miobase.py
11.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# Authors: Travis Oliphant, Matthew Brett
"""
Base classes for MATLAB file stream reading.
MATLAB is a registered trademark of the Mathworks inc.
"""
from __future__ import division, print_function, absolute_import
import sys
import operator
from scipy._lib.six import reduce
import numpy as np
if sys.version_info[0] >= 3:
byteord = int
else:
byteord = ord
from scipy._lib import doccer
from . import byteordercodes as boc
class MatReadError(Exception):
pass
class MatWriteError(Exception):
pass
class MatReadWarning(UserWarning):
pass
doc_dict = \
{'file_arg':
'''file_name : str
Name of the mat file (do not need .mat extension if
appendmat==True) Can also pass open file-like object.''',
'append_arg':
'''appendmat : bool, optional
True to append the .mat extension to the end of the given
filename, if not already present.''',
'load_args':
'''byte_order : str or None, optional
None by default, implying byte order guessed from mat
file. Otherwise can be one of ('native', '=', 'little', '<',
'BIG', '>').
mat_dtype : bool, optional
If True, return arrays in same dtype as would be loaded into
MATLAB (instead of the dtype with which they are saved).
squeeze_me : bool, optional
Whether to squeeze unit matrix dimensions or not.
chars_as_strings : bool, optional
Whether to convert char arrays to string arrays.
matlab_compatible : bool, optional
Returns matrices as would be loaded by MATLAB (implies
squeeze_me=False, chars_as_strings=False, mat_dtype=True,
struct_as_record=True).''',
'struct_arg':
'''struct_as_record : bool, optional
Whether to load MATLAB structs as numpy record arrays, or as
old-style numpy arrays with dtype=object. Setting this flag to
False replicates the behavior of scipy version 0.7.x (returning
numpy object arrays). The default setting is True, because it
allows easier round-trip load and save of MATLAB files.''',
'matstream_arg':
'''mat_stream : file-like
Object with file API, open for reading.''',
'long_fields':
'''long_field_names : bool, optional
* False - maximum field name length in a structure is 31 characters
which is the documented maximum length. This is the default.
* True - maximum field name length in a structure is 63 characters
which works for MATLAB 7.6''',
'do_compression':
'''do_compression : bool, optional
Whether to compress matrices on write. Default is False.''',
'oned_as':
'''oned_as : {'row', 'column'}, optional
If 'column', write 1-D numpy arrays as column vectors.
If 'row', write 1D numpy arrays as row vectors.''',
'unicode_strings':
'''unicode_strings : bool, optional
If True, write strings as Unicode, else MATLAB usual encoding.'''}
docfiller = doccer.filldoc(doc_dict)
'''
Note on architecture
======================
There are three sets of parameters relevant for reading files. The
first are *file read parameters* - containing options that are common
for reading the whole file, and therefore every variable within that
file. At the moment these are:
* mat_stream
* dtypes (derived from byte code)
* byte_order
* chars_as_strings
* squeeze_me
* struct_as_record (MATLAB 5 files)
* class_dtypes (derived from order code, MATLAB 5 files)
* codecs (MATLAB 5 files)
* uint16_codec (MATLAB 5 files)
Another set of parameters are those that apply only to the current
variable being read - the *header*:
* header related variables (different for v4 and v5 mat files)
* is_complex
* mclass
* var_stream
With the header, we need ``next_position`` to tell us where the next
variable in the stream is.
Then, for each element in a matrix, there can be *element read
parameters*. An element is, for example, one element in a MATLAB cell
array. At the moment these are:
* mat_dtype
The file-reading object contains the *file read parameters*. The
*header* is passed around as a data object, or may be read and discarded
in a single function. The *element read parameters* - the mat_dtype in
this instance, is passed into a general post-processing function - see
``mio_utils`` for details.
'''
def convert_dtypes(dtype_template, order_code):
''' Convert dtypes in mapping to given order
Parameters
----------
dtype_template : mapping
mapping with values returning numpy dtype from ``np.dtype(val)``
order_code : str
an order code suitable for using in ``dtype.newbyteorder()``
Returns
-------
dtypes : mapping
mapping where values have been replaced by
``np.dtype(val).newbyteorder(order_code)``
'''
dtypes = dtype_template.copy()
for k in dtypes:
dtypes[k] = np.dtype(dtypes[k]).newbyteorder(order_code)
return dtypes
def read_dtype(mat_stream, a_dtype):
"""
Generic get of byte stream data of known type
Parameters
----------
mat_stream : file_like object
MATLAB (tm) mat file stream
a_dtype : dtype
dtype of array to read. `a_dtype` is assumed to be correct
endianness.
Returns
-------
arr : ndarray
Array of dtype `a_dtype` read from stream.
"""
num_bytes = a_dtype.itemsize
arr = np.ndarray(shape=(),
dtype=a_dtype,
buffer=mat_stream.read(num_bytes),
order='F')
return arr
def get_matfile_version(fileobj):
"""
Return major, minor tuple depending on apparent mat file type
Where:
#. 0,x -> version 4 format mat files
#. 1,x -> version 5 format mat files
#. 2,x -> version 7.3 format mat files (HDF format)
Parameters
----------
fileobj : file_like
object implementing seek() and read()
Returns
-------
major_version : {0, 1, 2}
major MATLAB File format version
minor_version : int
minor MATLAB file format version
Raises
------
MatReadError
If the file is empty.
ValueError
The matfile version is unknown.
Notes
-----
Has the side effect of setting the file read pointer to 0
"""
# Mat4 files have a zero somewhere in first 4 bytes
fileobj.seek(0)
mopt_bytes = fileobj.read(4)
if len(mopt_bytes) == 0:
raise MatReadError("Mat file appears to be empty")
mopt_ints = np.ndarray(shape=(4,), dtype=np.uint8, buffer=mopt_bytes)
if 0 in mopt_ints:
fileobj.seek(0)
return (0,0)
# For 5 format or 7.3 format we need to read an integer in the
# header. Bytes 124 through 128 contain a version integer and an
# endian test string
fileobj.seek(124)
tst_str = fileobj.read(4)
fileobj.seek(0)
maj_ind = int(tst_str[2] == b'I'[0])
maj_val = byteord(tst_str[maj_ind])
min_val = byteord(tst_str[1-maj_ind])
ret = (maj_val, min_val)
if maj_val in (1, 2):
return ret
raise ValueError('Unknown mat file type, version %s, %s' % ret)
def matdims(arr, oned_as='column'):
"""
Determine equivalent MATLAB dimensions for given array
Parameters
----------
arr : ndarray
Input array
oned_as : {'column', 'row'}, optional
Whether 1-D arrays are returned as MATLAB row or column matrices.
Default is 'column'.
Returns
-------
dims : tuple
Shape tuple, in the form MATLAB expects it.
Notes
-----
We had to decide what shape a 1 dimensional array would be by
default. ``np.atleast_2d`` thinks it is a row vector. The
default for a vector in MATLAB (e.g. ``>> 1:12``) is a row vector.
Versions of scipy up to and including 0.11 resulted (accidentally)
in 1-D arrays being read as column vectors. For the moment, we
maintain the same tradition here.
Examples
--------
>>> matdims(np.array(1)) # numpy scalar
(1, 1)
>>> matdims(np.array([1])) # 1d array, 1 element
(1, 1)
>>> matdims(np.array([1,2])) # 1d array, 2 elements
(2, 1)
>>> matdims(np.array([[2],[3]])) # 2d array, column vector
(2, 1)
>>> matdims(np.array([[2,3]])) # 2d array, row vector
(1, 2)
>>> matdims(np.array([[[2,3]]])) # 3d array, rowish vector
(1, 1, 2)
>>> matdims(np.array([])) # empty 1d array
(0, 0)
>>> matdims(np.array([[]])) # empty 2d
(0, 0)
>>> matdims(np.array([[[]]])) # empty 3d
(0, 0, 0)
Optional argument flips 1-D shape behavior.
>>> matdims(np.array([1,2]), 'row') # 1d array, 2 elements
(1, 2)
The argument has to make sense though
>>> matdims(np.array([1,2]), 'bizarre')
Traceback (most recent call last):
...
ValueError: 1D option "bizarre" is strange
"""
shape = arr.shape
if shape == (): # scalar
return (1,1)
if reduce(operator.mul, shape) == 0: # zero elememts
return (0,) * np.max([arr.ndim, 2])
if len(shape) == 1: # 1D
if oned_as == 'column':
return shape + (1,)
elif oned_as == 'row':
return (1,) + shape
else:
raise ValueError('1D option "%s" is strange'
% oned_as)
return shape
class MatVarReader(object):
''' Abstract class defining required interface for var readers'''
def __init__(self, file_reader):
pass
def read_header(self):
''' Returns header '''
pass
def array_from_header(self, header):
''' Reads array given header '''
pass
class MatFileReader(object):
""" Base object for reading mat files
To make this class functional, you will need to override the
following methods:
matrix_getter_factory - gives object to fetch next matrix from stream
guess_byte_order - guesses file byte order from file
"""
@docfiller
def __init__(self, mat_stream,
byte_order=None,
mat_dtype=False,
squeeze_me=False,
chars_as_strings=True,
matlab_compatible=False,
struct_as_record=True,
verify_compressed_data_integrity=True
):
'''
Initializer for mat file reader
mat_stream : file-like
object with file API, open for reading
%(load_args)s
'''
# Initialize stream
self.mat_stream = mat_stream
self.dtypes = {}
if not byte_order:
byte_order = self.guess_byte_order()
else:
byte_order = boc.to_numpy_code(byte_order)
self.byte_order = byte_order
self.struct_as_record = struct_as_record
if matlab_compatible:
self.set_matlab_compatible()
else:
self.squeeze_me = squeeze_me
self.chars_as_strings = chars_as_strings
self.mat_dtype = mat_dtype
self.verify_compressed_data_integrity = verify_compressed_data_integrity
def set_matlab_compatible(self):
''' Sets options to return arrays as MATLAB loads them '''
self.mat_dtype = True
self.squeeze_me = False
self.chars_as_strings = False
def guess_byte_order(self):
''' As we do not know what file type we have, assume native '''
return boc.native_code
def end_of_stream(self):
b = self.mat_stream.read(1)
curpos = self.mat_stream.tell()
self.mat_stream.seek(curpos-1)
return len(b) == 0
def arr_dtype_number(arr, num):
''' Return dtype for given number of items per element'''
return np.dtype(arr.dtype.str[:2] + str(num))
def arr_to_chars(arr):
''' Convert string array to char array '''
dims = list(arr.shape)
if not dims:
dims = [1]
dims.append(int(arr.dtype.str[2:]))
arr = np.ndarray(shape=dims,
dtype=arr_dtype_number(arr, 1),
buffer=arr)
empties = [arr == '']
if not np.any(empties):
return arr
arr = arr.copy()
arr[tuple(empties)] = ' '
return arr