construct.py
25.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
"""Functions to construct sparse matrices
"""
from __future__ import division, print_function, absolute_import
__docformat__ = "restructuredtext en"
__all__ = ['spdiags', 'eye', 'identity', 'kron', 'kronsum',
'hstack', 'vstack', 'bmat', 'rand', 'random', 'diags', 'block_diag']
import numpy as np
from scipy._lib._numpy_compat import get_randint
from scipy._lib.six import xrange
from .sputils import upcast, get_index_dtype, isscalarlike
from .csr import csr_matrix
from .csc import csc_matrix
from .bsr import bsr_matrix
from .coo import coo_matrix
from .dia import dia_matrix
from .base import issparse
def spdiags(data, diags, m, n, format=None):
"""
Return a sparse matrix from diagonals.
Parameters
----------
data : array_like
matrix diagonals stored row-wise
diags : diagonals to set
- k = 0 the main diagonal
- k > 0 the k-th upper diagonal
- k < 0 the k-th lower diagonal
m, n : int
shape of the result
format : str, optional
Format of the result. By default (format=None) an appropriate sparse
matrix format is returned. This choice is subject to change.
See Also
--------
diags : more convenient form of this function
dia_matrix : the sparse DIAgonal format.
Examples
--------
>>> from scipy.sparse import spdiags
>>> data = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
>>> diags = np.array([0, -1, 2])
>>> spdiags(data, diags, 4, 4).toarray()
array([[1, 0, 3, 0],
[1, 2, 0, 4],
[0, 2, 3, 0],
[0, 0, 3, 4]])
"""
return dia_matrix((data, diags), shape=(m,n)).asformat(format)
def diags(diagonals, offsets=0, shape=None, format=None, dtype=None):
"""
Construct a sparse matrix from diagonals.
Parameters
----------
diagonals : sequence of array_like
Sequence of arrays containing the matrix diagonals,
corresponding to `offsets`.
offsets : sequence of int or an int, optional
Diagonals to set:
- k = 0 the main diagonal (default)
- k > 0 the k-th upper diagonal
- k < 0 the k-th lower diagonal
shape : tuple of int, optional
Shape of the result. If omitted, a square matrix large enough
to contain the diagonals is returned.
format : {"dia", "csr", "csc", "lil", ...}, optional
Matrix format of the result. By default (format=None) an
appropriate sparse matrix format is returned. This choice is
subject to change.
dtype : dtype, optional
Data type of the matrix.
See Also
--------
spdiags : construct matrix from diagonals
Notes
-----
This function differs from `spdiags` in the way it handles
off-diagonals.
The result from `diags` is the sparse equivalent of::
np.diag(diagonals[0], offsets[0])
+ ...
+ np.diag(diagonals[k], offsets[k])
Repeated diagonal offsets are disallowed.
.. versionadded:: 0.11
Examples
--------
>>> from scipy.sparse import diags
>>> diagonals = [[1, 2, 3, 4], [1, 2, 3], [1, 2]]
>>> diags(diagonals, [0, -1, 2]).toarray()
array([[1, 0, 1, 0],
[1, 2, 0, 2],
[0, 2, 3, 0],
[0, 0, 3, 4]])
Broadcasting of scalars is supported (but shape needs to be
specified):
>>> diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)).toarray()
array([[-2., 1., 0., 0.],
[ 1., -2., 1., 0.],
[ 0., 1., -2., 1.],
[ 0., 0., 1., -2.]])
If only one diagonal is wanted (as in `numpy.diag`), the following
works as well:
>>> diags([1, 2, 3], 1).toarray()
array([[ 0., 1., 0., 0.],
[ 0., 0., 2., 0.],
[ 0., 0., 0., 3.],
[ 0., 0., 0., 0.]])
"""
# if offsets is not a sequence, assume that there's only one diagonal
if isscalarlike(offsets):
# now check that there's actually only one diagonal
if len(diagonals) == 0 or isscalarlike(diagonals[0]):
diagonals = [np.atleast_1d(diagonals)]
else:
raise ValueError("Different number of diagonals and offsets.")
else:
diagonals = list(map(np.atleast_1d, diagonals))
offsets = np.atleast_1d(offsets)
# Basic check
if len(diagonals) != len(offsets):
raise ValueError("Different number of diagonals and offsets.")
# Determine shape, if omitted
if shape is None:
m = len(diagonals[0]) + abs(int(offsets[0]))
shape = (m, m)
# Determine data type, if omitted
if dtype is None:
dtype = np.common_type(*diagonals)
# Construct data array
m, n = shape
M = max([min(m + offset, n - offset) + max(0, offset)
for offset in offsets])
M = max(0, M)
data_arr = np.zeros((len(offsets), M), dtype=dtype)
K = min(m, n)
for j, diagonal in enumerate(diagonals):
offset = offsets[j]
k = max(0, offset)
length = min(m + offset, n - offset, K)
if length < 0:
raise ValueError("Offset %d (index %d) out of bounds" % (offset, j))
try:
data_arr[j, k:k+length] = diagonal[...,:length]
except ValueError:
if len(diagonal) != length and len(diagonal) != 1:
raise ValueError(
"Diagonal length (index %d: %d at offset %d) does not "
"agree with matrix size (%d, %d)." % (
j, len(diagonal), offset, m, n))
raise
return dia_matrix((data_arr, offsets), shape=(m, n)).asformat(format)
def identity(n, dtype='d', format=None):
"""Identity matrix in sparse format
Returns an identity matrix with shape (n,n) using a given
sparse format and dtype.
Parameters
----------
n : int
Shape of the identity matrix.
dtype : dtype, optional
Data type of the matrix
format : str, optional
Sparse format of the result, e.g. format="csr", etc.
Examples
--------
>>> from scipy.sparse import identity
>>> identity(3).toarray()
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
>>> identity(3, dtype='int8', format='dia')
<3x3 sparse matrix of type '<class 'numpy.int8'>'
with 3 stored elements (1 diagonals) in DIAgonal format>
"""
return eye(n, n, dtype=dtype, format=format)
def eye(m, n=None, k=0, dtype=float, format=None):
"""Sparse matrix with ones on diagonal
Returns a sparse (m x n) matrix where the k-th diagonal
is all ones and everything else is zeros.
Parameters
----------
m : int
Number of rows in the matrix.
n : int, optional
Number of columns. Default: `m`.
k : int, optional
Diagonal to place ones on. Default: 0 (main diagonal).
dtype : dtype, optional
Data type of the matrix.
format : str, optional
Sparse format of the result, e.g. format="csr", etc.
Examples
--------
>>> from scipy import sparse
>>> sparse.eye(3).toarray()
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
>>> sparse.eye(3, dtype=np.int8)
<3x3 sparse matrix of type '<class 'numpy.int8'>'
with 3 stored elements (1 diagonals) in DIAgonal format>
"""
if n is None:
n = m
m,n = int(m),int(n)
if m == n and k == 0:
# fast branch for special formats
if format in ['csr', 'csc']:
idx_dtype = get_index_dtype(maxval=n)
indptr = np.arange(n+1, dtype=idx_dtype)
indices = np.arange(n, dtype=idx_dtype)
data = np.ones(n, dtype=dtype)
cls = {'csr': csr_matrix, 'csc': csc_matrix}[format]
return cls((data,indices,indptr),(n,n))
elif format == 'coo':
idx_dtype = get_index_dtype(maxval=n)
row = np.arange(n, dtype=idx_dtype)
col = np.arange(n, dtype=idx_dtype)
data = np.ones(n, dtype=dtype)
return coo_matrix((data,(row,col)),(n,n))
diags = np.ones((1, max(0, min(m + k, n))), dtype=dtype)
return spdiags(diags, k, m, n).asformat(format)
def kron(A, B, format=None):
"""kronecker product of sparse matrices A and B
Parameters
----------
A : sparse or dense matrix
first matrix of the product
B : sparse or dense matrix
second matrix of the product
format : str, optional
format of the result (e.g. "csr")
Returns
-------
kronecker product in a sparse matrix format
Examples
--------
>>> from scipy import sparse
>>> A = sparse.csr_matrix(np.array([[0, 2], [5, 0]]))
>>> B = sparse.csr_matrix(np.array([[1, 2], [3, 4]]))
>>> sparse.kron(A, B).toarray()
array([[ 0, 0, 2, 4],
[ 0, 0, 6, 8],
[ 5, 10, 0, 0],
[15, 20, 0, 0]])
>>> sparse.kron(A, [[1, 2], [3, 4]]).toarray()
array([[ 0, 0, 2, 4],
[ 0, 0, 6, 8],
[ 5, 10, 0, 0],
[15, 20, 0, 0]])
"""
B = coo_matrix(B)
if (format is None or format == "bsr") and 2*B.nnz >= B.shape[0] * B.shape[1]:
# B is fairly dense, use BSR
A = csr_matrix(A,copy=True)
output_shape = (A.shape[0]*B.shape[0], A.shape[1]*B.shape[1])
if A.nnz == 0 or B.nnz == 0:
# kronecker product is the zero matrix
return coo_matrix(output_shape)
B = B.toarray()
data = A.data.repeat(B.size).reshape(-1,B.shape[0],B.shape[1])
data = data * B
return bsr_matrix((data,A.indices,A.indptr), shape=output_shape)
else:
# use COO
A = coo_matrix(A)
output_shape = (A.shape[0]*B.shape[0], A.shape[1]*B.shape[1])
if A.nnz == 0 or B.nnz == 0:
# kronecker product is the zero matrix
return coo_matrix(output_shape)
# expand entries of a into blocks
row = A.row.repeat(B.nnz)
col = A.col.repeat(B.nnz)
data = A.data.repeat(B.nnz)
row *= B.shape[0]
col *= B.shape[1]
# increment block indices
row,col = row.reshape(-1,B.nnz),col.reshape(-1,B.nnz)
row += B.row
col += B.col
row,col = row.reshape(-1),col.reshape(-1)
# compute block entries
data = data.reshape(-1,B.nnz) * B.data
data = data.reshape(-1)
return coo_matrix((data,(row,col)), shape=output_shape).asformat(format)
def kronsum(A, B, format=None):
"""kronecker sum of sparse matrices A and B
Kronecker sum of two sparse matrices is a sum of two Kronecker
products kron(I_n,A) + kron(B,I_m) where A has shape (m,m)
and B has shape (n,n) and I_m and I_n are identity matrices
of shape (m,m) and (n,n) respectively.
Parameters
----------
A
square matrix
B
square matrix
format : str
format of the result (e.g. "csr")
Returns
-------
kronecker sum in a sparse matrix format
Examples
--------
"""
A = coo_matrix(A)
B = coo_matrix(B)
if A.shape[0] != A.shape[1]:
raise ValueError('A is not square')
if B.shape[0] != B.shape[1]:
raise ValueError('B is not square')
dtype = upcast(A.dtype, B.dtype)
L = kron(eye(B.shape[0],dtype=dtype), A, format=format)
R = kron(B, eye(A.shape[0],dtype=dtype), format=format)
return (L+R).asformat(format) # since L + R is not always same format
def _compressed_sparse_stack(blocks, axis):
"""
Stacking fast path for CSR/CSC matrices
(i) vstack for CSR, (ii) hstack for CSC.
"""
other_axis = 1 if axis == 0 else 0
data = np.concatenate([b.data for b in blocks])
constant_dim = blocks[0].shape[other_axis]
idx_dtype = get_index_dtype(arrays=[b.indptr for b in blocks],
maxval=max(data.size, constant_dim))
indices = np.empty(data.size, dtype=idx_dtype)
indptr = np.empty(sum(b.shape[axis] for b in blocks) + 1, dtype=idx_dtype)
last_indptr = idx_dtype(0)
sum_dim = 0
sum_indices = 0
for b in blocks:
if b.shape[other_axis] != constant_dim:
raise ValueError('incompatible dimensions for axis %d' % other_axis)
indices[sum_indices:sum_indices+b.indices.size] = b.indices
sum_indices += b.indices.size
idxs = slice(sum_dim, sum_dim + b.shape[axis])
indptr[idxs] = b.indptr[:-1]
indptr[idxs] += last_indptr
sum_dim += b.shape[axis]
last_indptr += b.indptr[-1]
indptr[-1] = last_indptr
if axis == 0:
return csr_matrix((data, indices, indptr),
shape=(sum_dim, constant_dim))
else:
return csc_matrix((data, indices, indptr),
shape=(constant_dim, sum_dim))
def hstack(blocks, format=None, dtype=None):
"""
Stack sparse matrices horizontally (column wise)
Parameters
----------
blocks
sequence of sparse matrices with compatible shapes
format : str
sparse format of the result (e.g. "csr")
by default an appropriate sparse matrix format is returned.
This choice is subject to change.
dtype : dtype, optional
The data-type of the output matrix. If not given, the dtype is
determined from that of `blocks`.
See Also
--------
vstack : stack sparse matrices vertically (row wise)
Examples
--------
>>> from scipy.sparse import coo_matrix, hstack
>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5], [6]])
>>> hstack([A,B]).toarray()
array([[1, 2, 5],
[3, 4, 6]])
"""
return bmat([blocks], format=format, dtype=dtype)
def vstack(blocks, format=None, dtype=None):
"""
Stack sparse matrices vertically (row wise)
Parameters
----------
blocks
sequence of sparse matrices with compatible shapes
format : str, optional
sparse format of the result (e.g. "csr")
by default an appropriate sparse matrix format is returned.
This choice is subject to change.
dtype : dtype, optional
The data-type of the output matrix. If not given, the dtype is
determined from that of `blocks`.
See Also
--------
hstack : stack sparse matrices horizontally (column wise)
Examples
--------
>>> from scipy.sparse import coo_matrix, vstack
>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5, 6]])
>>> vstack([A, B]).toarray()
array([[1, 2],
[3, 4],
[5, 6]])
"""
return bmat([[b] for b in blocks], format=format, dtype=dtype)
def bmat(blocks, format=None, dtype=None):
"""
Build a sparse matrix from sparse sub-blocks
Parameters
----------
blocks : array_like
Grid of sparse matrices with compatible shapes.
An entry of None implies an all-zero matrix.
format : {'bsr', 'coo', 'csc', 'csr', 'dia', 'dok', 'lil'}, optional
The sparse format of the result (e.g. "csr"). By default an
appropriate sparse matrix format is returned.
This choice is subject to change.
dtype : dtype, optional
The data-type of the output matrix. If not given, the dtype is
determined from that of `blocks`.
Returns
-------
bmat : sparse matrix
See Also
--------
block_diag, diags
Examples
--------
>>> from scipy.sparse import coo_matrix, bmat
>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5], [6]])
>>> C = coo_matrix([[7]])
>>> bmat([[A, B], [None, C]]).toarray()
array([[1, 2, 5],
[3, 4, 6],
[0, 0, 7]])
>>> bmat([[A, None], [None, C]]).toarray()
array([[1, 2, 0],
[3, 4, 0],
[0, 0, 7]])
"""
blocks = np.asarray(blocks, dtype='object')
if blocks.ndim != 2:
raise ValueError('blocks must be 2-D')
M,N = blocks.shape
# check for fast path cases
if (N == 1 and format in (None, 'csr') and all(isinstance(b, csr_matrix)
for b in blocks.flat)):
A = _compressed_sparse_stack(blocks[:,0], 0)
if dtype is not None:
A = A.astype(dtype)
return A
elif (M == 1 and format in (None, 'csc')
and all(isinstance(b, csc_matrix) for b in blocks.flat)):
A = _compressed_sparse_stack(blocks[0,:], 1)
if dtype is not None:
A = A.astype(dtype)
return A
block_mask = np.zeros(blocks.shape, dtype=bool)
brow_lengths = np.zeros(M, dtype=np.int64)
bcol_lengths = np.zeros(N, dtype=np.int64)
# convert everything to COO format
for i in range(M):
for j in range(N):
if blocks[i,j] is not None:
A = coo_matrix(blocks[i,j])
blocks[i,j] = A
block_mask[i,j] = True
if brow_lengths[i] == 0:
brow_lengths[i] = A.shape[0]
elif brow_lengths[i] != A.shape[0]:
msg = ('blocks[{i},:] has incompatible row dimensions. '
'Got blocks[{i},{j}].shape[0] == {got}, '
'expected {exp}.'.format(i=i, j=j,
exp=brow_lengths[i],
got=A.shape[0]))
raise ValueError(msg)
if bcol_lengths[j] == 0:
bcol_lengths[j] = A.shape[1]
elif bcol_lengths[j] != A.shape[1]:
msg = ('blocks[:,{j}] has incompatible row dimensions. '
'Got blocks[{i},{j}].shape[1] == {got}, '
'expected {exp}.'.format(i=i, j=j,
exp=bcol_lengths[j],
got=A.shape[1]))
raise ValueError(msg)
nnz = sum(block.nnz for block in blocks[block_mask])
if dtype is None:
all_dtypes = [blk.dtype for blk in blocks[block_mask]]
dtype = upcast(*all_dtypes) if all_dtypes else None
row_offsets = np.append(0, np.cumsum(brow_lengths))
col_offsets = np.append(0, np.cumsum(bcol_lengths))
shape = (row_offsets[-1], col_offsets[-1])
data = np.empty(nnz, dtype=dtype)
idx_dtype = get_index_dtype(maxval=max(shape))
row = np.empty(nnz, dtype=idx_dtype)
col = np.empty(nnz, dtype=idx_dtype)
nnz = 0
ii, jj = np.nonzero(block_mask)
for i, j in zip(ii, jj):
B = blocks[i, j]
idx = slice(nnz, nnz + B.nnz)
data[idx] = B.data
row[idx] = B.row + row_offsets[i]
col[idx] = B.col + col_offsets[j]
nnz += B.nnz
return coo_matrix((data, (row, col)), shape=shape).asformat(format)
def block_diag(mats, format=None, dtype=None):
"""
Build a block diagonal sparse matrix from provided matrices.
Parameters
----------
mats : sequence of matrices
Input matrices.
format : str, optional
The sparse format of the result (e.g. "csr"). If not given, the matrix
is returned in "coo" format.
dtype : dtype specifier, optional
The data-type of the output matrix. If not given, the dtype is
determined from that of `blocks`.
Returns
-------
res : sparse matrix
Notes
-----
.. versionadded:: 0.11.0
See Also
--------
bmat, diags
Examples
--------
>>> from scipy.sparse import coo_matrix, block_diag
>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5], [6]])
>>> C = coo_matrix([[7]])
>>> block_diag((A, B, C)).toarray()
array([[1, 2, 0, 0],
[3, 4, 0, 0],
[0, 0, 5, 0],
[0, 0, 6, 0],
[0, 0, 0, 7]])
"""
nmat = len(mats)
rows = []
for ia, a in enumerate(mats):
row = [None]*nmat
if issparse(a):
row[ia] = a
else:
row[ia] = coo_matrix(a)
rows.append(row)
return bmat(rows, format=format, dtype=dtype)
def random(m, n, density=0.01, format='coo', dtype=None,
random_state=None, data_rvs=None):
"""Generate a sparse matrix of the given shape and density with randomly
distributed values.
Parameters
----------
m, n : int
shape of the matrix
density : real, optional
density of the generated matrix: density equal to one means a full
matrix, density of 0 means a matrix with no non-zero items.
format : str, optional
sparse matrix format.
dtype : dtype, optional
type of the returned matrix values.
random_state : {numpy.random.RandomState, int}, optional
Random number generator or random seed. If not given, the singleton
numpy.random will be used. This random state will be used
for sampling the sparsity structure, but not necessarily for sampling
the values of the structurally nonzero entries of the matrix.
data_rvs : callable, optional
Samples a requested number of random values.
This function should take a single argument specifying the length
of the ndarray that it will return. The structurally nonzero entries
of the sparse random matrix will be taken from the array sampled
by this function. By default, uniform [0, 1) random values will be
sampled using the same random state as is used for sampling
the sparsity structure.
Returns
-------
res : sparse matrix
Notes
-----
Only float types are supported for now.
Examples
--------
>>> from scipy.sparse import random
>>> from scipy import stats
>>> class CustomRandomState(np.random.RandomState):
... def randint(self, k):
... i = np.random.randint(k)
... return i - i % 2
>>> np.random.seed(12345)
>>> rs = CustomRandomState()
>>> rvs = stats.poisson(25, loc=10).rvs
>>> S = random(3, 4, density=0.25, random_state=rs, data_rvs=rvs)
>>> S.A
array([[ 36., 0., 33., 0.], # random
[ 0., 0., 0., 0.],
[ 0., 0., 36., 0.]])
>>> from scipy.sparse import random
>>> from scipy.stats import rv_continuous
>>> class CustomDistribution(rv_continuous):
... def _rvs(self, *args, **kwargs):
... return self._random_state.randn(*self._size)
>>> X = CustomDistribution(seed=2906)
>>> Y = X() # get a frozen version of the distribution
>>> S = random(3, 4, density=0.25, random_state=2906, data_rvs=Y.rvs)
>>> S.A
array([[ 0. , 0. , 0. , 0. ],
[ 0.13569738, 1.9467163 , -0.81205367, 0. ],
[ 0. , 0. , 0. , 0. ]])
"""
if density < 0 or density > 1:
raise ValueError("density expected to be 0 <= density <= 1")
dtype = np.dtype(dtype)
mn = m * n
tp = np.intc
if mn > np.iinfo(tp).max:
tp = np.int64
if mn > np.iinfo(tp).max:
msg = """\
Trying to generate a random sparse matrix such as the product of dimensions is
greater than %d - this is not supported on this machine
"""
raise ValueError(msg % np.iinfo(tp).max)
# Number of non zero values
k = int(density * m * n)
if random_state is None:
random_state = np.random
elif isinstance(random_state, (int, np.integer)):
random_state = np.random.RandomState(random_state)
if data_rvs is None:
if np.issubdtype(dtype, np.integer):
randint = get_randint(random_state)
def data_rvs(n):
return randint(np.iinfo(dtype).min, np.iinfo(dtype).max,
n, dtype=dtype)
elif np.issubdtype(dtype, np.complexfloating):
def data_rvs(n):
return random_state.rand(n) + random_state.rand(n) * 1j
else:
data_rvs = random_state.rand
ind = random_state.choice(mn, size=k, replace=False)
j = np.floor(ind * 1. / m).astype(tp, copy=False)
i = (ind - j * m).astype(tp, copy=False)
vals = data_rvs(k).astype(dtype, copy=False)
return coo_matrix((vals, (i, j)), shape=(m, n)).asformat(format,
copy=False)
def rand(m, n, density=0.01, format="coo", dtype=None, random_state=None):
"""Generate a sparse matrix of the given shape and density with uniformly
distributed values.
Parameters
----------
m, n : int
shape of the matrix
density : real, optional
density of the generated matrix: density equal to one means a full
matrix, density of 0 means a matrix with no non-zero items.
format : str, optional
sparse matrix format.
dtype : dtype, optional
type of the returned matrix values.
random_state : {numpy.random.RandomState, int}, optional
Random number generator or random seed. If not given, the singleton
numpy.random will be used.
Returns
-------
res : sparse matrix
Notes
-----
Only float types are supported for now.
See Also
--------
scipy.sparse.random : Similar function that allows a user-specified random
data source.
Examples
--------
>>> from scipy.sparse import rand
>>> matrix = rand(3, 4, density=0.25, format="csr", random_state=42)
>>> matrix
<3x4 sparse matrix of type '<class 'numpy.float64'>'
with 3 stored elements in Compressed Sparse Row format>
>>> matrix.todense()
matrix([[0.05641158, 0. , 0. , 0.65088847],
[0. , 0. , 0. , 0.14286682],
[0. , 0. , 0. , 0. ]])
"""
return random(m, n, density, format, dtype, random_state)