windows.py 72.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
"""The suite of window functions."""

from __future__ import division, print_function, absolute_import

import operator
import warnings

import numpy as np
from scipy import linalg, special, fft as sp_fft
from scipy._lib.six import string_types

__all__ = ['boxcar', 'triang', 'parzen', 'bohman', 'blackman', 'nuttall',
           'blackmanharris', 'flattop', 'bartlett', 'hanning', 'barthann',
           'hamming', 'kaiser', 'gaussian', 'general_cosine','general_gaussian',
           'general_hamming', 'chebwin', 'slepian', 'cosine', 'hann',
           'exponential', 'tukey', 'dpss', 'get_window']


def _len_guards(M):
    """Handle small or incorrect window lengths"""
    if int(M) != M or M < 0:
        raise ValueError('Window length M must be a non-negative integer')
    return M <= 1


def _extend(M, sym):
    """Extend window by 1 sample if needed for DFT-even symmetry"""
    if not sym:
        return M + 1, True
    else:
        return M, False


def _truncate(w, needed):
    """Truncate window by 1 sample if needed for DFT-even symmetry"""
    if needed:
        return w[:-1]
    else:
        return w


def general_cosine(M, a, sym=True):
    r"""
    Generic weighted sum of cosine terms window

    Parameters
    ----------
    M : int
        Number of points in the output window
    a : array_like
        Sequence of weighting coefficients. This uses the convention of being
        centered on the origin, so these will typically all be positive
        numbers, not alternating sign.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    References
    ----------
    .. [1] A. Nuttall, "Some windows with very good sidelobe behavior," IEEE
           Transactions on Acoustics, Speech, and Signal Processing, vol. 29,
           no. 1, pp. 84-91, Feb 1981. :doi:`10.1109/TASSP.1981.1163506`.
    .. [2] Heinzel G. et al., "Spectrum and spectral density estimation by the
           Discrete Fourier transform (DFT), including a comprehensive list of
           window functions and some new flat-top windows", February 15, 2002
           https://holometer.fnal.gov/GH_FFT.pdf

    Examples
    --------
    Heinzel describes a flat-top window named "HFT90D" with formula: [2]_

    .. math::  w_j = 1 - 1.942604 \cos(z) + 1.340318 \cos(2z)
               - 0.440811 \cos(3z) + 0.043097 \cos(4z)

    where

    .. math::  z = \frac{2 \pi j}{N}, j = 0...N - 1

    Since this uses the convention of starting at the origin, to reproduce the
    window, we need to convert every other coefficient to a positive number:

    >>> HFT90D = [1, 1.942604, 1.340318, 0.440811, 0.043097]

    The paper states that the highest sidelobe is at -90.2 dB.  Reproduce
    Figure 42 by plotting the window and its frequency response, and confirm
    the sidelobe level in red:

    >>> from scipy.signal.windows import general_cosine
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = general_cosine(1000, HFT90D, sym=False)
    >>> plt.plot(window)
    >>> plt.title("HFT90D window")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 10000) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = np.abs(fftshift(A / abs(A).max()))
    >>> response = 20 * np.log10(np.maximum(response, 1e-10))
    >>> plt.plot(freq, response)
    >>> plt.axis([-50/1000, 50/1000, -140, 0])
    >>> plt.title("Frequency response of the HFT90D window")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")
    >>> plt.axhline(-90.2, color='red')
    >>> plt.show()
    """
    if _len_guards(M):
        return np.ones(M)
    M, needs_trunc = _extend(M, sym)

    fac = np.linspace(-np.pi, np.pi, M)
    w = np.zeros(M)
    for k in range(len(a)):
        w += a[k] * np.cos(k * fac)

    return _truncate(w, needs_trunc)


def boxcar(M, sym=True):
    """Return a boxcar or rectangular window.

    Also known as a rectangular window or Dirichlet window, this is equivalent
    to no window at all.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    sym : bool, optional
        Whether the window is symmetric. (Has no effect for boxcar.)

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1.

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.boxcar(51)
    >>> plt.plot(window)
    >>> plt.title("Boxcar window")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the boxcar window")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    if _len_guards(M):
        return np.ones(M)
    M, needs_trunc = _extend(M, sym)

    w = np.ones(M, float)

    return _truncate(w, needs_trunc)


def triang(M, sym=True):
    """Return a triangular window.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    See Also
    --------
    bartlett : A triangular window that touches zero

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.triang(51)
    >>> plt.plot(window)
    >>> plt.title("Triangular window")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = np.abs(fftshift(A / abs(A).max()))
    >>> response = 20 * np.log10(np.maximum(response, 1e-10))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the triangular window")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    if _len_guards(M):
        return np.ones(M)
    M, needs_trunc = _extend(M, sym)

    n = np.arange(1, (M + 1) // 2 + 1)
    if M % 2 == 0:
        w = (2 * n - 1.0) / M
        w = np.r_[w, w[::-1]]
    else:
        w = 2 * n / (M + 1.0)
        w = np.r_[w, w[-2::-1]]

    return _truncate(w, needs_trunc)


def parzen(M, sym=True):
    """Return a Parzen window.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    References
    ----------
    .. [1] E. Parzen, "Mathematical Considerations in the Estimation of
           Spectra", Technometrics,  Vol. 3, No. 2 (May, 1961), pp. 167-190

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.parzen(51)
    >>> plt.plot(window)
    >>> plt.title("Parzen window")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the Parzen window")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    if _len_guards(M):
        return np.ones(M)
    M, needs_trunc = _extend(M, sym)

    n = np.arange(-(M - 1) / 2.0, (M - 1) / 2.0 + 0.5, 1.0)
    na = np.extract(n < -(M - 1) / 4.0, n)
    nb = np.extract(abs(n) <= (M - 1) / 4.0, n)
    wa = 2 * (1 - np.abs(na) / (M / 2.0)) ** 3.0
    wb = (1 - 6 * (np.abs(nb) / (M / 2.0)) ** 2.0 +
          6 * (np.abs(nb) / (M / 2.0)) ** 3.0)
    w = np.r_[wa, wb, wa[::-1]]

    return _truncate(w, needs_trunc)


def bohman(M, sym=True):
    """Return a Bohman window.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.bohman(51)
    >>> plt.plot(window)
    >>> plt.title("Bohman window")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the Bohman window")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    if _len_guards(M):
        return np.ones(M)
    M, needs_trunc = _extend(M, sym)

    fac = np.abs(np.linspace(-1, 1, M)[1:-1])
    w = (1 - fac) * np.cos(np.pi * fac) + 1.0 / np.pi * np.sin(np.pi * fac)
    w = np.r_[0, w, 0]

    return _truncate(w, needs_trunc)


def blackman(M, sym=True):
    r"""
    Return a Blackman window.

    The Blackman window is a taper formed by using the first three terms of
    a summation of cosines. It was designed to have close to the minimal
    leakage possible.  It is close to optimal, only slightly worse than a
    Kaiser window.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    Notes
    -----
    The Blackman window is defined as

    .. math::  w(n) = 0.42 - 0.5 \cos(2\pi n/M) + 0.08 \cos(4\pi n/M)

    The "exact Blackman" window was designed to null out the third and fourth
    sidelobes, but has discontinuities at the boundaries, resulting in a
    6 dB/oct fall-off.  This window is an approximation of the "exact" window,
    which does not null the sidelobes as well, but is smooth at the edges,
    improving the fall-off rate to 18 dB/oct. [3]_

    Most references to the Blackman window come from the signal processing
    literature, where it is used as one of many windowing functions for
    smoothing values.  It is also known as an apodization (which means
    "removing the foot", i.e. smoothing discontinuities at the beginning
    and end of the sampled signal) or tapering function. It is known as a
    "near optimal" tapering function, almost as good (by some measures)
    as the Kaiser window.

    References
    ----------
    .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
           spectra, Dover Publications, New York.
    .. [2] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
           Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.
    .. [3] Harris, Fredric J. (Jan 1978). "On the use of Windows for Harmonic
           Analysis with the Discrete Fourier Transform". Proceedings of the
           IEEE 66 (1): 51-83. :doi:`10.1109/PROC.1978.10837`.

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.blackman(51)
    >>> plt.plot(window)
    >>> plt.title("Blackman window")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = np.abs(fftshift(A / abs(A).max()))
    >>> response = 20 * np.log10(np.maximum(response, 1e-10))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the Blackman window")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    # Docstring adapted from NumPy's blackman function
    return general_cosine(M, [0.42, 0.50, 0.08], sym)


def nuttall(M, sym=True):
    """Return a minimum 4-term Blackman-Harris window according to Nuttall.

    This variation is called "Nuttall4c" by Heinzel. [2]_

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    References
    ----------
    .. [1] A. Nuttall, "Some windows with very good sidelobe behavior," IEEE
           Transactions on Acoustics, Speech, and Signal Processing, vol. 29,
           no. 1, pp. 84-91, Feb 1981. :doi:`10.1109/TASSP.1981.1163506`.
    .. [2] Heinzel G. et al., "Spectrum and spectral density estimation by the
           Discrete Fourier transform (DFT), including a comprehensive list of
           window functions and some new flat-top windows", February 15, 2002
           https://holometer.fnal.gov/GH_FFT.pdf

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.nuttall(51)
    >>> plt.plot(window)
    >>> plt.title("Nuttall window")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the Nuttall window")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    return general_cosine(M, [0.3635819, 0.4891775, 0.1365995, 0.0106411], sym)


def blackmanharris(M, sym=True):
    """Return a minimum 4-term Blackman-Harris window.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.blackmanharris(51)
    >>> plt.plot(window)
    >>> plt.title("Blackman-Harris window")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the Blackman-Harris window")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    return general_cosine(M, [0.35875, 0.48829, 0.14128, 0.01168], sym)


def flattop(M, sym=True):
    """Return a flat top window.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    Notes
    -----
    Flat top windows are used for taking accurate measurements of signal
    amplitude in the frequency domain, with minimal scalloping error from the
    center of a frequency bin to its edges, compared to others.  This is a
    5th-order cosine window, with the 5 terms optimized to make the main lobe
    maximally flat. [1]_

    References
    ----------
    .. [1] D'Antona, Gabriele, and A. Ferrero, "Digital Signal Processing for
           Measurement Systems", Springer Media, 2006, p. 70
           :doi:`10.1007/0-387-28666-7`.

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.flattop(51)
    >>> plt.plot(window)
    >>> plt.title("Flat top window")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the flat top window")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    a = [0.21557895, 0.41663158, 0.277263158, 0.083578947, 0.006947368]
    return general_cosine(M, a, sym)


def bartlett(M, sym=True):
    r"""
    Return a Bartlett window.

    The Bartlett window is very similar to a triangular window, except
    that the end points are at zero.  It is often used in signal
    processing for tapering a signal, without generating too much
    ripple in the frequency domain.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The triangular window, with the first and last samples equal to zero
        and the maximum value normalized to 1 (though the value 1 does not
        appear if `M` is even and `sym` is True).

    See Also
    --------
    triang : A triangular window that does not touch zero at the ends

    Notes
    -----
    The Bartlett window is defined as

    .. math:: w(n) = \frac{2}{M-1} \left(
              \frac{M-1}{2} - \left|n - \frac{M-1}{2}\right|
              \right)

    Most references to the Bartlett window come from the signal
    processing literature, where it is used as one of many windowing
    functions for smoothing values.  Note that convolution with this
    window produces linear interpolation.  It is also known as an
    apodization (which means"removing the foot", i.e. smoothing
    discontinuities at the beginning and end of the sampled signal) or
    tapering function. The Fourier transform of the Bartlett is the product
    of two sinc functions.
    Note the excellent discussion in Kanasewich. [2]_

    References
    ----------
    .. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra",
           Biometrika 37, 1-16, 1950.
    .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics",
           The University of Alberta Press, 1975, pp. 109-110.
    .. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal
           Processing", Prentice-Hall, 1999, pp. 468-471.
    .. [4] Wikipedia, "Window function",
           https://en.wikipedia.org/wiki/Window_function
    .. [5] W.H. Press,  B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
           "Numerical Recipes", Cambridge University Press, 1986, page 429.

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.bartlett(51)
    >>> plt.plot(window)
    >>> plt.title("Bartlett window")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the Bartlett window")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    # Docstring adapted from NumPy's bartlett function
    if _len_guards(M):
        return np.ones(M)
    M, needs_trunc = _extend(M, sym)

    n = np.arange(0, M)
    w = np.where(np.less_equal(n, (M - 1) / 2.0),
                 2.0 * n / (M - 1), 2.0 - 2.0 * n / (M - 1))

    return _truncate(w, needs_trunc)


def hann(M, sym=True):
    r"""
    Return a Hann window.

    The Hann window is a taper formed by using a raised cosine or sine-squared
    with ends that touch zero.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    Notes
    -----
    The Hann window is defined as

    .. math::  w(n) = 0.5 - 0.5 \cos\left(\frac{2\pi{n}}{M-1}\right)
               \qquad 0 \leq n \leq M-1

    The window was named for Julius von Hann, an Austrian meteorologist. It is
    also known as the Cosine Bell. It is sometimes erroneously referred to as
    the "Hanning" window, from the use of "hann" as a verb in the original
    paper and confusion with the very similar Hamming window.

    Most references to the Hann window come from the signal processing
    literature, where it is used as one of many windowing functions for
    smoothing values.  It is also known as an apodization (which means
    "removing the foot", i.e. smoothing discontinuities at the beginning
    and end of the sampled signal) or tapering function.

    References
    ----------
    .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
           spectra, Dover Publications, New York.
    .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics",
           The University of Alberta Press, 1975, pp. 106-108.
    .. [3] Wikipedia, "Window function",
           https://en.wikipedia.org/wiki/Window_function
    .. [4] W.H. Press,  B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
           "Numerical Recipes", Cambridge University Press, 1986, page 425.

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.hann(51)
    >>> plt.plot(window)
    >>> plt.title("Hann window")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = np.abs(fftshift(A / abs(A).max()))
    >>> response = 20 * np.log10(np.maximum(response, 1e-10))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the Hann window")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    # Docstring adapted from NumPy's hanning function
    return general_hamming(M, 0.5, sym)


@np.deprecate(new_name='scipy.signal.windows.hann')
def hanning(*args, **kwargs):
    return hann(*args, **kwargs)


def tukey(M, alpha=0.5, sym=True):
    r"""Return a Tukey window, also known as a tapered cosine window.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    alpha : float, optional
        Shape parameter of the Tukey window, representing the fraction of the
        window inside the cosine tapered region.
        If zero, the Tukey window is equivalent to a rectangular window.
        If one, the Tukey window is equivalent to a Hann window.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    References
    ----------
    .. [1] Harris, Fredric J. (Jan 1978). "On the use of Windows for Harmonic
           Analysis with the Discrete Fourier Transform". Proceedings of the
           IEEE 66 (1): 51-83. :doi:`10.1109/PROC.1978.10837`
    .. [2] Wikipedia, "Window function",
           https://en.wikipedia.org/wiki/Window_function#Tukey_window

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.tukey(51)
    >>> plt.plot(window)
    >>> plt.title("Tukey window")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")
    >>> plt.ylim([0, 1.1])

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the Tukey window")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    if _len_guards(M):
        return np.ones(M)

    if alpha <= 0:
        return np.ones(M, 'd')
    elif alpha >= 1.0:
        return hann(M, sym=sym)

    M, needs_trunc = _extend(M, sym)

    n = np.arange(0, M)
    width = int(np.floor(alpha*(M-1)/2.0))
    n1 = n[0:width+1]
    n2 = n[width+1:M-width-1]
    n3 = n[M-width-1:]

    w1 = 0.5 * (1 + np.cos(np.pi * (-1 + 2.0*n1/alpha/(M-1))))
    w2 = np.ones(n2.shape)
    w3 = 0.5 * (1 + np.cos(np.pi * (-2.0/alpha + 1 + 2.0*n3/alpha/(M-1))))

    w = np.concatenate((w1, w2, w3))

    return _truncate(w, needs_trunc)


def barthann(M, sym=True):
    """Return a modified Bartlett-Hann window.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.barthann(51)
    >>> plt.plot(window)
    >>> plt.title("Bartlett-Hann window")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the Bartlett-Hann window")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    if _len_guards(M):
        return np.ones(M)
    M, needs_trunc = _extend(M, sym)

    n = np.arange(0, M)
    fac = np.abs(n / (M - 1.0) - 0.5)
    w = 0.62 - 0.48 * fac + 0.38 * np.cos(2 * np.pi * fac)

    return _truncate(w, needs_trunc)


def general_hamming(M, alpha, sym=True):
    r"""Return a generalized Hamming window.

    The generalized Hamming window is constructed by multiplying a rectangular
    window by one period of a cosine function [1]_.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    alpha : float
        The window coefficient, :math:`\alpha`
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    Notes
    -----
    The generalized Hamming window is defined as

    .. math:: w(n) = \alpha - \left(1 - \alpha\right) \cos\left(\frac{2\pi{n}}{M-1}\right)
              \qquad 0 \leq n \leq M-1

    Both the common Hamming window and Hann window are special cases of the
    generalized Hamming window with :math:`\alpha` = 0.54 and :math:`\alpha` =
    0.5, respectively [2]_.

    See Also
    --------
    hamming, hann

    Examples
    --------
    The Sentinel-1A/B Instrument Processing Facility uses generalized Hamming
    windows in the processing of spaceborne Synthetic Aperture Radar (SAR)
    data [3]_. The facility uses various values for the :math:`\alpha`
    parameter based on operating mode of the SAR instrument. Some common
    :math:`\alpha` values include 0.75, 0.7 and 0.52 [4]_. As an example, we
    plot these different windows.

    >>> from scipy.signal.windows import general_hamming
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> fig1, spatial_plot = plt.subplots()
    >>> spatial_plot.set_title("Generalized Hamming Windows")
    >>> spatial_plot.set_ylabel("Amplitude")
    >>> spatial_plot.set_xlabel("Sample")

    >>> fig2, freq_plot = plt.subplots()
    >>> freq_plot.set_title("Frequency Responses")
    >>> freq_plot.set_ylabel("Normalized magnitude [dB]")
    >>> freq_plot.set_xlabel("Normalized frequency [cycles per sample]")

    >>> for alpha in [0.75, 0.7, 0.52]:
    ...     window = general_hamming(41, alpha)
    ...     spatial_plot.plot(window, label="{:.2f}".format(alpha))
    ...     A = fft(window, 2048) / (len(window)/2.0)
    ...     freq = np.linspace(-0.5, 0.5, len(A))
    ...     response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    ...     freq_plot.plot(freq, response, label="{:.2f}".format(alpha))
    >>> freq_plot.legend(loc="upper right")
    >>> spatial_plot.legend(loc="upper right")

    References
    ----------
    .. [1] DSPRelated, "Generalized Hamming Window Family",
           https://www.dsprelated.com/freebooks/sasp/Generalized_Hamming_Window_Family.html
    .. [2] Wikipedia, "Window function",
           https://en.wikipedia.org/wiki/Window_function
    .. [3] Riccardo Piantanida ESA, "Sentinel-1 Level 1 Detailed Algorithm
           Definition",
           https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Level-1-Detailed-Algorithm-Definition
    .. [4] Matthieu Bourbigot ESA, "Sentinel-1 Product Definition",
           https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Product-Definition
    """
    return general_cosine(M, [alpha, 1. - alpha], sym)


def hamming(M, sym=True):
    r"""Return a Hamming window.

    The Hamming window is a taper formed by using a raised cosine with
    non-zero endpoints, optimized to minimize the nearest side lobe.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    Notes
    -----
    The Hamming window is defined as

    .. math::  w(n) = 0.54 - 0.46 \cos\left(\frac{2\pi{n}}{M-1}\right)
               \qquad 0 \leq n \leq M-1

    The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and
    is described in Blackman and Tukey. It was recommended for smoothing the
    truncated autocovariance function in the time domain.
    Most references to the Hamming window come from the signal processing
    literature, where it is used as one of many windowing functions for
    smoothing values.  It is also known as an apodization (which means
    "removing the foot", i.e. smoothing discontinuities at the beginning
    and end of the sampled signal) or tapering function.

    References
    ----------
    .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
           spectra, Dover Publications, New York.
    .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
           University of Alberta Press, 1975, pp. 109-110.
    .. [3] Wikipedia, "Window function",
           https://en.wikipedia.org/wiki/Window_function
    .. [4] W.H. Press,  B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
           "Numerical Recipes", Cambridge University Press, 1986, page 425.

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.hamming(51)
    >>> plt.plot(window)
    >>> plt.title("Hamming window")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the Hamming window")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    # Docstring adapted from NumPy's hamming function
    return general_hamming(M, 0.54, sym)


def kaiser(M, beta, sym=True):
    r"""Return a Kaiser window.

    The Kaiser window is a taper formed by using a Bessel function.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    beta : float
        Shape parameter, determines trade-off between main-lobe width and
        side lobe level. As beta gets large, the window narrows.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    Notes
    -----
    The Kaiser window is defined as

    .. math::  w(n) = I_0\left( \beta \sqrt{1-\frac{4n^2}{(M-1)^2}}
               \right)/I_0(\beta)

    with

    .. math:: \quad -\frac{M-1}{2} \leq n \leq \frac{M-1}{2},

    where :math:`I_0` is the modified zeroth-order Bessel function.

    The Kaiser was named for Jim Kaiser, who discovered a simple approximation
    to the DPSS window based on Bessel functions.
    The Kaiser window is a very good approximation to the Digital Prolate
    Spheroidal Sequence, or Slepian window, which is the transform which
    maximizes the energy in the main lobe of the window relative to total
    energy.

    The Kaiser can approximate other windows by varying the beta parameter.
    (Some literature uses alpha = beta/pi.) [4]_

    ====  =======================
    beta  Window shape
    ====  =======================
    0     Rectangular
    5     Similar to a Hamming
    6     Similar to a Hann
    8.6   Similar to a Blackman
    ====  =======================

    A beta value of 14 is probably a good starting point. Note that as beta
    gets large, the window narrows, and so the number of samples needs to be
    large enough to sample the increasingly narrow spike, otherwise NaNs will
    be returned.

    Most references to the Kaiser window come from the signal processing
    literature, where it is used as one of many windowing functions for
    smoothing values.  It is also known as an apodization (which means
    "removing the foot", i.e. smoothing discontinuities at the beginning
    and end of the sampled signal) or tapering function.

    References
    ----------
    .. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by
           digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285.
           John Wiley and Sons, New York, (1966).
    .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
           University of Alberta Press, 1975, pp. 177-178.
    .. [3] Wikipedia, "Window function",
           https://en.wikipedia.org/wiki/Window_function
    .. [4] F. J. Harris, "On the use of windows for harmonic analysis with the
           discrete Fourier transform," Proceedings of the IEEE, vol. 66,
           no. 1, pp. 51-83, Jan. 1978. :doi:`10.1109/PROC.1978.10837`.

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.kaiser(51, beta=14)
    >>> plt.plot(window)
    >>> plt.title(r"Kaiser window ($\beta$=14)")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title(r"Frequency response of the Kaiser window ($\beta$=14)")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    # Docstring adapted from NumPy's kaiser function
    if _len_guards(M):
        return np.ones(M)
    M, needs_trunc = _extend(M, sym)

    n = np.arange(0, M)
    alpha = (M - 1) / 2.0
    w = (special.i0(beta * np.sqrt(1 - ((n - alpha) / alpha) ** 2.0)) /
         special.i0(beta))

    return _truncate(w, needs_trunc)


def gaussian(M, std, sym=True):
    r"""Return a Gaussian window.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    std : float
        The standard deviation, sigma.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    Notes
    -----
    The Gaussian window is defined as

    .. math::  w(n) = e^{ -\frac{1}{2}\left(\frac{n}{\sigma}\right)^2 }

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.gaussian(51, std=7)
    >>> plt.plot(window)
    >>> plt.title(r"Gaussian window ($\sigma$=7)")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title(r"Frequency response of the Gaussian window ($\sigma$=7)")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    if _len_guards(M):
        return np.ones(M)
    M, needs_trunc = _extend(M, sym)

    n = np.arange(0, M) - (M - 1.0) / 2.0
    sig2 = 2 * std * std
    w = np.exp(-n ** 2 / sig2)

    return _truncate(w, needs_trunc)


def general_gaussian(M, p, sig, sym=True):
    r"""Return a window with a generalized Gaussian shape.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    p : float
        Shape parameter.  p = 1 is identical to `gaussian`, p = 0.5 is
        the same shape as the Laplace distribution.
    sig : float
        The standard deviation, sigma.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    Notes
    -----
    The generalized Gaussian window is defined as

    .. math::  w(n) = e^{ -\frac{1}{2}\left|\frac{n}{\sigma}\right|^{2p} }

    the half-power point is at

    .. math::  (2 \log(2))^{1/(2 p)} \sigma

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.general_gaussian(51, p=1.5, sig=7)
    >>> plt.plot(window)
    >>> plt.title(r"Generalized Gaussian window (p=1.5, $\sigma$=7)")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title(r"Freq. resp. of the gen. Gaussian "
    ...           r"window (p=1.5, $\sigma$=7)")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    if _len_guards(M):
        return np.ones(M)
    M, needs_trunc = _extend(M, sym)

    n = np.arange(0, M) - (M - 1.0) / 2.0
    w = np.exp(-0.5 * np.abs(n / sig) ** (2 * p))

    return _truncate(w, needs_trunc)


# `chebwin` contributed by Kumar Appaiah.
def chebwin(M, at, sym=True):
    r"""Return a Dolph-Chebyshev window.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    at : float
        Attenuation (in dB).
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value always normalized to 1

    Notes
    -----
    This window optimizes for the narrowest main lobe width for a given order
    `M` and sidelobe equiripple attenuation `at`, using Chebyshev
    polynomials.  It was originally developed by Dolph to optimize the
    directionality of radio antenna arrays.

    Unlike most windows, the Dolph-Chebyshev is defined in terms of its
    frequency response:

    .. math:: W(k) = \frac
              {\cos\{M \cos^{-1}[\beta \cos(\frac{\pi k}{M})]\}}
              {\cosh[M \cosh^{-1}(\beta)]}

    where

    .. math:: \beta = \cosh \left [\frac{1}{M}
              \cosh^{-1}(10^\frac{A}{20}) \right ]

    and 0 <= abs(k) <= M-1. A is the attenuation in decibels (`at`).

    The time domain window is then generated using the IFFT, so
    power-of-two `M` are the fastest to generate, and prime number `M` are
    the slowest.

    The equiripple condition in the frequency domain creates impulses in the
    time domain, which appear at the ends of the window.

    References
    ----------
    .. [1] C. Dolph, "A current distribution for broadside arrays which
           optimizes the relationship between beam width and side-lobe level",
           Proceedings of the IEEE, Vol. 34, Issue 6
    .. [2] Peter Lynch, "The Dolph-Chebyshev Window: A Simple Optimal Filter",
           American Meteorological Society (April 1997)
           http://mathsci.ucd.ie/~plynch/Publications/Dolph.pdf
    .. [3] F. J. Harris, "On the use of windows for harmonic analysis with the
           discrete Fourier transforms", Proceedings of the IEEE, Vol. 66,
           No. 1, January 1978

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.chebwin(51, at=100)
    >>> plt.plot(window)
    >>> plt.title("Dolph-Chebyshev window (100 dB)")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the Dolph-Chebyshev window (100 dB)")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    if np.abs(at) < 45:
        warnings.warn("This window is not suitable for spectral analysis "
                      "for attenuation values lower than about 45dB because "
                      "the equivalent noise bandwidth of a Chebyshev window "
                      "does not grow monotonically with increasing sidelobe "
                      "attenuation when the attenuation is smaller than "
                      "about 45 dB.")
    if _len_guards(M):
        return np.ones(M)
    M, needs_trunc = _extend(M, sym)

    # compute the parameter beta
    order = M - 1.0
    beta = np.cosh(1.0 / order * np.arccosh(10 ** (np.abs(at) / 20.)))
    k = np.r_[0:M] * 1.0
    x = beta * np.cos(np.pi * k / M)
    # Find the window's DFT coefficients
    # Use analytic definition of Chebyshev polynomial instead of expansion
    # from scipy.special. Using the expansion in scipy.special leads to errors.
    p = np.zeros(x.shape)
    p[x > 1] = np.cosh(order * np.arccosh(x[x > 1]))
    p[x < -1] = (2 * (M % 2) - 1) * np.cosh(order * np.arccosh(-x[x < -1]))
    p[np.abs(x) <= 1] = np.cos(order * np.arccos(x[np.abs(x) <= 1]))

    # Appropriate IDFT and filling up
    # depending on even/odd M
    if M % 2:
        w = np.real(sp_fft.fft(p))
        n = (M + 1) // 2
        w = w[:n]
        w = np.concatenate((w[n - 1:0:-1], w))
    else:
        p = p * np.exp(1.j * np.pi / M * np.r_[0:M])
        w = np.real(sp_fft.fft(p))
        n = M // 2 + 1
        w = np.concatenate((w[n - 1:0:-1], w[1:n]))
    w = w / max(w)

    return _truncate(w, needs_trunc)


def slepian(M, width, sym=True):
    """Return a digital Slepian (DPSS) window.

    Used to maximize the energy concentration in the main lobe.  Also called
    the digital prolate spheroidal sequence (DPSS).

    .. note:: Deprecated in SciPy 1.1.
              `slepian` will be removed in a future version of SciPy, it is
              replaced by `dpss`, which uses the standard definition of a
              digital Slepian window.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    width : float
        Bandwidth
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value always normalized to 1

    See Also
    --------
    dpss

    References
    ----------
    .. [1] D. Slepian & H. O. Pollak: "Prolate spheroidal wave functions,
           Fourier analysis and uncertainty-I," Bell Syst. Tech. J., vol.40,
           pp.43-63, 1961. https://archive.org/details/bstj40-1-43
    .. [2] H. J. Landau & H. O. Pollak: "Prolate spheroidal wave functions,
           Fourier analysis and uncertainty-II," Bell Syst. Tech. J. , vol.40,
           pp.65-83, 1961. https://archive.org/details/bstj40-1-65

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.slepian(51, width=0.3)
    >>> plt.plot(window)
    >>> plt.title("Slepian (DPSS) window (BW=0.3)")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the Slepian window (BW=0.3)")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    """
    warnings.warn('slepian is deprecated and will be removed in a future '
                  'version, use dpss instead', DeprecationWarning)
    if _len_guards(M):
        return np.ones(M)
    M, needs_trunc = _extend(M, sym)

    # our width is the full bandwidth
    width = width / 2
    # to match the old version
    width = width / 2
    m = np.arange(M, dtype='d')
    H = np.zeros((2, M))
    H[0, 1:] = m[1:] * (M - m[1:]) / 2
    H[1, :] = ((M - 1 - 2 * m) / 2)**2 * np.cos(2 * np.pi * width)

    _, win = linalg.eig_banded(H, select='i', select_range=(M-1, M-1))
    win = win.ravel() / win.max()

    return _truncate(win, needs_trunc)


def cosine(M, sym=True):
    """Return a window with a simple cosine shape.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    Notes
    -----

    .. versionadded:: 0.13.0

    Examples
    --------
    Plot the window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> window = signal.cosine(51)
    >>> plt.plot(window)
    >>> plt.title("Cosine window")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -120, 0])
    >>> plt.title("Frequency response of the cosine window")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")
    >>> plt.show()

    """
    if _len_guards(M):
        return np.ones(M)
    M, needs_trunc = _extend(M, sym)

    w = np.sin(np.pi / M * (np.arange(0, M) + .5))

    return _truncate(w, needs_trunc)


def exponential(M, center=None, tau=1., sym=True):
    r"""Return an exponential (or Poisson) window.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.
    center : float, optional
        Parameter defining the center location of the window function.
        The default value if not given is ``center = (M-1) / 2``.  This
        parameter must take its default value for symmetric windows.
    tau : float, optional
        Parameter defining the decay.  For ``center = 0`` use
        ``tau = -(M-1) / ln(x)`` if ``x`` is the fraction of the window
        remaining at the end.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.

    Returns
    -------
    w : ndarray
        The window, with the maximum value normalized to 1 (though the value 1
        does not appear if `M` is even and `sym` is True).

    Notes
    -----
    The Exponential window is defined as

    .. math::  w(n) = e^{-|n-center| / \tau}

    References
    ----------
    S. Gade and H. Herlufsen, "Windows to FFT analysis (Part I)",
    Technical Review 3, Bruel & Kjaer, 1987.

    Examples
    --------
    Plot the symmetric window and its frequency response:

    >>> from scipy import signal
    >>> from scipy.fft import fft, fftshift
    >>> import matplotlib.pyplot as plt

    >>> M = 51
    >>> tau = 3.0
    >>> window = signal.exponential(M, tau=tau)
    >>> plt.plot(window)
    >>> plt.title("Exponential Window (tau=3.0)")
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")

    >>> plt.figure()
    >>> A = fft(window, 2048) / (len(window)/2.0)
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
    >>> plt.plot(freq, response)
    >>> plt.axis([-0.5, 0.5, -35, 0])
    >>> plt.title("Frequency response of the Exponential window (tau=3.0)")
    >>> plt.ylabel("Normalized magnitude [dB]")
    >>> plt.xlabel("Normalized frequency [cycles per sample]")

    This function can also generate non-symmetric windows:

    >>> tau2 = -(M-1) / np.log(0.01)
    >>> window2 = signal.exponential(M, 0, tau2, False)
    >>> plt.figure()
    >>> plt.plot(window2)
    >>> plt.ylabel("Amplitude")
    >>> plt.xlabel("Sample")
    """
    if sym and center is not None:
        raise ValueError("If sym==True, center must be None.")
    if _len_guards(M):
        return np.ones(M)
    M, needs_trunc = _extend(M, sym)

    if center is None:
        center = (M-1) / 2

    n = np.arange(0, M)
    w = np.exp(-np.abs(n-center) / tau)

    return _truncate(w, needs_trunc)


def dpss(M, NW, Kmax=None, sym=True, norm=None, return_ratios=False):
    """
    Compute the Discrete Prolate Spheroidal Sequences (DPSS).

    DPSS (or Slepian sequences) are often used in multitaper power spectral
    density estimation (see [1]_). The first window in the sequence can be
    used to maximize the energy concentration in the main lobe, and is also
    called the Slepian window.

    Parameters
    ----------
    M : int
        Window length.
    NW : float
        Standardized half bandwidth corresponding to ``2*NW = BW/f0 = BW*N*dt``
        where ``dt`` is taken as 1.
    Kmax : int | None, optional
        Number of DPSS windows to return (orders ``0`` through ``Kmax-1``).
        If None (default), return only a single window of shape ``(M,)``
        instead of an array of windows of shape ``(Kmax, M)``.
    sym : bool, optional
        When True (default), generates a symmetric window, for use in filter
        design.
        When False, generates a periodic window, for use in spectral analysis.
    norm : {2, 'approximate', 'subsample'} | None, optional
        If 'approximate' or 'subsample', then the windows are normalized by the
        maximum, and a correction scale-factor for even-length windows
        is applied either using ``M**2/(M**2+NW)`` ("approximate") or
        a FFT-based subsample shift ("subsample"), see Notes for details.
        If None, then "approximate" is used when ``Kmax=None`` and 2 otherwise
        (which uses the l2 norm).
    return_ratios : bool, optional
        If True, also return the concentration ratios in addition to the
        windows.

    Returns
    -------
    v : ndarray, shape (Kmax, N) or (N,)
        The DPSS windows. Will be 1D if `Kmax` is None.
    r : ndarray, shape (Kmax,) or float, optional
        The concentration ratios for the windows. Only returned if
        `return_ratios` evaluates to True. Will be 0D if `Kmax` is None.

    Notes
    -----
    This computation uses the tridiagonal eigenvector formulation given
    in [2]_.

    The default normalization for ``Kmax=None``, i.e. window-generation mode,
    simply using the l-infinity norm would create a window with two unity
    values, which creates slight normalization differences between even and odd
    orders. The approximate correction of ``M**2/float(M**2+NW)`` for even
    sample numbers is used to counteract this effect (see Examples below).

    For very long signals (e.g., 1e6 elements), it can be useful to compute
    windows orders of magnitude shorter and use interpolation (e.g.,
    `scipy.interpolate.interp1d`) to obtain tapers of length `M`,
    but this in general will not preserve orthogonality between the tapers.

    .. versionadded:: 1.1

    References
    ----------
    .. [1] Percival DB, Walden WT. Spectral Analysis for Physical Applications:
       Multitaper and Conventional Univariate Techniques.
       Cambridge University Press; 1993.
    .. [2] Slepian, D. Prolate spheroidal wave functions, Fourier analysis, and
       uncertainty V: The discrete case. Bell System Technical Journal,
       Volume 57 (1978), 1371430.
    .. [3] Kaiser, JF, Schafer RW. On the Use of the I0-Sinh Window for
       Spectrum Analysis. IEEE Transactions on Acoustics, Speech and
       Signal Processing. ASSP-28 (1): 105-107; 1980.

    Examples
    --------
    We can compare the window to `kaiser`, which was invented as an alternative
    that was easier to calculate [3]_ (example adapted from
    `here <https://ccrma.stanford.edu/~jos/sasp/Kaiser_DPSS_Windows_Compared.html>`_):

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.signal import windows, freqz
    >>> N = 51
    >>> fig, axes = plt.subplots(3, 2, figsize=(5, 7))
    >>> for ai, alpha in enumerate((1, 3, 5)):
    ...     win_dpss = windows.dpss(N, alpha)
    ...     beta = alpha*np.pi
    ...     win_kaiser = windows.kaiser(N, beta)
    ...     for win, c in ((win_dpss, 'k'), (win_kaiser, 'r')):
    ...         win /= win.sum()
    ...         axes[ai, 0].plot(win, color=c, lw=1.)
    ...         axes[ai, 0].set(xlim=[0, N-1], title=r'$\\alpha$ = %s' % alpha,
    ...                         ylabel='Amplitude')
    ...         w, h = freqz(win)
    ...         axes[ai, 1].plot(w, 20 * np.log10(np.abs(h)), color=c, lw=1.)
    ...         axes[ai, 1].set(xlim=[0, np.pi],
    ...                         title=r'$\\beta$ = %0.2f' % beta,
    ...                         ylabel='Magnitude (dB)')
    >>> for ax in axes.ravel():
    ...     ax.grid(True)
    >>> axes[2, 1].legend(['DPSS', 'Kaiser'])
    >>> fig.tight_layout()
    >>> plt.show()

    And here are examples of the first four windows, along with their
    concentration ratios:

    >>> M = 512
    >>> NW = 2.5
    >>> win, eigvals = windows.dpss(M, NW, 4, return_ratios=True)
    >>> fig, ax = plt.subplots(1)
    >>> ax.plot(win.T, linewidth=1.)
    >>> ax.set(xlim=[0, M-1], ylim=[-0.1, 0.1], xlabel='Samples',
    ...        title='DPSS, M=%d, NW=%0.1f' % (M, NW))
    >>> ax.legend(['win[%d] (%0.4f)' % (ii, ratio)
    ...            for ii, ratio in enumerate(eigvals)])
    >>> fig.tight_layout()
    >>> plt.show()

    Using a standard :math:`l_{\\infty}` norm would produce two unity values
    for even `M`, but only one unity value for odd `M`. This produces uneven
    window power that can be counteracted by the approximate correction
    ``M**2/float(M**2+NW)``, which can be selected by using
    ``norm='approximate'`` (which is the same as ``norm=None`` when
    ``Kmax=None``, as is the case here). Alternatively, the slower
    ``norm='subsample'`` can be used, which uses subsample shifting in the
    frequency domain (FFT) to compute the correction:

    >>> Ms = np.arange(1, 41)
    >>> factors = (50, 20, 10, 5, 2.0001)
    >>> energy = np.empty((3, len(Ms), len(factors)))
    >>> for mi, M in enumerate(Ms):
    ...     for fi, factor in enumerate(factors):
    ...         NW = M / float(factor)
    ...         # Corrected using empirical approximation (default)
    ...         win = windows.dpss(M, NW)
    ...         energy[0, mi, fi] = np.sum(win ** 2) / np.sqrt(M)
    ...         # Corrected using subsample shifting
    ...         win = windows.dpss(M, NW, norm='subsample')
    ...         energy[1, mi, fi] = np.sum(win ** 2) / np.sqrt(M)
    ...         # Uncorrected (using l-infinity norm)
    ...         win /= win.max()
    ...         energy[2, mi, fi] = np.sum(win ** 2) / np.sqrt(M)
    >>> fig, ax = plt.subplots(1)
    >>> hs = ax.plot(Ms, energy[2], '-o', markersize=4,
    ...              markeredgecolor='none')
    >>> leg = [hs[-1]]
    >>> for hi, hh in enumerate(hs):
    ...     h1 = ax.plot(Ms, energy[0, :, hi], '-o', markersize=4,
    ...                  color=hh.get_color(), markeredgecolor='none',
    ...                  alpha=0.66)
    ...     h2 = ax.plot(Ms, energy[1, :, hi], '-o', markersize=4,
    ...                  color=hh.get_color(), markeredgecolor='none',
    ...                  alpha=0.33)
    ...     if hi == len(hs) - 1:
    ...         leg.insert(0, h1[0])
    ...         leg.insert(0, h2[0])
    >>> ax.set(xlabel='M (samples)', ylabel=r'Power / $\\sqrt{M}$')
    >>> ax.legend(leg, ['Uncorrected', r'Corrected: $\\frac{M^2}{M^2+NW}$',
    ...                 'Corrected (subsample)'])
    >>> fig.tight_layout()

    """  # noqa: E501
    if _len_guards(M):
        return np.ones(M)
    if norm is None:
        norm = 'approximate' if Kmax is None else 2
    known_norms = (2, 'approximate', 'subsample')
    if norm not in known_norms:
        raise ValueError('norm must be one of %s, got %s'
                         % (known_norms, norm))
    if Kmax is None:
        singleton = True
        Kmax = 1
    else:
        singleton = False
    Kmax = operator.index(Kmax)
    if not 0 < Kmax <= M:
        raise ValueError('Kmax must be greater than 0 and less than M')
    if NW >= M/2.:
        raise ValueError('NW must be less than M/2.')
    if NW <= 0:
        raise ValueError('NW must be positive')
    M, needs_trunc = _extend(M, sym)
    W = float(NW) / M
    nidx = np.arange(M)

    # Here we want to set up an optimization problem to find a sequence
    # whose energy is maximally concentrated within band [-W,W].
    # Thus, the measure lambda(T,W) is the ratio between the energy within
    # that band, and the total energy. This leads to the eigen-system
    # (A - (l1)I)v = 0, where the eigenvector corresponding to the largest
    # eigenvalue is the sequence with maximally concentrated energy. The
    # collection of eigenvectors of this system are called Slepian
    # sequences, or discrete prolate spheroidal sequences (DPSS). Only the
    # first K, K = 2NW/dt orders of DPSS will exhibit good spectral
    # concentration
    # [see https://en.wikipedia.org/wiki/Spectral_concentration_problem]

    # Here we set up an alternative symmetric tri-diagonal eigenvalue
    # problem such that
    # (B - (l2)I)v = 0, and v are our DPSS (but eigenvalues l2 != l1)
    # the main diagonal = ([N-1-2*t]/2)**2 cos(2PIW), t=[0,1,2,...,N-1]
    # and the first off-diagonal = t(N-t)/2, t=[1,2,...,N-1]
    # [see Percival and Walden, 1993]
    d = ((M - 1 - 2 * nidx) / 2.) ** 2 * np.cos(2 * np.pi * W)
    e = nidx[1:] * (M - nidx[1:]) / 2.

    # only calculate the highest Kmax eigenvalues
    w, windows = linalg.eigh_tridiagonal(
        d, e, select='i', select_range=(M - Kmax, M - 1))
    w = w[::-1]
    windows = windows[:, ::-1].T

    # By convention (Percival and Walden, 1993 pg 379)
    # * symmetric tapers (k=0,2,4,...) should have a positive average.
    fix_even = (windows[::2].sum(axis=1) < 0)
    for i, f in enumerate(fix_even):
        if f:
            windows[2 * i] *= -1
    # * antisymmetric tapers should begin with a positive lobe
    #   (this depends on the definition of "lobe", here we'll take the first
    #   point above the numerical noise, which should be good enough for
    #   sufficiently smooth functions, and more robust than relying on an
    #   algorithm that uses max(abs(w)), which is susceptible to numerical
    #   noise problems)
    thresh = max(1e-7, 1. / M)
    for i, w in enumerate(windows[1::2]):
        if w[w * w > thresh][0] < 0:
            windows[2 * i + 1] *= -1

    # Now find the eigenvalues of the original spectral concentration problem
    # Use the autocorr sequence technique from Percival and Walden, 1993 pg 390
    if return_ratios:
        dpss_rxx = _fftautocorr(windows)
        r = 4 * W * np.sinc(2 * W * nidx)
        r[0] = 2 * W
        ratios = np.dot(dpss_rxx, r)
        if singleton:
            ratios = ratios[0]
    # Deal with sym and Kmax=None
    if norm != 2:
        windows /= windows.max()
        if M % 2 == 0:
            if norm == 'approximate':
                correction = M**2 / float(M**2 + NW)
            else:
                s = sp_fft.rfft(windows[0])
                shift = -(1 - 1./M) * np.arange(1, M//2 + 1)
                s[1:] *= 2 * np.exp(-1j * np.pi * shift)
                correction = M / s.real.sum()
            windows *= correction
    # else we're already l2 normed, so do nothing
    if needs_trunc:
        windows = windows[:, :-1]
    if singleton:
        windows = windows[0]
    return (windows, ratios) if return_ratios else windows


def _fftautocorr(x):
    """Compute the autocorrelation of a real array and crop the result."""
    N = x.shape[-1]
    use_N = sp_fft.next_fast_len(2*N-1)
    x_fft = sp_fft.rfft(x, use_N, axis=-1)
    cxy = sp_fft.irfft(x_fft * x_fft.conj(), n=use_N)[:, :N]
    # Or equivalently (but in most cases slower):
    # cxy = np.array([np.convolve(xx, yy[::-1], mode='full')
    #                 for xx, yy in zip(x, x)])[:, N-1:2*N-1]
    return cxy


_win_equiv_raw = {
    ('barthann', 'brthan', 'bth'): (barthann, False),
    ('bartlett', 'bart', 'brt'): (bartlett, False),
    ('blackman', 'black', 'blk'): (blackman, False),
    ('blackmanharris', 'blackharr', 'bkh'): (blackmanharris, False),
    ('bohman', 'bman', 'bmn'): (bohman, False),
    ('boxcar', 'box', 'ones',
        'rect', 'rectangular'): (boxcar, False),
    ('chebwin', 'cheb'): (chebwin, True),
    ('cosine', 'halfcosine'): (cosine, False),
    ('exponential', 'poisson'): (exponential, True),
    ('flattop', 'flat', 'flt'): (flattop, False),
    ('gaussian', 'gauss', 'gss'): (gaussian, True),
    ('general gaussian', 'general_gaussian',
        'general gauss', 'general_gauss', 'ggs'): (general_gaussian, True),
    ('hamming', 'hamm', 'ham'): (hamming, False),
    ('hanning', 'hann', 'han'): (hann, False),
    ('kaiser', 'ksr'): (kaiser, True),
    ('nuttall', 'nutl', 'nut'): (nuttall, False),
    ('parzen', 'parz', 'par'): (parzen, False),
    ('slepian', 'slep', 'optimal', 'dpss', 'dss'): (slepian, True),
    ('triangle', 'triang', 'tri'): (triang, False),
    ('tukey', 'tuk'): (tukey, True),
}

# Fill dict with all valid window name strings
_win_equiv = {}
for k, v in _win_equiv_raw.items():
    for key in k:
        _win_equiv[key] = v[0]

# Keep track of which windows need additional parameters
_needs_param = set()
for k, v in _win_equiv_raw.items():
    if v[1]:
        _needs_param.update(k)


def get_window(window, Nx, fftbins=True):
    """
    Return a window of a given length and type.

    Parameters
    ----------
    window : string, float, or tuple
        The type of window to create. See below for more details.
    Nx : int
        The number of samples in the window.
    fftbins : bool, optional
        If True (default), create a "periodic" window, ready to use with
        `ifftshift` and be multiplied by the result of an FFT (see also
        :func:`~scipy.fft.fftfreq`).
        If False, create a "symmetric" window, for use in filter design.

    Returns
    -------
    get_window : ndarray
        Returns a window of length `Nx` and type `window`

    Notes
    -----
    Window types:

    - `~scipy.signal.windows.boxcar`
    - `~scipy.signal.windows.triang`
    - `~scipy.signal.windows.blackman`
    - `~scipy.signal.windows.hamming`
    - `~scipy.signal.windows.hann`
    - `~scipy.signal.windows.bartlett`
    - `~scipy.signal.windows.flattop`
    - `~scipy.signal.windows.parzen`
    - `~scipy.signal.windows.bohman`
    - `~scipy.signal.windows.blackmanharris`
    - `~scipy.signal.windows.nuttall`
    - `~scipy.signal.windows.barthann`
    - `~scipy.signal.windows.kaiser` (needs beta)
    - `~scipy.signal.windows.gaussian` (needs standard deviation)
    - `~scipy.signal.windows.general_gaussian` (needs power, width)
    - `~scipy.signal.windows.slepian` (needs width)
    - `~scipy.signal.windows.dpss` (needs normalized half-bandwidth)
    - `~scipy.signal.windows.chebwin` (needs attenuation)
    - `~scipy.signal.windows.exponential` (needs decay scale)
    - `~scipy.signal.windows.tukey` (needs taper fraction)

    If the window requires no parameters, then `window` can be a string.

    If the window requires parameters, then `window` must be a tuple
    with the first argument the string name of the window, and the next
    arguments the needed parameters.

    If `window` is a floating point number, it is interpreted as the beta
    parameter of the `~scipy.signal.windows.kaiser` window.

    Each of the window types listed above is also the name of
    a function that can be called directly to create a window of
    that type.

    Examples
    --------
    >>> from scipy import signal
    >>> signal.get_window('triang', 7)
    array([ 0.125,  0.375,  0.625,  0.875,  0.875,  0.625,  0.375])
    >>> signal.get_window(('kaiser', 4.0), 9)
    array([ 0.08848053,  0.29425961,  0.56437221,  0.82160913,  0.97885093,
            0.97885093,  0.82160913,  0.56437221,  0.29425961])
    >>> signal.get_window(4.0, 9)
    array([ 0.08848053,  0.29425961,  0.56437221,  0.82160913,  0.97885093,
            0.97885093,  0.82160913,  0.56437221,  0.29425961])

    """
    sym = not fftbins
    try:
        beta = float(window)
    except (TypeError, ValueError):
        args = ()
        if isinstance(window, tuple):
            winstr = window[0]
            if len(window) > 1:
                args = window[1:]
        elif isinstance(window, string_types):
            if window in _needs_param:
                raise ValueError("The '" + window + "' window needs one or "
                                 "more parameters -- pass a tuple.")
            else:
                winstr = window
        else:
            raise ValueError("%s as window type is not supported." %
                             str(type(window)))

        try:
            winfunc = _win_equiv[winstr]
        except KeyError:
            raise ValueError("Unknown window type.")

        params = (Nx,) + args + (sym,)
    else:
        winfunc = kaiser
        params = (Nx, beta, sym)

    return winfunc(*params)