lil.py
18 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
"""List of Lists sparse matrix class
"""
from __future__ import division, print_function, absolute_import
__docformat__ = "restructuredtext en"
__all__ = ['lil_matrix', 'isspmatrix_lil']
from bisect import bisect_left
import numpy as np
from scipy._lib.six import xrange, zip
from .base import spmatrix, isspmatrix
from ._index import IndexMixin, INT_TYPES, _broadcast_arrays
from .sputils import (getdtype, isshape, isscalarlike, upcast_scalar,
get_index_dtype, check_shape, check_reshape_kwargs,
asmatrix)
from . import _csparsetools
class lil_matrix(spmatrix, IndexMixin):
"""Row-based list of lists sparse matrix
This is a structure for constructing sparse matrices incrementally.
Note that inserting a single item can take linear time in the worst case;
to construct a matrix efficiently, make sure the items are pre-sorted by
index, per row.
This can be instantiated in several ways:
lil_matrix(D)
with a dense matrix or rank-2 ndarray D
lil_matrix(S)
with another sparse matrix S (equivalent to S.tolil())
lil_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype='d'.
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
Number of stored values, including explicit zeros
data
LIL format data array of the matrix
rows
LIL format row index array of the matrix
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Advantages of the LIL format
- supports flexible slicing
- changes to the matrix sparsity structure are efficient
Disadvantages of the LIL format
- arithmetic operations LIL + LIL are slow (consider CSR or CSC)
- slow column slicing (consider CSC)
- slow matrix vector products (consider CSR or CSC)
Intended Usage
- LIL is a convenient format for constructing sparse matrices
- once a matrix has been constructed, convert to CSR or
CSC format for fast arithmetic and matrix vector operations
- consider using the COO format when constructing large matrices
Data Structure
- An array (``self.rows``) of rows, each of which is a sorted
list of column indices of non-zero elements.
- The corresponding nonzero values are stored in similar
fashion in ``self.data``.
"""
format = 'lil'
def __init__(self, arg1, shape=None, dtype=None, copy=False):
spmatrix.__init__(self)
self.dtype = getdtype(dtype, arg1, default=float)
# First get the shape
if isspmatrix(arg1):
if isspmatrix_lil(arg1) and copy:
A = arg1.copy()
else:
A = arg1.tolil()
if dtype is not None:
A = A.astype(dtype)
self._shape = check_shape(A.shape)
self.dtype = A.dtype
self.rows = A.rows
self.data = A.data
elif isinstance(arg1,tuple):
if isshape(arg1):
if shape is not None:
raise ValueError('invalid use of shape parameter')
M, N = arg1
self._shape = check_shape((M, N))
self.rows = np.empty((M,), dtype=object)
self.data = np.empty((M,), dtype=object)
for i in range(M):
self.rows[i] = []
self.data[i] = []
else:
raise TypeError('unrecognized lil_matrix constructor usage')
else:
# assume A is dense
try:
A = asmatrix(arg1)
except TypeError:
raise TypeError('unsupported matrix type')
else:
from .csr import csr_matrix
A = csr_matrix(A, dtype=dtype).tolil()
self._shape = check_shape(A.shape)
self.dtype = A.dtype
self.rows = A.rows
self.data = A.data
def __iadd__(self,other):
self[:,:] = self + other
return self
def __isub__(self,other):
self[:,:] = self - other
return self
def __imul__(self,other):
if isscalarlike(other):
self[:,:] = self * other
return self
else:
return NotImplemented
def __itruediv__(self,other):
if isscalarlike(other):
self[:,:] = self / other
return self
else:
return NotImplemented
# Whenever the dimensions change, empty lists should be created for each
# row
def getnnz(self, axis=None):
if axis is None:
return sum([len(rowvals) for rowvals in self.data])
if axis < 0:
axis += 2
if axis == 0:
out = np.zeros(self.shape[1], dtype=np.intp)
for row in self.rows:
out[row] += 1
return out
elif axis == 1:
return np.array([len(rowvals) for rowvals in self.data], dtype=np.intp)
else:
raise ValueError('axis out of bounds')
def count_nonzero(self):
return sum(np.count_nonzero(rowvals) for rowvals in self.data)
getnnz.__doc__ = spmatrix.getnnz.__doc__
count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__
def __str__(self):
val = ''
for i, row in enumerate(self.rows):
for pos, j in enumerate(row):
val += " %s\t%s\n" % (str((i, j)), str(self.data[i][pos]))
return val[:-1]
def getrowview(self, i):
"""Returns a view of the 'i'th row (without copying).
"""
new = lil_matrix((1, self.shape[1]), dtype=self.dtype)
new.rows[0] = self.rows[i]
new.data[0] = self.data[i]
return new
def getrow(self, i):
"""Returns a copy of the 'i'th row.
"""
M, N = self.shape
if i < 0:
i += M
if i < 0 or i >= M:
raise IndexError('row index out of bounds')
new = lil_matrix((1, N), dtype=self.dtype)
new.rows[0] = self.rows[i][:]
new.data[0] = self.data[i][:]
return new
def __getitem__(self, key):
# Fast path for simple (int, int) indexing.
if (isinstance(key, tuple) and len(key) == 2 and
isinstance(key[0], INT_TYPES) and
isinstance(key[1], INT_TYPES)):
# lil_get1 handles validation for us.
return self._get_intXint(*key)
# Everything else takes the normal path.
return IndexMixin.__getitem__(self, key)
def _asindices(self, idx, N):
# LIL routines handle bounds-checking for us, so don't do it here.
try:
x = np.asarray(idx)
except (ValueError, TypeError, MemoryError):
raise IndexError('invalid index')
if x.ndim not in (1, 2):
raise IndexError('Index dimension must be <= 2')
return x
def _get_intXint(self, row, col):
v = _csparsetools.lil_get1(self.shape[0], self.shape[1], self.rows,
self.data, row, col)
return self.dtype.type(v)
def _get_sliceXint(self, row, col):
row = xrange(*row.indices(self.shape[0]))
return self._get_row_ranges(row, slice(col, col+1))
def _get_arrayXint(self, row, col):
return self._get_row_ranges(row, slice(col, col+1))
def _get_intXslice(self, row, col):
return self._get_row_ranges((row,), col)
def _get_sliceXslice(self, row, col):
row = xrange(*row.indices(self.shape[0]))
return self._get_row_ranges(row, col)
def _get_arrayXslice(self, row, col):
return self._get_row_ranges(row, col)
def _get_intXarray(self, row, col):
row = np.array(row, dtype=col.dtype, ndmin=1)
return self._get_columnXarray(row, col)
def _get_sliceXarray(self, row, col):
row = np.arange(*row.indices(self.shape[0]))
return self._get_columnXarray(row, col)
def _get_columnXarray(self, row, col):
# outer indexing
row, col = _broadcast_arrays(row[:,None], col)
return self._get_arrayXarray(row, col)
def _get_arrayXarray(self, row, col):
# inner indexing
i, j = map(np.atleast_2d, _prepare_index_for_memoryview(row, col))
new = lil_matrix(i.shape, dtype=self.dtype)
_csparsetools.lil_fancy_get(self.shape[0], self.shape[1],
self.rows, self.data,
new.rows, new.data,
i, j)
return new
def _get_row_ranges(self, rows, col_slice):
"""
Fast path for indexing in the case where column index is slice.
This gains performance improvement over brute force by more
efficient skipping of zeros, by accessing the elements
column-wise in order.
Parameters
----------
rows : sequence or xrange
Rows indexed. If xrange, must be within valid bounds.
col_slice : slice
Columns indexed
"""
j_start, j_stop, j_stride = col_slice.indices(self.shape[1])
col_range = xrange(j_start, j_stop, j_stride)
nj = len(col_range)
new = lil_matrix((len(rows), nj), dtype=self.dtype)
_csparsetools.lil_get_row_ranges(self.shape[0], self.shape[1],
self.rows, self.data,
new.rows, new.data,
rows,
j_start, j_stop, j_stride, nj)
return new
def _set_intXint(self, row, col, x):
_csparsetools.lil_insert(self.shape[0], self.shape[1], self.rows,
self.data, row, col, x)
def _set_arrayXarray(self, row, col, x):
i, j, x = map(np.atleast_2d, _prepare_index_for_memoryview(row, col, x))
_csparsetools.lil_fancy_set(self.shape[0], self.shape[1],
self.rows, self.data,
i, j, x)
def _set_arrayXarray_sparse(self, row, col, x):
# Special case: full matrix assignment
if (x.shape == self.shape and
isinstance(row, slice) and row == slice(None) and
isinstance(col, slice) and col == slice(None)):
x = lil_matrix(x, dtype=self.dtype)
self.rows = x.rows
self.data = x.data
return
# Fall back to densifying x
x = np.asarray(x.toarray(), dtype=self.dtype)
x, _ = _broadcast_arrays(x, row)
self._set_arrayXarray(row, col, x)
def __setitem__(self, key, x):
# Fast path for simple (int, int) indexing.
if (isinstance(key, tuple) and len(key) == 2 and
isinstance(key[0], INT_TYPES) and
isinstance(key[1], INT_TYPES)):
x = self.dtype.type(x)
if x.size > 1:
raise ValueError("Trying to assign a sequence to an item")
return self._set_intXint(key[0], key[1], x)
# Everything else takes the normal path.
IndexMixin.__setitem__(self, key, x)
def _mul_scalar(self, other):
if other == 0:
# Multiply by zero: return the zero matrix
new = lil_matrix(self.shape, dtype=self.dtype)
else:
res_dtype = upcast_scalar(self.dtype, other)
new = self.copy()
new = new.astype(res_dtype)
# Multiply this scalar by every element.
for j, rowvals in enumerate(new.data):
new.data[j] = [val*other for val in rowvals]
return new
def __truediv__(self, other): # self / other
if isscalarlike(other):
new = self.copy()
# Divide every element by this scalar
for j, rowvals in enumerate(new.data):
new.data[j] = [val/other for val in rowvals]
return new
else:
return self.tocsr() / other
def copy(self):
M, N = self.shape
new = lil_matrix(self.shape, dtype=self.dtype)
# This is ~14x faster than calling deepcopy() on rows and data.
_csparsetools.lil_get_row_ranges(M, N, self.rows, self.data,
new.rows, new.data, xrange(M),
0, N, 1, N)
return new
copy.__doc__ = spmatrix.copy.__doc__
def reshape(self, *args, **kwargs):
shape = check_shape(args, self.shape)
order, copy = check_reshape_kwargs(kwargs)
# Return early if reshape is not required
if shape == self.shape:
if copy:
return self.copy()
else:
return self
new = lil_matrix(shape, dtype=self.dtype)
if order == 'C':
ncols = self.shape[1]
for i, row in enumerate(self.rows):
for col, j in enumerate(row):
new_r, new_c = np.unravel_index(i * ncols + j, shape)
new[new_r, new_c] = self[i, j]
elif order == 'F':
nrows = self.shape[0]
for i, row in enumerate(self.rows):
for col, j in enumerate(row):
new_r, new_c = np.unravel_index(i + j * nrows, shape, order)
new[new_r, new_c] = self[i, j]
else:
raise ValueError("'order' must be 'C' or 'F'")
return new
reshape.__doc__ = spmatrix.reshape.__doc__
def resize(self, *shape):
shape = check_shape(shape)
new_M, new_N = shape
M, N = self.shape
if new_M < M:
self.rows = self.rows[:new_M]
self.data = self.data[:new_M]
elif new_M > M:
self.rows = np.resize(self.rows, new_M)
self.data = np.resize(self.data, new_M)
for i in range(M, new_M):
self.rows[i] = []
self.data[i] = []
if new_N < N:
for row, data in zip(self.rows, self.data):
trunc = bisect_left(row, new_N)
del row[trunc:]
del data[trunc:]
self._shape = shape
resize.__doc__ = spmatrix.resize.__doc__
def toarray(self, order=None, out=None):
d = self._process_toarray_args(order, out)
for i, row in enumerate(self.rows):
for pos, j in enumerate(row):
d[i, j] = self.data[i][pos]
return d
toarray.__doc__ = spmatrix.toarray.__doc__
def transpose(self, axes=None, copy=False):
return self.tocsr(copy=copy).transpose(axes=axes, copy=False).tolil(copy=False)
transpose.__doc__ = spmatrix.transpose.__doc__
def tolil(self, copy=False):
if copy:
return self.copy()
else:
return self
tolil.__doc__ = spmatrix.tolil.__doc__
def tocsr(self, copy=False):
# construct indptr array
M, N = self.shape
lengths = np.fromiter(map(len, self.rows),
dtype=get_index_dtype(maxval=N), count=M)
nnz = lengths.sum()
idx_dtype = get_index_dtype(maxval=max(N, nnz))
indptr = np.empty(M + 1, dtype=idx_dtype)
indptr[0] = 0
np.cumsum(lengths, dtype=idx_dtype, out=indptr[1:])
# construct indices and data array
# using faster construction approach depending on density
# see https://github.com/scipy/scipy/pull/10939 for details
if M == 0:
indices = np.empty(0, dtype=idx_dtype)
data = np.empty(0, dtype=self.dtype)
elif nnz / M > 30:
indices = np.empty(nnz, dtype=idx_dtype)
data = np.empty(nnz, dtype=self.dtype)
start = 0
for i, stop in enumerate(indptr[1:]):
if stop > start:
indices[start:stop] = self.rows[i]
data[start:stop] = self.data[i]
start = stop
else:
indices = np.fromiter((x for y in self.rows for x in y),
dtype=idx_dtype, count=nnz)
data = np.fromiter((x for y in self.data for x in y),
dtype=self.dtype, count=nnz)
# init csr matrix
from .csr import csr_matrix
return csr_matrix((data, indices, indptr), shape=self.shape)
tocsr.__doc__ = spmatrix.tocsr.__doc__
def _prepare_index_for_memoryview(i, j, x=None):
"""
Convert index and data arrays to form suitable for passing to the
Cython fancy getset routines.
The conversions are necessary since to (i) ensure the integer
index arrays are in one of the accepted types, and (ii) to ensure
the arrays are writable so that Cython memoryview support doesn't
choke on them.
Parameters
----------
i, j
Index arrays
x : optional
Data arrays
Returns
-------
i, j, x
Re-formatted arrays (x is omitted, if input was None)
"""
if i.dtype > j.dtype:
j = j.astype(i.dtype)
elif i.dtype < j.dtype:
i = i.astype(j.dtype)
if not i.flags.writeable or i.dtype not in (np.int32, np.int64):
i = i.astype(np.intp)
if not j.flags.writeable or j.dtype not in (np.int32, np.int64):
j = j.astype(np.intp)
if x is not None:
if not x.flags.writeable:
x = x.copy()
return i, j, x
else:
return i, j
def isspmatrix_lil(x):
"""Is x of lil_matrix type?
Parameters
----------
x
object to check for being a lil matrix
Returns
-------
bool
True if x is a lil matrix, False otherwise
Examples
--------
>>> from scipy.sparse import lil_matrix, isspmatrix_lil
>>> isspmatrix_lil(lil_matrix([[5]]))
True
>>> from scipy.sparse import lil_matrix, csr_matrix, isspmatrix_lil
>>> isspmatrix_lil(csr_matrix([[5]]))
False
"""
return isinstance(x, lil_matrix)