return y.
Parameters
----------
t : float
The endpoint of the integration step.
step : bool
If True, and if the integrator supports the step method,
then perform a single integration step and return.
This parameter is provided in order to expose internals of
the implementation, and should not be changed from its default
value in most cases.
relax : bool
If True and if the integrator supports the run_relax method,
then integrate until t_1 >= t and return. ``relax`` is not
referenced if ``step=True``.
This parameter is provided in order to expose internals of
the implementation, and should not be changed from its default
value in most cases.
Returns
-------
y : float
The integrated value at t
"""
y = ode.integrate(self, t, step, relax)
return y[::2] + 1j * y[1::2]
def set_solout(self, solout):
"""
Set callable to be called at every successful integration step.
Parameters
----------
solout : callable
``solout(t, y)`` is called at each internal integrator step,
t is a scalar providing the current independent position
y is the current soloution ``y.shape == (n,)``
solout should return -1 to stop integration
otherwise it should return None or 0
"""
if self._integrator.supports_solout:
self._integrator.set_solout(solout, complex=True)
else:
raise TypeError("selected integrator does not support solouta,"
+ "choose another one")
# ------------------------------------------------------------------------------
# ODE integrators
# ------------------------------------------------------------------------------
def find_integrator(name):
for cl in IntegratorBase.integrator_classes:
if re.match(name, cl.__name__, re.I):
return cl
return None
class IntegratorConcurrencyError(RuntimeError):
"""
Failure due to concurrent usage of an integrator that can be used
only for a single problem at a time.
"""
def __init__(self, name):
msg = ("Integrator `%s` can be used to solve only a single problem "
"at a time. If you want to integrate multiple problems, "
"consider using a different integrator "
"(see `ode.set_integrator`)") % name
RuntimeError.__init__(self, msg)
class IntegratorBase(object):
runner = None # runner is None => integrator is not available
success = None # success==1 if integrator was called successfully
istate = None # istate > 0 means success, istate < 0 means failure
supports_run_relax = None
supports_step = None
supports_solout = False
integrator_classes = []
scalar = float
def acquire_new_handle(self):
# Some of the integrators have internal state (ancient
# Fortran...), and so only one instance can use them at a time.
# We keep track of this, and fail when concurrent usage is tried.
self.__class__.active_global_handle += 1
self.handle = self.__class__.active_global_handle
def check_handle(self):
if self.handle is not self.__class__.active_global_handle:
raise IntegratorConcurrencyError(self.__class__.__name__)
def reset(self, n, has_jac):
"""Prepare integrator for call: allocate memory, set flags, etc.
n - number of equations.
has_jac - if user has supplied function for evaluating Jacobian.
"""
def run(self, f, jac, y0, t0, t1, f_params, jac_params):
"""Integrate from t=t0 to t=t1 using y0 as an initial condition.
Return 2-tuple (y1,t1) where y1 is the result and t=t1
defines the stoppage coordinate of the result.
"""
raise NotImplementedError('all integrators must define '
'run(f, jac, t0, t1, y0, f_params, jac_params)')
def step(self, f, jac, y0, t0, t1, f_params, jac_params):
"""Make one integration step and return (y1,t1)."""
raise NotImplementedError('%s does not support step() method' %
self.__class__.__name__)
def run_relax(self, f, jac, y0, t0, t1, f_params, jac_params):
"""Integrate from t=t0 to t>=t1 and return (y1,t)."""
raise NotImplementedError('%s does not support run_relax() method' %
self.__class__.__name__)
# XXX: __str__ method for getting visual state of the integrator
def _vode_banded_jac_wrapper(jacfunc, ml, jac_params):
"""
Wrap a banded Jacobian function with a function that pads
the Jacobian with `ml` rows of zeros.
"""
def jac_wrapper(t, y):
jac = asarray(jacfunc(t, y, *jac_params))
padded_jac = vstack((jac, zeros((ml, jac.shape[1]))))
return padded_jac
return jac_wrapper
class vode(IntegratorBase):
runner = getattr(_vode, 'dvode', None)
messages = {-1: 'Excess work done on this call. (Perhaps wrong MF.)',
-2: 'Excess accuracy requested. (Tolerances too small.)',
-3: 'Illegal input detected. (See printed message.)',
-4: 'Repeated error test failures. (Check all input.)',
-5: 'Repeated convergence failures. (Perhaps bad'
' Jacobian supplied or wrong choice of MF or tolerances.)',
-6: 'Error weight became zero during problem. (Solution'
' component i vanished, and ATOL or ATOL(i) = 0.)'
}
supports_run_relax = 1
supports_step = 1
active_global_handle = 0
def __init__(self,
method='adams',
with_jacobian=False,
rtol=1e-6, atol=1e-12,
lband=None, uband=None,
order=12,
nsteps=500,
max_step=0.0, # corresponds to infinite
min_step=0.0,
first_step=0.0, # determined by solver
):
if re.match(method, r'adams', re.I):
self.meth = 1
elif re.match(method, r'bdf', re.I):
self.meth = 2
else:
raise ValueError('Unknown integration method %s' % method)
self.with_jacobian = with_jacobian
self.rtol = rtol
self.atol = atol
self.mu = uband
self.ml = lband
self.order = order
self.nsteps = nsteps
self.max_step = max_step
self.min_step = min_step
self.first_step = first_step
self.success = 1
self.initialized = False
def _determine_mf_and_set_bands(self, has_jac):
"""
Determine the `MF` parameter (Method Flag) for the Fortran subroutine `dvode`.
In the Fortran code, the legal values of `MF` are:
10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25,
-11, -12, -14, -15, -21, -22, -24, -25
but this python wrapper does not use negative values.
Returns
mf = 10*self.meth + miter
self.meth is the linear multistep method:
self.meth == 1: method="adams"
self.meth == 2: method="bdf"
miter is the correction iteration method:
miter == 0: Functional iteraton; no Jacobian involved.
miter == 1: Chord iteration with user-supplied full Jacobian
miter == 2: Chord iteration with internally computed full Jacobian
miter == 3: Chord iteration with internally computed diagonal Jacobian
miter == 4: Chord iteration with user-supplied banded Jacobian
miter == 5: Chord iteration with internally computed banded Jacobian
Side effects: If either self.mu or self.ml is not None and the other is None,
then the one that is None is set to 0.
"""
jac_is_banded = self.mu is not None or self.ml is not None
if jac_is_banded:
if self.mu is None:
self.mu = 0
if self.ml is None:
self.ml = 0
# has_jac is True if the user provided a jacobian function.
if has_jac:
if jac_is_banded:
miter = 4
else:
miter = 1
else:
if jac_is_banded:
if self.ml == self.mu == 0:
miter = 3 # Chord iteration with internal diagonal Jacobian.
else:
miter = 5 # Chord iteration with internal banded Jacobian.
else:
# self.with_jacobian is set by the user in the call to ode.set_integrator.
if self.with_jacobian:
miter = 2 # Chord iteration with internal full Jacobian.
else:
miter = 0 # Functional iteraton; no Jacobian involved.
mf = 10 * self.meth + miter
return mf
def reset(self, n, has_jac):
mf = self._determine_mf_and_set_bands(has_jac)
if mf == 10:
lrw = 20 + 16 * n
elif mf in [11, 12]:
lrw = 22 + 16 * n + 2 * n * n
elif mf == 13:
lrw = 22 + 17 * n
elif mf in [14, 15]:
lrw = 22 + 18 * n + (3 * self.ml + 2 * self.mu) * n
elif mf == 20:
lrw = 20 + 9 * n
elif mf in [21, 22]:
lrw = 22 + 9 * n + 2 * n * n
elif mf == 23:
lrw = 22 + 10 * n
elif mf in [24, 25]:
lrw = 22 + 11 * n + (3 * self.ml + 2 * self.mu) * n
else:
raise ValueError('Unexpected mf=%s' % mf)
if mf % 10 in [0, 3]:
liw = 30
else:
liw = 30 + n
rwork = zeros((lrw,), float)
rwork[4] = self.first_step
rwork[5] = self.max_step
rwork[6] = self.min_step
self.rwork = rwork
iwork = zeros((liw,), int32)
if self.ml is not None:
iwork[0] = self.ml
if self.mu is not None:
iwork[1] = self.mu
iwork[4] = self.order
iwork[5] = self.nsteps
iwork[6] = 2 # mxhnil
self.iwork = iwork
self.call_args = [self.rtol, self.atol, 1, 1,
self.rwork, self.iwork, mf]
self.success = 1
self.initialized = False
def run(self, f, jac, y0, t0, t1, f_params, jac_params):
if self.initialized:
self.check_handle()
else:
self.initialized = True
self.acquire_new_handle()
if self.ml is not None and self.ml > 0:
# Banded Jacobian. Wrap the user-provided function with one
# that pads the Jacobian array with the extra `self.ml` rows
# required by the f2py-generated wrapper.
jac = _vode_banded_jac_wrapper(jac, self.ml, jac_params)
args = ((f, jac, y0, t0, t1) + tuple(self.call_args) +
(f_params, jac_params))
y1, t, istate = self.runner(*args)
self.istate = istate
if istate < 0:
unexpected_istate_msg = 'Unexpected istate={:d}'.format(istate)
warnings.warn('{:s}: {:s}'.format(self.__class__.__name__,
self.messages.get(istate, unexpected_istate_msg)))
self.success = 0
else:
self.call_args[3] = 2 # upgrade istate from 1 to 2
self.istate = 2
return y1, t
def step(self, *args):
itask = self.call_args[2]
self.call_args[2] = 2
r = self.run(*args)
self.call_args[2] = itask
return r
def run_relax(self, *args):
itask = self.call_args[2]
self.call_args[2] = 3
r = self.run(*args)
self.call_args[2] = itask
return r
if vode.runner is not None:
IntegratorBase.integrator_classes.append(vode)
class zvode(vode):
runner = getattr(_vode, 'zvode', None)
supports_run_relax = 1
supports_step = 1
scalar = complex
active_global_handle = 0
def reset(self, n, has_jac):
mf = self._determine_mf_and_set_bands(has_jac)
if mf in (10,):
lzw = 15 * n
elif mf in (11, 12):
lzw = 15 * n + 2 * n ** 2
elif mf in (-11, -12):
lzw = 15 * n + n ** 2
elif mf in (13,):
lzw = 16 * n
elif mf in (14, 15):
lzw = 17 * n + (3 * self.ml + 2 * self.mu) * n
elif mf in (-14, -15):
lzw = 16 * n + (2 * self.ml + self.mu) * n
elif mf in (20,):
lzw = 8 * n
elif mf in (21, 22):
lzw = 8 * n + 2 * n ** 2
elif mf in (-21, -22):
lzw = 8 * n + n ** 2
elif mf in (23,):
lzw = 9 * n
elif mf in (24, 25):
lzw = 10 * n + (3 * self.ml + 2 * self.mu) * n
elif mf in (-24, -25):
lzw = 9 * n + (2 * self.ml + self.mu) * n
lrw = 20 + n
if mf % 10 in (0, 3):
liw = 30
else:
liw = 30 + n
zwork = zeros((lzw,), complex)
self.zwork = zwork
rwork = zeros((lrw,), float)
rwork[4] = self.first_step
rwork[5] = self.max_step
rwork[6] = self.min_step
self.rwork = rwork
iwork = zeros((liw,), int32)
if self.ml is not None:
iwork[0] = self.ml
if self.mu is not None:
iwork[1] = self.mu
iwork[4] = self.order
iwork[5] = self.nsteps
iwork[6] = 2 # mxhnil
self.iwork = iwork
self.call_args = [self.rtol, self.atol, 1, 1,
self.zwork, self.rwork, self.iwork, mf]
self.success = 1
self.initialized = False
if zvode.runner is not None:
IntegratorBase.integrator_classes.append(zvode)
class dopri5(IntegratorBase):
runner = getattr(_dop, 'dopri5', None)
name = 'dopri5'
supports_solout = True
messages = {1: 'computation successful',
2: 'comput. successful (interrupted by solout)',
-1: 'input is not consistent',
-2: 'larger nsteps is needed',
-3: 'step size becomes too small',
-4: 'problem is probably stiff (interrupted)',
}
def __init__(self,
rtol=1e-6, atol=1e-12,
nsteps=500,
max_step=0.0,
first_step=0.0, # determined by solver
safety=0.9,
ifactor=10.0,
dfactor=0.2,
beta=0.0,
method=None,
verbosity=-1, # no messages if negative
):
self.rtol = rtol
self.atol = atol
self.nsteps = nsteps
self.max_step = max_step
self.first_step = first_step
self.safety = safety
self.ifactor = ifactor
self.dfactor = dfactor
self.beta = beta
self.verbosity = verbosity
self.success = 1
self.set_solout(None)
def set_solout(self, solout, complex=False):
self.solout = solout
self.solout_cmplx = complex
if solout is None:
self.iout = 0
else:
self.iout = 1
def reset(self, n, has_jac):
work = zeros((8 * n + 21,), float)
work[1] = self.safety
work[2] = self.dfactor
work[3] = self.ifactor
work[4] = self.beta
work[5] = self.max_step
work[6] = self.first_step
self.work = work
iwork = zeros((21,), int32)
iwork[0] = self.nsteps
iwork[2] = self.verbosity
self.iwork = iwork
self.call_args = [self.rtol, self.atol, self._solout,
self.iout, self.work, self.iwork]
self.success = 1
def run(self, f, jac, y0, t0, t1, f_params, jac_params):
x, y, iwork, istate = self.runner(*((f, t0, y0, t1) +
tuple(self.call_args) + (f_params,)))
self.istate = istate
if istate < 0:
unexpected_istate_msg = 'Unexpected istate={:d}'.format(istate)
warnings.warn('{:s}: {:s}'.format(self.__class__.__name__,
self.messages.get(istate, unexpected_istate_msg)))
self.success = 0
return y, x
def _solout(self, nr, xold, x, y, nd, icomp, con):
if self.solout is not None:
if self.solout_cmplx:
y = y[::2] + 1j * y[1::2]
return self.solout(x, y)
else:
return 1
if dopri5.runner is not None:
IntegratorBase.integrator_classes.append(dopri5)
class dop853(dopri5):
runner = getattr(_dop, 'dop853', None)
name = 'dop853'
def __init__(self,
rtol=1e-6, atol=1e-12,
nsteps=500,
max_step=0.0,
first_step=0.0, # determined by solver
safety=0.9,
ifactor=6.0,
dfactor=0.3,
beta=0.0,
method=None,
verbosity=-1, # no messages if negative
):
super(self.__class__, self).__init__(rtol, atol, nsteps, max_step,
first_step, safety, ifactor,
dfactor, beta, method,
verbosity)
def reset(self, n, has_jac):
work = zeros((11 * n + 21,), float)
work[1] = self.safety
work[2] = self.dfactor
work[3] = self.ifactor
work[4] = self.beta
work[5] = self.max_step
work[6] = self.first_step
self.work = work
iwork = zeros((21,), int32)
iwork[0] = self.nsteps
iwork[2] = self.verbosity
self.iwork = iwork
self.call_args = [self.rtol, self.atol, self._solout,
self.iout, self.work, self.iwork]
self.success = 1
if dop853.runner is not None:
IntegratorBase.integrator_classes.append(dop853)
class lsoda(IntegratorBase):
runner = getattr(_lsoda, 'lsoda', None)
active_global_handle = 0
messages = {
2: "Integration successful.",
-1: "Excess work done on this call (perhaps wrong Dfun type).",
-2: "Excess accuracy requested (tolerances too small).",
-3: "Illegal input detected (internal error).",
-4: "Repeated error test failures (internal error).",
-5: "Repeated convergence failures (perhaps bad Jacobian or tolerances).",
-6: "Error weight became zero during problem.",
-7: "Internal workspace insufficient to finish (internal error)."
}
def __init__(self,
with_jacobian=False,
rtol=1e-6, atol=1e-12,
lband=None, uband=None,
nsteps=500,
max_step=0.0, # corresponds to infinite
min_step=0.0,
first_step=0.0, # determined by solver
ixpr=0,
max_hnil=0,
max_order_ns=12,
max_order_s=5,
method=None
):
self.with_jacobian = with_jacobian
self.rtol = rtol
self.atol = atol
self.mu = uband
self.ml = lband
self.max_order_ns = max_order_ns
self.max_order_s = max_order_s
self.nsteps = nsteps
self.max_step = max_step
self.min_step = min_step
self.first_step = first_step
self.ixpr = ixpr
self.max_hnil = max_hnil
self.success = 1
self.initialized = False
def reset(self, n, has_jac):
# Calculate parameters for Fortran subroutine dvode.
if has_jac:
if self.mu is None and self.ml is None:
jt = 1
else:
if self.mu is None:
self.mu = 0
if self.ml is None:
self.ml = 0
jt = 4
else:
if self.mu is None and self.ml is None:
jt = 2
else:
if self.mu is None:
self.mu = 0
if self.ml is None:
self.ml = 0
jt = 5
lrn = 20 + (self.max_order_ns + 4) * n
if jt in [1, 2]:
lrs = 22 + (self.max_order_s + 4) * n + n * n
elif jt in [4, 5]:
lrs = 22 + (self.max_order_s + 5 + 2 * self.ml + self.mu) * n
else:
raise ValueError('Unexpected jt=%s' % jt)
lrw = max(lrn, lrs)
liw = 20 + n
rwork = zeros((lrw,), float)
rwork[4] = self.first_step
rwork[5] = self.max_step
rwork[6] = self.min_step
self.rwork = rwork
iwork = zeros((liw,), int32)
if self.ml is not None:
iwork[0] = self.ml
if self.mu is not None:
iwork[1] = self.mu
iwork[4] = self.ixpr
iwork[5] = self.nsteps
iwork[6] = self.max_hnil
iwork[7] = self.max_order_ns
iwork[8] = self.max_order_s
self.iwork = iwork
self.call_args = [self.rtol, self.atol, 1, 1,
self.rwork, self.iwork, jt]
self.success = 1
self.initialized = False
def run(self, f, jac, y0, t0, t1, f_params, jac_params):
if self.initialized:
self.check_handle()
else:
self.initialized = True
self.acquire_new_handle()
args = [f, y0, t0, t1] + self.call_args[:-1] + \
[jac, self.call_args[-1], f_params, 0, jac_params]
y1, t, istate = self.runner(*args)
self.istate = istate
if istate < 0:
unexpected_istate_msg = 'Unexpected istate={:d}'.format(istate)
warnings.warn('{:s}: {:s}'.format(self.__class__.__name__,
self.messages.get(istate, unexpected_istate_msg)))
self.success = 0
else:
self.call_args[3] = 2 # upgrade istate from 1 to 2
self.istate = 2
return y1, t
def step(self, *args):
itask = self.call_args[2]
self.call_args[2] = 2
r = self.run(*args)
self.call_args[2] = itask
return r
def run_relax(self, *args):
itask = self.call_args[2]
self.call_args[2] = 3
r = self.run(*args)
self.call_args[2] = itask
return r
if lsoda.runner:
IntegratorBase.integrator_classes.append(lsoda)