matfuncs.py
26.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
"""
Sparse matrix functions
"""
#
# Authors: Travis Oliphant, March 2002
# Anthony Scopatz, August 2012 (Sparse Updates)
# Jake Vanderplas, August 2012 (Sparse Updates)
#
from __future__ import division, print_function, absolute_import
__all__ = ['expm', 'inv']
import math
import numpy as np
import scipy.special
from scipy.linalg.basic import solve, solve_triangular
from scipy.sparse.base import isspmatrix
from scipy.sparse.construct import eye as speye
from scipy.sparse.linalg import spsolve
from scipy.sparse.sputils import is_pydata_spmatrix
import scipy.sparse
import scipy.sparse.linalg
from scipy.sparse.linalg.interface import LinearOperator
from ._expm_multiply import _ident_like, _exact_1_norm as _onenorm
UPPER_TRIANGULAR = 'upper_triangular'
def inv(A):
"""
Compute the inverse of a sparse matrix
Parameters
----------
A : (M,M) ndarray or sparse matrix
square matrix to be inverted
Returns
-------
Ainv : (M,M) ndarray or sparse matrix
inverse of `A`
Notes
-----
This computes the sparse inverse of `A`. If the inverse of `A` is expected
to be non-sparse, it will likely be faster to convert `A` to dense and use
scipy.linalg.inv.
Examples
--------
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import inv
>>> A = csc_matrix([[1., 0.], [1., 2.]])
>>> Ainv = inv(A)
>>> Ainv
<2x2 sparse matrix of type '<class 'numpy.float64'>'
with 3 stored elements in Compressed Sparse Column format>
>>> A.dot(Ainv)
<2x2 sparse matrix of type '<class 'numpy.float64'>'
with 2 stored elements in Compressed Sparse Column format>
>>> A.dot(Ainv).todense()
matrix([[ 1., 0.],
[ 0., 1.]])
.. versionadded:: 0.12.0
"""
#check input
if not (scipy.sparse.isspmatrix(A) or is_pydata_spmatrix(A)):
raise TypeError('Input must be a sparse matrix')
I = _ident_like(A)
Ainv = spsolve(A, I)
return Ainv
def _onenorm_matrix_power_nnm(A, p):
"""
Compute the 1-norm of a non-negative integer power of a non-negative matrix.
Parameters
----------
A : a square ndarray or matrix or sparse matrix
Input matrix with non-negative entries.
p : non-negative integer
The power to which the matrix is to be raised.
Returns
-------
out : float
The 1-norm of the matrix power p of A.
"""
# check input
if int(p) != p or p < 0:
raise ValueError('expected non-negative integer p')
p = int(p)
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
raise ValueError('expected A to be like a square matrix')
# Explicitly make a column vector so that this works when A is a
# numpy matrix (in addition to ndarray and sparse matrix).
v = np.ones((A.shape[0], 1), dtype=float)
M = A.T
for i in range(p):
v = M.dot(v)
return np.max(v)
def _is_upper_triangular(A):
# This function could possibly be of wider interest.
if isspmatrix(A):
lower_part = scipy.sparse.tril(A, -1)
# Check structural upper triangularity,
# then coincidental upper triangularity if needed.
return lower_part.nnz == 0 or lower_part.count_nonzero() == 0
elif is_pydata_spmatrix(A):
import sparse
lower_part = sparse.tril(A, -1)
return lower_part.nnz == 0
else:
return not np.tril(A, -1).any()
def _smart_matrix_product(A, B, alpha=None, structure=None):
"""
A matrix product that knows about sparse and structured matrices.
Parameters
----------
A : 2d ndarray
First matrix.
B : 2d ndarray
Second matrix.
alpha : float
The matrix product will be scaled by this constant.
structure : str, optional
A string describing the structure of both matrices `A` and `B`.
Only `upper_triangular` is currently supported.
Returns
-------
M : 2d ndarray
Matrix product of A and B.
"""
if len(A.shape) != 2:
raise ValueError('expected A to be a rectangular matrix')
if len(B.shape) != 2:
raise ValueError('expected B to be a rectangular matrix')
f = None
if structure == UPPER_TRIANGULAR:
if (not isspmatrix(A) and not isspmatrix(B)
and not is_pydata_spmatrix(A) and not is_pydata_spmatrix(B)):
f, = scipy.linalg.get_blas_funcs(('trmm',), (A, B))
if f is not None:
if alpha is None:
alpha = 1.
out = f(alpha, A, B)
else:
if alpha is None:
out = A.dot(B)
else:
out = alpha * A.dot(B)
return out
class MatrixPowerOperator(LinearOperator):
def __init__(self, A, p, structure=None):
if A.ndim != 2 or A.shape[0] != A.shape[1]:
raise ValueError('expected A to be like a square matrix')
if p < 0:
raise ValueError('expected p to be a non-negative integer')
self._A = A
self._p = p
self._structure = structure
self.dtype = A.dtype
self.ndim = A.ndim
self.shape = A.shape
def _matvec(self, x):
for i in range(self._p):
x = self._A.dot(x)
return x
def _rmatvec(self, x):
A_T = self._A.T
x = x.ravel()
for i in range(self._p):
x = A_T.dot(x)
return x
def _matmat(self, X):
for i in range(self._p):
X = _smart_matrix_product(self._A, X, structure=self._structure)
return X
@property
def T(self):
return MatrixPowerOperator(self._A.T, self._p)
class ProductOperator(LinearOperator):
"""
For now, this is limited to products of multiple square matrices.
"""
def __init__(self, *args, **kwargs):
self._structure = kwargs.get('structure', None)
for A in args:
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
raise ValueError(
'For now, the ProductOperator implementation is '
'limited to the product of multiple square matrices.')
if args:
n = args[0].shape[0]
for A in args:
for d in A.shape:
if d != n:
raise ValueError(
'The square matrices of the ProductOperator '
'must all have the same shape.')
self.shape = (n, n)
self.ndim = len(self.shape)
self.dtype = np.find_common_type([x.dtype for x in args], [])
self._operator_sequence = args
def _matvec(self, x):
for A in reversed(self._operator_sequence):
x = A.dot(x)
return x
def _rmatvec(self, x):
x = x.ravel()
for A in self._operator_sequence:
x = A.T.dot(x)
return x
def _matmat(self, X):
for A in reversed(self._operator_sequence):
X = _smart_matrix_product(A, X, structure=self._structure)
return X
@property
def T(self):
T_args = [A.T for A in reversed(self._operator_sequence)]
return ProductOperator(*T_args)
def _onenormest_matrix_power(A, p,
t=2, itmax=5, compute_v=False, compute_w=False, structure=None):
"""
Efficiently estimate the 1-norm of A^p.
Parameters
----------
A : ndarray
Matrix whose 1-norm of a power is to be computed.
p : int
Non-negative integer power.
t : int, optional
A positive parameter controlling the tradeoff between
accuracy versus time and memory usage.
Larger values take longer and use more memory
but give more accurate output.
itmax : int, optional
Use at most this many iterations.
compute_v : bool, optional
Request a norm-maximizing linear operator input vector if True.
compute_w : bool, optional
Request a norm-maximizing linear operator output vector if True.
Returns
-------
est : float
An underestimate of the 1-norm of the sparse matrix.
v : ndarray, optional
The vector such that ||Av||_1 == est*||v||_1.
It can be thought of as an input to the linear operator
that gives an output with particularly large norm.
w : ndarray, optional
The vector Av which has relatively large 1-norm.
It can be thought of as an output of the linear operator
that is relatively large in norm compared to the input.
"""
return scipy.sparse.linalg.onenormest(
MatrixPowerOperator(A, p, structure=structure))
def _onenormest_product(operator_seq,
t=2, itmax=5, compute_v=False, compute_w=False, structure=None):
"""
Efficiently estimate the 1-norm of the matrix product of the args.
Parameters
----------
operator_seq : linear operator sequence
Matrices whose 1-norm of product is to be computed.
t : int, optional
A positive parameter controlling the tradeoff between
accuracy versus time and memory usage.
Larger values take longer and use more memory
but give more accurate output.
itmax : int, optional
Use at most this many iterations.
compute_v : bool, optional
Request a norm-maximizing linear operator input vector if True.
compute_w : bool, optional
Request a norm-maximizing linear operator output vector if True.
structure : str, optional
A string describing the structure of all operators.
Only `upper_triangular` is currently supported.
Returns
-------
est : float
An underestimate of the 1-norm of the sparse matrix.
v : ndarray, optional
The vector such that ||Av||_1 == est*||v||_1.
It can be thought of as an input to the linear operator
that gives an output with particularly large norm.
w : ndarray, optional
The vector Av which has relatively large 1-norm.
It can be thought of as an output of the linear operator
that is relatively large in norm compared to the input.
"""
return scipy.sparse.linalg.onenormest(
ProductOperator(*operator_seq, structure=structure))
class _ExpmPadeHelper(object):
"""
Help lazily evaluate a matrix exponential.
The idea is to not do more work than we need for high expm precision,
so we lazily compute matrix powers and store or precompute
other properties of the matrix.
"""
def __init__(self, A, structure=None, use_exact_onenorm=False):
"""
Initialize the object.
Parameters
----------
A : a dense or sparse square numpy matrix or ndarray
The matrix to be exponentiated.
structure : str, optional
A string describing the structure of matrix `A`.
Only `upper_triangular` is currently supported.
use_exact_onenorm : bool, optional
If True then only the exact one-norm of matrix powers and products
will be used. Otherwise, the one-norm of powers and products
may initially be estimated.
"""
self.A = A
self._A2 = None
self._A4 = None
self._A6 = None
self._A8 = None
self._A10 = None
self._d4_exact = None
self._d6_exact = None
self._d8_exact = None
self._d10_exact = None
self._d4_approx = None
self._d6_approx = None
self._d8_approx = None
self._d10_approx = None
self.ident = _ident_like(A)
self.structure = structure
self.use_exact_onenorm = use_exact_onenorm
@property
def A2(self):
if self._A2 is None:
self._A2 = _smart_matrix_product(
self.A, self.A, structure=self.structure)
return self._A2
@property
def A4(self):
if self._A4 is None:
self._A4 = _smart_matrix_product(
self.A2, self.A2, structure=self.structure)
return self._A4
@property
def A6(self):
if self._A6 is None:
self._A6 = _smart_matrix_product(
self.A4, self.A2, structure=self.structure)
return self._A6
@property
def A8(self):
if self._A8 is None:
self._A8 = _smart_matrix_product(
self.A6, self.A2, structure=self.structure)
return self._A8
@property
def A10(self):
if self._A10 is None:
self._A10 = _smart_matrix_product(
self.A4, self.A6, structure=self.structure)
return self._A10
@property
def d4_tight(self):
if self._d4_exact is None:
self._d4_exact = _onenorm(self.A4)**(1/4.)
return self._d4_exact
@property
def d6_tight(self):
if self._d6_exact is None:
self._d6_exact = _onenorm(self.A6)**(1/6.)
return self._d6_exact
@property
def d8_tight(self):
if self._d8_exact is None:
self._d8_exact = _onenorm(self.A8)**(1/8.)
return self._d8_exact
@property
def d10_tight(self):
if self._d10_exact is None:
self._d10_exact = _onenorm(self.A10)**(1/10.)
return self._d10_exact
@property
def d4_loose(self):
if self.use_exact_onenorm:
return self.d4_tight
if self._d4_exact is not None:
return self._d4_exact
else:
if self._d4_approx is None:
self._d4_approx = _onenormest_matrix_power(self.A2, 2,
structure=self.structure)**(1/4.)
return self._d4_approx
@property
def d6_loose(self):
if self.use_exact_onenorm:
return self.d6_tight
if self._d6_exact is not None:
return self._d6_exact
else:
if self._d6_approx is None:
self._d6_approx = _onenormest_matrix_power(self.A2, 3,
structure=self.structure)**(1/6.)
return self._d6_approx
@property
def d8_loose(self):
if self.use_exact_onenorm:
return self.d8_tight
if self._d8_exact is not None:
return self._d8_exact
else:
if self._d8_approx is None:
self._d8_approx = _onenormest_matrix_power(self.A4, 2,
structure=self.structure)**(1/8.)
return self._d8_approx
@property
def d10_loose(self):
if self.use_exact_onenorm:
return self.d10_tight
if self._d10_exact is not None:
return self._d10_exact
else:
if self._d10_approx is None:
self._d10_approx = _onenormest_product((self.A4, self.A6),
structure=self.structure)**(1/10.)
return self._d10_approx
def pade3(self):
b = (120., 60., 12., 1.)
U = _smart_matrix_product(self.A,
b[3]*self.A2 + b[1]*self.ident,
structure=self.structure)
V = b[2]*self.A2 + b[0]*self.ident
return U, V
def pade5(self):
b = (30240., 15120., 3360., 420., 30., 1.)
U = _smart_matrix_product(self.A,
b[5]*self.A4 + b[3]*self.A2 + b[1]*self.ident,
structure=self.structure)
V = b[4]*self.A4 + b[2]*self.A2 + b[0]*self.ident
return U, V
def pade7(self):
b = (17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.)
U = _smart_matrix_product(self.A,
b[7]*self.A6 + b[5]*self.A4 + b[3]*self.A2 + b[1]*self.ident,
structure=self.structure)
V = b[6]*self.A6 + b[4]*self.A4 + b[2]*self.A2 + b[0]*self.ident
return U, V
def pade9(self):
b = (17643225600., 8821612800., 2075673600., 302702400., 30270240.,
2162160., 110880., 3960., 90., 1.)
U = _smart_matrix_product(self.A,
(b[9]*self.A8 + b[7]*self.A6 + b[5]*self.A4 +
b[3]*self.A2 + b[1]*self.ident),
structure=self.structure)
V = (b[8]*self.A8 + b[6]*self.A6 + b[4]*self.A4 +
b[2]*self.A2 + b[0]*self.ident)
return U, V
def pade13_scaled(self, s):
b = (64764752532480000., 32382376266240000., 7771770303897600.,
1187353796428800., 129060195264000., 10559470521600.,
670442572800., 33522128640., 1323241920., 40840800., 960960.,
16380., 182., 1.)
B = self.A * 2**-s
B2 = self.A2 * 2**(-2*s)
B4 = self.A4 * 2**(-4*s)
B6 = self.A6 * 2**(-6*s)
U2 = _smart_matrix_product(B6,
b[13]*B6 + b[11]*B4 + b[9]*B2,
structure=self.structure)
U = _smart_matrix_product(B,
(U2 + b[7]*B6 + b[5]*B4 +
b[3]*B2 + b[1]*self.ident),
structure=self.structure)
V2 = _smart_matrix_product(B6,
b[12]*B6 + b[10]*B4 + b[8]*B2,
structure=self.structure)
V = V2 + b[6]*B6 + b[4]*B4 + b[2]*B2 + b[0]*self.ident
return U, V
def expm(A):
"""
Compute the matrix exponential using Pade approximation.
Parameters
----------
A : (M,M) array_like or sparse matrix
2D Array or Matrix (sparse or dense) to be exponentiated
Returns
-------
expA : (M,M) ndarray
Matrix exponential of `A`
Notes
-----
This is algorithm (6.1) which is a simplification of algorithm (5.1).
.. versionadded:: 0.12.0
References
----------
.. [1] Awad H. Al-Mohy and Nicholas J. Higham (2009)
"A New Scaling and Squaring Algorithm for the Matrix Exponential."
SIAM Journal on Matrix Analysis and Applications.
31 (3). pp. 970-989. ISSN 1095-7162
Examples
--------
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import expm
>>> A = csc_matrix([[1, 0, 0], [0, 2, 0], [0, 0, 3]])
>>> A.todense()
matrix([[1, 0, 0],
[0, 2, 0],
[0, 0, 3]], dtype=int64)
>>> Aexp = expm(A)
>>> Aexp
<3x3 sparse matrix of type '<class 'numpy.float64'>'
with 3 stored elements in Compressed Sparse Column format>
>>> Aexp.todense()
matrix([[ 2.71828183, 0. , 0. ],
[ 0. , 7.3890561 , 0. ],
[ 0. , 0. , 20.08553692]])
"""
return _expm(A, use_exact_onenorm='auto')
def _expm(A, use_exact_onenorm):
# Core of expm, separated to allow testing exact and approximate
# algorithms.
# Avoid indiscriminate asarray() to allow sparse or other strange arrays.
if isinstance(A, (list, tuple, np.matrix)):
A = np.asarray(A)
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
raise ValueError('expected a square matrix')
# Trivial case
if A.shape == (1, 1):
out = [[np.exp(A[0, 0])]]
# Avoid indiscriminate casting to ndarray to
# allow for sparse or other strange arrays
if isspmatrix(A) or is_pydata_spmatrix(A):
return A.__class__(out)
return np.array(out)
# Ensure input is of float type, to avoid integer overflows etc.
if ((isinstance(A, np.ndarray) or isspmatrix(A) or is_pydata_spmatrix(A))
and not np.issubdtype(A.dtype, np.inexact)):
A = A.astype(float)
# Detect upper triangularity.
structure = UPPER_TRIANGULAR if _is_upper_triangular(A) else None
if use_exact_onenorm == "auto":
# Hardcode a matrix order threshold for exact vs. estimated one-norms.
use_exact_onenorm = A.shape[0] < 200
# Track functions of A to help compute the matrix exponential.
h = _ExpmPadeHelper(
A, structure=structure, use_exact_onenorm=use_exact_onenorm)
# Try Pade order 3.
eta_1 = max(h.d4_loose, h.d6_loose)
if eta_1 < 1.495585217958292e-002 and _ell(h.A, 3) == 0:
U, V = h.pade3()
return _solve_P_Q(U, V, structure=structure)
# Try Pade order 5.
eta_2 = max(h.d4_tight, h.d6_loose)
if eta_2 < 2.539398330063230e-001 and _ell(h.A, 5) == 0:
U, V = h.pade5()
return _solve_P_Q(U, V, structure=structure)
# Try Pade orders 7 and 9.
eta_3 = max(h.d6_tight, h.d8_loose)
if eta_3 < 9.504178996162932e-001 and _ell(h.A, 7) == 0:
U, V = h.pade7()
return _solve_P_Q(U, V, structure=structure)
if eta_3 < 2.097847961257068e+000 and _ell(h.A, 9) == 0:
U, V = h.pade9()
return _solve_P_Q(U, V, structure=structure)
# Use Pade order 13.
eta_4 = max(h.d8_loose, h.d10_loose)
eta_5 = min(eta_3, eta_4)
theta_13 = 4.25
# Choose smallest s>=0 such that 2**(-s) eta_5 <= theta_13
if eta_5 == 0:
# Nilpotent special case
s = 0
else:
s = max(int(np.ceil(np.log2(eta_5 / theta_13))), 0)
s = s + _ell(2**-s * h.A, 13)
U, V = h.pade13_scaled(s)
X = _solve_P_Q(U, V, structure=structure)
if structure == UPPER_TRIANGULAR:
# Invoke Code Fragment 2.1.
X = _fragment_2_1(X, h.A, s)
else:
# X = r_13(A)^(2^s) by repeated squaring.
for i in range(s):
X = X.dot(X)
return X
def _solve_P_Q(U, V, structure=None):
"""
A helper function for expm_2009.
Parameters
----------
U : ndarray
Pade numerator.
V : ndarray
Pade denominator.
structure : str, optional
A string describing the structure of both matrices `U` and `V`.
Only `upper_triangular` is currently supported.
Notes
-----
The `structure` argument is inspired by similar args
for theano and cvxopt functions.
"""
P = U + V
Q = -U + V
if isspmatrix(U) or is_pydata_spmatrix(U):
return spsolve(Q, P)
elif structure is None:
return solve(Q, P)
elif structure == UPPER_TRIANGULAR:
return solve_triangular(Q, P)
else:
raise ValueError('unsupported matrix structure: ' + str(structure))
def _sinch(x):
"""
Stably evaluate sinch.
Notes
-----
The strategy of falling back to a sixth order Taylor expansion
was suggested by the Spallation Neutron Source docs
which was found on the internet by google search.
http://www.ornl.gov/~t6p/resources/xal/javadoc/gov/sns/tools/math/ElementaryFunction.html
The details of the cutoff point and the Horner-like evaluation
was picked without reference to anything in particular.
Note that sinch is not currently implemented in scipy.special,
whereas the "engineer's" definition of sinc is implemented.
The implementation of sinc involves a scaling factor of pi
that distinguishes it from the "mathematician's" version of sinc.
"""
# If x is small then use sixth order Taylor expansion.
# How small is small? I am using the point where the relative error
# of the approximation is less than 1e-14.
# If x is large then directly evaluate sinh(x) / x.
x2 = x*x
if abs(x) < 0.0135:
return 1 + (x2/6.)*(1 + (x2/20.)*(1 + (x2/42.)))
else:
return np.sinh(x) / x
def _eq_10_42(lam_1, lam_2, t_12):
"""
Equation (10.42) of Functions of Matrices: Theory and Computation.
Notes
-----
This is a helper function for _fragment_2_1 of expm_2009.
Equation (10.42) is on page 251 in the section on Schur algorithms.
In particular, section 10.4.3 explains the Schur-Parlett algorithm.
expm([[lam_1, t_12], [0, lam_1])
=
[[exp(lam_1), t_12*exp((lam_1 + lam_2)/2)*sinch((lam_1 - lam_2)/2)],
[0, exp(lam_2)]
"""
# The plain formula t_12 * (exp(lam_2) - exp(lam_2)) / (lam_2 - lam_1)
# apparently suffers from cancellation, according to Higham's textbook.
# A nice implementation of sinch, defined as sinh(x)/x,
# will apparently work around the cancellation.
a = 0.5 * (lam_1 + lam_2)
b = 0.5 * (lam_1 - lam_2)
return t_12 * np.exp(a) * _sinch(b)
def _fragment_2_1(X, T, s):
"""
A helper function for expm_2009.
Notes
-----
The argument X is modified in-place, but this modification is not the same
as the returned value of the function.
This function also takes pains to do things in ways that are compatible
with sparse matrices, for example by avoiding fancy indexing
and by using methods of the matrices whenever possible instead of
using functions of the numpy or scipy libraries themselves.
"""
# Form X = r_m(2^-s T)
# Replace diag(X) by exp(2^-s diag(T)).
n = X.shape[0]
diag_T = np.ravel(T.diagonal().copy())
# Replace diag(X) by exp(2^-s diag(T)).
scale = 2 ** -s
exp_diag = np.exp(scale * diag_T)
for k in range(n):
X[k, k] = exp_diag[k]
for i in range(s-1, -1, -1):
X = X.dot(X)
# Replace diag(X) by exp(2^-i diag(T)).
scale = 2 ** -i
exp_diag = np.exp(scale * diag_T)
for k in range(n):
X[k, k] = exp_diag[k]
# Replace (first) superdiagonal of X by explicit formula
# for superdiagonal of exp(2^-i T) from Eq (10.42) of
# the author's 2008 textbook
# Functions of Matrices: Theory and Computation.
for k in range(n-1):
lam_1 = scale * diag_T[k]
lam_2 = scale * diag_T[k+1]
t_12 = scale * T[k, k+1]
value = _eq_10_42(lam_1, lam_2, t_12)
X[k, k+1] = value
# Return the updated X matrix.
return X
def _ell(A, m):
"""
A helper function for expm_2009.
Parameters
----------
A : linear operator
A linear operator whose norm of power we care about.
m : int
The power of the linear operator
Returns
-------
value : int
A value related to a bound.
"""
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
raise ValueError('expected A to be like a square matrix')
# The c_i are explained in (2.2) and (2.6) of the 2005 expm paper.
# They are coefficients of terms of a generating function series expansion.
choose_2m_m = scipy.special.comb(2*m, m, exact=True)
abs_c_recip = float(choose_2m_m * math.factorial(2*m + 1))
# This is explained after Eq. (1.2) of the 2009 expm paper.
# It is the "unit roundoff" of IEEE double precision arithmetic.
u = 2**-53
# Compute the one-norm of matrix power p of abs(A).
A_abs_onenorm = _onenorm_matrix_power_nnm(abs(A), 2*m + 1)
# Treat zero norm as a special case.
if not A_abs_onenorm:
return 0
alpha = A_abs_onenorm / (_onenorm(A) * abs_c_recip)
log2_alpha_div_u = np.log2(alpha/u)
value = int(np.ceil(log2_alpha_div_u / (2 * m)))
return max(value, 0)