lbfgsb.py 17.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
"""
Functions
---------
.. autosummary::
   :toctree: generated/

    fmin_l_bfgs_b

"""

## License for the Python wrapper
## ==============================

## Copyright (c) 2004 David M. Cooke <cookedm@physics.mcmaster.ca>

## Permission is hereby granted, free of charge, to any person obtaining a
## copy of this software and associated documentation files (the "Software"),
## to deal in the Software without restriction, including without limitation
## the rights to use, copy, modify, merge, publish, distribute, sublicense,
## and/or sell copies of the Software, and to permit persons to whom the
## Software is furnished to do so, subject to the following conditions:

## The above copyright notice and this permission notice shall be included in
## all copies or substantial portions of the Software.

## THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
## IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
## FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
## AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
## LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
## FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
## DEALINGS IN THE SOFTWARE.

## Modifications by Travis Oliphant and Enthought, Inc. for inclusion in SciPy

from __future__ import division, print_function, absolute_import

import numpy as np
from numpy import array, asarray, float64, int32, zeros
from . import _lbfgsb
from .optimize import (MemoizeJac, OptimizeResult,
                       _check_unknown_options, wrap_function,
                       _approx_fprime_helper)
from scipy.sparse.linalg import LinearOperator

__all__ = ['fmin_l_bfgs_b', 'LbfgsInvHessProduct']


def fmin_l_bfgs_b(func, x0, fprime=None, args=(),
                  approx_grad=0,
                  bounds=None, m=10, factr=1e7, pgtol=1e-5,
                  epsilon=1e-8,
                  iprint=-1, maxfun=15000, maxiter=15000, disp=None,
                  callback=None, maxls=20):
    """
    Minimize a function func using the L-BFGS-B algorithm.

    Parameters
    ----------
    func : callable f(x,*args)
        Function to minimise.
    x0 : ndarray
        Initial guess.
    fprime : callable fprime(x,*args), optional
        The gradient of `func`.  If None, then `func` returns the function
        value and the gradient (``f, g = func(x, *args)``), unless
        `approx_grad` is True in which case `func` returns only ``f``.
    args : sequence, optional
        Arguments to pass to `func` and `fprime`.
    approx_grad : bool, optional
        Whether to approximate the gradient numerically (in which case
        `func` returns only the function value).
    bounds : list, optional
        ``(min, max)`` pairs for each element in ``x``, defining
        the bounds on that parameter. Use None or +-inf for one of ``min`` or
        ``max`` when there is no bound in that direction.
    m : int, optional
        The maximum number of variable metric corrections
        used to define the limited memory matrix. (The limited memory BFGS
        method does not store the full hessian but uses this many terms in an
        approximation to it.)
    factr : float, optional
        The iteration stops when
        ``(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps``,
        where ``eps`` is the machine precision, which is automatically
        generated by the code. Typical values for `factr` are: 1e12 for
        low accuracy; 1e7 for moderate accuracy; 10.0 for extremely
        high accuracy. See Notes for relationship to `ftol`, which is exposed
        (instead of `factr`) by the `scipy.optimize.minimize` interface to
        L-BFGS-B.
    pgtol : float, optional
        The iteration will stop when
        ``max{|proj g_i | i = 1, ..., n} <= pgtol``
        where ``pg_i`` is the i-th component of the projected gradient.
    epsilon : float, optional
        Step size used when `approx_grad` is True, for numerically
        calculating the gradient
    iprint : int, optional
        Controls the frequency of output. ``iprint < 0`` means no output;
        ``iprint = 0``    print only one line at the last iteration;
        ``0 < iprint < 99`` print also f and ``|proj g|`` every iprint iterations;
        ``iprint = 99``   print details of every iteration except n-vectors;
        ``iprint = 100``  print also the changes of active set and final x;
        ``iprint > 100``  print details of every iteration including x and g.
    disp : int, optional
        If zero, then no output.  If a positive number, then this over-rides
        `iprint` (i.e., `iprint` gets the value of `disp`).
    maxfun : int, optional
        Maximum number of function evaluations.
    maxiter : int, optional
        Maximum number of iterations.
    callback : callable, optional
        Called after each iteration, as ``callback(xk)``, where ``xk`` is the
        current parameter vector.
    maxls : int, optional
        Maximum number of line search steps (per iteration). Default is 20.

    Returns
    -------
    x : array_like
        Estimated position of the minimum.
    f : float
        Value of `func` at the minimum.
    d : dict
        Information dictionary.

        * d['warnflag'] is

          - 0 if converged,
          - 1 if too many function evaluations or too many iterations,
          - 2 if stopped for another reason, given in d['task']

        * d['grad'] is the gradient at the minimum (should be 0 ish)
        * d['funcalls'] is the number of function calls made.
        * d['nit'] is the number of iterations.

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'L-BFGS-B' `method` in particular. Note that the
        `ftol` option is made available via that interface, while `factr` is
        provided via this interface, where `factr` is the factor multiplying
        the default machine floating-point precision to arrive at `ftol`:
        ``ftol = factr * numpy.finfo(float).eps``.

    Notes
    -----
    License of L-BFGS-B (FORTRAN code):

    The version included here (in fortran code) is 3.0
    (released April 25, 2011).  It was written by Ciyou Zhu, Richard Byrd,
    and Jorge Nocedal <nocedal@ece.nwu.edu>. It carries the following
    condition for use:

    This software is freely available, but we expect that all publications
    describing work using this software, or all commercial products using it,
    quote at least one of the references given below. This software is released
    under the BSD License.

    References
    ----------
    * R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound
      Constrained Optimization, (1995), SIAM Journal on Scientific and
      Statistical Computing, 16, 5, pp. 1190-1208.
    * C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B,
      FORTRAN routines for large scale bound constrained optimization (1997),
      ACM Transactions on Mathematical Software, 23, 4, pp. 550 - 560.
    * J.L. Morales and J. Nocedal. L-BFGS-B: Remark on Algorithm 778: L-BFGS-B,
      FORTRAN routines for large scale bound constrained optimization (2011),
      ACM Transactions on Mathematical Software, 38, 1.

    """
    # handle fprime/approx_grad
    if approx_grad:
        fun = func
        jac = None
    elif fprime is None:
        fun = MemoizeJac(func)
        jac = fun.derivative
    else:
        fun = func
        jac = fprime

    # build options
    if disp is None:
        disp = iprint
    opts = {'disp': disp,
            'iprint': iprint,
            'maxcor': m,
            'ftol': factr * np.finfo(float).eps,
            'gtol': pgtol,
            'eps': epsilon,
            'maxfun': maxfun,
            'maxiter': maxiter,
            'callback': callback,
            'maxls': maxls}

    res = _minimize_lbfgsb(fun, x0, args=args, jac=jac, bounds=bounds,
                           **opts)
    d = {'grad': res['jac'],
         'task': res['message'],
         'funcalls': res['nfev'],
         'nit': res['nit'],
         'warnflag': res['status']}
    f = res['fun']
    x = res['x']

    return x, f, d


def _minimize_lbfgsb(fun, x0, args=(), jac=None, bounds=None,
                     disp=None, maxcor=10, ftol=2.2204460492503131e-09,
                     gtol=1e-5, eps=1e-8, maxfun=15000, maxiter=15000,
                     iprint=-1, callback=None, maxls=20, **unknown_options):
    """
    Minimize a scalar function of one or more variables using the L-BFGS-B
    algorithm.

    Options
    -------
    disp : None or int
        If `disp is None` (the default), then the supplied version of `iprint`
        is used. If `disp is not None`, then it overrides the supplied version
        of `iprint` with the behaviour you outlined.
    maxcor : int
        The maximum number of variable metric corrections used to
        define the limited memory matrix. (The limited memory BFGS
        method does not store the full hessian but uses this many terms
        in an approximation to it.)
    ftol : float
        The iteration stops when ``(f^k -
        f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= ftol``.
    gtol : float
        The iteration will stop when ``max{|proj g_i | i = 1, ..., n}
        <= gtol`` where ``pg_i`` is the i-th component of the
        projected gradient.
    eps : float
        Step size used for numerical approximation of the jacobian.
    maxfun : int
        Maximum number of function evaluations.
    maxiter : int
        Maximum number of iterations.
    iprint : int, optional
        Controls the frequency of output. ``iprint < 0`` means no output;
        ``iprint = 0``    print only one line at the last iteration;
        ``0 < iprint < 99`` print also f and ``|proj g|`` every iprint iterations;
        ``iprint = 99``   print details of every iteration except n-vectors;
        ``iprint = 100``  print also the changes of active set and final x;
        ``iprint > 100``  print details of every iteration including x and g.
    callback : callable, optional
        Called after each iteration, as ``callback(xk)``, where ``xk`` is the
        current parameter vector.
    maxls : int, optional
        Maximum number of line search steps (per iteration). Default is 20.

    Notes
    -----
    The option `ftol` is exposed via the `scipy.optimize.minimize` interface,
    but calling `scipy.optimize.fmin_l_bfgs_b` directly exposes `factr`. The
    relationship between the two is ``ftol = factr * numpy.finfo(float).eps``.
    I.e., `factr` multiplies the default machine floating-point precision to
    arrive at `ftol`.

    """
    _check_unknown_options(unknown_options)
    m = maxcor
    epsilon = eps
    pgtol = gtol
    factr = ftol / np.finfo(float).eps

    x0 = asarray(x0).ravel()
    n, = x0.shape

    if bounds is None:
        bounds = [(None, None)] * n
    if len(bounds) != n:
        raise ValueError('length of x0 != length of bounds')
    # unbounded variables must use None, not +-inf, for optimizer to work properly
    bounds = [(None if l == -np.inf else l, None if u == np.inf else u) for l, u in bounds]

    if disp is not None:
        if disp == 0:
            iprint = -1
        else:
            iprint = disp

    n_function_evals, fun = wrap_function(fun, ())
    if jac is None:
        def func_and_grad(x):
            f = fun(x, *args)
            g = _approx_fprime_helper(x, fun, epsilon, args=args, f0=f)
            return f, g
    else:
        def func_and_grad(x):
            f = fun(x, *args)
            g = jac(x, *args)
            return f, g

    nbd = zeros(n, int32)
    low_bnd = zeros(n, float64)
    upper_bnd = zeros(n, float64)
    bounds_map = {(None, None): 0,
                  (1, None): 1,
                  (1, 1): 2,
                  (None, 1): 3}
    for i in range(0, n):
        l, u = bounds[i]
        if l is not None:
            low_bnd[i] = l
            l = 1
        if u is not None:
            upper_bnd[i] = u
            u = 1
        nbd[i] = bounds_map[l, u]

    if not maxls > 0:
        raise ValueError('maxls must be positive.')

    x = array(x0, float64)
    f = array(0.0, float64)
    g = zeros((n,), float64)
    wa = zeros(2*m*n + 5*n + 11*m*m + 8*m, float64)
    iwa = zeros(3*n, int32)
    task = zeros(1, 'S60')
    csave = zeros(1, 'S60')
    lsave = zeros(4, int32)
    isave = zeros(44, int32)
    dsave = zeros(29, float64)

    task[:] = 'START'

    n_iterations = 0

    while 1:
        # x, f, g, wa, iwa, task, csave, lsave, isave, dsave = \
        _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr,
                       pgtol, wa, iwa, task, iprint, csave, lsave,
                       isave, dsave, maxls)
        task_str = task.tostring()
        if task_str.startswith(b'FG'):
            # The minimization routine wants f and g at the current x.
            # Note that interruptions due to maxfun are postponed
            # until the completion of the current minimization iteration.
            # Overwrite f and g:
            f, g = func_and_grad(x)
        elif task_str.startswith(b'NEW_X'):
            # new iteration
            n_iterations += 1
            if callback is not None:
                callback(np.copy(x))

            if n_iterations >= maxiter:
                task[:] = 'STOP: TOTAL NO. of ITERATIONS REACHED LIMIT'
            elif n_function_evals[0] > maxfun:
                task[:] = ('STOP: TOTAL NO. of f AND g EVALUATIONS '
                           'EXCEEDS LIMIT')
        else:
            break

    task_str = task.tostring().strip(b'\x00').strip()
    if task_str.startswith(b'CONV'):
        warnflag = 0
    elif n_function_evals[0] > maxfun or n_iterations >= maxiter:
        warnflag = 1
    else:
        warnflag = 2

    # These two portions of the workspace are described in the mainlb
    # subroutine in lbfgsb.f. See line 363.
    s = wa[0: m*n].reshape(m, n)
    y = wa[m*n: 2*m*n].reshape(m, n)

    # See lbfgsb.f line 160 for this portion of the workspace.
    # isave(31) = the total number of BFGS updates prior the current iteration;
    n_bfgs_updates = isave[30]

    n_corrs = min(n_bfgs_updates, maxcor)
    hess_inv = LbfgsInvHessProduct(s[:n_corrs], y[:n_corrs])

    return OptimizeResult(fun=f, jac=g, nfev=n_function_evals[0],
                          nit=n_iterations, status=warnflag, message=task_str,
                          x=x, success=(warnflag == 0), hess_inv=hess_inv)


class LbfgsInvHessProduct(LinearOperator):
    """Linear operator for the L-BFGS approximate inverse Hessian.

    This operator computes the product of a vector with the approximate inverse
    of the Hessian of the objective function, using the L-BFGS limited
    memory approximation to the inverse Hessian, accumulated during the
    optimization.

    Objects of this class implement the ``scipy.sparse.linalg.LinearOperator``
    interface.

    Parameters
    ----------
    sk : array_like, shape=(n_corr, n)
        Array of `n_corr` most recent updates to the solution vector.
        (See [1]).
    yk : array_like, shape=(n_corr, n)
        Array of `n_corr` most recent updates to the gradient. (See [1]).

    References
    ----------
    .. [1] Nocedal, Jorge. "Updating quasi-Newton matrices with limited
       storage." Mathematics of computation 35.151 (1980): 773-782.

    """
    def __init__(self, sk, yk):
        """Construct the operator."""
        if sk.shape != yk.shape or sk.ndim != 2:
            raise ValueError('sk and yk must have matching shape, (n_corrs, n)')
        n_corrs, n = sk.shape

        super(LbfgsInvHessProduct, self).__init__(
            dtype=np.float64, shape=(n, n))

        self.sk = sk
        self.yk = yk
        self.n_corrs = n_corrs
        self.rho = 1 / np.einsum('ij,ij->i', sk, yk)

    def _matvec(self, x):
        """Efficient matrix-vector multiply with the BFGS matrices.

        This calculation is described in Section (4) of [1].

        Parameters
        ----------
        x : ndarray
            An array with shape (n,) or (n,1).

        Returns
        -------
        y : ndarray
            The matrix-vector product

        """
        s, y, n_corrs, rho = self.sk, self.yk, self.n_corrs, self.rho
        q = np.array(x, dtype=self.dtype, copy=True)
        if q.ndim == 2 and q.shape[1] == 1:
            q = q.reshape(-1)

        alpha = np.zeros(n_corrs)

        for i in range(n_corrs-1, -1, -1):
            alpha[i] = rho[i] * np.dot(s[i], q)
            q = q - alpha[i]*y[i]

        r = q
        for i in range(n_corrs):
            beta = rho[i] * np.dot(y[i], r)
            r = r + s[i] * (alpha[i] - beta)

        return r

    def todense(self):
        """Return a dense array representation of this operator.

        Returns
        -------
        arr : ndarray, shape=(n, n)
            An array with the same shape and containing
            the same data represented by this `LinearOperator`.

        """
        s, y, n_corrs, rho = self.sk, self.yk, self.n_corrs, self.rho
        I = np.eye(*self.shape, dtype=self.dtype)
        Hk = I

        for i in range(n_corrs):
            A1 = I - s[i][:, np.newaxis] * y[i][np.newaxis, :] * rho[i]
            A2 = I - y[i][:, np.newaxis] * s[i][np.newaxis, :] * rho[i]

            Hk = np.dot(A1, np.dot(Hk, A2)) + (rho[i] * s[i][:, np.newaxis] *
                                                        s[i][np.newaxis, :])
        return Hk