nonlin.py 47.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
r"""

Nonlinear solvers
-----------------

.. currentmodule:: scipy.optimize

This is a collection of general-purpose nonlinear multidimensional
solvers.  These solvers find *x* for which *F(x) = 0*. Both *x*
and *F* can be multidimensional.

Routines
~~~~~~~~

Large-scale nonlinear solvers:

.. autosummary::

   newton_krylov
   anderson

General nonlinear solvers:

.. autosummary::

   broyden1
   broyden2

Simple iterations:

.. autosummary::

   excitingmixing
   linearmixing
   diagbroyden


Examples
~~~~~~~~

**Small problem**

>>> def F(x):
...    return np.cos(x) + x[::-1] - [1, 2, 3, 4]
>>> import scipy.optimize
>>> x = scipy.optimize.broyden1(F, [1,1,1,1], f_tol=1e-14)
>>> x
array([ 4.04674914,  3.91158389,  2.71791677,  1.61756251])
>>> np.cos(x) + x[::-1]
array([ 1.,  2.,  3.,  4.])


**Large problem**

Suppose that we needed to solve the following integrodifferential
equation on the square :math:`[0,1]\times[0,1]`:

.. math::

   \nabla^2 P = 10 \left(\int_0^1\int_0^1\cosh(P)\,dx\,dy\right)^2

with :math:`P(x,1) = 1` and :math:`P=0` elsewhere on the boundary of
the square.

The solution can be found using the `newton_krylov` solver:

.. plot::

   import numpy as np
   from scipy.optimize import newton_krylov
   from numpy import cosh, zeros_like, mgrid, zeros

   # parameters
   nx, ny = 75, 75
   hx, hy = 1./(nx-1), 1./(ny-1)

   P_left, P_right = 0, 0
   P_top, P_bottom = 1, 0

   def residual(P):
       d2x = zeros_like(P)
       d2y = zeros_like(P)

       d2x[1:-1] = (P[2:]   - 2*P[1:-1] + P[:-2]) / hx/hx
       d2x[0]    = (P[1]    - 2*P[0]    + P_left)/hx/hx
       d2x[-1]   = (P_right - 2*P[-1]   + P[-2])/hx/hx

       d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
       d2y[:,0]    = (P[:,1]  - 2*P[:,0]    + P_bottom)/hy/hy
       d2y[:,-1]   = (P_top   - 2*P[:,-1]   + P[:,-2])/hy/hy

       return d2x + d2y - 10*cosh(P).mean()**2

   # solve
   guess = zeros((nx, ny), float)
   sol = newton_krylov(residual, guess, method='lgmres', verbose=1)
   print('Residual: %g' % abs(residual(sol)).max())

   # visualize
   import matplotlib.pyplot as plt
   x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
   plt.pcolor(x, y, sol)
   plt.colorbar()
   plt.show()

"""
# Copyright (C) 2009, Pauli Virtanen <pav@iki.fi>
# Distributed under the same license as SciPy.

from __future__ import division, print_function, absolute_import

import sys
import numpy as np
from scipy._lib.six import callable, exec_, xrange
from scipy.linalg import norm, solve, inv, qr, svd, LinAlgError
from numpy import asarray, dot, vdot
import scipy.sparse.linalg
import scipy.sparse
from scipy.linalg import get_blas_funcs
import inspect
from scipy._lib._util import getargspec_no_self as _getargspec
from .linesearch import scalar_search_wolfe1, scalar_search_armijo


__all__ = [
    'broyden1', 'broyden2', 'anderson', 'linearmixing',
    'diagbroyden', 'excitingmixing', 'newton_krylov']

#------------------------------------------------------------------------------
# Utility functions
#------------------------------------------------------------------------------


class NoConvergence(Exception):
    pass


def maxnorm(x):
    return np.absolute(x).max()


def _as_inexact(x):
    """Return `x` as an array, of either floats or complex floats"""
    x = asarray(x)
    if not np.issubdtype(x.dtype, np.inexact):
        return asarray(x, dtype=np.float_)
    return x


def _array_like(x, x0):
    """Return ndarray `x` as same array subclass and shape as `x0`"""
    x = np.reshape(x, np.shape(x0))
    wrap = getattr(x0, '__array_wrap__', x.__array_wrap__)
    return wrap(x)


def _safe_norm(v):
    if not np.isfinite(v).all():
        return np.array(np.inf)
    return norm(v)

#------------------------------------------------------------------------------
# Generic nonlinear solver machinery
#------------------------------------------------------------------------------


_doc_parts = dict(
    params_basic="""
    F : function(x) -> f
        Function whose root to find; should take and return an array-like
        object.
    xin : array_like
        Initial guess for the solution
    """.strip(),
    params_extra="""
    iter : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    verbose : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make. If more are needed to
        meet convergence, `NoConvergence` is raised.
    f_tol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    f_rtol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    x_tol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    x_rtol : float, optional
        Relative minimum step size. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in the
        direction given by the Jacobian approximation. Defaults to 'armijo'.
    callback : function, optional
        Optional callback function. It is called on every iteration as
        ``callback(x, f)`` where `x` is the current solution and `f`
        the corresponding residual.

    Returns
    -------
    sol : ndarray
        An array (of similar array type as `x0`) containing the final solution.

    Raises
    ------
    NoConvergence
        When a solution was not found.

    """.strip()
)


def _set_doc(obj):
    if obj.__doc__:
        obj.__doc__ = obj.__doc__ % _doc_parts


def nonlin_solve(F, x0, jacobian='krylov', iter=None, verbose=False,
                 maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None,
                 tol_norm=None, line_search='armijo', callback=None,
                 full_output=False, raise_exception=True):
    """
    Find a root of a function, in a way suitable for large-scale problems.

    Parameters
    ----------
    %(params_basic)s
    jacobian : Jacobian
        A Jacobian approximation: `Jacobian` object or something that
        `asjacobian` can transform to one. Alternatively, a string specifying
        which of the builtin Jacobian approximations to use:

            krylov, broyden1, broyden2, anderson
            diagbroyden, linearmixing, excitingmixing

    %(params_extra)s
    full_output : bool
        If true, returns a dictionary `info` containing convergence
        information.
    raise_exception : bool
        If True, a `NoConvergence` exception is raise if no solution is found.

    See Also
    --------
    asjacobian, Jacobian

    Notes
    -----
    This algorithm implements the inexact Newton method, with
    backtracking or full line searches. Several Jacobian
    approximations are available, including Krylov and Quasi-Newton
    methods.

    References
    ----------
    .. [KIM] C. T. Kelley, \"Iterative Methods for Linear and Nonlinear
       Equations\". Society for Industrial and Applied Mathematics. (1995)
       https://archive.siam.org/books/kelley/fr16/

    """
    # Can't use default parameters because it's being explicitly passed as None
    # from the calling function, so we need to set it here.
    tol_norm = maxnorm if tol_norm is None else tol_norm
    condition = TerminationCondition(f_tol=f_tol, f_rtol=f_rtol,
                                     x_tol=x_tol, x_rtol=x_rtol,
                                     iter=iter, norm=tol_norm)

    x0 = _as_inexact(x0)
    func = lambda z: _as_inexact(F(_array_like(z, x0))).flatten()
    x = x0.flatten()

    dx = np.inf
    Fx = func(x)
    Fx_norm = norm(Fx)

    jacobian = asjacobian(jacobian)
    jacobian.setup(x.copy(), Fx, func)

    if maxiter is None:
        if iter is not None:
            maxiter = iter + 1
        else:
            maxiter = 100*(x.size+1)

    if line_search is True:
        line_search = 'armijo'
    elif line_search is False:
        line_search = None

    if line_search not in (None, 'armijo', 'wolfe'):
        raise ValueError("Invalid line search")

    # Solver tolerance selection
    gamma = 0.9
    eta_max = 0.9999
    eta_treshold = 0.1
    eta = 1e-3

    for n in xrange(maxiter):
        status = condition.check(Fx, x, dx)
        if status:
            break

        # The tolerance, as computed for scipy.sparse.linalg.* routines
        tol = min(eta, eta*Fx_norm)
        dx = -jacobian.solve(Fx, tol=tol)

        if norm(dx) == 0:
            raise ValueError("Jacobian inversion yielded zero vector. "
                             "This indicates a bug in the Jacobian "
                             "approximation.")

        # Line search, or Newton step
        if line_search:
            s, x, Fx, Fx_norm_new = _nonlin_line_search(func, x, Fx, dx,
                                                        line_search)
        else:
            s = 1.0
            x = x + dx
            Fx = func(x)
            Fx_norm_new = norm(Fx)

        jacobian.update(x.copy(), Fx)

        if callback:
            callback(x, Fx)

        # Adjust forcing parameters for inexact methods
        eta_A = gamma * Fx_norm_new**2 / Fx_norm**2
        if gamma * eta**2 < eta_treshold:
            eta = min(eta_max, eta_A)
        else:
            eta = min(eta_max, max(eta_A, gamma*eta**2))

        Fx_norm = Fx_norm_new

        # Print status
        if verbose:
            sys.stdout.write("%d:  |F(x)| = %g; step %g\n" % (
                n, tol_norm(Fx), s))
            sys.stdout.flush()
    else:
        if raise_exception:
            raise NoConvergence(_array_like(x, x0))
        else:
            status = 2

    if full_output:
        info = {'nit': condition.iteration,
                'fun': Fx,
                'status': status,
                'success': status == 1,
                'message': {1: 'A solution was found at the specified '
                               'tolerance.',
                            2: 'The maximum number of iterations allowed '
                               'has been reached.'
                            }[status]
                }
        return _array_like(x, x0), info
    else:
        return _array_like(x, x0)


_set_doc(nonlin_solve)


def _nonlin_line_search(func, x, Fx, dx, search_type='armijo', rdiff=1e-8,
                        smin=1e-2):
    tmp_s = [0]
    tmp_Fx = [Fx]
    tmp_phi = [norm(Fx)**2]
    s_norm = norm(x) / norm(dx)

    def phi(s, store=True):
        if s == tmp_s[0]:
            return tmp_phi[0]
        xt = x + s*dx
        v = func(xt)
        p = _safe_norm(v)**2
        if store:
            tmp_s[0] = s
            tmp_phi[0] = p
            tmp_Fx[0] = v
        return p

    def derphi(s):
        ds = (abs(s) + s_norm + 1) * rdiff
        return (phi(s+ds, store=False) - phi(s)) / ds

    if search_type == 'wolfe':
        s, phi1, phi0 = scalar_search_wolfe1(phi, derphi, tmp_phi[0],
                                             xtol=1e-2, amin=smin)
    elif search_type == 'armijo':
        s, phi1 = scalar_search_armijo(phi, tmp_phi[0], -tmp_phi[0],
                                       amin=smin)

    if s is None:
        # XXX: No suitable step length found. Take the full Newton step,
        #      and hope for the best.
        s = 1.0

    x = x + s*dx
    if s == tmp_s[0]:
        Fx = tmp_Fx[0]
    else:
        Fx = func(x)
    Fx_norm = norm(Fx)

    return s, x, Fx, Fx_norm


class TerminationCondition(object):
    """
    Termination condition for an iteration. It is terminated if

    - |F| < f_rtol*|F_0|, AND
    - |F| < f_tol

    AND

    - |dx| < x_rtol*|x|, AND
    - |dx| < x_tol

    """
    def __init__(self, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None,
                 iter=None, norm=maxnorm):

        if f_tol is None:
            f_tol = np.finfo(np.float_).eps ** (1./3)
        if f_rtol is None:
            f_rtol = np.inf
        if x_tol is None:
            x_tol = np.inf
        if x_rtol is None:
            x_rtol = np.inf

        self.x_tol = x_tol
        self.x_rtol = x_rtol
        self.f_tol = f_tol
        self.f_rtol = f_rtol

        self.norm = norm

        self.iter = iter

        self.f0_norm = None
        self.iteration = 0

    def check(self, f, x, dx):
        self.iteration += 1
        f_norm = self.norm(f)
        x_norm = self.norm(x)
        dx_norm = self.norm(dx)

        if self.f0_norm is None:
            self.f0_norm = f_norm

        if f_norm == 0:
            return 1

        if self.iter is not None:
            # backwards compatibility with SciPy 0.6.0
            return 2 * (self.iteration > self.iter)

        # NB: condition must succeed for rtol=inf even if norm == 0
        return int((f_norm <= self.f_tol
                    and f_norm/self.f_rtol <= self.f0_norm)
                   and (dx_norm <= self.x_tol
                        and dx_norm/self.x_rtol <= x_norm))


#------------------------------------------------------------------------------
# Generic Jacobian approximation
#------------------------------------------------------------------------------

class Jacobian(object):
    """
    Common interface for Jacobians or Jacobian approximations.

    The optional methods come useful when implementing trust region
    etc.  algorithms that often require evaluating transposes of the
    Jacobian.

    Methods
    -------
    solve
        Returns J^-1 * v
    update
        Updates Jacobian to point `x` (where the function has residual `Fx`)

    matvec : optional
        Returns J * v
    rmatvec : optional
        Returns A^H * v
    rsolve : optional
        Returns A^-H * v
    matmat : optional
        Returns A * V, where V is a dense matrix with dimensions (N,K).
    todense : optional
        Form the dense Jacobian matrix. Necessary for dense trust region
        algorithms, and useful for testing.

    Attributes
    ----------
    shape
        Matrix dimensions (M, N)
    dtype
        Data type of the matrix.
    func : callable, optional
        Function the Jacobian corresponds to

    """

    def __init__(self, **kw):
        names = ["solve", "update", "matvec", "rmatvec", "rsolve",
                 "matmat", "todense", "shape", "dtype"]
        for name, value in kw.items():
            if name not in names:
                raise ValueError("Unknown keyword argument %s" % name)
            if value is not None:
                setattr(self, name, kw[name])

        if hasattr(self, 'todense'):
            self.__array__ = lambda: self.todense()

    def aspreconditioner(self):
        return InverseJacobian(self)

    def solve(self, v, tol=0):
        raise NotImplementedError

    def update(self, x, F):
        pass

    def setup(self, x, F, func):
        self.func = func
        self.shape = (F.size, x.size)
        self.dtype = F.dtype
        if self.__class__.setup is Jacobian.setup:
            # Call on the first point unless overridden
            self.update(x, F)


class InverseJacobian(object):
    def __init__(self, jacobian):
        self.jacobian = jacobian
        self.matvec = jacobian.solve
        self.update = jacobian.update
        if hasattr(jacobian, 'setup'):
            self.setup = jacobian.setup
        if hasattr(jacobian, 'rsolve'):
            self.rmatvec = jacobian.rsolve

    @property
    def shape(self):
        return self.jacobian.shape

    @property
    def dtype(self):
        return self.jacobian.dtype


def asjacobian(J):
    """
    Convert given object to one suitable for use as a Jacobian.
    """
    spsolve = scipy.sparse.linalg.spsolve
    if isinstance(J, Jacobian):
        return J
    elif inspect.isclass(J) and issubclass(J, Jacobian):
        return J()
    elif isinstance(J, np.ndarray):
        if J.ndim > 2:
            raise ValueError('array must have rank <= 2')
        J = np.atleast_2d(np.asarray(J))
        if J.shape[0] != J.shape[1]:
            raise ValueError('array must be square')

        return Jacobian(matvec=lambda v: dot(J, v),
                        rmatvec=lambda v: dot(J.conj().T, v),
                        solve=lambda v: solve(J, v),
                        rsolve=lambda v: solve(J.conj().T, v),
                        dtype=J.dtype, shape=J.shape)
    elif scipy.sparse.isspmatrix(J):
        if J.shape[0] != J.shape[1]:
            raise ValueError('matrix must be square')
        return Jacobian(matvec=lambda v: J*v,
                        rmatvec=lambda v: J.conj().T * v,
                        solve=lambda v: spsolve(J, v),
                        rsolve=lambda v: spsolve(J.conj().T, v),
                        dtype=J.dtype, shape=J.shape)
    elif hasattr(J, 'shape') and hasattr(J, 'dtype') and hasattr(J, 'solve'):
        return Jacobian(matvec=getattr(J, 'matvec'),
                        rmatvec=getattr(J, 'rmatvec'),
                        solve=J.solve,
                        rsolve=getattr(J, 'rsolve'),
                        update=getattr(J, 'update'),
                        setup=getattr(J, 'setup'),
                        dtype=J.dtype,
                        shape=J.shape)
    elif callable(J):
        # Assume it's a function J(x) that returns the Jacobian
        class Jac(Jacobian):
            def update(self, x, F):
                self.x = x

            def solve(self, v, tol=0):
                m = J(self.x)
                if isinstance(m, np.ndarray):
                    return solve(m, v)
                elif scipy.sparse.isspmatrix(m):
                    return spsolve(m, v)
                else:
                    raise ValueError("Unknown matrix type")

            def matvec(self, v):
                m = J(self.x)
                if isinstance(m, np.ndarray):
                    return dot(m, v)
                elif scipy.sparse.isspmatrix(m):
                    return m*v
                else:
                    raise ValueError("Unknown matrix type")

            def rsolve(self, v, tol=0):
                m = J(self.x)
                if isinstance(m, np.ndarray):
                    return solve(m.conj().T, v)
                elif scipy.sparse.isspmatrix(m):
                    return spsolve(m.conj().T, v)
                else:
                    raise ValueError("Unknown matrix type")

            def rmatvec(self, v):
                m = J(self.x)
                if isinstance(m, np.ndarray):
                    return dot(m.conj().T, v)
                elif scipy.sparse.isspmatrix(m):
                    return m.conj().T * v
                else:
                    raise ValueError("Unknown matrix type")
        return Jac()
    elif isinstance(J, str):
        return dict(broyden1=BroydenFirst,
                    broyden2=BroydenSecond,
                    anderson=Anderson,
                    diagbroyden=DiagBroyden,
                    linearmixing=LinearMixing,
                    excitingmixing=ExcitingMixing,
                    krylov=KrylovJacobian)[J]()
    else:
        raise TypeError('Cannot convert object to a Jacobian')


#------------------------------------------------------------------------------
# Broyden
#------------------------------------------------------------------------------

class GenericBroyden(Jacobian):
    def setup(self, x0, f0, func):
        Jacobian.setup(self, x0, f0, func)
        self.last_f = f0
        self.last_x = x0

        if hasattr(self, 'alpha') and self.alpha is None:
            # Autoscale the initial Jacobian parameter
            # unless we have already guessed the solution.
            normf0 = norm(f0)
            if normf0:
                self.alpha = 0.5*max(norm(x0), 1) / normf0
            else:
                self.alpha = 1.0

    def _update(self, x, f, dx, df, dx_norm, df_norm):
        raise NotImplementedError

    def update(self, x, f):
        df = f - self.last_f
        dx = x - self.last_x
        self._update(x, f, dx, df, norm(dx), norm(df))
        self.last_f = f
        self.last_x = x


class LowRankMatrix(object):
    r"""
    A matrix represented as

    .. math:: \alpha I + \sum_{n=0}^{n=M} c_n d_n^\dagger

    However, if the rank of the matrix reaches the dimension of the vectors,
    full matrix representation will be used thereon.

    """

    def __init__(self, alpha, n, dtype):
        self.alpha = alpha
        self.cs = []
        self.ds = []
        self.n = n
        self.dtype = dtype
        self.collapsed = None

    @staticmethod
    def _matvec(v, alpha, cs, ds):
        axpy, scal, dotc = get_blas_funcs(['axpy', 'scal', 'dotc'],
                                          cs[:1] + [v])
        w = alpha * v
        for c, d in zip(cs, ds):
            a = dotc(d, v)
            w = axpy(c, w, w.size, a)
        return w

    @staticmethod
    def _solve(v, alpha, cs, ds):
        """Evaluate w = M^-1 v"""
        if len(cs) == 0:
            return v/alpha

        # (B + C D^H)^-1 = B^-1 - B^-1 C (I + D^H B^-1 C)^-1 D^H B^-1

        axpy, dotc = get_blas_funcs(['axpy', 'dotc'], cs[:1] + [v])

        c0 = cs[0]
        A = alpha * np.identity(len(cs), dtype=c0.dtype)
        for i, d in enumerate(ds):
            for j, c in enumerate(cs):
                A[i,j] += dotc(d, c)

        q = np.zeros(len(cs), dtype=c0.dtype)
        for j, d in enumerate(ds):
            q[j] = dotc(d, v)
        q /= alpha
        q = solve(A, q)

        w = v/alpha
        for c, qc in zip(cs, q):
            w = axpy(c, w, w.size, -qc)

        return w

    def matvec(self, v):
        """Evaluate w = M v"""
        if self.collapsed is not None:
            return np.dot(self.collapsed, v)
        return LowRankMatrix._matvec(v, self.alpha, self.cs, self.ds)

    def rmatvec(self, v):
        """Evaluate w = M^H v"""
        if self.collapsed is not None:
            return np.dot(self.collapsed.T.conj(), v)
        return LowRankMatrix._matvec(v, np.conj(self.alpha), self.ds, self.cs)

    def solve(self, v, tol=0):
        """Evaluate w = M^-1 v"""
        if self.collapsed is not None:
            return solve(self.collapsed, v)
        return LowRankMatrix._solve(v, self.alpha, self.cs, self.ds)

    def rsolve(self, v, tol=0):
        """Evaluate w = M^-H v"""
        if self.collapsed is not None:
            return solve(self.collapsed.T.conj(), v)
        return LowRankMatrix._solve(v, np.conj(self.alpha), self.ds, self.cs)

    def append(self, c, d):
        if self.collapsed is not None:
            self.collapsed += c[:,None] * d[None,:].conj()
            return

        self.cs.append(c)
        self.ds.append(d)

        if len(self.cs) > c.size:
            self.collapse()

    def __array__(self):
        if self.collapsed is not None:
            return self.collapsed

        Gm = self.alpha*np.identity(self.n, dtype=self.dtype)
        for c, d in zip(self.cs, self.ds):
            Gm += c[:,None]*d[None,:].conj()
        return Gm

    def collapse(self):
        """Collapse the low-rank matrix to a full-rank one."""
        self.collapsed = np.array(self)
        self.cs = None
        self.ds = None
        self.alpha = None

    def restart_reduce(self, rank):
        """
        Reduce the rank of the matrix by dropping all vectors.
        """
        if self.collapsed is not None:
            return
        assert rank > 0
        if len(self.cs) > rank:
            del self.cs[:]
            del self.ds[:]

    def simple_reduce(self, rank):
        """
        Reduce the rank of the matrix by dropping oldest vectors.
        """
        if self.collapsed is not None:
            return
        assert rank > 0
        while len(self.cs) > rank:
            del self.cs[0]
            del self.ds[0]

    def svd_reduce(self, max_rank, to_retain=None):
        """
        Reduce the rank of the matrix by retaining some SVD components.

        This corresponds to the \"Broyden Rank Reduction Inverse\"
        algorithm described in [1]_.

        Note that the SVD decomposition can be done by solving only a
        problem whose size is the effective rank of this matrix, which
        is viable even for large problems.

        Parameters
        ----------
        max_rank : int
            Maximum rank of this matrix after reduction.
        to_retain : int, optional
            Number of SVD components to retain when reduction is done
            (ie. rank > max_rank). Default is ``max_rank - 2``.

        References
        ----------
        .. [1] B.A. van der Rotten, PhD thesis,
           \"A limited memory Broyden method to solve high-dimensional
           systems of nonlinear equations\". Mathematisch Instituut,
           Universiteit Leiden, The Netherlands (2003).

           https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf

        """
        if self.collapsed is not None:
            return

        p = max_rank
        if to_retain is not None:
            q = to_retain
        else:
            q = p - 2

        if self.cs:
            p = min(p, len(self.cs[0]))
        q = max(0, min(q, p-1))

        m = len(self.cs)
        if m < p:
            # nothing to do
            return

        C = np.array(self.cs).T
        D = np.array(self.ds).T

        D, R = qr(D, mode='economic')
        C = dot(C, R.T.conj())

        U, S, WH = svd(C, full_matrices=False, compute_uv=True)

        C = dot(C, inv(WH))
        D = dot(D, WH.T.conj())

        for k in xrange(q):
            self.cs[k] = C[:,k].copy()
            self.ds[k] = D[:,k].copy()

        del self.cs[q:]
        del self.ds[q:]


_doc_parts['broyden_params'] = """
    alpha : float, optional
        Initial guess for the Jacobian is ``(-1/alpha)``.
    reduction_method : str or tuple, optional
        Method used in ensuring that the rank of the Broyden matrix
        stays low. Can either be a string giving the name of the method,
        or a tuple of the form ``(method, param1, param2, ...)``
        that gives the name of the method and values for additional parameters.

        Methods available:

            - ``restart``: drop all matrix columns. Has no extra parameters.
            - ``simple``: drop oldest matrix column. Has no extra parameters.
            - ``svd``: keep only the most significant SVD components.
              Takes an extra parameter, ``to_retain``, which determines the
              number of SVD components to retain when rank reduction is done.
              Default is ``max_rank - 2``.

    max_rank : int, optional
        Maximum rank for the Broyden matrix.
        Default is infinity (ie., no rank reduction).
    """.strip()


class BroydenFirst(GenericBroyden):
    r"""
    Find a root of a function, using Broyden's first Jacobian approximation.

    This method is also known as \"Broyden's good method\".

    Parameters
    ----------
    %(params_basic)s
    %(broyden_params)s
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method=='broyden1'`` in particular.

    Notes
    -----
    This algorithm implements the inverse Jacobian Quasi-Newton update

    .. math:: H_+ = H + (dx - H df) dx^\dagger H / ( dx^\dagger H df)

    which corresponds to Broyden's first Jacobian update

    .. math:: J_+ = J + (df - J dx) dx^\dagger / dx^\dagger dx


    References
    ----------
    .. [1] B.A. van der Rotten, PhD thesis,
       \"A limited memory Broyden method to solve high-dimensional
       systems of nonlinear equations\". Mathematisch Instituut,
       Universiteit Leiden, The Netherlands (2003).

       https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf

    """

    def __init__(self, alpha=None, reduction_method='restart', max_rank=None):
        GenericBroyden.__init__(self)
        self.alpha = alpha
        self.Gm = None

        if max_rank is None:
            max_rank = np.inf
        self.max_rank = max_rank

        if isinstance(reduction_method, str):
            reduce_params = ()
        else:
            reduce_params = reduction_method[1:]
            reduction_method = reduction_method[0]
        reduce_params = (max_rank - 1,) + reduce_params

        if reduction_method == 'svd':
            self._reduce = lambda: self.Gm.svd_reduce(*reduce_params)
        elif reduction_method == 'simple':
            self._reduce = lambda: self.Gm.simple_reduce(*reduce_params)
        elif reduction_method == 'restart':
            self._reduce = lambda: self.Gm.restart_reduce(*reduce_params)
        else:
            raise ValueError("Unknown rank reduction method '%s'" %
                             reduction_method)

    def setup(self, x, F, func):
        GenericBroyden.setup(self, x, F, func)
        self.Gm = LowRankMatrix(-self.alpha, self.shape[0], self.dtype)

    def todense(self):
        return inv(self.Gm)

    def solve(self, f, tol=0):
        r = self.Gm.matvec(f)
        if not np.isfinite(r).all():
            # singular; reset the Jacobian approximation
            self.setup(self.last_x, self.last_f, self.func)
        return self.Gm.matvec(f)

    def matvec(self, f):
        return self.Gm.solve(f)

    def rsolve(self, f, tol=0):
        return self.Gm.rmatvec(f)

    def rmatvec(self, f):
        return self.Gm.rsolve(f)

    def _update(self, x, f, dx, df, dx_norm, df_norm):
        self._reduce()  # reduce first to preserve secant condition

        v = self.Gm.rmatvec(dx)
        c = dx - self.Gm.matvec(df)
        d = v / vdot(df, v)

        self.Gm.append(c, d)


class BroydenSecond(BroydenFirst):
    """
    Find a root of a function, using Broyden\'s second Jacobian approximation.

    This method is also known as \"Broyden's bad method\".

    Parameters
    ----------
    %(params_basic)s
    %(broyden_params)s
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method=='broyden2'`` in particular.

    Notes
    -----
    This algorithm implements the inverse Jacobian Quasi-Newton update

    .. math:: H_+ = H + (dx - H df) df^\\dagger / ( df^\\dagger df)

    corresponding to Broyden's second method.

    References
    ----------
    .. [1] B.A. van der Rotten, PhD thesis,
       \"A limited memory Broyden method to solve high-dimensional
       systems of nonlinear equations\". Mathematisch Instituut,
       Universiteit Leiden, The Netherlands (2003).

       https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf

    """

    def _update(self, x, f, dx, df, dx_norm, df_norm):
        self._reduce()  # reduce first to preserve secant condition

        v = df
        c = dx - self.Gm.matvec(df)
        d = v / df_norm**2
        self.Gm.append(c, d)


#------------------------------------------------------------------------------
# Broyden-like (restricted memory)
#------------------------------------------------------------------------------

class Anderson(GenericBroyden):
    """
    Find a root of a function, using (extended) Anderson mixing.

    The Jacobian is formed by for a 'best' solution in the space
    spanned by last `M` vectors. As a result, only a MxM matrix
    inversions and MxN multiplications are required. [Ey]_

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        Initial guess for the Jacobian is (-1/alpha).
    M : float, optional
        Number of previous vectors to retain. Defaults to 5.
    w0 : float, optional
        Regularization parameter for numerical stability.
        Compared to unity, good values of the order of 0.01.
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method=='anderson'`` in particular.

    References
    ----------
    .. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996).

    """

    # Note:
    #
    # Anderson method maintains a rank M approximation of the inverse Jacobian,
    #
    #     J^-1 v ~ -v*alpha + (dX + alpha dF) A^-1 dF^H v
    #     A      = W + dF^H dF
    #     W      = w0^2 diag(dF^H dF)
    #
    # so that for w0 = 0 the secant condition applies for last M iterates, ie.,
    #
    #     J^-1 df_j = dx_j
    #
    # for all j = 0 ... M-1.
    #
    # Moreover, (from Sherman-Morrison-Woodbury formula)
    #
    #    J v ~ [ b I - b^2 C (I + b dF^H A^-1 C)^-1 dF^H ] v
    #    C   = (dX + alpha dF) A^-1
    #    b   = -1/alpha
    #
    # and after simplification
    #
    #    J v ~ -v/alpha + (dX/alpha + dF) (dF^H dX - alpha W)^-1 dF^H v
    #

    def __init__(self, alpha=None, w0=0.01, M=5):
        GenericBroyden.__init__(self)
        self.alpha = alpha
        self.M = M
        self.dx = []
        self.df = []
        self.gamma = None
        self.w0 = w0

    def solve(self, f, tol=0):
        dx = -self.alpha*f

        n = len(self.dx)
        if n == 0:
            return dx

        df_f = np.empty(n, dtype=f.dtype)
        for k in xrange(n):
            df_f[k] = vdot(self.df[k], f)

        try:
            gamma = solve(self.a, df_f)
        except LinAlgError:
            # singular; reset the Jacobian approximation
            del self.dx[:]
            del self.df[:]
            return dx

        for m in xrange(n):
            dx += gamma[m]*(self.dx[m] + self.alpha*self.df[m])
        return dx

    def matvec(self, f):
        dx = -f/self.alpha

        n = len(self.dx)
        if n == 0:
            return dx

        df_f = np.empty(n, dtype=f.dtype)
        for k in xrange(n):
            df_f[k] = vdot(self.df[k], f)

        b = np.empty((n, n), dtype=f.dtype)
        for i in xrange(n):
            for j in xrange(n):
                b[i,j] = vdot(self.df[i], self.dx[j])
                if i == j and self.w0 != 0:
                    b[i,j] -= vdot(self.df[i], self.df[i])*self.w0**2*self.alpha
        gamma = solve(b, df_f)

        for m in xrange(n):
            dx += gamma[m]*(self.df[m] + self.dx[m]/self.alpha)
        return dx

    def _update(self, x, f, dx, df, dx_norm, df_norm):
        if self.M == 0:
            return

        self.dx.append(dx)
        self.df.append(df)

        while len(self.dx) > self.M:
            self.dx.pop(0)
            self.df.pop(0)

        n = len(self.dx)
        a = np.zeros((n, n), dtype=f.dtype)

        for i in xrange(n):
            for j in xrange(i, n):
                if i == j:
                    wd = self.w0**2
                else:
                    wd = 0
                a[i,j] = (1+wd)*vdot(self.df[i], self.df[j])

        a += np.triu(a, 1).T.conj()
        self.a = a

#------------------------------------------------------------------------------
# Simple iterations
#------------------------------------------------------------------------------


class DiagBroyden(GenericBroyden):
    """
    Find a root of a function, using diagonal Broyden Jacobian approximation.

    The Jacobian approximation is derived from previous iterations, by
    retaining only the diagonal of Broyden matrices.

    .. warning::

       This algorithm may be useful for specific problems, but whether
       it will work may depend strongly on the problem.

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        Initial guess for the Jacobian is (-1/alpha).
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method=='diagbroyden'`` in particular.
    """

    def __init__(self, alpha=None):
        GenericBroyden.__init__(self)
        self.alpha = alpha

    def setup(self, x, F, func):
        GenericBroyden.setup(self, x, F, func)
        self.d = np.full((self.shape[0],), 1 / self.alpha, dtype=self.dtype) 

    def solve(self, f, tol=0):
        return -f / self.d

    def matvec(self, f):
        return -f * self.d

    def rsolve(self, f, tol=0):
        return -f / self.d.conj()

    def rmatvec(self, f):
        return -f * self.d.conj()

    def todense(self):
        return np.diag(-self.d)

    def _update(self, x, f, dx, df, dx_norm, df_norm):
        self.d -= (df + self.d*dx)*dx/dx_norm**2


class LinearMixing(GenericBroyden):
    """
    Find a root of a function, using a scalar Jacobian approximation.

    .. warning::

       This algorithm may be useful for specific problems, but whether
       it will work may depend strongly on the problem.

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        The Jacobian approximation is (-1/alpha).
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method=='linearmixing'`` in particular.

    """

    def __init__(self, alpha=None):
        GenericBroyden.__init__(self)
        self.alpha = alpha

    def solve(self, f, tol=0):
        return -f*self.alpha

    def matvec(self, f):
        return -f/self.alpha

    def rsolve(self, f, tol=0):
        return -f*np.conj(self.alpha)

    def rmatvec(self, f):
        return -f/np.conj(self.alpha)

    def todense(self):
        return np.diag(np.full(self.shape[0], -1/self.alpha))

    def _update(self, x, f, dx, df, dx_norm, df_norm):
        pass


class ExcitingMixing(GenericBroyden):
    """
    Find a root of a function, using a tuned diagonal Jacobian approximation.

    The Jacobian matrix is diagonal and is tuned on each iteration.

    .. warning::

       This algorithm may be useful for specific problems, but whether
       it will work may depend strongly on the problem.

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method=='excitingmixing'`` in particular.

    Parameters
    ----------
    %(params_basic)s
    alpha : float, optional
        Initial Jacobian approximation is (-1/alpha).
    alphamax : float, optional
        The entries of the diagonal Jacobian are kept in the range
        ``[alpha, alphamax]``.
    %(params_extra)s
    """

    def __init__(self, alpha=None, alphamax=1.0):
        GenericBroyden.__init__(self)
        self.alpha = alpha
        self.alphamax = alphamax
        self.beta = None

    def setup(self, x, F, func):
        GenericBroyden.setup(self, x, F, func)
        self.beta = np.full((self.shape[0],), self.alpha, dtype=self.dtype)

    def solve(self, f, tol=0):
        return -f*self.beta

    def matvec(self, f):
        return -f/self.beta

    def rsolve(self, f, tol=0):
        return -f*self.beta.conj()

    def rmatvec(self, f):
        return -f/self.beta.conj()

    def todense(self):
        return np.diag(-1/self.beta)

    def _update(self, x, f, dx, df, dx_norm, df_norm):
        incr = f*self.last_f > 0
        self.beta[incr] += self.alpha
        self.beta[~incr] = self.alpha
        np.clip(self.beta, 0, self.alphamax, out=self.beta)


#------------------------------------------------------------------------------
# Iterative/Krylov approximated Jacobians
#------------------------------------------------------------------------------

class KrylovJacobian(Jacobian):
    r"""
    Find a root of a function, using Krylov approximation for inverse Jacobian.

    This method is suitable for solving large-scale problems.

    Parameters
    ----------
    %(params_basic)s
    rdiff : float, optional
        Relative step size to use in numerical differentiation.
    method : {'lgmres', 'gmres', 'bicgstab', 'cgs', 'minres'} or function
        Krylov method to use to approximate the Jacobian.
        Can be a string, or a function implementing the same interface as
        the iterative solvers in `scipy.sparse.linalg`.

        The default is `scipy.sparse.linalg.lgmres`.
    inner_M : LinearOperator or InverseJacobian
        Preconditioner for the inner Krylov iteration.
        Note that you can use also inverse Jacobians as (adaptive)
        preconditioners. For example,

        >>> from scipy.optimize.nonlin import BroydenFirst, KrylovJacobian
        >>> from scipy.optimize.nonlin import InverseJacobian
        >>> jac = BroydenFirst()
        >>> kjac = KrylovJacobian(inner_M=InverseJacobian(jac))

        If the preconditioner has a method named 'update', it will be called
        as ``update(x, f)`` after each nonlinear step, with ``x`` giving
        the current point, and ``f`` the current function value.
    inner_tol, inner_maxiter, ...
        Parameters to pass on to the \"inner\" Krylov solver.
        See `scipy.sparse.linalg.gmres` for details.
    outer_k : int, optional
        Size of the subspace kept across LGMRES nonlinear iterations.
        See `scipy.sparse.linalg.lgmres` for details.
    %(params_extra)s

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See ``method=='krylov'`` in particular.
    scipy.sparse.linalg.gmres
    scipy.sparse.linalg.lgmres

    Notes
    -----
    This function implements a Newton-Krylov solver. The basic idea is
    to compute the inverse of the Jacobian with an iterative Krylov
    method. These methods require only evaluating the Jacobian-vector
    products, which are conveniently approximated by a finite difference:

    .. math:: J v \approx (f(x + \omega*v/|v|) - f(x)) / \omega

    Due to the use of iterative matrix inverses, these methods can
    deal with large nonlinear problems.

    SciPy's `scipy.sparse.linalg` module offers a selection of Krylov
    solvers to choose from. The default here is `lgmres`, which is a
    variant of restarted GMRES iteration that reuses some of the
    information obtained in the previous Newton steps to invert
    Jacobians in subsequent steps.

    For a review on Newton-Krylov methods, see for example [1]_,
    and for the LGMRES sparse inverse method, see [2]_.

    References
    ----------
    .. [1] D.A. Knoll and D.E. Keyes, J. Comp. Phys. 193, 357 (2004).
           :doi:`10.1016/j.jcp.2003.08.010`
    .. [2] A.H. Baker and E.R. Jessup and T. Manteuffel,
           SIAM J. Matrix Anal. Appl. 26, 962 (2005).
           :doi:`10.1137/S0895479803422014`

    """

    def __init__(self, rdiff=None, method='lgmres', inner_maxiter=20,
                 inner_M=None, outer_k=10, **kw):
        self.preconditioner = inner_M
        self.rdiff = rdiff
        self.method = dict(
            bicgstab=scipy.sparse.linalg.bicgstab,
            gmres=scipy.sparse.linalg.gmres,
            lgmres=scipy.sparse.linalg.lgmres,
            cgs=scipy.sparse.linalg.cgs,
            minres=scipy.sparse.linalg.minres,
            ).get(method, method)

        self.method_kw = dict(maxiter=inner_maxiter, M=self.preconditioner)

        if self.method is scipy.sparse.linalg.gmres:
            # Replace GMRES's outer iteration with Newton steps
            self.method_kw['restrt'] = inner_maxiter
            self.method_kw['maxiter'] = 1
            self.method_kw.setdefault('atol', 0)
        elif self.method is scipy.sparse.linalg.gcrotmk:
            self.method_kw.setdefault('atol', 0)
        elif self.method is scipy.sparse.linalg.lgmres:
            self.method_kw['outer_k'] = outer_k
            # Replace LGMRES's outer iteration with Newton steps
            self.method_kw['maxiter'] = 1
            # Carry LGMRES's `outer_v` vectors across nonlinear iterations
            self.method_kw.setdefault('outer_v', [])
            self.method_kw.setdefault('prepend_outer_v', True)
            # But don't carry the corresponding Jacobian*v products, in case
            # the Jacobian changes a lot in the nonlinear step
            #
            # XXX: some trust-region inspired ideas might be more efficient...
            #      See eg. Brown & Saad. But needs to be implemented separately
            #      since it's not an inexact Newton method.
            self.method_kw.setdefault('store_outer_Av', False)
            self.method_kw.setdefault('atol', 0)

        for key, value in kw.items():
            if not key.startswith('inner_'):
                raise ValueError("Unknown parameter %s" % key)
            self.method_kw[key[6:]] = value

    def _update_diff_step(self):
        mx = abs(self.x0).max()
        mf = abs(self.f0).max()
        self.omega = self.rdiff * max(1, mx) / max(1, mf)

    def matvec(self, v):
        nv = norm(v)
        if nv == 0:
            return 0*v
        sc = self.omega / nv
        r = (self.func(self.x0 + sc*v) - self.f0) / sc
        if not np.all(np.isfinite(r)) and np.all(np.isfinite(v)):
            raise ValueError('Function returned non-finite results')
        return r

    def solve(self, rhs, tol=0):
        if 'tol' in self.method_kw:
            sol, info = self.method(self.op, rhs, **self.method_kw)
        else:
            sol, info = self.method(self.op, rhs, tol=tol, **self.method_kw)
        return sol

    def update(self, x, f):
        self.x0 = x
        self.f0 = f
        self._update_diff_step()

        # Update also the preconditioner, if possible
        if self.preconditioner is not None:
            if hasattr(self.preconditioner, 'update'):
                self.preconditioner.update(x, f)

    def setup(self, x, f, func):
        Jacobian.setup(self, x, f, func)
        self.x0 = x
        self.f0 = f
        self.op = scipy.sparse.linalg.aslinearoperator(self)

        if self.rdiff is None:
            self.rdiff = np.finfo(x.dtype).eps ** (1./2)

        self._update_diff_step()

        # Setup also the preconditioner, if possible
        if self.preconditioner is not None:
            if hasattr(self.preconditioner, 'setup'):
                self.preconditioner.setup(x, f, func)


#------------------------------------------------------------------------------
# Wrapper functions
#------------------------------------------------------------------------------

def _nonlin_wrapper(name, jac):
    """
    Construct a solver wrapper with given name and jacobian approx.

    It inspects the keyword arguments of ``jac.__init__``, and allows to
    use the same arguments in the wrapper function, in addition to the
    keyword arguments of `nonlin_solve`

    """
    args, varargs, varkw, defaults = _getargspec(jac.__init__)
    kwargs = list(zip(args[-len(defaults):], defaults))
    kw_str = ", ".join(["%s=%r" % (k, v) for k, v in kwargs])
    if kw_str:
        kw_str = ", " + kw_str
    kwkw_str = ", ".join(["%s=%s" % (k, k) for k, v in kwargs])
    if kwkw_str:
        kwkw_str = kwkw_str + ", "

    # Construct the wrapper function so that its keyword arguments
    # are visible in pydoc.help etc.
    wrapper = """
def %(name)s(F, xin, iter=None %(kw)s, verbose=False, maxiter=None,
             f_tol=None, f_rtol=None, x_tol=None, x_rtol=None,
             tol_norm=None, line_search='armijo', callback=None, **kw):
    jac = %(jac)s(%(kwkw)s **kw)
    return nonlin_solve(F, xin, jac, iter, verbose, maxiter,
                        f_tol, f_rtol, x_tol, x_rtol, tol_norm, line_search,
                        callback)
"""

    wrapper = wrapper % dict(name=name, kw=kw_str, jac=jac.__name__,
                             kwkw=kwkw_str)
    ns = {}
    ns.update(globals())
    exec_(wrapper, ns)
    func = ns[name]
    func.__doc__ = jac.__doc__
    _set_doc(func)
    return func


broyden1 = _nonlin_wrapper('broyden1', BroydenFirst)
broyden2 = _nonlin_wrapper('broyden2', BroydenSecond)
anderson = _nonlin_wrapper('anderson', Anderson)
linearmixing = _nonlin_wrapper('linearmixing', LinearMixing)
diagbroyden = _nonlin_wrapper('diagbroyden', DiagBroyden)
excitingmixing = _nonlin_wrapper('excitingmixing', ExcitingMixing)
newton_krylov = _nonlin_wrapper('newton_krylov', KrylovJacobian)