optimize.py 107 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
#__docformat__ = "restructuredtext en"
# ******NOTICE***************
# optimize.py module by Travis E. Oliphant
#
# You may copy and use this module as you see fit with no
# guarantee implied provided you keep this notice in all copies.
# *****END NOTICE************

# A collection of optimization algorithms.  Version 0.5
# CHANGES
#  Added fminbound (July 2001)
#  Added brute (Aug. 2002)
#  Finished line search satisfying strong Wolfe conditions (Mar. 2004)
#  Updated strong Wolfe conditions line search to use
#      cubic-interpolation (Mar. 2004)

from __future__ import division, print_function, absolute_import


# Minimization routines

__all__ = ['fmin', 'fmin_powell', 'fmin_bfgs', 'fmin_ncg', 'fmin_cg',
           'fminbound', 'brent', 'golden', 'bracket', 'rosen', 'rosen_der',
           'rosen_hess', 'rosen_hess_prod', 'brute', 'approx_fprime',
           'line_search', 'check_grad', 'OptimizeResult', 'show_options',
           'OptimizeWarning']

__docformat__ = "restructuredtext en"

import warnings
import sys
import numpy
from scipy._lib.six import callable, xrange
from numpy import (atleast_1d, eye, mgrid, argmin, zeros, shape, squeeze,
                   asarray, sqrt, Inf, asfarray, isinf)
import numpy as np
from .linesearch import (line_search_wolfe1, line_search_wolfe2,
                         line_search_wolfe2 as line_search,
                         LineSearchWarning)
from scipy._lib._util import getargspec_no_self as _getargspec
from scipy._lib._util import MapWrapper


# standard status messages of optimizers
_status_message = {'success': 'Optimization terminated successfully.',
                   'maxfev': 'Maximum number of function evaluations has '
                              'been exceeded.',
                   'maxiter': 'Maximum number of iterations has been '
                              'exceeded.',
                   'pr_loss': 'Desired error not necessarily achieved due '
                              'to precision loss.',
                   'nan': 'NaN result encountered.'}


class MemoizeJac(object):
    """ Decorator that caches the value gradient of function each time it
    is called. """
    def __init__(self, fun):
        self.fun = fun
        self.jac = None
        self.x = None

    def __call__(self, x, *args):
        self.x = numpy.asarray(x).copy()
        fg = self.fun(x, *args)
        self.jac = fg[1]
        return fg[0]

    def derivative(self, x, *args):
        if self.jac is not None and numpy.all(x == self.x):
            return self.jac
        else:
            self(x, *args)
            return self.jac


class OptimizeResult(dict):
    """ Represents the optimization result.

    Attributes
    ----------
    x : ndarray
        The solution of the optimization.
    success : bool
        Whether or not the optimizer exited successfully.
    status : int
        Termination status of the optimizer. Its value depends on the
        underlying solver. Refer to `message` for details.
    message : str
        Description of the cause of the termination.
    fun, jac, hess: ndarray
        Values of objective function, its Jacobian and its Hessian (if
        available). The Hessians may be approximations, see the documentation
        of the function in question.
    hess_inv : object
        Inverse of the objective function's Hessian; may be an approximation.
        Not available for all solvers. The type of this attribute may be
        either np.ndarray or scipy.sparse.linalg.LinearOperator.
    nfev, njev, nhev : int
        Number of evaluations of the objective functions and of its
        Jacobian and Hessian.
    nit : int
        Number of iterations performed by the optimizer.
    maxcv : float
        The maximum constraint violation.

    Notes
    -----
    There may be additional attributes not listed above depending of the
    specific solver. Since this class is essentially a subclass of dict
    with attribute accessors, one can see which attributes are available
    using the `keys()` method.
    """
    def __getattr__(self, name):
        try:
            return self[name]
        except KeyError:
            raise AttributeError(name)

    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

    def __repr__(self):
        if self.keys():
            m = max(map(len, list(self.keys()))) + 1
            return '\n'.join([k.rjust(m) + ': ' + repr(v)
                              for k, v in sorted(self.items())])
        else:
            return self.__class__.__name__ + "()"

    def __dir__(self):
        return list(self.keys())


class OptimizeWarning(UserWarning):
    pass


def _check_unknown_options(unknown_options):
    if unknown_options:
        msg = ", ".join(map(str, unknown_options.keys()))
        # Stack level 4: this is called from _minimize_*, which is
        # called from another function in SciPy. Level 4 is the first
        # level in user code.
        warnings.warn("Unknown solver options: %s" % msg, OptimizeWarning, 4)


def is_array_scalar(x):
    """Test whether `x` is either a scalar or an array scalar.

    """
    return np.size(x) == 1


_epsilon = sqrt(numpy.finfo(float).eps)


def vecnorm(x, ord=2):
    if ord == Inf:
        return numpy.amax(numpy.abs(x))
    elif ord == -Inf:
        return numpy.amin(numpy.abs(x))
    else:
        return numpy.sum(numpy.abs(x)**ord, axis=0)**(1.0 / ord)


def rosen(x):
    """
    The Rosenbrock function.

    The function computed is::

        sum(100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0)

    Parameters
    ----------
    x : array_like
        1-D array of points at which the Rosenbrock function is to be computed.

    Returns
    -------
    f : float
        The value of the Rosenbrock function.

    See Also
    --------
    rosen_der, rosen_hess, rosen_hess_prod

    Examples
    --------
    >>> from scipy.optimize import rosen
    >>> X = 0.1 * np.arange(10)
    >>> rosen(X)
    76.56

    """
    x = asarray(x)
    r = numpy.sum(100.0 * (x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0,
                  axis=0)
    return r


def rosen_der(x):
    """
    The derivative (i.e. gradient) of the Rosenbrock function.

    Parameters
    ----------
    x : array_like
        1-D array of points at which the derivative is to be computed.

    Returns
    -------
    rosen_der : (N,) ndarray
        The gradient of the Rosenbrock function at `x`.

    See Also
    --------
    rosen, rosen_hess, rosen_hess_prod

    Examples
    --------
    >>> from scipy.optimize import rosen_der
    >>> X = 0.1 * np.arange(9)
    >>> rosen_der(X)
    array([ -2. ,  10.6,  15.6,  13.4,   6.4,  -3. , -12.4, -19.4,  62. ])

    """
    x = asarray(x)
    xm = x[1:-1]
    xm_m1 = x[:-2]
    xm_p1 = x[2:]
    der = numpy.zeros_like(x)
    der[1:-1] = (200 * (xm - xm_m1**2) -
                 400 * (xm_p1 - xm**2) * xm - 2 * (1 - xm))
    der[0] = -400 * x[0] * (x[1] - x[0]**2) - 2 * (1 - x[0])
    der[-1] = 200 * (x[-1] - x[-2]**2)
    return der


def rosen_hess(x):
    """
    The Hessian matrix of the Rosenbrock function.

    Parameters
    ----------
    x : array_like
        1-D array of points at which the Hessian matrix is to be computed.

    Returns
    -------
    rosen_hess : ndarray
        The Hessian matrix of the Rosenbrock function at `x`.

    See Also
    --------
    rosen, rosen_der, rosen_hess_prod

    Examples
    --------
    >>> from scipy.optimize import rosen_hess
    >>> X = 0.1 * np.arange(4)
    >>> rosen_hess(X)
    array([[-38.,   0.,   0.,   0.],
           [  0., 134., -40.,   0.],
           [  0., -40., 130., -80.],
           [  0.,   0., -80., 200.]])

    """
    x = atleast_1d(x)
    H = numpy.diag(-400 * x[:-1], 1) - numpy.diag(400 * x[:-1], -1)
    diagonal = numpy.zeros(len(x), dtype=x.dtype)
    diagonal[0] = 1200 * x[0]**2 - 400 * x[1] + 2
    diagonal[-1] = 200
    diagonal[1:-1] = 202 + 1200 * x[1:-1]**2 - 400 * x[2:]
    H = H + numpy.diag(diagonal)
    return H


def rosen_hess_prod(x, p):
    """
    Product of the Hessian matrix of the Rosenbrock function with a vector.

    Parameters
    ----------
    x : array_like
        1-D array of points at which the Hessian matrix is to be computed.
    p : array_like
        1-D array, the vector to be multiplied by the Hessian matrix.

    Returns
    -------
    rosen_hess_prod : ndarray
        The Hessian matrix of the Rosenbrock function at `x` multiplied
        by the vector `p`.

    See Also
    --------
    rosen, rosen_der, rosen_hess

    Examples
    --------
    >>> from scipy.optimize import rosen_hess_prod
    >>> X = 0.1 * np.arange(9)
    >>> p = 0.5 * np.arange(9)
    >>> rosen_hess_prod(X, p)
    array([  -0.,   27.,  -10.,  -95., -192., -265., -278., -195., -180.])

    """
    x = atleast_1d(x)
    Hp = numpy.zeros(len(x), dtype=x.dtype)
    Hp[0] = (1200 * x[0]**2 - 400 * x[1] + 2) * p[0] - 400 * x[0] * p[1]
    Hp[1:-1] = (-400 * x[:-2] * p[:-2] +
                (202 + 1200 * x[1:-1]**2 - 400 * x[2:]) * p[1:-1] -
                400 * x[1:-1] * p[2:])
    Hp[-1] = -400 * x[-2] * p[-2] + 200*p[-1]
    return Hp


def wrap_function(function, args):
    ncalls = [0]
    if function is None:
        return ncalls, None

    def function_wrapper(*wrapper_args):
        ncalls[0] += 1
        return function(*(wrapper_args + args))

    return ncalls, function_wrapper


def fmin(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, maxfun=None,
         full_output=0, disp=1, retall=0, callback=None, initial_simplex=None):
    """
    Minimize a function using the downhill simplex algorithm.

    This algorithm only uses function values, not derivatives or second
    derivatives.

    Parameters
    ----------
    func : callable func(x,*args)
        The objective function to be minimized.
    x0 : ndarray
        Initial guess.
    args : tuple, optional
        Extra arguments passed to func, i.e. ``f(x,*args)``.
    xtol : float, optional
        Absolute error in xopt between iterations that is acceptable for
        convergence.
    ftol : number, optional
        Absolute error in func(xopt) between iterations that is acceptable for
        convergence.
    maxiter : int, optional
        Maximum number of iterations to perform.
    maxfun : number, optional
        Maximum number of function evaluations to make.
    full_output : bool, optional
        Set to True if fopt and warnflag outputs are desired.
    disp : bool, optional
        Set to True to print convergence messages.
    retall : bool, optional
        Set to True to return list of solutions at each iteration.
    callback : callable, optional
        Called after each iteration, as callback(xk), where xk is the
        current parameter vector.
    initial_simplex : array_like of shape (N + 1, N), optional
        Initial simplex. If given, overrides `x0`.
        ``initial_simplex[j,:]`` should contain the coordinates of
        the j-th vertex of the ``N+1`` vertices in the simplex, where
        ``N`` is the dimension.

    Returns
    -------
    xopt : ndarray
        Parameter that minimizes function.
    fopt : float
        Value of function at minimum: ``fopt = func(xopt)``.
    iter : int
        Number of iterations performed.
    funcalls : int
        Number of function calls made.
    warnflag : int
        1 : Maximum number of function evaluations made.
        2 : Maximum number of iterations reached.
    allvecs : list
        Solution at each iteration.

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'Nelder-Mead' `method` in particular.

    Notes
    -----
    Uses a Nelder-Mead simplex algorithm to find the minimum of function of
    one or more variables.

    This algorithm has a long history of successful use in applications.
    But it will usually be slower than an algorithm that uses first or
    second derivative information. In practice it can have poor
    performance in high-dimensional problems and is not robust to
    minimizing complicated functions. Additionally, there currently is no
    complete theory describing when the algorithm will successfully
    converge to the minimum, or how fast it will if it does. Both the ftol and
    xtol criteria must be met for convergence.

    Examples
    --------
    >>> def f(x):
    ...     return x**2

    >>> from scipy import optimize

    >>> minimum = optimize.fmin(f, 1)
    Optimization terminated successfully.
             Current function value: 0.000000
             Iterations: 17
             Function evaluations: 34
    >>> minimum[0]
    -8.8817841970012523e-16

    References
    ----------
    .. [1] Nelder, J.A. and Mead, R. (1965), "A simplex method for function
           minimization", The Computer Journal, 7, pp. 308-313

    .. [2] Wright, M.H. (1996), "Direct Search Methods: Once Scorned, Now
           Respectable", in Numerical Analysis 1995, Proceedings of the
           1995 Dundee Biennial Conference in Numerical Analysis, D.F.
           Griffiths and G.A. Watson (Eds.), Addison Wesley Longman,
           Harlow, UK, pp. 191-208.

    """
    opts = {'xatol': xtol,
            'fatol': ftol,
            'maxiter': maxiter,
            'maxfev': maxfun,
            'disp': disp,
            'return_all': retall,
            'initial_simplex': initial_simplex}

    res = _minimize_neldermead(func, x0, args, callback=callback, **opts)
    if full_output:
        retlist = res['x'], res['fun'], res['nit'], res['nfev'], res['status']
        if retall:
            retlist += (res['allvecs'], )
        return retlist
    else:
        if retall:
            return res['x'], res['allvecs']
        else:
            return res['x']


def _minimize_neldermead(func, x0, args=(), callback=None,
                         maxiter=None, maxfev=None, disp=False,
                         return_all=False, initial_simplex=None,
                         xatol=1e-4, fatol=1e-4, adaptive=False,
                         **unknown_options):
    """
    Minimization of scalar function of one or more variables using the
    Nelder-Mead algorithm.

    Options
    -------
    disp : bool
        Set to True to print convergence messages.
    maxiter, maxfev : int
        Maximum allowed number of iterations and function evaluations.
        Will default to ``N*200``, where ``N`` is the number of
        variables, if neither `maxiter` or `maxfev` is set. If both
        `maxiter` and `maxfev` are set, minimization will stop at the
        first reached.
    initial_simplex : array_like of shape (N + 1, N)
        Initial simplex. If given, overrides `x0`.
        ``initial_simplex[j,:]`` should contain the coordinates of
        the j-th vertex of the ``N+1`` vertices in the simplex, where
        ``N`` is the dimension.
    xatol : float, optional
        Absolute error in xopt between iterations that is acceptable for
        convergence.
    fatol : number, optional
        Absolute error in func(xopt) between iterations that is acceptable for
        convergence.
    adaptive : bool, optional
        Adapt algorithm parameters to dimensionality of problem. Useful for
        high-dimensional minimization [1]_.

    References
    ----------
    .. [1] Gao, F. and Han, L.
       Implementing the Nelder-Mead simplex algorithm with adaptive
       parameters. 2012. Computational Optimization and Applications.
       51:1, pp. 259-277

    """
    if 'ftol' in unknown_options:
        warnings.warn("ftol is deprecated for Nelder-Mead,"
                      " use fatol instead. If you specified both, only"
                      " fatol is used.",
                      DeprecationWarning)
        if (np.isclose(fatol, 1e-4) and
                not np.isclose(unknown_options['ftol'], 1e-4)):
            # only ftol was probably specified, use it.
            fatol = unknown_options['ftol']
        unknown_options.pop('ftol')
    if 'xtol' in unknown_options:
        warnings.warn("xtol is deprecated for Nelder-Mead,"
                      " use xatol instead. If you specified both, only"
                      " xatol is used.",
                      DeprecationWarning)
        if (np.isclose(xatol, 1e-4) and
                not np.isclose(unknown_options['xtol'], 1e-4)):
            # only xtol was probably specified, use it.
            xatol = unknown_options['xtol']
        unknown_options.pop('xtol')

    _check_unknown_options(unknown_options)
    maxfun = maxfev
    retall = return_all

    fcalls, func = wrap_function(func, args)

    if adaptive:
        dim = float(len(x0))
        rho = 1
        chi = 1 + 2/dim
        psi = 0.75 - 1/(2*dim)
        sigma = 1 - 1/dim
    else:
        rho = 1
        chi = 2
        psi = 0.5
        sigma = 0.5

    nonzdelt = 0.05
    zdelt = 0.00025

    x0 = asfarray(x0).flatten()

    if initial_simplex is None:
        N = len(x0)

        sim = numpy.zeros((N + 1, N), dtype=x0.dtype)
        sim[0] = x0
        for k in range(N):
            y = numpy.array(x0, copy=True)
            if y[k] != 0:
                y[k] = (1 + nonzdelt)*y[k]
            else:
                y[k] = zdelt
            sim[k + 1] = y
    else:
        sim = np.asfarray(initial_simplex).copy()
        if sim.ndim != 2 or sim.shape[0] != sim.shape[1] + 1:
            raise ValueError("`initial_simplex` should be an array of shape (N+1,N)")
        if len(x0) != sim.shape[1]:
            raise ValueError("Size of `initial_simplex` is not consistent with `x0`")
        N = sim.shape[1]

    if retall:
        allvecs = [sim[0]]

    # If neither are set, then set both to default
    if maxiter is None and maxfun is None:
        maxiter = N * 200
        maxfun = N * 200
    elif maxiter is None:
        # Convert remaining Nones, to np.inf, unless the other is np.inf, in
        # which case use the default to avoid unbounded iteration
        if maxfun == np.inf:
            maxiter = N * 200
        else:
            maxiter = np.inf
    elif maxfun is None:
        if maxiter == np.inf:
            maxfun = N * 200
        else:
            maxfun = np.inf

    one2np1 = list(range(1, N + 1))
    fsim = numpy.zeros((N + 1,), float)

    for k in range(N + 1):
        fsim[k] = func(sim[k])

    ind = numpy.argsort(fsim)
    fsim = numpy.take(fsim, ind, 0)
    # sort so sim[0,:] has the lowest function value
    sim = numpy.take(sim, ind, 0)

    iterations = 1

    while (fcalls[0] < maxfun and iterations < maxiter):
        if (numpy.max(numpy.ravel(numpy.abs(sim[1:] - sim[0]))) <= xatol and
                numpy.max(numpy.abs(fsim[0] - fsim[1:])) <= fatol):
            break

        xbar = numpy.add.reduce(sim[:-1], 0) / N
        xr = (1 + rho) * xbar - rho * sim[-1]
        fxr = func(xr)
        doshrink = 0

        if fxr < fsim[0]:
            xe = (1 + rho * chi) * xbar - rho * chi * sim[-1]
            fxe = func(xe)

            if fxe < fxr:
                sim[-1] = xe
                fsim[-1] = fxe
            else:
                sim[-1] = xr
                fsim[-1] = fxr
        else:  # fsim[0] <= fxr
            if fxr < fsim[-2]:
                sim[-1] = xr
                fsim[-1] = fxr
            else:  # fxr >= fsim[-2]
                # Perform contraction
                if fxr < fsim[-1]:
                    xc = (1 + psi * rho) * xbar - psi * rho * sim[-1]
                    fxc = func(xc)

                    if fxc <= fxr:
                        sim[-1] = xc
                        fsim[-1] = fxc
                    else:
                        doshrink = 1
                else:
                    # Perform an inside contraction
                    xcc = (1 - psi) * xbar + psi * sim[-1]
                    fxcc = func(xcc)

                    if fxcc < fsim[-1]:
                        sim[-1] = xcc
                        fsim[-1] = fxcc
                    else:
                        doshrink = 1

                if doshrink:
                    for j in one2np1:
                        sim[j] = sim[0] + sigma * (sim[j] - sim[0])
                        fsim[j] = func(sim[j])

        ind = numpy.argsort(fsim)
        sim = numpy.take(sim, ind, 0)
        fsim = numpy.take(fsim, ind, 0)
        if callback is not None:
            callback(sim[0])
        iterations += 1
        if retall:
            allvecs.append(sim[0])

    x = sim[0]
    fval = numpy.min(fsim)
    warnflag = 0

    if fcalls[0] >= maxfun:
        warnflag = 1
        msg = _status_message['maxfev']
        if disp:
            print('Warning: ' + msg)
    elif iterations >= maxiter:
        warnflag = 2
        msg = _status_message['maxiter']
        if disp:
            print('Warning: ' + msg)
    else:
        msg = _status_message['success']
        if disp:
            print(msg)
            print("         Current function value: %f" % fval)
            print("         Iterations: %d" % iterations)
            print("         Function evaluations: %d" % fcalls[0])

    result = OptimizeResult(fun=fval, nit=iterations, nfev=fcalls[0],
                            status=warnflag, success=(warnflag == 0),
                            message=msg, x=x, final_simplex=(sim, fsim))
    if retall:
        result['allvecs'] = allvecs
    return result


def _approx_fprime_helper(xk, f, epsilon, args=(), f0=None):
    """
    See ``approx_fprime``.  An optional initial function value arg is added.

    """
    if f0 is None:
        f0 = f(*((xk,) + args))
    grad = numpy.zeros((len(xk),), float)
    ei = numpy.zeros((len(xk),), float)
    for k in range(len(xk)):
        ei[k] = 1.0
        d = epsilon * ei
        df = (f(*((xk + d,) + args)) - f0) / d[k]
        if not np.isscalar(df):
            try:
                df = df.item()
            except (ValueError, AttributeError):
                raise ValueError("The user-provided "
                                 "objective function must "
                                 "return a scalar value.")
        grad[k] = df
        ei[k] = 0.0
    return grad


def approx_fprime(xk, f, epsilon, *args):
    """Finite-difference approximation of the gradient of a scalar function.

    Parameters
    ----------
    xk : array_like
        The coordinate vector at which to determine the gradient of `f`.
    f : callable
        The function of which to determine the gradient (partial derivatives).
        Should take `xk` as first argument, other arguments to `f` can be
        supplied in ``*args``.  Should return a scalar, the value of the
        function at `xk`.
    epsilon : array_like
        Increment to `xk` to use for determining the function gradient.
        If a scalar, uses the same finite difference delta for all partial
        derivatives.  If an array, should contain one value per element of
        `xk`.
    \\*args : args, optional
        Any other arguments that are to be passed to `f`.

    Returns
    -------
    grad : ndarray
        The partial derivatives of `f` to `xk`.

    See Also
    --------
    check_grad : Check correctness of gradient function against approx_fprime.

    Notes
    -----
    The function gradient is determined by the forward finite difference
    formula::

                 f(xk[i] + epsilon[i]) - f(xk[i])
        f'[i] = ---------------------------------
                            epsilon[i]

    The main use of `approx_fprime` is in scalar function optimizers like
    `fmin_bfgs`, to determine numerically the Jacobian of a function.

    Examples
    --------
    >>> from scipy import optimize
    >>> def func(x, c0, c1):
    ...     "Coordinate vector `x` should be an array of size two."
    ...     return c0 * x[0]**2 + c1*x[1]**2

    >>> x = np.ones(2)
    >>> c0, c1 = (1, 200)
    >>> eps = np.sqrt(np.finfo(float).eps)
    >>> optimize.approx_fprime(x, func, [eps, np.sqrt(200) * eps], c0, c1)
    array([   2.        ,  400.00004198])

    """
    return _approx_fprime_helper(xk, f, epsilon, args=args)


def check_grad(func, grad, x0, *args, **kwargs):
    """Check the correctness of a gradient function by comparing it against a
    (forward) finite-difference approximation of the gradient.

    Parameters
    ----------
    func : callable ``func(x0, *args)``
        Function whose derivative is to be checked.
    grad : callable ``grad(x0, *args)``
        Gradient of `func`.
    x0 : ndarray
        Points to check `grad` against forward difference approximation of grad
        using `func`.
    args : \\*args, optional
        Extra arguments passed to `func` and `grad`.
    epsilon : float, optional
        Step size used for the finite difference approximation. It defaults to
        ``sqrt(numpy.finfo(float).eps)``, which is approximately 1.49e-08.

    Returns
    -------
    err : float
        The square root of the sum of squares (i.e. the 2-norm) of the
        difference between ``grad(x0, *args)`` and the finite difference
        approximation of `grad` using func at the points `x0`.

    See Also
    --------
    approx_fprime

    Examples
    --------
    >>> def func(x):
    ...     return x[0]**2 - 0.5 * x[1]**3
    >>> def grad(x):
    ...     return [2 * x[0], -1.5 * x[1]**2]
    >>> from scipy.optimize import check_grad
    >>> check_grad(func, grad, [1.5, -1.5])
    2.9802322387695312e-08

    """
    step = kwargs.pop('epsilon', _epsilon)
    if kwargs:
        raise ValueError("Unknown keyword arguments: %r" %
                         (list(kwargs.keys()),))
    return sqrt(sum((grad(x0, *args) -
                     approx_fprime(x0, func, step, *args))**2))


def approx_fhess_p(x0, p, fprime, epsilon, *args):
    f2 = fprime(*((x0 + epsilon*p,) + args))
    f1 = fprime(*((x0,) + args))
    return (f2 - f1) / epsilon


class _LineSearchError(RuntimeError):
    pass


def _line_search_wolfe12(f, fprime, xk, pk, gfk, old_fval, old_old_fval,
                         **kwargs):
    """
    Same as line_search_wolfe1, but fall back to line_search_wolfe2 if
    suitable step length is not found, and raise an exception if a
    suitable step length is not found.

    Raises
    ------
    _LineSearchError
        If no suitable step size is found

    """

    extra_condition = kwargs.pop('extra_condition', None)

    ret = line_search_wolfe1(f, fprime, xk, pk, gfk,
                             old_fval, old_old_fval,
                             **kwargs)

    if ret[0] is not None and extra_condition is not None:
        xp1 = xk + ret[0] * pk
        if not extra_condition(ret[0], xp1, ret[3], ret[5]):
            # Reject step if extra_condition fails
            ret = (None,)

    if ret[0] is None:
        # line search failed: try different one.
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', LineSearchWarning)
            kwargs2 = {}
            for key in ('c1', 'c2', 'amax'):
                if key in kwargs:
                    kwargs2[key] = kwargs[key]
            ret = line_search_wolfe2(f, fprime, xk, pk, gfk,
                                     old_fval, old_old_fval,
                                     extra_condition=extra_condition,
                                     **kwargs2)

    if ret[0] is None:
        raise _LineSearchError()

    return ret


def fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-5, norm=Inf,
              epsilon=_epsilon, maxiter=None, full_output=0, disp=1,
              retall=0, callback=None):
    """
    Minimize a function using the BFGS algorithm.

    Parameters
    ----------
    f : callable f(x,*args)
        Objective function to be minimized.
    x0 : ndarray
        Initial guess.
    fprime : callable f'(x,*args), optional
        Gradient of f.
    args : tuple, optional
        Extra arguments passed to f and fprime.
    gtol : float, optional
        Gradient norm must be less than gtol before successful termination.
    norm : float, optional
        Order of norm (Inf is max, -Inf is min)
    epsilon : int or ndarray, optional
        If fprime is approximated, use this value for the step size.
    callback : callable, optional
        An optional user-supplied function to call after each
        iteration.  Called as callback(xk), where xk is the
        current parameter vector.
    maxiter : int, optional
        Maximum number of iterations to perform.
    full_output : bool, optional
        If True,return fopt, func_calls, grad_calls, and warnflag
        in addition to xopt.
    disp : bool, optional
        Print convergence message if True.
    retall : bool, optional
        Return a list of results at each iteration if True.

    Returns
    -------
    xopt : ndarray
        Parameters which minimize f, i.e. f(xopt) == fopt.
    fopt : float
        Minimum value.
    gopt : ndarray
        Value of gradient at minimum, f'(xopt), which should be near 0.
    Bopt : ndarray
        Value of 1/f''(xopt), i.e. the inverse hessian matrix.
    func_calls : int
        Number of function_calls made.
    grad_calls : int
        Number of gradient calls made.
    warnflag : integer
        1 : Maximum number of iterations exceeded.
        2 : Gradient and/or function calls not changing.
        3 : NaN result encountered.
    allvecs  :  list
        The value of xopt at each iteration.  Only returned if retall is True.

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'BFGS' `method` in particular.

    Notes
    -----
    Optimize the function, f, whose gradient is given by fprime
    using the quasi-Newton method of Broyden, Fletcher, Goldfarb,
    and Shanno (BFGS)

    References
    ----------
    Wright, and Nocedal 'Numerical Optimization', 1999, pg. 198.

    """
    opts = {'gtol': gtol,
            'norm': norm,
            'eps': epsilon,
            'disp': disp,
            'maxiter': maxiter,
            'return_all': retall}

    res = _minimize_bfgs(f, x0, args, fprime, callback=callback, **opts)

    if full_output:
        retlist = (res['x'], res['fun'], res['jac'], res['hess_inv'],
                   res['nfev'], res['njev'], res['status'])
        if retall:
            retlist += (res['allvecs'], )
        return retlist
    else:
        if retall:
            return res['x'], res['allvecs']
        else:
            return res['x']


def _minimize_bfgs(fun, x0, args=(), jac=None, callback=None,
                   gtol=1e-5, norm=Inf, eps=_epsilon, maxiter=None,
                   disp=False, return_all=False,
                   **unknown_options):
    """
    Minimization of scalar function of one or more variables using the
    BFGS algorithm.

    Options
    -------
    disp : bool
        Set to True to print convergence messages.
    maxiter : int
        Maximum number of iterations to perform.
    gtol : float
        Gradient norm must be less than `gtol` before successful
        termination.
    norm : float
        Order of norm (Inf is max, -Inf is min).
    eps : float or ndarray
        If `jac` is approximated, use this value for the step size.

    """
    _check_unknown_options(unknown_options)
    f = fun
    fprime = jac
    epsilon = eps
    retall = return_all

    x0 = asarray(x0).flatten()
    if x0.ndim == 0:
        x0.shape = (1,)
    if maxiter is None:
        maxiter = len(x0) * 200
    func_calls, f = wrap_function(f, args)

    old_fval = f(x0)

    if fprime is None:
        grad_calls, myfprime = wrap_function(approx_fprime, (f, epsilon))
    else:
        grad_calls, myfprime = wrap_function(fprime, args)
    gfk = myfprime(x0)
    k = 0
    N = len(x0)
    I = numpy.eye(N, dtype=int)
    Hk = I

    # Sets the initial step guess to dx ~ 1
    old_old_fval = old_fval + np.linalg.norm(gfk) / 2

    xk = x0
    if retall:
        allvecs = [x0]
    warnflag = 0
    gnorm = vecnorm(gfk, ord=norm)
    while (gnorm > gtol) and (k < maxiter):
        pk = -numpy.dot(Hk, gfk)
        try:
            alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
                     _line_search_wolfe12(f, myfprime, xk, pk, gfk,
                                          old_fval, old_old_fval, amin=1e-100, amax=1e100)
        except _LineSearchError:
            # Line search failed to find a better solution.
            warnflag = 2
            break

        xkp1 = xk + alpha_k * pk
        if retall:
            allvecs.append(xkp1)
        sk = xkp1 - xk
        xk = xkp1
        if gfkp1 is None:
            gfkp1 = myfprime(xkp1)

        yk = gfkp1 - gfk
        gfk = gfkp1
        if callback is not None:
            callback(xk)
        k += 1
        gnorm = vecnorm(gfk, ord=norm)
        if (gnorm <= gtol):
            break

        if not numpy.isfinite(old_fval):
            # We correctly found +-Inf as optimal value, or something went
            # wrong.
            warnflag = 2
            break

        try:  # this was handled in numeric, let it remaines for more safety
            rhok = 1.0 / (numpy.dot(yk, sk))
        except ZeroDivisionError:
            rhok = 1000.0
            if disp:
                print("Divide-by-zero encountered: rhok assumed large")
        if isinf(rhok):  # this is patch for numpy
            rhok = 1000.0
            if disp:
                print("Divide-by-zero encountered: rhok assumed large")
        A1 = I - sk[:, numpy.newaxis] * yk[numpy.newaxis, :] * rhok
        A2 = I - yk[:, numpy.newaxis] * sk[numpy.newaxis, :] * rhok
        Hk = numpy.dot(A1, numpy.dot(Hk, A2)) + (rhok * sk[:, numpy.newaxis] *
                                                 sk[numpy.newaxis, :])

    fval = old_fval

    if warnflag == 2:
        msg = _status_message['pr_loss']
    elif k >= maxiter:
        warnflag = 1
        msg = _status_message['maxiter']
    elif np.isnan(gnorm) or np.isnan(fval) or np.isnan(xk).any():
        warnflag = 3
        msg = _status_message['nan']
    else:
        msg = _status_message['success']

    if disp:
        print("%s%s" % ("Warning: " if warnflag != 0 else "", msg))
        print("         Current function value: %f" % fval)
        print("         Iterations: %d" % k)
        print("         Function evaluations: %d" % func_calls[0])
        print("         Gradient evaluations: %d" % grad_calls[0])

    result = OptimizeResult(fun=fval, jac=gfk, hess_inv=Hk, nfev=func_calls[0],
                            njev=grad_calls[0], status=warnflag,
                            success=(warnflag == 0), message=msg, x=xk,
                            nit=k)
    if retall:
        result['allvecs'] = allvecs
    return result


def fmin_cg(f, x0, fprime=None, args=(), gtol=1e-5, norm=Inf, epsilon=_epsilon,
            maxiter=None, full_output=0, disp=1, retall=0, callback=None):
    """
    Minimize a function using a nonlinear conjugate gradient algorithm.

    Parameters
    ----------
    f : callable, ``f(x, *args)``
        Objective function to be minimized.  Here `x` must be a 1-D array of
        the variables that are to be changed in the search for a minimum, and
        `args` are the other (fixed) parameters of `f`.
    x0 : ndarray
        A user-supplied initial estimate of `xopt`, the optimal value of `x`.
        It must be a 1-D array of values.
    fprime : callable, ``fprime(x, *args)``, optional
        A function that returns the gradient of `f` at `x`. Here `x` and `args`
        are as described above for `f`. The returned value must be a 1-D array.
        Defaults to None, in which case the gradient is approximated
        numerically (see `epsilon`, below).
    args : tuple, optional
        Parameter values passed to `f` and `fprime`. Must be supplied whenever
        additional fixed parameters are needed to completely specify the
        functions `f` and `fprime`.
    gtol : float, optional
        Stop when the norm of the gradient is less than `gtol`.
    norm : float, optional
        Order to use for the norm of the gradient
        (``-np.Inf`` is min, ``np.Inf`` is max).
    epsilon : float or ndarray, optional
        Step size(s) to use when `fprime` is approximated numerically. Can be a
        scalar or a 1-D array.  Defaults to ``sqrt(eps)``, with eps the
        floating point machine precision.  Usually ``sqrt(eps)`` is about
        1.5e-8.
    maxiter : int, optional
        Maximum number of iterations to perform. Default is ``200 * len(x0)``.
    full_output : bool, optional
        If True, return `fopt`, `func_calls`, `grad_calls`, and `warnflag` in
        addition to `xopt`.  See the Returns section below for additional
        information on optional return values.
    disp : bool, optional
        If True, return a convergence message, followed by `xopt`.
    retall : bool, optional
        If True, add to the returned values the results of each iteration.
    callback : callable, optional
        An optional user-supplied function, called after each iteration.
        Called as ``callback(xk)``, where ``xk`` is the current value of `x0`.

    Returns
    -------
    xopt : ndarray
        Parameters which minimize f, i.e. ``f(xopt) == fopt``.
    fopt : float, optional
        Minimum value found, f(xopt).  Only returned if `full_output` is True.
    func_calls : int, optional
        The number of function_calls made.  Only returned if `full_output`
        is True.
    grad_calls : int, optional
        The number of gradient calls made. Only returned if `full_output` is
        True.
    warnflag : int, optional
        Integer value with warning status, only returned if `full_output` is
        True.

        0 : Success.

        1 : The maximum number of iterations was exceeded.

        2 : Gradient and/or function calls were not changing.  May indicate
            that precision was lost, i.e., the routine did not converge.

        3 : NaN result encountered.

    allvecs : list of ndarray, optional
        List of arrays, containing the results at each iteration.
        Only returned if `retall` is True.

    See Also
    --------
    minimize : common interface to all `scipy.optimize` algorithms for
               unconstrained and constrained minimization of multivariate
               functions.  It provides an alternative way to call
               ``fmin_cg``, by specifying ``method='CG'``.

    Notes
    -----
    This conjugate gradient algorithm is based on that of Polak and Ribiere
    [1]_.

    Conjugate gradient methods tend to work better when:

    1. `f` has a unique global minimizing point, and no local minima or
       other stationary points,
    2. `f` is, at least locally, reasonably well approximated by a
       quadratic function of the variables,
    3. `f` is continuous and has a continuous gradient,
    4. `fprime` is not too large, e.g., has a norm less than 1000,
    5. The initial guess, `x0`, is reasonably close to `f` 's global
       minimizing point, `xopt`.

    References
    ----------
    .. [1] Wright & Nocedal, "Numerical Optimization", 1999, pp. 120-122.

    Examples
    --------
    Example 1: seek the minimum value of the expression
    ``a*u**2 + b*u*v + c*v**2 + d*u + e*v + f`` for given values
    of the parameters and an initial guess ``(u, v) = (0, 0)``.

    >>> args = (2, 3, 7, 8, 9, 10)  # parameter values
    >>> def f(x, *args):
    ...     u, v = x
    ...     a, b, c, d, e, f = args
    ...     return a*u**2 + b*u*v + c*v**2 + d*u + e*v + f
    >>> def gradf(x, *args):
    ...     u, v = x
    ...     a, b, c, d, e, f = args
    ...     gu = 2*a*u + b*v + d     # u-component of the gradient
    ...     gv = b*u + 2*c*v + e     # v-component of the gradient
    ...     return np.asarray((gu, gv))
    >>> x0 = np.asarray((0, 0))  # Initial guess.
    >>> from scipy import optimize
    >>> res1 = optimize.fmin_cg(f, x0, fprime=gradf, args=args)
    Optimization terminated successfully.
             Current function value: 1.617021
             Iterations: 4
             Function evaluations: 8
             Gradient evaluations: 8
    >>> res1
    array([-1.80851064, -0.25531915])

    Example 2: solve the same problem using the `minimize` function.
    (This `myopts` dictionary shows all of the available options,
    although in practice only non-default values would be needed.
    The returned value will be a dictionary.)

    >>> opts = {'maxiter' : None,    # default value.
    ...         'disp' : True,    # non-default value.
    ...         'gtol' : 1e-5,    # default value.
    ...         'norm' : np.inf,  # default value.
    ...         'eps' : 1.4901161193847656e-08}  # default value.
    >>> res2 = optimize.minimize(f, x0, jac=gradf, args=args,
    ...                          method='CG', options=opts)
    Optimization terminated successfully.
            Current function value: 1.617021
            Iterations: 4
            Function evaluations: 8
            Gradient evaluations: 8
    >>> res2.x  # minimum found
    array([-1.80851064, -0.25531915])

    """
    opts = {'gtol': gtol,
            'norm': norm,
            'eps': epsilon,
            'disp': disp,
            'maxiter': maxiter,
            'return_all': retall}

    res = _minimize_cg(f, x0, args, fprime, callback=callback, **opts)

    if full_output:
        retlist = res['x'], res['fun'], res['nfev'], res['njev'], res['status']
        if retall:
            retlist += (res['allvecs'], )
        return retlist
    else:
        if retall:
            return res['x'], res['allvecs']
        else:
            return res['x']


def _minimize_cg(fun, x0, args=(), jac=None, callback=None,
                 gtol=1e-5, norm=Inf, eps=_epsilon, maxiter=None,
                 disp=False, return_all=False,
                 **unknown_options):
    """
    Minimization of scalar function of one or more variables using the
    conjugate gradient algorithm.

    Options
    -------
    disp : bool
        Set to True to print convergence messages.
    maxiter : int
        Maximum number of iterations to perform.
    gtol : float
        Gradient norm must be less than `gtol` before successful
        termination.
    norm : float
        Order of norm (Inf is max, -Inf is min).
    eps : float or ndarray
        If `jac` is approximated, use this value for the step size.

    """
    _check_unknown_options(unknown_options)
    f = fun
    fprime = jac
    epsilon = eps
    retall = return_all

    x0 = asarray(x0).flatten()
    if maxiter is None:
        maxiter = len(x0) * 200
    func_calls, f = wrap_function(f, args)
    if fprime is None:
        grad_calls, myfprime = wrap_function(approx_fprime, (f, epsilon))
    else:
        grad_calls, myfprime = wrap_function(fprime, args)
    gfk = myfprime(x0)
    k = 0
    xk = x0

    # Sets the initial step guess to dx ~ 1
    old_fval = f(xk)
    old_old_fval = old_fval + np.linalg.norm(gfk) / 2

    if retall:
        allvecs = [xk]
    warnflag = 0
    pk = -gfk
    gnorm = vecnorm(gfk, ord=norm)

    sigma_3 = 0.01

    while (gnorm > gtol) and (k < maxiter):
        deltak = numpy.dot(gfk, gfk)

        cached_step = [None]

        def polak_ribiere_powell_step(alpha, gfkp1=None):
            xkp1 = xk + alpha * pk
            if gfkp1 is None:
                gfkp1 = myfprime(xkp1)
            yk = gfkp1 - gfk
            beta_k = max(0, numpy.dot(yk, gfkp1) / deltak)
            pkp1 = -gfkp1 + beta_k * pk
            gnorm = vecnorm(gfkp1, ord=norm)
            return (alpha, xkp1, pkp1, gfkp1, gnorm)

        def descent_condition(alpha, xkp1, fp1, gfkp1):
            # Polak-Ribiere+ needs an explicit check of a sufficient
            # descent condition, which is not guaranteed by strong Wolfe.
            #
            # See Gilbert & Nocedal, "Global convergence properties of
            # conjugate gradient methods for optimization",
            # SIAM J. Optimization 2, 21 (1992).
            cached_step[:] = polak_ribiere_powell_step(alpha, gfkp1)
            alpha, xk, pk, gfk, gnorm = cached_step

            # Accept step if it leads to convergence.
            if gnorm <= gtol:
                return True

            # Accept step if sufficient descent condition applies.
            return numpy.dot(pk, gfk) <= -sigma_3 * numpy.dot(gfk, gfk)

        try:
            alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
                     _line_search_wolfe12(f, myfprime, xk, pk, gfk, old_fval,
                                          old_old_fval, c2=0.4, amin=1e-100, amax=1e100,
                                          extra_condition=descent_condition)
        except _LineSearchError:
            # Line search failed to find a better solution.
            warnflag = 2
            break

        # Reuse already computed results if possible
        if alpha_k == cached_step[0]:
            alpha_k, xk, pk, gfk, gnorm = cached_step
        else:
            alpha_k, xk, pk, gfk, gnorm = polak_ribiere_powell_step(alpha_k, gfkp1)

        if retall:
            allvecs.append(xk)
        if callback is not None:
            callback(xk)
        k += 1

    fval = old_fval
    if warnflag == 2:
        msg = _status_message['pr_loss']
    elif k >= maxiter:
        warnflag = 1
        msg = _status_message['maxiter']
    elif np.isnan(gnorm) or np.isnan(fval) or np.isnan(xk).any():
        warnflag = 3
        msg = _status_message['nan']
    else:
        msg = _status_message['success']

    if disp:
        print("%s%s" % ("Warning: " if warnflag != 0 else "", msg))
        print("         Current function value: %f" % fval)
        print("         Iterations: %d" % k)
        print("         Function evaluations: %d" % func_calls[0])
        print("         Gradient evaluations: %d" % grad_calls[0])

    result = OptimizeResult(fun=fval, jac=gfk, nfev=func_calls[0],
                            njev=grad_calls[0], status=warnflag,
                            success=(warnflag == 0), message=msg, x=xk,
                            nit=k)
    if retall:
        result['allvecs'] = allvecs
    return result


def fmin_ncg(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-5,
             epsilon=_epsilon, maxiter=None, full_output=0, disp=1, retall=0,
             callback=None):
    """
    Unconstrained minimization of a function using the Newton-CG method.

    Parameters
    ----------
    f : callable ``f(x, *args)``
        Objective function to be minimized.
    x0 : ndarray
        Initial guess.
    fprime : callable ``f'(x, *args)``
        Gradient of f.
    fhess_p : callable ``fhess_p(x, p, *args)``, optional
        Function which computes the Hessian of f times an
        arbitrary vector, p.
    fhess : callable ``fhess(x, *args)``, optional
        Function to compute the Hessian matrix of f.
    args : tuple, optional
        Extra arguments passed to f, fprime, fhess_p, and fhess
        (the same set of extra arguments is supplied to all of
        these functions).
    epsilon : float or ndarray, optional
        If fhess is approximated, use this value for the step size.
    callback : callable, optional
        An optional user-supplied function which is called after
        each iteration.  Called as callback(xk), where xk is the
        current parameter vector.
    avextol : float, optional
        Convergence is assumed when the average relative error in
        the minimizer falls below this amount.
    maxiter : int, optional
        Maximum number of iterations to perform.
    full_output : bool, optional
        If True, return the optional outputs.
    disp : bool, optional
        If True, print convergence message.
    retall : bool, optional
        If True, return a list of results at each iteration.

    Returns
    -------
    xopt : ndarray
        Parameters which minimize f, i.e. ``f(xopt) == fopt``.
    fopt : float
        Value of the function at xopt, i.e. ``fopt = f(xopt)``.
    fcalls : int
        Number of function calls made.
    gcalls : int
        Number of gradient calls made.
    hcalls : int
        Number of hessian calls made.
    warnflag : int
        Warnings generated by the algorithm.
        1 : Maximum number of iterations exceeded.
        2 : Line search failure (precision loss).
        3 : NaN result encountered.
    allvecs : list
        The result at each iteration, if retall is True (see below).

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'Newton-CG' `method` in particular.

    Notes
    -----
    Only one of `fhess_p` or `fhess` need to be given.  If `fhess`
    is provided, then `fhess_p` will be ignored.  If neither `fhess`
    nor `fhess_p` is provided, then the hessian product will be
    approximated using finite differences on `fprime`. `fhess_p`
    must compute the hessian times an arbitrary vector. If it is not
    given, finite-differences on `fprime` are used to compute
    it.

    Newton-CG methods are also called truncated Newton methods. This
    function differs from scipy.optimize.fmin_tnc because

    1. scipy.optimize.fmin_ncg is written purely in python using numpy
        and scipy while scipy.optimize.fmin_tnc calls a C function.
    2. scipy.optimize.fmin_ncg is only for unconstrained minimization
        while scipy.optimize.fmin_tnc is for unconstrained minimization
        or box constrained minimization. (Box constraints give
        lower and upper bounds for each variable separately.)

    References
    ----------
    Wright & Nocedal, 'Numerical Optimization', 1999, pg. 140.

    """
    opts = {'xtol': avextol,
            'eps': epsilon,
            'maxiter': maxiter,
            'disp': disp,
            'return_all': retall}

    res = _minimize_newtoncg(f, x0, args, fprime, fhess, fhess_p,
                             callback=callback, **opts)

    if full_output:
        retlist = (res['x'], res['fun'], res['nfev'], res['njev'],
                   res['nhev'], res['status'])
        if retall:
            retlist += (res['allvecs'], )
        return retlist
    else:
        if retall:
            return res['x'], res['allvecs']
        else:
            return res['x']


def _minimize_newtoncg(fun, x0, args=(), jac=None, hess=None, hessp=None,
                       callback=None, xtol=1e-5, eps=_epsilon, maxiter=None,
                       disp=False, return_all=False,
                       **unknown_options):
    """
    Minimization of scalar function of one or more variables using the
    Newton-CG algorithm.

    Note that the `jac` parameter (Jacobian) is required.

    Options
    -------
    disp : bool
        Set to True to print convergence messages.
    xtol : float
        Average relative error in solution `xopt` acceptable for
        convergence.
    maxiter : int
        Maximum number of iterations to perform.
    eps : float or ndarray
        If `jac` is approximated, use this value for the step size.

    """
    _check_unknown_options(unknown_options)
    if jac is None:
        raise ValueError('Jacobian is required for Newton-CG method')
    f = fun
    fprime = jac
    fhess_p = hessp
    fhess = hess
    avextol = xtol
    epsilon = eps
    retall = return_all

    def terminate(warnflag, msg):
        if disp:
            print(msg)
            print("         Current function value: %f" % old_fval)
            print("         Iterations: %d" % k)
            print("         Function evaluations: %d" % fcalls[0])
            print("         Gradient evaluations: %d" % gcalls[0])
            print("         Hessian evaluations: %d" % hcalls)
        fval = old_fval
        result = OptimizeResult(fun=fval, jac=gfk, nfev=fcalls[0],
                                njev=gcalls[0], nhev=hcalls, status=warnflag,
                                success=(warnflag == 0), message=msg, x=xk,
                                nit=k)
        if retall:
            result['allvecs'] = allvecs
        return result

    x0 = asarray(x0).flatten()
    fcalls, f = wrap_function(f, args)
    gcalls, fprime = wrap_function(fprime, args)
    hcalls = 0
    if maxiter is None:
        maxiter = len(x0)*200
    cg_maxiter = 20*len(x0)

    xtol = len(x0) * avextol
    update = [2 * xtol]
    xk = x0
    if retall:
        allvecs = [xk]
    k = 0
    gfk = None
    old_fval = f(x0)
    old_old_fval = None
    float64eps = numpy.finfo(numpy.float64).eps
    while numpy.add.reduce(numpy.abs(update)) > xtol:
        if k >= maxiter:
            msg = "Warning: " + _status_message['maxiter']
            return terminate(1, msg)
        # Compute a search direction pk by applying the CG method to
        #  del2 f(xk) p = - grad f(xk) starting from 0.
        b = -fprime(xk)
        maggrad = numpy.add.reduce(numpy.abs(b))
        eta = numpy.min([0.5, numpy.sqrt(maggrad)])
        termcond = eta * maggrad
        xsupi = zeros(len(x0), dtype=x0.dtype)
        ri = -b
        psupi = -ri
        i = 0
        dri0 = numpy.dot(ri, ri)

        if fhess is not None:             # you want to compute hessian once.
            A = fhess(*(xk,) + args)
            hcalls = hcalls + 1

        for k2 in xrange(cg_maxiter):
            if numpy.add.reduce(numpy.abs(ri)) <= termcond:
                break
            if fhess is None:
                if fhess_p is None:
                    Ap = approx_fhess_p(xk, psupi, fprime, epsilon)
                else:
                    Ap = fhess_p(xk, psupi, *args)
                    hcalls = hcalls + 1
            else:
                Ap = numpy.dot(A, psupi)
            # check curvature
            Ap = asarray(Ap).squeeze()  # get rid of matrices...
            curv = numpy.dot(psupi, Ap)
            if 0 <= curv <= 3 * float64eps:
                break
            elif curv < 0:
                if (i > 0):
                    break
                else:
                    # fall back to steepest descent direction
                    xsupi = dri0 / (-curv) * b
                    break
            alphai = dri0 / curv
            xsupi = xsupi + alphai * psupi
            ri = ri + alphai * Ap
            dri1 = numpy.dot(ri, ri)
            betai = dri1 / dri0
            psupi = -ri + betai * psupi
            i = i + 1
            dri0 = dri1          # update numpy.dot(ri,ri) for next time.
        else:
            # curvature keeps increasing, bail out
            msg = ("Warning: CG iterations didn't converge.  The Hessian is not "
                   "positive definite.")
            return terminate(3, msg)

        pk = xsupi  # search direction is solution to system.
        gfk = -b    # gradient at xk

        try:
            alphak, fc, gc, old_fval, old_old_fval, gfkp1 = \
                     _line_search_wolfe12(f, fprime, xk, pk, gfk,
                                          old_fval, old_old_fval)
        except _LineSearchError:
            # Line search failed to find a better solution.
            msg = "Warning: " + _status_message['pr_loss']
            return terminate(2, msg)

        update = alphak * pk
        xk = xk + update        # upcast if necessary
        if callback is not None:
            callback(xk)
        if retall:
            allvecs.append(xk)
        k += 1
    else:
        if np.isnan(old_fval) or np.isnan(update).any():
            return terminate(3, _status_message['nan'])

        msg = _status_message['success']
        return terminate(0, msg)


def fminbound(func, x1, x2, args=(), xtol=1e-5, maxfun=500,
              full_output=0, disp=1):
    """Bounded minimization for scalar functions.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function to be minimized (must accept and return scalars).
    x1, x2 : float or array scalar
        The optimization bounds.
    args : tuple, optional
        Extra arguments passed to function.
    xtol : float, optional
        The convergence tolerance.
    maxfun : int, optional
        Maximum number of function evaluations allowed.
    full_output : bool, optional
        If True, return optional outputs.
    disp : int, optional
        If non-zero, print messages.
            0 : no message printing.
            1 : non-convergence notification messages only.
            2 : print a message on convergence too.
            3 : print iteration results.


    Returns
    -------
    xopt : ndarray
        Parameters (over given interval) which minimize the
        objective function.
    fval : number
        The function value at the minimum point.
    ierr : int
        An error flag (0 if converged, 1 if maximum number of
        function calls reached).
    numfunc : int
      The number of function calls made.

    See also
    --------
    minimize_scalar: Interface to minimization algorithms for scalar
        univariate functions. See the 'Bounded' `method` in particular.

    Notes
    -----
    Finds a local minimizer of the scalar function `func` in the
    interval x1 < xopt < x2 using Brent's method.  (See `brent`
    for auto-bracketing).

    Examples
    --------
    `fminbound` finds the minimum of the function in the given range.
    The following examples illustrate the same

    >>> def f(x):
    ...     return x**2

    >>> from scipy import optimize

    >>> minimum = optimize.fminbound(f, -1, 2)
    >>> minimum
    0.0
    >>> minimum = optimize.fminbound(f, 1, 2)
    >>> minimum
    1.0000059608609866
    """
    options = {'xatol': xtol,
               'maxiter': maxfun,
               'disp': disp}

    res = _minimize_scalar_bounded(func, (x1, x2), args, **options)
    if full_output:
        return res['x'], res['fun'], res['status'], res['nfev']
    else:
        return res['x']


def _minimize_scalar_bounded(func, bounds, args=(),
                             xatol=1e-5, maxiter=500, disp=0,
                             **unknown_options):
    """
    Options
    -------
    maxiter : int
        Maximum number of iterations to perform.
    disp: int, optional
        If non-zero, print messages.
            0 : no message printing.
            1 : non-convergence notification messages only.
            2 : print a message on convergence too.
            3 : print iteration results.
    xatol : float
        Absolute error in solution `xopt` acceptable for convergence.

    """
    _check_unknown_options(unknown_options)
    maxfun = maxiter
    # Test bounds are of correct form
    if len(bounds) != 2:
        raise ValueError('bounds must have two elements.')
    x1, x2 = bounds

    if not (is_array_scalar(x1) and is_array_scalar(x2)):
        raise ValueError("Optimisation bounds must be scalars"
                         " or array scalars.")
    if x1 > x2:
        raise ValueError("The lower bound exceeds the upper bound.")

    flag = 0
    header = ' Func-count     x          f(x)          Procedure'
    step = '       initial'

    sqrt_eps = sqrt(2.2e-16)
    golden_mean = 0.5 * (3.0 - sqrt(5.0))
    a, b = x1, x2
    fulc = a + golden_mean * (b - a)
    nfc, xf = fulc, fulc
    rat = e = 0.0
    x = xf
    fx = func(x, *args)
    num = 1
    fmin_data = (1, xf, fx)

    ffulc = fnfc = fx
    xm = 0.5 * (a + b)
    tol1 = sqrt_eps * numpy.abs(xf) + xatol / 3.0
    tol2 = 2.0 * tol1

    if disp > 2:
        print(" ")
        print(header)
        print("%5.0f   %12.6g %12.6g %s" % (fmin_data + (step,)))

    while (numpy.abs(xf - xm) > (tol2 - 0.5 * (b - a))):
        golden = 1
        # Check for parabolic fit
        if numpy.abs(e) > tol1:
            golden = 0
            r = (xf - nfc) * (fx - ffulc)
            q = (xf - fulc) * (fx - fnfc)
            p = (xf - fulc) * q - (xf - nfc) * r
            q = 2.0 * (q - r)
            if q > 0.0:
                p = -p
            q = numpy.abs(q)
            r = e
            e = rat

            # Check for acceptability of parabola
            if ((numpy.abs(p) < numpy.abs(0.5*q*r)) and (p > q*(a - xf)) and
                    (p < q * (b - xf))):
                rat = (p + 0.0) / q
                x = xf + rat
                step = '       parabolic'

                if ((x - a) < tol2) or ((b - x) < tol2):
                    si = numpy.sign(xm - xf) + ((xm - xf) == 0)
                    rat = tol1 * si
            else:      # do a golden section step
                golden = 1

        if golden:  # Do a golden-section step
            if xf >= xm:
                e = a - xf
            else:
                e = b - xf
            rat = golden_mean*e
            step = '       golden'

        si = numpy.sign(rat) + (rat == 0)
        x = xf + si * numpy.max([numpy.abs(rat), tol1])
        fu = func(x, *args)
        num += 1
        fmin_data = (num, x, fu)
        if disp > 2:
            print("%5.0f   %12.6g %12.6g %s" % (fmin_data + (step,)))

        if fu <= fx:
            if x >= xf:
                a = xf
            else:
                b = xf
            fulc, ffulc = nfc, fnfc
            nfc, fnfc = xf, fx
            xf, fx = x, fu
        else:
            if x < xf:
                a = x
            else:
                b = x
            if (fu <= fnfc) or (nfc == xf):
                fulc, ffulc = nfc, fnfc
                nfc, fnfc = x, fu
            elif (fu <= ffulc) or (fulc == xf) or (fulc == nfc):
                fulc, ffulc = x, fu

        xm = 0.5 * (a + b)
        tol1 = sqrt_eps * numpy.abs(xf) + xatol / 3.0
        tol2 = 2.0 * tol1

        if num >= maxfun:
            flag = 1
            break

    if np.isnan(xf) or np.isnan(fx) or np.isnan(fu):
        flag = 2

    fval = fx
    if disp > 0:
        _endprint(x, flag, fval, maxfun, xatol, disp)

    result = OptimizeResult(fun=fval, status=flag, success=(flag == 0),
                            message={0: 'Solution found.',
                                     1: 'Maximum number of function calls '
                                        'reached.',
                                     2: _status_message['nan']}.get(flag, ''),
                            x=xf, nfev=num)

    return result


class Brent:
    #need to rethink design of __init__
    def __init__(self, func, args=(), tol=1.48e-8, maxiter=500,
                 full_output=0):
        self.func = func
        self.args = args
        self.tol = tol
        self.maxiter = maxiter
        self._mintol = 1.0e-11
        self._cg = 0.3819660
        self.xmin = None
        self.fval = None
        self.iter = 0
        self.funcalls = 0

    # need to rethink design of set_bracket (new options, etc)
    def set_bracket(self, brack=None):
        self.brack = brack

    def get_bracket_info(self):
        #set up
        func = self.func
        args = self.args
        brack = self.brack
        ### BEGIN core bracket_info code ###
        ### carefully DOCUMENT any CHANGES in core ##
        if brack is None:
            xa, xb, xc, fa, fb, fc, funcalls = bracket(func, args=args)
        elif len(brack) == 2:
            xa, xb, xc, fa, fb, fc, funcalls = bracket(func, xa=brack[0],
                                                       xb=brack[1], args=args)
        elif len(brack) == 3:
            xa, xb, xc = brack
            if (xa > xc):  # swap so xa < xc can be assumed
                xc, xa = xa, xc
            if not ((xa < xb) and (xb < xc)):
                raise ValueError("Not a bracketing interval.")
            fa = func(*((xa,) + args))
            fb = func(*((xb,) + args))
            fc = func(*((xc,) + args))
            if not ((fb < fa) and (fb < fc)):
                raise ValueError("Not a bracketing interval.")
            funcalls = 3
        else:
            raise ValueError("Bracketing interval must be "
                             "length 2 or 3 sequence.")
        ### END core bracket_info code ###

        return xa, xb, xc, fa, fb, fc, funcalls

    def optimize(self):
        # set up for optimization
        func = self.func
        xa, xb, xc, fa, fb, fc, funcalls = self.get_bracket_info()
        _mintol = self._mintol
        _cg = self._cg
        #################################
        #BEGIN CORE ALGORITHM
        #################################
        x = w = v = xb
        fw = fv = fx = func(*((x,) + self.args))
        if (xa < xc):
            a = xa
            b = xc
        else:
            a = xc
            b = xa
        deltax = 0.0
        funcalls += 1
        iter = 0
        while (iter < self.maxiter):
            tol1 = self.tol * numpy.abs(x) + _mintol
            tol2 = 2.0 * tol1
            xmid = 0.5 * (a + b)
            # check for convergence
            if numpy.abs(x - xmid) < (tol2 - 0.5 * (b - a)):
                break
            # XXX In the first iteration, rat is only bound in the true case
            # of this conditional. This used to cause an UnboundLocalError
            # (gh-4140). It should be set before the if (but to what?).
            if (numpy.abs(deltax) <= tol1):
                if (x >= xmid):
                    deltax = a - x       # do a golden section step
                else:
                    deltax = b - x
                rat = _cg * deltax
            else:                              # do a parabolic step
                tmp1 = (x - w) * (fx - fv)
                tmp2 = (x - v) * (fx - fw)
                p = (x - v) * tmp2 - (x - w) * tmp1
                tmp2 = 2.0 * (tmp2 - tmp1)
                if (tmp2 > 0.0):
                    p = -p
                tmp2 = numpy.abs(tmp2)
                dx_temp = deltax
                deltax = rat
                # check parabolic fit
                if ((p > tmp2 * (a - x)) and (p < tmp2 * (b - x)) and
                        (numpy.abs(p) < numpy.abs(0.5 * tmp2 * dx_temp))):
                    rat = p * 1.0 / tmp2        # if parabolic step is useful.
                    u = x + rat
                    if ((u - a) < tol2 or (b - u) < tol2):
                        if xmid - x >= 0:
                            rat = tol1
                        else:
                            rat = -tol1
                else:
                    if (x >= xmid):
                        deltax = a - x  # if it's not do a golden section step
                    else:
                        deltax = b - x
                    rat = _cg * deltax

            if (numpy.abs(rat) < tol1):            # update by at least tol1
                if rat >= 0:
                    u = x + tol1
                else:
                    u = x - tol1
            else:
                u = x + rat
            fu = func(*((u,) + self.args))      # calculate new output value
            funcalls += 1

            if (fu > fx):                 # if it's bigger than current
                if (u < x):
                    a = u
                else:
                    b = u
                if (fu <= fw) or (w == x):
                    v = w
                    w = u
                    fv = fw
                    fw = fu
                elif (fu <= fv) or (v == x) or (v == w):
                    v = u
                    fv = fu
            else:
                if (u >= x):
                    a = x
                else:
                    b = x
                v = w
                w = x
                x = u
                fv = fw
                fw = fx
                fx = fu

            iter += 1
        #################################
        #END CORE ALGORITHM
        #################################

        self.xmin = x
        self.fval = fx
        self.iter = iter
        self.funcalls = funcalls

    def get_result(self, full_output=False):
        if full_output:
            return self.xmin, self.fval, self.iter, self.funcalls
        else:
            return self.xmin


def brent(func, args=(), brack=None, tol=1.48e-8, full_output=0, maxiter=500):
    """
    Given a function of one-variable and a possible bracket, return
    the local minimum of the function isolated to a fractional precision
    of tol.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function.
    args : tuple, optional
        Additional arguments (if present).
    brack : tuple, optional
        Either a triple (xa,xb,xc) where xa<xb<xc and func(xb) <
        func(xa), func(xc) or a pair (xa,xb) which are used as a
        starting interval for a downhill bracket search (see
        `bracket`). Providing the pair (xa,xb) does not always mean
        the obtained solution will satisfy xa<=x<=xb.
    tol : float, optional
        Stop if between iteration change is less than `tol`.
    full_output : bool, optional
        If True, return all output args (xmin, fval, iter,
        funcalls).
    maxiter : int, optional
        Maximum number of iterations in solution.

    Returns
    -------
    xmin : ndarray
        Optimum point.
    fval : float
        Optimum value.
    iter : int
        Number of iterations.
    funcalls : int
        Number of objective function evaluations made.

    See also
    --------
    minimize_scalar: Interface to minimization algorithms for scalar
        univariate functions. See the 'Brent' `method` in particular.

    Notes
    -----
    Uses inverse parabolic interpolation when possible to speed up
    convergence of golden section method.

    Does not ensure that the minimum lies in the range specified by
    `brack`. See `fminbound`.

    Examples
    --------
    We illustrate the behaviour of the function when `brack` is of
    size 2 and 3 respectively. In the case where `brack` is of the
    form (xa,xb), we can see for the given values, the output need
    not necessarily lie in the range (xa,xb).

    >>> def f(x):
    ...     return x**2

    >>> from scipy import optimize

    >>> minimum = optimize.brent(f,brack=(1,2))
    >>> minimum
    0.0
    >>> minimum = optimize.brent(f,brack=(-1,0.5,2))
    >>> minimum
    -2.7755575615628914e-17

    """
    options = {'xtol': tol,
               'maxiter': maxiter}
    res = _minimize_scalar_brent(func, brack, args, **options)
    if full_output:
        return res['x'], res['fun'], res['nit'], res['nfev']
    else:
        return res['x']


def _minimize_scalar_brent(func, brack=None, args=(),
                           xtol=1.48e-8, maxiter=500,
                           **unknown_options):
    """
    Options
    -------
    maxiter : int
        Maximum number of iterations to perform.
    xtol : float
        Relative error in solution `xopt` acceptable for convergence.

    Notes
    -----
    Uses inverse parabolic interpolation when possible to speed up
    convergence of golden section method.

    """
    _check_unknown_options(unknown_options)
    tol = xtol
    if tol < 0:
        raise ValueError('tolerance should be >= 0, got %r' % tol)

    brent = Brent(func=func, args=args, tol=tol,
                  full_output=True, maxiter=maxiter)
    brent.set_bracket(brack)
    brent.optimize()
    x, fval, nit, nfev = brent.get_result(full_output=True)

    success = nit < maxiter and not (np.isnan(x) or np.isnan(fval))

    return OptimizeResult(fun=fval, x=x, nit=nit, nfev=nfev,
                          success=success)


def golden(func, args=(), brack=None, tol=_epsilon,
           full_output=0, maxiter=5000):
    """
    Return the minimum of a function of one variable using golden section
    method.

    Given a function of one variable and a possible bracketing interval,
    return the minimum of the function isolated to a fractional precision of
    tol.

    Parameters
    ----------
    func : callable func(x,*args)
        Objective function to minimize.
    args : tuple, optional
        Additional arguments (if present), passed to func.
    brack : tuple, optional
        Triple (a,b,c), where (a<b<c) and func(b) <
        func(a),func(c).  If bracket consists of two numbers (a,
        c), then they are assumed to be a starting interval for a
        downhill bracket search (see `bracket`); it doesn't always
        mean that obtained solution will satisfy a<=x<=c.
    tol : float, optional
        x tolerance stop criterion
    full_output : bool, optional
        If True, return optional outputs.
    maxiter : int
        Maximum number of iterations to perform.

    See also
    --------
    minimize_scalar: Interface to minimization algorithms for scalar
        univariate functions. See the 'Golden' `method` in particular.

    Notes
    -----
    Uses analog of bisection method to decrease the bracketed
    interval.

    Examples
    --------
    We illustrate the behaviour of the function when `brack` is of
    size 2 and 3 respectively. In the case where `brack` is of the
    form (xa,xb), we can see for the given values, the output need
    not necessarily lie in the range ``(xa, xb)``.

    >>> def f(x):
    ...     return x**2

    >>> from scipy import optimize

    >>> minimum = optimize.golden(f, brack=(1, 2))
    >>> minimum
    1.5717277788484873e-162
    >>> minimum = optimize.golden(f, brack=(-1, 0.5, 2))
    >>> minimum
    -1.5717277788484873e-162

    """
    options = {'xtol': tol, 'maxiter': maxiter}
    res = _minimize_scalar_golden(func, brack, args, **options)
    if full_output:
        return res['x'], res['fun'], res['nfev']
    else:
        return res['x']


def _minimize_scalar_golden(func, brack=None, args=(),
                            xtol=_epsilon, maxiter=5000, **unknown_options):
    """
    Options
    -------
    maxiter : int
        Maximum number of iterations to perform.
    xtol : float
        Relative error in solution `xopt` acceptable for convergence.

    """
    _check_unknown_options(unknown_options)
    tol = xtol
    if brack is None:
        xa, xb, xc, fa, fb, fc, funcalls = bracket(func, args=args)
    elif len(brack) == 2:
        xa, xb, xc, fa, fb, fc, funcalls = bracket(func, xa=brack[0],
                                                   xb=brack[1], args=args)
    elif len(brack) == 3:
        xa, xb, xc = brack
        if (xa > xc):  # swap so xa < xc can be assumed
            xc, xa = xa, xc
        if not ((xa < xb) and (xb < xc)):
            raise ValueError("Not a bracketing interval.")
        fa = func(*((xa,) + args))
        fb = func(*((xb,) + args))
        fc = func(*((xc,) + args))
        if not ((fb < fa) and (fb < fc)):
            raise ValueError("Not a bracketing interval.")
        funcalls = 3
    else:
        raise ValueError("Bracketing interval must be length 2 or 3 sequence.")

    _gR = 0.61803399  # golden ratio conjugate: 2.0/(1.0+sqrt(5.0))
    _gC = 1.0 - _gR
    x3 = xc
    x0 = xa
    if (numpy.abs(xc - xb) > numpy.abs(xb - xa)):
        x1 = xb
        x2 = xb + _gC * (xc - xb)
    else:
        x2 = xb
        x1 = xb - _gC * (xb - xa)
    f1 = func(*((x1,) + args))
    f2 = func(*((x2,) + args))
    funcalls += 2
    nit = 0
    for i in xrange(maxiter):
        if numpy.abs(x3 - x0) <= tol * (numpy.abs(x1) + numpy.abs(x2)):
            break
        if (f2 < f1):
            x0 = x1
            x1 = x2
            x2 = _gR * x1 + _gC * x3
            f1 = f2
            f2 = func(*((x2,) + args))
        else:
            x3 = x2
            x2 = x1
            x1 = _gR * x2 + _gC * x0
            f2 = f1
            f1 = func(*((x1,) + args))
        funcalls += 1
        nit += 1
    if (f1 < f2):
        xmin = x1
        fval = f1
    else:
        xmin = x2
        fval = f2

    success = nit < maxiter and not (np.isnan(fval) or np.isnan(xmin))

    return OptimizeResult(fun=fval, nfev=funcalls, x=xmin, nit=nit,
                          success=success)


def bracket(func, xa=0.0, xb=1.0, args=(), grow_limit=110.0, maxiter=1000):
    """
    Bracket the minimum of the function.

    Given a function and distinct initial points, search in the
    downhill direction (as defined by the initital points) and return
    new points xa, xb, xc that bracket the minimum of the function
    f(xa) > f(xb) < f(xc). It doesn't always mean that obtained
    solution will satisfy xa<=x<=xb

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function to minimize.
    xa, xb : float, optional
        Bracketing interval. Defaults `xa` to 0.0, and `xb` to 1.0.
    args : tuple, optional
        Additional arguments (if present), passed to `func`.
    grow_limit : float, optional
        Maximum grow limit.  Defaults to 110.0
    maxiter : int, optional
        Maximum number of iterations to perform. Defaults to 1000.

    Returns
    -------
    xa, xb, xc : float
        Bracket.
    fa, fb, fc : float
        Objective function values in bracket.
    funcalls : int
        Number of function evaluations made.

    """
    _gold = 1.618034  # golden ratio: (1.0+sqrt(5.0))/2.0
    _verysmall_num = 1e-21
    fa = func(*(xa,) + args)
    fb = func(*(xb,) + args)
    if (fa < fb):                      # Switch so fa > fb
        xa, xb = xb, xa
        fa, fb = fb, fa
    xc = xb + _gold * (xb - xa)
    fc = func(*((xc,) + args))
    funcalls = 3
    iter = 0
    while (fc < fb):
        tmp1 = (xb - xa) * (fb - fc)
        tmp2 = (xb - xc) * (fb - fa)
        val = tmp2 - tmp1
        if numpy.abs(val) < _verysmall_num:
            denom = 2.0 * _verysmall_num
        else:
            denom = 2.0 * val
        w = xb - ((xb - xc) * tmp2 - (xb - xa) * tmp1) / denom
        wlim = xb + grow_limit * (xc - xb)
        if iter > maxiter:
            raise RuntimeError("Too many iterations.")
        iter += 1
        if (w - xc) * (xb - w) > 0.0:
            fw = func(*((w,) + args))
            funcalls += 1
            if (fw < fc):
                xa = xb
                xb = w
                fa = fb
                fb = fw
                return xa, xb, xc, fa, fb, fc, funcalls
            elif (fw > fb):
                xc = w
                fc = fw
                return xa, xb, xc, fa, fb, fc, funcalls
            w = xc + _gold * (xc - xb)
            fw = func(*((w,) + args))
            funcalls += 1
        elif (w - wlim)*(wlim - xc) >= 0.0:
            w = wlim
            fw = func(*((w,) + args))
            funcalls += 1
        elif (w - wlim)*(xc - w) > 0.0:
            fw = func(*((w,) + args))
            funcalls += 1
            if (fw < fc):
                xb = xc
                xc = w
                w = xc + _gold * (xc - xb)
                fb = fc
                fc = fw
                fw = func(*((w,) + args))
                funcalls += 1
        else:
            w = xc + _gold * (xc - xb)
            fw = func(*((w,) + args))
            funcalls += 1
        xa = xb
        xb = xc
        xc = w
        fa = fb
        fb = fc
        fc = fw
    return xa, xb, xc, fa, fb, fc, funcalls


def _linesearch_powell(func, p, xi, tol=1e-3):
    """Line-search algorithm using fminbound.

    Find the minimium of the function ``func(x0+ alpha*direc)``.

    """
    def myfunc(alpha):
        return func(p + alpha*xi)
    alpha_min, fret, iter, num = brent(myfunc, full_output=1, tol=tol)
    xi = alpha_min*xi
    return squeeze(fret), p + xi, xi


def fmin_powell(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None,
                maxfun=None, full_output=0, disp=1, retall=0, callback=None,
                direc=None):
    """
    Minimize a function using modified Powell's method.

    This method only uses function values, not derivatives.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function to be minimized.
    x0 : ndarray
        Initial guess.
    args : tuple, optional
        Extra arguments passed to func.
    xtol : float, optional
        Line-search error tolerance.
    ftol : float, optional
        Relative error in ``func(xopt)`` acceptable for convergence.
    maxiter : int, optional
        Maximum number of iterations to perform.
    maxfun : int, optional
        Maximum number of function evaluations to make.
    full_output : bool, optional
        If True, ``fopt``, ``xi``, ``direc``, ``iter``, ``funcalls``, and
        ``warnflag`` are returned.
    disp : bool, optional
        If True, print convergence messages.
    retall : bool, optional
        If True, return a list of the solution at each iteration.
    callback : callable, optional
        An optional user-supplied function, called after each
        iteration.  Called as ``callback(xk)``, where ``xk`` is the
        current parameter vector.
    direc : ndarray, optional
        Initial fitting step and parameter order set as an (N, N) array, where N
        is the number of fitting parameters in `x0`.  Defaults to step size 1.0
        fitting all parameters simultaneously (``np.ones((N, N))``).  To
        prevent initial consideration of values in a step or to change initial
        step size, set to 0 or desired step size in the Jth position in the Mth
        block, where J is the position in `x0` and M is the desired evaluation
        step, with steps being evaluated in index order.  Step size and ordering
        will change freely as minimization proceeds.

    Returns
    -------
    xopt : ndarray
        Parameter which minimizes `func`.
    fopt : number
        Value of function at minimum: ``fopt = func(xopt)``.
    direc : ndarray
        Current direction set.
    iter : int
        Number of iterations.
    funcalls : int
        Number of function calls made.
    warnflag : int
        Integer warning flag:
            1 : Maximum number of function evaluations.
            2 : Maximum number of iterations.
            3 : NaN result encountered.
    allvecs : list
        List of solutions at each iteration.

    See also
    --------
    minimize: Interface to unconstrained minimization algorithms for
        multivariate functions. See the 'Powell' method in particular.

    Notes
    -----
    Uses a modification of Powell's method to find the minimum of
    a function of N variables. Powell's method is a conjugate
    direction method.

    The algorithm has two loops.  The outer loop merely iterates over the inner
    loop. The inner loop minimizes over each current direction in the direction
    set. At the end of the inner loop, if certain conditions are met, the
    direction that gave the largest decrease is dropped and replaced with the
    difference between the current estimated x and the estimated x from the
    beginning of the inner-loop.

    The technical conditions for replacing the direction of greatest
    increase amount to checking that

    1. No further gain can be made along the direction of greatest increase
       from that iteration.
    2. The direction of greatest increase accounted for a large sufficient
       fraction of the decrease in the function value from that iteration of
       the inner loop.

    References
    ----------
    Powell M.J.D. (1964) An efficient method for finding the minimum of a
    function of several variables without calculating derivatives,
    Computer Journal, 7 (2):155-162.

    Press W., Teukolsky S.A., Vetterling W.T., and Flannery B.P.:
    Numerical Recipes (any edition), Cambridge University Press

    Examples
    --------
    >>> def f(x):
    ...     return x**2

    >>> from scipy import optimize

    >>> minimum = optimize.fmin_powell(f, -1)
    Optimization terminated successfully.
             Current function value: 0.000000
             Iterations: 2
             Function evaluations: 18
    >>> minimum
    array(0.0)

    """
    opts = {'xtol': xtol,
            'ftol': ftol,
            'maxiter': maxiter,
            'maxfev': maxfun,
            'disp': disp,
            'direc': direc,
            'return_all': retall}

    res = _minimize_powell(func, x0, args, callback=callback, **opts)

    if full_output:
        retlist = (res['x'], res['fun'], res['direc'], res['nit'],
                   res['nfev'], res['status'])
        if retall:
            retlist += (res['allvecs'], )
        return retlist
    else:
        if retall:
            return res['x'], res['allvecs']
        else:
            return res['x']


def _minimize_powell(func, x0, args=(), callback=None,
                     xtol=1e-4, ftol=1e-4, maxiter=None, maxfev=None,
                     disp=False, direc=None, return_all=False,
                     **unknown_options):
    """
    Minimization of scalar function of one or more variables using the
    modified Powell algorithm.

    Options
    -------
    disp : bool
        Set to True to print convergence messages.
    xtol : float
        Relative error in solution `xopt` acceptable for convergence.
    ftol : float
        Relative error in ``fun(xopt)`` acceptable for convergence.
    maxiter, maxfev : int
        Maximum allowed number of iterations and function evaluations.
        Will default to ``N*1000``, where ``N`` is the number of
        variables, if neither `maxiter` or `maxfev` is set. If both
        `maxiter` and `maxfev` are set, minimization will stop at the
        first reached.
    direc : ndarray
        Initial set of direction vectors for the Powell method.

    """
    _check_unknown_options(unknown_options)
    maxfun = maxfev
    retall = return_all
    # we need to use a mutable object here that we can update in the
    # wrapper function
    fcalls, func = wrap_function(func, args)
    x = asarray(x0).flatten()
    if retall:
        allvecs = [x]
    N = len(x)
    # If neither are set, then set both to default
    if maxiter is None and maxfun is None:
        maxiter = N * 1000
        maxfun = N * 1000
    elif maxiter is None:
        # Convert remaining Nones, to np.inf, unless the other is np.inf, in
        # which case use the default to avoid unbounded iteration
        if maxfun == np.inf:
            maxiter = N * 1000
        else:
            maxiter = np.inf
    elif maxfun is None:
        if maxiter == np.inf:
            maxfun = N * 1000
        else:
            maxfun = np.inf

    if direc is None:
        direc = eye(N, dtype=float)
    else:
        direc = asarray(direc, dtype=float)

    fval = squeeze(func(x))
    x1 = x.copy()
    iter = 0
    ilist = list(range(N))
    while True:
        fx = fval
        bigind = 0
        delta = 0.0
        for i in ilist:
            direc1 = direc[i]
            fx2 = fval
            fval, x, direc1 = _linesearch_powell(func, x, direc1,
                                                 tol=xtol * 100)
            if (fx2 - fval) > delta:
                delta = fx2 - fval
                bigind = i
        iter += 1
        if callback is not None:
            callback(x)
        if retall:
            allvecs.append(x)
        bnd = ftol * (numpy.abs(fx) + numpy.abs(fval)) + 1e-20
        if 2.0 * (fx - fval) <= bnd:
            break
        if fcalls[0] >= maxfun:
            break
        if iter >= maxiter:
            break
        if np.isnan(fx) and np.isnan(fval):
            # Ended up in a nan-region: bail out
            break

        # Construct the extrapolated point
        direc1 = x - x1
        x2 = 2*x - x1
        x1 = x.copy()
        fx2 = squeeze(func(x2))

        if (fx > fx2):
            t = 2.0*(fx + fx2 - 2.0*fval)
            temp = (fx - fval - delta)
            t *= temp*temp
            temp = fx - fx2
            t -= delta*temp*temp
            if t < 0.0:
                fval, x, direc1 = _linesearch_powell(func, x, direc1,
                                                     tol=xtol*100)
                direc[bigind] = direc[-1]
                direc[-1] = direc1

    warnflag = 0
    if fcalls[0] >= maxfun:
        warnflag = 1
        msg = _status_message['maxfev']
        if disp:
            print("Warning: " + msg)
    elif iter >= maxiter:
        warnflag = 2
        msg = _status_message['maxiter']
        if disp:
            print("Warning: " + msg)
    elif np.isnan(fval) or np.isnan(x).any():
        warnflag = 3
        msg = _status_message['nan']
        if disp:
            print("Warning: " + msg)
    else:
        msg = _status_message['success']
        if disp:
            print(msg)
            print("         Current function value: %f" % fval)
            print("         Iterations: %d" % iter)
            print("         Function evaluations: %d" % fcalls[0])

    x = squeeze(x)

    result = OptimizeResult(fun=fval, direc=direc, nit=iter, nfev=fcalls[0],
                            status=warnflag, success=(warnflag == 0),
                            message=msg, x=x)
    if retall:
        result['allvecs'] = allvecs
    return result


def _endprint(x, flag, fval, maxfun, xtol, disp):
    if flag == 0:
        if disp > 1:
            print("\nOptimization terminated successfully;\n"
                  "The returned value satisfies the termination criteria\n"
                  "(using xtol = ", xtol, ")")
    if flag == 1:
        if disp:
            print("\nMaximum number of function evaluations exceeded --- "
                  "increase maxfun argument.\n")
    if flag == 2:
        if disp:
            print("\n{}".format(_status_message['nan']))
    return


def brute(func, ranges, args=(), Ns=20, full_output=0, finish=fmin,
          disp=False, workers=1):
    """Minimize a function over a given range by brute force.

    Uses the "brute force" method, i.e. computes the function's value
    at each point of a multidimensional grid of points, to find the global
    minimum of the function.

    The function is evaluated everywhere in the range with the datatype of the
    first call to the function, as enforced by the ``vectorize`` NumPy
    function.  The value and type of the function evaluation returned when
    ``full_output=True`` are affected in addition by the ``finish`` argument
    (see Notes).

    The brute force approach is inefficient because the number of grid points
    increases exponentially - the number of grid points to evaluate is
    ``Ns ** len(x)``. Consequently, even with coarse grid spacing, even
    moderately sized problems can take a long time to run, and/or run into
    memory limitations.

    Parameters
    ----------
    func : callable
        The objective function to be minimized. Must be in the
        form ``f(x, *args)``, where ``x`` is the argument in
        the form of a 1-D array and ``args`` is a tuple of any
        additional fixed parameters needed to completely specify
        the function.
    ranges : tuple
        Each component of the `ranges` tuple must be either a
        "slice object" or a range tuple of the form ``(low, high)``.
        The program uses these to create the grid of points on which
        the objective function will be computed. See `Note 2` for
        more detail.
    args : tuple, optional
        Any additional fixed parameters needed to completely specify
        the function.
    Ns : int, optional
        Number of grid points along the axes, if not otherwise
        specified. See `Note2`.
    full_output : bool, optional
        If True, return the evaluation grid and the objective function's
        values on it.
    finish : callable, optional
        An optimization function that is called with the result of brute force
        minimization as initial guess.  `finish` should take `func` and
        the initial guess as positional arguments, and take `args` as
        keyword arguments.  It may additionally take `full_output`
        and/or `disp` as keyword arguments.  Use None if no "polishing"
        function is to be used. See Notes for more details.
    disp : bool, optional
        Set to True to print convergence messages from the `finish` callable.
    workers : int or map-like callable, optional
        If `workers` is an int the grid is subdivided into `workers`
        sections and evaluated in parallel (uses
        `multiprocessing.Pool <multiprocessing>`).
        Supply `-1` to use all cores available to the Process.
        Alternatively supply a map-like callable, such as
        `multiprocessing.Pool.map` for evaluating the grid in parallel.
        This evaluation is carried out as ``workers(func, iterable)``.
        Requires that `func` be pickleable.

        .. versionadded:: 1.3.0

    Returns
    -------
    x0 : ndarray
        A 1-D array containing the coordinates of a point at which the
        objective function had its minimum value. (See `Note 1` for
        which point is returned.)
    fval : float
        Function value at the point `x0`. (Returned when `full_output` is
        True.)
    grid : tuple
        Representation of the evaluation grid.  It has the same
        length as `x0`. (Returned when `full_output` is True.)
    Jout : ndarray
        Function values at each point of the evaluation
        grid, `i.e.`, ``Jout = func(*grid)``. (Returned
        when `full_output` is True.)

    See Also
    --------
    basinhopping, differential_evolution

    Notes
    -----
    *Note 1*: The program finds the gridpoint at which the lowest value
    of the objective function occurs.  If `finish` is None, that is the
    point returned.  When the global minimum occurs within (or not very far
    outside) the grid's boundaries, and the grid is fine enough, that
    point will be in the neighborhood of the global minimum.

    However, users often employ some other optimization program to
    "polish" the gridpoint values, `i.e.`, to seek a more precise
    (local) minimum near `brute's` best gridpoint.
    The `brute` function's `finish` option provides a convenient way to do
    that.  Any polishing program used must take `brute's` output as its
    initial guess as a positional argument, and take `brute's` input values
    for `args` as keyword arguments, otherwise an error will be raised.
    It may additionally take `full_output` and/or `disp` as keyword arguments.

    `brute` assumes that the `finish` function returns either an
    `OptimizeResult` object or a tuple in the form:
    ``(xmin, Jmin, ... , statuscode)``, where ``xmin`` is the minimizing
    value of the argument, ``Jmin`` is the minimum value of the objective
    function, "..." may be some other returned values (which are not used
    by `brute`), and ``statuscode`` is the status code of the `finish` program.

    Note that when `finish` is not None, the values returned are those
    of the `finish` program, *not* the gridpoint ones.  Consequently,
    while `brute` confines its search to the input grid points,
    the `finish` program's results usually will not coincide with any
    gridpoint, and may fall outside the grid's boundary. Thus, if a
    minimum only needs to be found over the provided grid points, make
    sure to pass in `finish=None`.

    *Note 2*: The grid of points is a `numpy.mgrid` object.
    For `brute` the `ranges` and `Ns` inputs have the following effect.
    Each component of the `ranges` tuple can be either a slice object or a
    two-tuple giving a range of values, such as (0, 5).  If the component is a
    slice object, `brute` uses it directly.  If the component is a two-tuple
    range, `brute` internally converts it to a slice object that interpolates
    `Ns` points from its low-value to its high-value, inclusive.

    Examples
    --------
    We illustrate the use of `brute` to seek the global minimum of a function
    of two variables that is given as the sum of a positive-definite
    quadratic and two deep "Gaussian-shaped" craters.  Specifically, define
    the objective function `f` as the sum of three other functions,
    ``f = f1 + f2 + f3``.  We suppose each of these has a signature
    ``(z, *params)``, where ``z = (x, y)``,  and ``params`` and the functions
    are as defined below.

    >>> params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5)
    >>> def f1(z, *params):
    ...     x, y = z
    ...     a, b, c, d, e, f, g, h, i, j, k, l, scale = params
    ...     return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f)

    >>> def f2(z, *params):
    ...     x, y = z
    ...     a, b, c, d, e, f, g, h, i, j, k, l, scale = params
    ...     return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale))

    >>> def f3(z, *params):
    ...     x, y = z
    ...     a, b, c, d, e, f, g, h, i, j, k, l, scale = params
    ...     return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale))

    >>> def f(z, *params):
    ...     return f1(z, *params) + f2(z, *params) + f3(z, *params)

    Thus, the objective function may have local minima near the minimum
    of each of the three functions of which it is composed.  To
    use `fmin` to polish its gridpoint result, we may then continue as
    follows:

    >>> rranges = (slice(-4, 4, 0.25), slice(-4, 4, 0.25))
    >>> from scipy import optimize
    >>> resbrute = optimize.brute(f, rranges, args=params, full_output=True,
    ...                           finish=optimize.fmin)
    >>> resbrute[0]  # global minimum
    array([-1.05665192,  1.80834843])
    >>> resbrute[1]  # function value at global minimum
    -3.4085818767

    Note that if `finish` had been set to None, we would have gotten the
    gridpoint [-1.0 1.75] where the rounded function value is -2.892.

    """
    N = len(ranges)
    if N > 40:
        raise ValueError("Brute Force not possible with more "
                         "than 40 variables.")
    lrange = list(ranges)
    for k in range(N):
        if type(lrange[k]) is not type(slice(None)):
            if len(lrange[k]) < 3:
                lrange[k] = tuple(lrange[k]) + (complex(Ns),)
            lrange[k] = slice(*lrange[k])
    if (N == 1):
        lrange = lrange[0]

    grid = np.mgrid[lrange]

    # obtain an array of parameters that is iterable by a map-like callable
    inpt_shape = grid.shape
    if (N > 1):
        grid = np.reshape(grid, (inpt_shape[0], np.prod(inpt_shape[1:]))).T

    wrapped_func = _Brute_Wrapper(func, args)

    # iterate over input arrays, possibly in parallel
    with MapWrapper(pool=workers) as mapper:
        Jout = np.array(list(mapper(wrapped_func, grid)))
        if (N == 1):
            grid = (grid,)
            Jout = np.squeeze(Jout)
        elif (N > 1):
            Jout = np.reshape(Jout, inpt_shape[1:])
            grid = np.reshape(grid.T, inpt_shape)

    Nshape = shape(Jout)

    indx = argmin(Jout.ravel(), axis=-1)
    Nindx = zeros(N, int)
    xmin = zeros(N, float)
    for k in range(N - 1, -1, -1):
        thisN = Nshape[k]
        Nindx[k] = indx % Nshape[k]
        indx = indx // thisN
    for k in range(N):
        xmin[k] = grid[k][tuple(Nindx)]

    Jmin = Jout[tuple(Nindx)]
    if (N == 1):
        grid = grid[0]
        xmin = xmin[0]

    if callable(finish):
        # set up kwargs for `finish` function
        finish_args = _getargspec(finish).args
        finish_kwargs = dict()
        if 'full_output' in finish_args:
            finish_kwargs['full_output'] = 1
        if 'disp' in finish_args:
            finish_kwargs['disp'] = disp
        elif 'options' in finish_args:
            # pass 'disp' as `options`
            # (e.g. if `finish` is `minimize`)
            finish_kwargs['options'] = {'disp': disp}

        # run minimizer
        res = finish(func, xmin, args=args, **finish_kwargs)

        if isinstance(res, OptimizeResult):
            xmin = res.x
            Jmin = res.fun
            success = res.success
        else:
            xmin = res[0]
            Jmin = res[1]
            success = res[-1] == 0
        if not success:
            if disp:
                print("Warning: Either final optimization did not succeed "
                      "or `finish` does not return `statuscode` as its last "
                      "argument.")

    if full_output:
        return xmin, Jmin, grid, Jout
    else:
        return xmin


class _Brute_Wrapper(object):
    """
    Object to wrap user cost function for optimize.brute, allowing picklability
    """
    def __init__(self, f, args):
        self.f = f
        self.args = [] if args is None else args

    def __call__(self, x):
        # flatten needed for one dimensional case.
        return self.f(np.asarray(x).flatten(), *self.args)


def show_options(solver=None, method=None, disp=True):
    """
    Show documentation for additional options of optimization solvers.

    These are method-specific options that can be supplied through the
    ``options`` dict.

    Parameters
    ----------
    solver : str
        Type of optimization solver. One of 'minimize', 'minimize_scalar',
        'root', or 'linprog'.
    method : str, optional
        If not given, shows all methods of the specified solver. Otherwise,
        show only the options for the specified method. Valid values
        corresponds to methods' names of respective solver (e.g. 'BFGS' for
        'minimize').
    disp : bool, optional
        Whether to print the result rather than returning it.

    Returns
    -------
    text
        Either None (for disp=True) or the text string (disp=False)

    Notes
    -----
    The solver-specific methods are:

    `scipy.optimize.minimize`

    - :ref:`Nelder-Mead <optimize.minimize-neldermead>`
    - :ref:`Powell      <optimize.minimize-powell>`
    - :ref:`CG          <optimize.minimize-cg>`
    - :ref:`BFGS        <optimize.minimize-bfgs>`
    - :ref:`Newton-CG   <optimize.minimize-newtoncg>`
    - :ref:`L-BFGS-B    <optimize.minimize-lbfgsb>`
    - :ref:`TNC         <optimize.minimize-tnc>`
    - :ref:`COBYLA      <optimize.minimize-cobyla>`
    - :ref:`SLSQP       <optimize.minimize-slsqp>`
    - :ref:`dogleg      <optimize.minimize-dogleg>`
    - :ref:`trust-ncg   <optimize.minimize-trustncg>`

    `scipy.optimize.root`

    - :ref:`hybr              <optimize.root-hybr>`
    - :ref:`lm                <optimize.root-lm>`
    - :ref:`broyden1          <optimize.root-broyden1>`
    - :ref:`broyden2          <optimize.root-broyden2>`
    - :ref:`anderson          <optimize.root-anderson>`
    - :ref:`linearmixing      <optimize.root-linearmixing>`
    - :ref:`diagbroyden       <optimize.root-diagbroyden>`
    - :ref:`excitingmixing    <optimize.root-excitingmixing>`
    - :ref:`krylov            <optimize.root-krylov>`
    - :ref:`df-sane           <optimize.root-dfsane>`

    `scipy.optimize.minimize_scalar`

    - :ref:`brent       <optimize.minimize_scalar-brent>`
    - :ref:`golden      <optimize.minimize_scalar-golden>`
    - :ref:`bounded     <optimize.minimize_scalar-bounded>`

    `scipy.optimize.linprog`

    - :ref:`simplex         <optimize.linprog-simplex>`
    - :ref:`interior-point  <optimize.linprog-interior-point>`

    """
    import textwrap

    doc_routines = {
        'minimize': (
            ('bfgs', 'scipy.optimize.optimize._minimize_bfgs'),
            ('cg', 'scipy.optimize.optimize._minimize_cg'),
            ('cobyla', 'scipy.optimize.cobyla._minimize_cobyla'),
            ('dogleg', 'scipy.optimize._trustregion_dogleg._minimize_dogleg'),
            ('l-bfgs-b', 'scipy.optimize.lbfgsb._minimize_lbfgsb'),
            ('nelder-mead', 'scipy.optimize.optimize._minimize_neldermead'),
            ('newton-cg', 'scipy.optimize.optimize._minimize_newtoncg'),
            ('powell', 'scipy.optimize.optimize._minimize_powell'),
            ('slsqp', 'scipy.optimize.slsqp._minimize_slsqp'),
            ('tnc', 'scipy.optimize.tnc._minimize_tnc'),
            ('trust-ncg', 'scipy.optimize._trustregion_ncg._minimize_trust_ncg'),
        ),
        'root': (
            ('hybr', 'scipy.optimize.minpack._root_hybr'),
            ('lm', 'scipy.optimize._root._root_leastsq'),
            ('broyden1', 'scipy.optimize._root._root_broyden1_doc'),
            ('broyden2', 'scipy.optimize._root._root_broyden2_doc'),
            ('anderson', 'scipy.optimize._root._root_anderson_doc'),
            ('diagbroyden', 'scipy.optimize._root._root_diagbroyden_doc'),
            ('excitingmixing', 'scipy.optimize._root._root_excitingmixing_doc'),
            ('linearmixing', 'scipy.optimize._root._root_linearmixing_doc'),
            ('krylov', 'scipy.optimize._root._root_krylov_doc'),
            ('df-sane', 'scipy.optimize._spectral._root_df_sane'),
        ),
        'root_scalar': (
            ('bisect', 'scipy.optimize._root_scalar._root_scalar_bisect_doc'),
            ('brentq', 'scipy.optimize._root_scalar._root_scalar_brentq_doc'),
            ('brenth', 'scipy.optimize._root_scalar._root_scalar_brenth_doc'),
            ('ridder', 'scipy.optimize._root_scalar._root_scalar_ridder_doc'),
            ('toms748', 'scipy.optimize._root_scalar._root_scalar_toms748_doc'),
            ('secant', 'scipy.optimize._root_scalar._root_scalar_secant_doc'),
            ('newton', 'scipy.optimize._root_scalar._root_scalar_newton_doc'),
            ('halley', 'scipy.optimize._root_scalar._root_scalar_halley_doc'),
        ),
        'linprog': (
            ('simplex', 'scipy.optimize._linprog._linprog_simplex'),
            ('interior-point', 'scipy.optimize._linprog._linprog_ip'),
        ),
        'minimize_scalar': (
            ('brent', 'scipy.optimize.optimize._minimize_scalar_brent'),
            ('bounded', 'scipy.optimize.optimize._minimize_scalar_bounded'),
            ('golden', 'scipy.optimize.optimize._minimize_scalar_golden'),
        ),
    }

    if solver is None:
        text = ["\n\n\n========\n", "minimize\n", "========\n"]
        text.append(show_options('minimize', disp=False))
        text.extend(["\n\n===============\n", "minimize_scalar\n",
                     "===============\n"])
        text.append(show_options('minimize_scalar', disp=False))
        text.extend(["\n\n\n====\n", "root\n",
                     "====\n"])
        text.append(show_options('root', disp=False))
        text.extend(['\n\n\n=======\n', 'linprog\n',
                     '=======\n'])
        text.append(show_options('linprog', disp=False))
        text = "".join(text)
    else:
        solver = solver.lower()
        if solver not in doc_routines:
            raise ValueError('Unknown solver %r' % (solver,))

        if method is None:
            text = []
            for name, _ in doc_routines[solver]:
                text.extend(["\n\n" + name, "\n" + "="*len(name) + "\n\n"])
                text.append(show_options(solver, name, disp=False))
            text = "".join(text)
        else:
            method = method.lower()
            methods = dict(doc_routines[solver])
            if method not in methods:
                raise ValueError("Unknown method %r" % (method,))
            name = methods[method]

            # Import function object
            parts = name.split('.')
            mod_name = ".".join(parts[:-1])
            __import__(mod_name)
            obj = getattr(sys.modules[mod_name], parts[-1])

            # Get doc
            doc = obj.__doc__
            if doc is not None:
                text = textwrap.dedent(doc).strip()
            else:
                text = ""

    if disp:
        print(text)
        return
    else:
        return text


def main():
    import time

    times = []
    algor = []
    x0 = [0.8, 1.2, 0.7]
    print("Nelder-Mead Simplex")
    print("===================")
    start = time.time()
    x = fmin(rosen, x0)
    print(x)
    times.append(time.time() - start)
    algor.append('Nelder-Mead Simplex\t')

    print()
    print("Powell Direction Set Method")
    print("===========================")
    start = time.time()
    x = fmin_powell(rosen, x0)
    print(x)
    times.append(time.time() - start)
    algor.append('Powell Direction Set Method.')

    print()
    print("Nonlinear CG")
    print("============")
    start = time.time()
    x = fmin_cg(rosen, x0, fprime=rosen_der, maxiter=200)
    print(x)
    times.append(time.time() - start)
    algor.append('Nonlinear CG     \t')

    print()
    print("BFGS Quasi-Newton")
    print("=================")
    start = time.time()
    x = fmin_bfgs(rosen, x0, fprime=rosen_der, maxiter=80)
    print(x)
    times.append(time.time() - start)
    algor.append('BFGS Quasi-Newton\t')

    print()
    print("BFGS approximate gradient")
    print("=========================")
    start = time.time()
    x = fmin_bfgs(rosen, x0, gtol=1e-4, maxiter=100)
    print(x)
    times.append(time.time() - start)
    algor.append('BFGS without gradient\t')

    print()
    print("Newton-CG with Hessian product")
    print("==============================")
    start = time.time()
    x = fmin_ncg(rosen, x0, rosen_der, fhess_p=rosen_hess_prod, maxiter=80)
    print(x)
    times.append(time.time() - start)
    algor.append('Newton-CG with hessian product')

    print()
    print("Newton-CG with full Hessian")
    print("===========================")
    start = time.time()
    x = fmin_ncg(rosen, x0, rosen_der, fhess=rosen_hess, maxiter=80)
    print(x)
    times.append(time.time() - start)
    algor.append('Newton-CG with full hessian')

    print()
    print("\nMinimizing the Rosenbrock function of order 3\n")
    print(" Algorithm \t\t\t       Seconds")
    print("===========\t\t\t      =========")
    for k in range(len(algor)):
        print(algor[k], "\t -- ", times[k])


if __name__ == "__main__":
    main()