_basic.py 65.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
#
# Author:  Travis Oliphant, 2002
#

from __future__ import division, print_function, absolute_import

import operator
import numpy as np
import math
from scipy._lib.six import xrange
from numpy import (pi, asarray, floor, isscalar, iscomplex, real,
                   imag, sqrt, where, mgrid, sin, place, issubdtype,
                   extract, inexact, nan, zeros, sinc)
from . import _ufuncs as ufuncs
from ._ufuncs import (mathieu_a, mathieu_b, iv, jv, gamma,
                      psi, hankel1, hankel2, yv, kv, ndtri,
                      poch, binom, hyp0f1)
from . import specfun
from . import orthogonal
from ._comb import _comb_int


__all__ = [
    'ai_zeros',
    'assoc_laguerre',
    'bei_zeros',
    'beip_zeros',
    'ber_zeros',
    'bernoulli',
    'berp_zeros',
    'bi_zeros',
    'clpmn',
    'comb',
    'digamma',
    'diric',
    'erf_zeros',
    'erfcinv',
    'erfinv',
    'euler',
    'factorial',
    'factorial2',
    'factorialk',
    'fresnel_zeros',
    'fresnelc_zeros',
    'fresnels_zeros',
    'gamma',
    'h1vp',
    'h2vp',
    'hankel1',
    'hankel2',
    'hyp0f1',
    'iv',
    'ivp',
    'jn_zeros',
    'jnjnp_zeros',
    'jnp_zeros',
    'jnyn_zeros',
    'jv',
    'jvp',
    'kei_zeros',
    'keip_zeros',
    'kelvin_zeros',
    'ker_zeros',
    'kerp_zeros',
    'kv',
    'kvp',
    'lmbda',
    'lpmn',
    'lpn',
    'lqmn',
    'lqn',
    'mathieu_a',
    'mathieu_b',
    'mathieu_even_coef',
    'mathieu_odd_coef',
    'ndtri',
    'obl_cv_seq',
    'pbdn_seq',
    'pbdv_seq',
    'pbvv_seq',
    'perm',
    'polygamma',
    'pro_cv_seq',
    'psi',
    'riccati_jn',
    'riccati_yn',
    'sinc',
    'y0_zeros',
    'y1_zeros',
    'y1p_zeros',
    'yn_zeros',
    'ynp_zeros',
    'yv',
    'yvp',
    'zeta'
]


def _nonneg_int_or_fail(n, var_name, strict=True):
    try:
        if strict:
            # Raises an exception if float
            n = operator.index(n)
        elif n == floor(n):
            n = int(n)
        else:
            raise ValueError()
        if n < 0:
            raise ValueError()
    except (ValueError, TypeError) as err:
        raise err.__class__("{} must be a non-negative integer".format(var_name))
    return n


def diric(x, n):
    """Periodic sinc function, also called the Dirichlet function.

    The Dirichlet function is defined as::

        diric(x, n) = sin(x * n/2) / (n * sin(x / 2)),

    where `n` is a positive integer.

    Parameters
    ----------
    x : array_like
        Input data
    n : int
        Integer defining the periodicity.

    Returns
    -------
    diric : ndarray

    Examples
    --------
    >>> from scipy import special
    >>> import matplotlib.pyplot as plt

    >>> x = np.linspace(-8*np.pi, 8*np.pi, num=201)
    >>> plt.figure(figsize=(8, 8));
    >>> for idx, n in enumerate([2, 3, 4, 9]):
    ...     plt.subplot(2, 2, idx+1)
    ...     plt.plot(x, special.diric(x, n))
    ...     plt.title('diric, n={}'.format(n))
    >>> plt.show()

    The following example demonstrates that `diric` gives the magnitudes
    (modulo the sign and scaling) of the Fourier coefficients of a
    rectangular pulse.

    Suppress output of values that are effectively 0:

    >>> np.set_printoptions(suppress=True)

    Create a signal `x` of length `m` with `k` ones:

    >>> m = 8
    >>> k = 3
    >>> x = np.zeros(m)
    >>> x[:k] = 1

    Use the FFT to compute the Fourier transform of `x`, and
    inspect the magnitudes of the coefficients:

    >>> np.abs(np.fft.fft(x))
    array([ 3.        ,  2.41421356,  1.        ,  0.41421356,  1.        ,
            0.41421356,  1.        ,  2.41421356])

    Now find the same values (up to sign) using `diric`.  We multiply
    by `k` to account for the different scaling conventions of
    `numpy.fft.fft` and `diric`:

    >>> theta = np.linspace(0, 2*np.pi, m, endpoint=False)
    >>> k * special.diric(theta, k)
    array([ 3.        ,  2.41421356,  1.        , -0.41421356, -1.        ,
           -0.41421356,  1.        ,  2.41421356])
    """
    x, n = asarray(x), asarray(n)
    n = asarray(n + (x-x))
    x = asarray(x + (n-n))
    if issubdtype(x.dtype, inexact):
        ytype = x.dtype
    else:
        ytype = float
    y = zeros(x.shape, ytype)

    # empirical minval for 32, 64 or 128 bit float computations
    # where sin(x/2) < minval, result is fixed at +1 or -1
    if np.finfo(ytype).eps < 1e-18:
        minval = 1e-11
    elif np.finfo(ytype).eps < 1e-15:
        minval = 1e-7
    else:
        minval = 1e-3

    mask1 = (n <= 0) | (n != floor(n))
    place(y, mask1, nan)

    x = x / 2
    denom = sin(x)
    mask2 = (1-mask1) & (abs(denom) < minval)
    xsub = extract(mask2, x)
    nsub = extract(mask2, n)
    zsub = xsub / pi
    place(y, mask2, pow(-1, np.round(zsub)*(nsub-1)))

    mask = (1-mask1) & (1-mask2)
    xsub = extract(mask, x)
    nsub = extract(mask, n)
    dsub = extract(mask, denom)
    place(y, mask, sin(nsub*xsub)/(nsub*dsub))
    return y


def jnjnp_zeros(nt):
    """Compute zeros of integer-order Bessel functions Jn and Jn'.

    Results are arranged in order of the magnitudes of the zeros.

    Parameters
    ----------
    nt : int
        Number (<=1200) of zeros to compute

    Returns
    -------
    zo[l-1] : ndarray
        Value of the lth zero of Jn(x) and Jn'(x). Of length `nt`.
    n[l-1] : ndarray
        Order of the Jn(x) or Jn'(x) associated with lth zero. Of length `nt`.
    m[l-1] : ndarray
        Serial number of the zeros of Jn(x) or Jn'(x) associated
        with lth zero. Of length `nt`.
    t[l-1] : ndarray
        0 if lth zero in zo is zero of Jn(x), 1 if it is a zero of Jn'(x). Of
        length `nt`.

    See Also
    --------
    jn_zeros, jnp_zeros : to get separated arrays of zeros.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 5.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not isscalar(nt) or (floor(nt) != nt) or (nt > 1200):
        raise ValueError("Number must be integer <= 1200.")
    nt = int(nt)
    n, m, t, zo = specfun.jdzo(nt)
    return zo[1:nt+1], n[:nt], m[:nt], t[:nt]


def jnyn_zeros(n, nt):
    """Compute nt zeros of Bessel functions Jn(x), Jn'(x), Yn(x), and Yn'(x).

    Returns 4 arrays of length `nt`, corresponding to the first `nt` zeros of
    Jn(x), Jn'(x), Yn(x), and Yn'(x), respectively.

    Parameters
    ----------
    n : int
        Order of the Bessel functions
    nt : int
        Number (<=1200) of zeros to compute

    See jn_zeros, jnp_zeros, yn_zeros, ynp_zeros to get separate arrays.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 5.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not (isscalar(nt) and isscalar(n)):
        raise ValueError("Arguments must be scalars.")
    if (floor(n) != n) or (floor(nt) != nt):
        raise ValueError("Arguments must be integers.")
    if (nt <= 0):
        raise ValueError("nt > 0")
    return specfun.jyzo(abs(n), nt)


def jn_zeros(n, nt):
    """Compute zeros of integer-order Bessel function Jn(x).

    Parameters
    ----------
    n : int
        Order of Bessel function
    nt : int
        Number of zeros to return

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 5.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    return jnyn_zeros(n, nt)[0]


def jnp_zeros(n, nt):
    """Compute zeros of integer-order Bessel function derivative Jn'(x).

    Parameters
    ----------
    n : int
        Order of Bessel function
    nt : int
        Number of zeros to return

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 5.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    return jnyn_zeros(n, nt)[1]


def yn_zeros(n, nt):
    """Compute zeros of integer-order Bessel function Yn(x).

    Parameters
    ----------
    n : int
        Order of Bessel function
    nt : int
        Number of zeros to return

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 5.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    return jnyn_zeros(n, nt)[2]


def ynp_zeros(n, nt):
    """Compute zeros of integer-order Bessel function derivative Yn'(x).

    Parameters
    ----------
    n : int
        Order of Bessel function
    nt : int
        Number of zeros to return

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 5.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    return jnyn_zeros(n, nt)[3]


def y0_zeros(nt, complex=False):
    """Compute nt zeros of Bessel function Y0(z), and derivative at each zero.

    The derivatives are given by Y0'(z0) = -Y1(z0) at each zero z0.

    Parameters
    ----------
    nt : int
        Number of zeros to return
    complex : bool, default False
        Set to False to return only the real zeros; set to True to return only
        the complex zeros with negative real part and positive imaginary part.
        Note that the complex conjugates of the latter are also zeros of the
        function, but are not returned by this routine.

    Returns
    -------
    z0n : ndarray
        Location of nth zero of Y0(z)
    y0pz0n : ndarray
        Value of derivative Y0'(z0) for nth zero

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 5.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
        raise ValueError("Arguments must be scalar positive integer.")
    kf = 0
    kc = not complex
    return specfun.cyzo(nt, kf, kc)


def y1_zeros(nt, complex=False):
    """Compute nt zeros of Bessel function Y1(z), and derivative at each zero.

    The derivatives are given by Y1'(z1) = Y0(z1) at each zero z1.

    Parameters
    ----------
    nt : int
        Number of zeros to return
    complex : bool, default False
        Set to False to return only the real zeros; set to True to return only
        the complex zeros with negative real part and positive imaginary part.
        Note that the complex conjugates of the latter are also zeros of the
        function, but are not returned by this routine.

    Returns
    -------
    z1n : ndarray
        Location of nth zero of Y1(z)
    y1pz1n : ndarray
        Value of derivative Y1'(z1) for nth zero

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 5.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
        raise ValueError("Arguments must be scalar positive integer.")
    kf = 1
    kc = not complex
    return specfun.cyzo(nt, kf, kc)


def y1p_zeros(nt, complex=False):
    """Compute nt zeros of Bessel derivative Y1'(z), and value at each zero.

    The values are given by Y1(z1) at each z1 where Y1'(z1)=0.

    Parameters
    ----------
    nt : int
        Number of zeros to return
    complex : bool, default False
        Set to False to return only the real zeros; set to True to return only
        the complex zeros with negative real part and positive imaginary part.
        Note that the complex conjugates of the latter are also zeros of the
        function, but are not returned by this routine.

    Returns
    -------
    z1pn : ndarray
        Location of nth zero of Y1'(z)
    y1z1pn : ndarray
        Value of derivative Y1(z1) for nth zero

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 5.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
        raise ValueError("Arguments must be scalar positive integer.")
    kf = 2
    kc = not complex
    return specfun.cyzo(nt, kf, kc)


def _bessel_diff_formula(v, z, n, L, phase):
    # from AMS55.
    # L(v, z) = J(v, z), Y(v, z), H1(v, z), H2(v, z), phase = -1
    # L(v, z) = I(v, z) or exp(v*pi*i)K(v, z), phase = 1
    # For K, you can pull out the exp((v-k)*pi*i) into the caller
    v = asarray(v)
    p = 1.0
    s = L(v-n, z)
    for i in xrange(1, n+1):
        p = phase * (p * (n-i+1)) / i   # = choose(k, i)
        s += p*L(v-n + i*2, z)
    return s / (2.**n)


def jvp(v, z, n=1):
    """Compute nth derivative of Bessel function Jv(z) with respect to `z`.

    Parameters
    ----------
    v : float
        Order of Bessel function
    z : complex
        Argument at which to evaluate the derivative
    n : int, default 1
        Order of derivative

    Notes
    -----
    The derivative is computed using the relation DLFM 10.6.7 [2]_.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 5.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
    .. [2] NIST Digital Library of Mathematical Functions.
           https://dlmf.nist.gov/10.6.E7

    """
    n = _nonneg_int_or_fail(n, 'n')
    if n == 0:
        return jv(v, z)
    else:
        return _bessel_diff_formula(v, z, n, jv, -1)


def yvp(v, z, n=1):
    """Compute nth derivative of Bessel function Yv(z) with respect to `z`.

    Parameters
    ----------
    v : float
        Order of Bessel function
    z : complex
        Argument at which to evaluate the derivative
    n : int, default 1
        Order of derivative

    Notes
    -----
    The derivative is computed using the relation DLFM 10.6.7 [2]_.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 5.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
    .. [2] NIST Digital Library of Mathematical Functions.
           https://dlmf.nist.gov/10.6.E7

    """
    n = _nonneg_int_or_fail(n, 'n')
    if n == 0:
        return yv(v, z)
    else:
        return _bessel_diff_formula(v, z, n, yv, -1)


def kvp(v, z, n=1):
    """Compute nth derivative of real-order modified Bessel function Kv(z)

    Kv(z) is the modified Bessel function of the second kind.
    Derivative is calculated with respect to `z`.

    Parameters
    ----------
    v : array_like of float
        Order of Bessel function
    z : array_like of complex
        Argument at which to evaluate the derivative
    n : int
        Order of derivative.  Default is first derivative.

    Returns
    -------
    out : ndarray
        The results

    Examples
    --------
    Calculate multiple values at order 5:

    >>> from scipy.special import kvp
    >>> kvp(5, (1, 2, 3+5j))
    array([-1.84903536e+03+0.j        , -2.57735387e+01+0.j        ,
           -3.06627741e-02+0.08750845j])


    Calculate for a single value at multiple orders:

    >>> kvp((4, 4.5, 5), 1)
    array([ -184.0309,  -568.9585, -1849.0354])

    Notes
    -----
    The derivative is computed using the relation DLFM 10.29.5 [2]_.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 6.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
    .. [2] NIST Digital Library of Mathematical Functions.
           https://dlmf.nist.gov/10.29.E5

    """
    n = _nonneg_int_or_fail(n, 'n')
    if n == 0:
        return kv(v, z)
    else:
        return (-1)**n * _bessel_diff_formula(v, z, n, kv, 1)


def ivp(v, z, n=1):
    """Compute nth derivative of modified Bessel function Iv(z) with respect
    to `z`.

    Parameters
    ----------
    v : array_like of float
        Order of Bessel function
    z : array_like of complex
        Argument at which to evaluate the derivative
    n : int, default 1
        Order of derivative

    Notes
    -----
    The derivative is computed using the relation DLFM 10.29.5 [2]_.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 6.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
    .. [2] NIST Digital Library of Mathematical Functions.
           https://dlmf.nist.gov/10.29.E5

    """
    n = _nonneg_int_or_fail(n, 'n')
    if n == 0:
        return iv(v, z)
    else:
        return _bessel_diff_formula(v, z, n, iv, 1)


def h1vp(v, z, n=1):
    """Compute nth derivative of Hankel function H1v(z) with respect to `z`.

    Parameters
    ----------
    v : float
        Order of Hankel function
    z : complex
        Argument at which to evaluate the derivative
    n : int, default 1
        Order of derivative

    Notes
    -----
    The derivative is computed using the relation DLFM 10.6.7 [2]_.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 5.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
    .. [2] NIST Digital Library of Mathematical Functions.
           https://dlmf.nist.gov/10.6.E7

    """
    n = _nonneg_int_or_fail(n, 'n')
    if n == 0:
        return hankel1(v, z)
    else:
        return _bessel_diff_formula(v, z, n, hankel1, -1)


def h2vp(v, z, n=1):
    """Compute nth derivative of Hankel function H2v(z) with respect to `z`.

    Parameters
    ----------
    v : float
        Order of Hankel function
    z : complex
        Argument at which to evaluate the derivative
    n : int, default 1
        Order of derivative

    Notes
    -----
    The derivative is computed using the relation DLFM 10.6.7 [2]_.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 5.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
    .. [2] NIST Digital Library of Mathematical Functions.
           https://dlmf.nist.gov/10.6.E7

    """
    n = _nonneg_int_or_fail(n, 'n')
    if n == 0:
        return hankel2(v, z)
    else:
        return _bessel_diff_formula(v, z, n, hankel2, -1)


def riccati_jn(n, x):
    r"""Compute Ricatti-Bessel function of the first kind and its derivative.

    The Ricatti-Bessel function of the first kind is defined as :math:`x
    j_n(x)`, where :math:`j_n` is the spherical Bessel function of the first
    kind of order :math:`n`.

    This function computes the value and first derivative of the
    Ricatti-Bessel function for all orders up to and including `n`.

    Parameters
    ----------
    n : int
        Maximum order of function to compute
    x : float
        Argument at which to evaluate

    Returns
    -------
    jn : ndarray
        Value of j0(x), ..., jn(x)
    jnp : ndarray
        First derivative j0'(x), ..., jn'(x)

    Notes
    -----
    The computation is carried out via backward recurrence, using the
    relation DLMF 10.51.1 [2]_.

    Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
    Jin [1]_.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
    .. [2] NIST Digital Library of Mathematical Functions.
           https://dlmf.nist.gov/10.51.E1

    """
    if not (isscalar(n) and isscalar(x)):
        raise ValueError("arguments must be scalars.")
    n = _nonneg_int_or_fail(n, 'n', strict=False)
    if (n == 0):
        n1 = 1
    else:
        n1 = n
    nm, jn, jnp = specfun.rctj(n1, x)
    return jn[:(n+1)], jnp[:(n+1)]


def riccati_yn(n, x):
    """Compute Ricatti-Bessel function of the second kind and its derivative.

    The Ricatti-Bessel function of the second kind is defined as :math:`x
    y_n(x)`, where :math:`y_n` is the spherical Bessel function of the second
    kind of order :math:`n`.

    This function computes the value and first derivative of the function for
    all orders up to and including `n`.

    Parameters
    ----------
    n : int
        Maximum order of function to compute
    x : float
        Argument at which to evaluate

    Returns
    -------
    yn : ndarray
        Value of y0(x), ..., yn(x)
    ynp : ndarray
        First derivative y0'(x), ..., yn'(x)

    Notes
    -----
    The computation is carried out via ascending recurrence, using the
    relation DLMF 10.51.1 [2]_.

    Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
    Jin [1]_.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
    .. [2] NIST Digital Library of Mathematical Functions.
           https://dlmf.nist.gov/10.51.E1

    """
    if not (isscalar(n) and isscalar(x)):
        raise ValueError("arguments must be scalars.")
    n = _nonneg_int_or_fail(n, 'n', strict=False)
    if (n == 0):
        n1 = 1
    else:
        n1 = n
    nm, jn, jnp = specfun.rcty(n1, x)
    return jn[:(n+1)], jnp[:(n+1)]


def erfinv(y):
    """Inverse of the error function erf.

    Computes the inverse of the error function.

    In complex domain, there is no unique complex number w satisfying erf(w)=z.
    This indicates a true inverse function would have multi-value. When the domain restricts to the real, -1 < x < 1,
    there is a unique real number satisfying erf(erfinv(x)) = x.

    Parameters
    ----------
    y : ndarray
        Argument at which to evaluate. Domain: [-1, 1]

    Returns
    -------
    erfinv : ndarray
        The inverse of erf of y, element-wise

    Examples
    --------
    1) evaluating a float number

    >>> from scipy import special
    >>> special.erfinv(0.5)
    0.4769362762044698

    2) evaluating a ndarray

    >>> from scipy import special
    >>> y = np.linspace(-1.0, 1.0, num=10)
    >>> special.erfinv(y)
    array([       -inf, -0.86312307, -0.5407314 , -0.30457019, -0.0987901 ,
            0.0987901 ,  0.30457019,  0.5407314 ,  0.86312307,         inf])

    """
    return ndtri((y+1)/2.0)/sqrt(2)


def erfcinv(y):
    """Inverse of the complementary error function erfc.

    Computes the inverse of the complementary error function erfc.

    In complex domain, there is no unique complex number w satisfying erfc(w)=z.
    This indicates a true inverse function would have multi-value. When the domain restricts to the real, 0 < x < 2,
    there is a unique real number satisfying erfc(erfcinv(x)) = erfcinv(erfc(x)).

    It is related to inverse of the error function by erfcinv(1-x) = erfinv(x)

    Parameters
    ----------
    y : ndarray
        Argument at which to evaluate. Domain: [0, 2]

    Returns
    -------
    erfcinv : ndarray
        The inverse of erfc of y, element-wise

    Examples
    --------
    1) evaluating a float number

    >>> from scipy import special
    >>> special.erfcinv(0.5)
    0.4769362762044698

    2) evaluating a ndarray

    >>> from scipy import special
    >>> y = np.linspace(0.0, 2.0, num=11)
    >>> special.erfcinv(y)
    array([        inf,  0.9061938 ,  0.59511608,  0.37080716,  0.17914345,
            -0.        , -0.17914345, -0.37080716, -0.59511608, -0.9061938 ,
                  -inf])

    """
    return -ndtri(0.5*y)/sqrt(2)


def erf_zeros(nt):
    """Compute the first nt zero in the first quadrant, ordered by absolute value.

    Zeros in the other quadrants can be obtained by using the symmetries erf(-z) = erf(z) and
    erf(conj(z)) = conj(erf(z)).


    Parameters
    ----------
    nt : int
        The number of zeros to compute

    Returns
    -------
    The locations of the zeros of erf : ndarray (complex)
        Complex values at which zeros of erf(z)

    Examples
    --------
    >>> from scipy import special
    >>> special.erf_zeros(1)
    array([1.45061616+1.880943j])

    Check that erf is (close to) zero for the value returned by erf_zeros

    >>> special.erf(special.erf_zeros(1))
    array([4.95159469e-14-1.16407394e-16j])

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
        raise ValueError("Argument must be positive scalar integer.")
    return specfun.cerzo(nt)


def fresnelc_zeros(nt):
    """Compute nt complex zeros of cosine Fresnel integral C(z).

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
        raise ValueError("Argument must be positive scalar integer.")
    return specfun.fcszo(1, nt)


def fresnels_zeros(nt):
    """Compute nt complex zeros of sine Fresnel integral S(z).

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
        raise ValueError("Argument must be positive scalar integer.")
    return specfun.fcszo(2, nt)


def fresnel_zeros(nt):
    """Compute nt complex zeros of sine and cosine Fresnel integrals S(z) and C(z).

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
        raise ValueError("Argument must be positive scalar integer.")
    return specfun.fcszo(2, nt), specfun.fcszo(1, nt)


def assoc_laguerre(x, n, k=0.0):
    """Compute the generalized (associated) Laguerre polynomial of degree n and order k.

    The polynomial :math:`L^{(k)}_n(x)` is orthogonal over ``[0, inf)``,
    with weighting function ``exp(-x) * x**k`` with ``k > -1``.

    Notes
    -----
    `assoc_laguerre` is a simple wrapper around `eval_genlaguerre`, with
    reversed argument order ``(x, n, k=0.0) --> (n, k, x)``.

    """
    return orthogonal.eval_genlaguerre(n, k, x)


digamma = psi


def polygamma(n, x):
    r"""Polygamma functions.

    Defined as :math:`\psi^{(n)}(x)` where :math:`\psi` is the
    `digamma` function. See [dlmf]_ for details.

    Parameters
    ----------
    n : array_like
        The order of the derivative of the digamma function; must be
        integral
    x : array_like
        Real valued input

    Returns
    -------
    ndarray
        Function results

    See Also
    --------
    digamma

    References
    ----------
    .. [dlmf] NIST, Digital Library of Mathematical Functions,
        https://dlmf.nist.gov/5.15

    Examples
    --------
    >>> from scipy import special
    >>> x = [2, 3, 25.5]
    >>> special.polygamma(1, x)
    array([ 0.64493407,  0.39493407,  0.03999467])
    >>> special.polygamma(0, x) == special.psi(x)
    array([ True,  True,  True], dtype=bool)

    """
    n, x = asarray(n), asarray(x)
    fac2 = (-1.0)**(n+1) * gamma(n+1.0) * zeta(n+1, x)
    return where(n == 0, psi(x), fac2)


def mathieu_even_coef(m, q):
    r"""Fourier coefficients for even Mathieu and modified Mathieu functions.

    The Fourier series of the even solutions of the Mathieu differential
    equation are of the form

    .. math:: \mathrm{ce}_{2n}(z, q) = \sum_{k=0}^{\infty} A_{(2n)}^{(2k)} \cos 2kz

    .. math:: \mathrm{ce}_{2n+1}(z, q) = \sum_{k=0}^{\infty} A_{(2n+1)}^{(2k+1)} \cos (2k+1)z

    This function returns the coefficients :math:`A_{(2n)}^{(2k)}` for even
    input m=2n, and the coefficients :math:`A_{(2n+1)}^{(2k+1)}` for odd input
    m=2n+1.

    Parameters
    ----------
    m : int
        Order of Mathieu functions.  Must be non-negative.
    q : float (>=0)
        Parameter of Mathieu functions.  Must be non-negative.

    Returns
    -------
    Ak : ndarray
        Even or odd Fourier coefficients, corresponding to even or odd m.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
    .. [2] NIST Digital Library of Mathematical Functions
           https://dlmf.nist.gov/28.4#i

    """
    if not (isscalar(m) and isscalar(q)):
        raise ValueError("m and q must be scalars.")
    if (q < 0):
        raise ValueError("q >=0")
    if (m != floor(m)) or (m < 0):
        raise ValueError("m must be an integer >=0.")

    if (q <= 1):
        qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q
    else:
        qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q
    km = int(qm + 0.5*m)
    if km > 251:
        print("Warning, too many predicted coefficients.")
    kd = 1
    m = int(floor(m))
    if m % 2:
        kd = 2

    a = mathieu_a(m, q)
    fc = specfun.fcoef(kd, m, q, a)
    return fc[:km]


def mathieu_odd_coef(m, q):
    r"""Fourier coefficients for even Mathieu and modified Mathieu functions.

    The Fourier series of the odd solutions of the Mathieu differential
    equation are of the form

    .. math:: \mathrm{se}_{2n+1}(z, q) = \sum_{k=0}^{\infty} B_{(2n+1)}^{(2k+1)} \sin (2k+1)z

    .. math:: \mathrm{se}_{2n+2}(z, q) = \sum_{k=0}^{\infty} B_{(2n+2)}^{(2k+2)} \sin (2k+2)z

    This function returns the coefficients :math:`B_{(2n+2)}^{(2k+2)}` for even
    input m=2n+2, and the coefficients :math:`B_{(2n+1)}^{(2k+1)}` for odd
    input m=2n+1.

    Parameters
    ----------
    m : int
        Order of Mathieu functions.  Must be non-negative.
    q : float (>=0)
        Parameter of Mathieu functions.  Must be non-negative.

    Returns
    -------
    Bk : ndarray
        Even or odd Fourier coefficients, corresponding to even or odd m.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not (isscalar(m) and isscalar(q)):
        raise ValueError("m and q must be scalars.")
    if (q < 0):
        raise ValueError("q >=0")
    if (m != floor(m)) or (m <= 0):
        raise ValueError("m must be an integer > 0")

    if (q <= 1):
        qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q
    else:
        qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q
    km = int(qm + 0.5*m)
    if km > 251:
        print("Warning, too many predicted coefficients.")
    kd = 4
    m = int(floor(m))
    if m % 2:
        kd = 3

    b = mathieu_b(m, q)
    fc = specfun.fcoef(kd, m, q, b)
    return fc[:km]


def lpmn(m, n, z):
    """Sequence of associated Legendre functions of the first kind.

    Computes the associated Legendre function of the first kind of order m and
    degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``.
    Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and
    ``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``.

    This function takes a real argument ``z``. For complex arguments ``z``
    use clpmn instead.

    Parameters
    ----------
    m : int
       ``|m| <= n``; the order of the Legendre function.
    n : int
       where ``n >= 0``; the degree of the Legendre function.  Often
       called ``l`` (lower case L) in descriptions of the associated
       Legendre function
    z : float
        Input value.

    Returns
    -------
    Pmn_z : (m+1, n+1) array
       Values for all orders 0..m and degrees 0..n
    Pmn_d_z : (m+1, n+1) array
       Derivatives for all orders 0..m and degrees 0..n

    See Also
    --------
    clpmn: associated Legendre functions of the first kind for complex z

    Notes
    -----
    In the interval (-1, 1), Ferrer's function of the first kind is
    returned. The phase convention used for the intervals (1, inf)
    and (-inf, -1) is such that the result is always real.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
    .. [2] NIST Digital Library of Mathematical Functions
           https://dlmf.nist.gov/14.3

    """
    if not isscalar(m) or (abs(m) > n):
        raise ValueError("m must be <= n.")
    if not isscalar(n) or (n < 0):
        raise ValueError("n must be a non-negative integer.")
    if not isscalar(z):
        raise ValueError("z must be scalar.")
    if iscomplex(z):
        raise ValueError("Argument must be real. Use clpmn instead.")
    if (m < 0):
        mp = -m
        mf, nf = mgrid[0:mp+1, 0:n+1]
        with ufuncs.errstate(all='ignore'):
            if abs(z) < 1:
                # Ferrer function; DLMF 14.9.3
                fixarr = where(mf > nf, 0.0,
                               (-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1))
            else:
                # Match to clpmn; DLMF 14.9.13
                fixarr = where(mf > nf, 0.0, gamma(nf-mf+1) / gamma(nf+mf+1))
    else:
        mp = m
    p, pd = specfun.lpmn(mp, n, z)
    if (m < 0):
        p = p * fixarr
        pd = pd * fixarr
    return p, pd


def clpmn(m, n, z, type=3):
    """Associated Legendre function of the first kind for complex arguments.

    Computes the associated Legendre function of the first kind of order m and
    degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``.
    Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and
    ``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``.

    Parameters
    ----------
    m : int
       ``|m| <= n``; the order of the Legendre function.
    n : int
       where ``n >= 0``; the degree of the Legendre function.  Often
       called ``l`` (lower case L) in descriptions of the associated
       Legendre function
    z : float or complex
        Input value.
    type : int, optional
       takes values 2 or 3
       2: cut on the real axis ``|x| > 1``
       3: cut on the real axis ``-1 < x < 1`` (default)

    Returns
    -------
    Pmn_z : (m+1, n+1) array
       Values for all orders ``0..m`` and degrees ``0..n``
    Pmn_d_z : (m+1, n+1) array
       Derivatives for all orders ``0..m`` and degrees ``0..n``

    See Also
    --------
    lpmn: associated Legendre functions of the first kind for real z

    Notes
    -----
    By default, i.e. for ``type=3``, phase conventions are chosen according
    to [1]_ such that the function is analytic. The cut lies on the interval
    (-1, 1). Approaching the cut from above or below in general yields a phase
    factor with respect to Ferrer's function of the first kind
    (cf. `lpmn`).

    For ``type=2`` a cut at ``|x| > 1`` is chosen. Approaching the real values
    on the interval (-1, 1) in the complex plane yields Ferrer's function
    of the first kind.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
    .. [2] NIST Digital Library of Mathematical Functions
           https://dlmf.nist.gov/14.21

    """
    if not isscalar(m) or (abs(m) > n):
        raise ValueError("m must be <= n.")
    if not isscalar(n) or (n < 0):
        raise ValueError("n must be a non-negative integer.")
    if not isscalar(z):
        raise ValueError("z must be scalar.")
    if not(type == 2 or type == 3):
        raise ValueError("type must be either 2 or 3.")
    if (m < 0):
        mp = -m
        mf, nf = mgrid[0:mp+1, 0:n+1]
        with ufuncs.errstate(all='ignore'):
            if type == 2:
                fixarr = where(mf > nf, 0.0,
                               (-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1))
            else:
                fixarr = where(mf > nf, 0.0, gamma(nf-mf+1) / gamma(nf+mf+1))
    else:
        mp = m
    p, pd = specfun.clpmn(mp, n, real(z), imag(z), type)
    if (m < 0):
        p = p * fixarr
        pd = pd * fixarr
    return p, pd


def lqmn(m, n, z):
    """Sequence of associated Legendre functions of the second kind.

    Computes the associated Legendre function of the second kind of order m and
    degree n, ``Qmn(z)`` = :math:`Q_n^m(z)`, and its derivative, ``Qmn'(z)``.
    Returns two arrays of size ``(m+1, n+1)`` containing ``Qmn(z)`` and
    ``Qmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``.

    Parameters
    ----------
    m : int
       ``|m| <= n``; the order of the Legendre function.
    n : int
       where ``n >= 0``; the degree of the Legendre function.  Often
       called ``l`` (lower case L) in descriptions of the associated
       Legendre function
    z : complex
        Input value.

    Returns
    -------
    Qmn_z : (m+1, n+1) array
       Values for all orders 0..m and degrees 0..n
    Qmn_d_z : (m+1, n+1) array
       Derivatives for all orders 0..m and degrees 0..n

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not isscalar(m) or (m < 0):
        raise ValueError("m must be a non-negative integer.")
    if not isscalar(n) or (n < 0):
        raise ValueError("n must be a non-negative integer.")
    if not isscalar(z):
        raise ValueError("z must be scalar.")
    m = int(m)
    n = int(n)

    # Ensure neither m nor n == 0
    mm = max(1, m)
    nn = max(1, n)

    if iscomplex(z):
        q, qd = specfun.clqmn(mm, nn, z)
    else:
        q, qd = specfun.lqmn(mm, nn, z)
    return q[:(m+1), :(n+1)], qd[:(m+1), :(n+1)]


def bernoulli(n):
    """Bernoulli numbers B0..Bn (inclusive).

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not isscalar(n) or (n < 0):
        raise ValueError("n must be a non-negative integer.")
    n = int(n)
    if (n < 2):
        n1 = 2
    else:
        n1 = n
    return specfun.bernob(int(n1))[:(n+1)]


def euler(n):
    """Euler numbers E(0), E(1), ..., E(n).

    The Euler numbers [1]_ are also known as the secant numbers.

    Because ``euler(n)`` returns floating point values, it does not give
    exact values for large `n`.  The first inexact value is E(22).

    Parameters
    ----------
    n : int
        The highest index of the Euler number to be returned.

    Returns
    -------
    ndarray
        The Euler numbers [E(0), E(1), ..., E(n)].
        The odd Euler numbers, which are all zero, are included.

    References
    ----------
    .. [1] Sequence A122045, The On-Line Encyclopedia of Integer Sequences,
           https://oeis.org/A122045
    .. [2] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    Examples
    --------
    >>> from scipy.special import euler
    >>> euler(6)
    array([  1.,   0.,  -1.,   0.,   5.,   0., -61.])

    >>> euler(13).astype(np.int64)
    array([      1,       0,      -1,       0,       5,       0,     -61,
                 0,    1385,       0,  -50521,       0, 2702765,       0])

    >>> euler(22)[-1]  # Exact value of E(22) is -69348874393137901.
    -69348874393137976.0

    """
    if not isscalar(n) or (n < 0):
        raise ValueError("n must be a non-negative integer.")
    n = int(n)
    if (n < 2):
        n1 = 2
    else:
        n1 = n
    return specfun.eulerb(n1)[:(n+1)]


def lpn(n, z):
    """Legendre function of the first kind.

    Compute sequence of Legendre functions of the first kind (polynomials),
    Pn(z) and derivatives for all degrees from 0 to n (inclusive).

    See also special.legendre for polynomial class.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not (isscalar(n) and isscalar(z)):
        raise ValueError("arguments must be scalars.")
    n = _nonneg_int_or_fail(n, 'n', strict=False)
    if (n < 1):
        n1 = 1
    else:
        n1 = n
    if iscomplex(z):
        pn, pd = specfun.clpn(n1, z)
    else:
        pn, pd = specfun.lpn(n1, z)
    return pn[:(n+1)], pd[:(n+1)]


def lqn(n, z):
    """Legendre function of the second kind.

    Compute sequence of Legendre functions of the second kind, Qn(z) and
    derivatives for all degrees from 0 to n (inclusive).

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not (isscalar(n) and isscalar(z)):
        raise ValueError("arguments must be scalars.")
    n = _nonneg_int_or_fail(n, 'n', strict=False)
    if (n < 1):
        n1 = 1
    else:
        n1 = n
    if iscomplex(z):
        qn, qd = specfun.clqn(n1, z)
    else:
        qn, qd = specfun.lqnb(n1, z)
    return qn[:(n+1)], qd[:(n+1)]


def ai_zeros(nt):
    """
    Compute `nt` zeros and values of the Airy function Ai and its derivative.

    Computes the first `nt` zeros, `a`, of the Airy function Ai(x);
    first `nt` zeros, `ap`, of the derivative of the Airy function Ai'(x);
    the corresponding values Ai(a');
    and the corresponding values Ai'(a).

    Parameters
    ----------
    nt : int
        Number of zeros to compute

    Returns
    -------
    a : ndarray
        First `nt` zeros of Ai(x)
    ap : ndarray
        First `nt` zeros of Ai'(x)
    ai : ndarray
        Values of Ai(x) evaluated at first `nt` zeros of Ai'(x)
    aip : ndarray
        Values of Ai'(x) evaluated at first `nt` zeros of Ai(x)

    Examples
    --------
    >>> from scipy import special
    >>> a, ap, ai, aip = special.ai_zeros(3)
    >>> a
    array([-2.33810741, -4.08794944, -5.52055983])
    >>> ap
    array([-1.01879297, -3.24819758, -4.82009921])
    >>> ai
    array([ 0.53565666, -0.41901548,  0.38040647])
    >>> aip
    array([ 0.70121082, -0.80311137,  0.86520403])

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    kf = 1
    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
        raise ValueError("nt must be a positive integer scalar.")
    return specfun.airyzo(nt, kf)


def bi_zeros(nt):
    """
    Compute `nt` zeros and values of the Airy function Bi and its derivative.

    Computes the first `nt` zeros, b, of the Airy function Bi(x);
    first `nt` zeros, b', of the derivative of the Airy function Bi'(x);
    the corresponding values Bi(b');
    and the corresponding values Bi'(b).

    Parameters
    ----------
    nt : int
        Number of zeros to compute

    Returns
    -------
    b : ndarray
        First `nt` zeros of Bi(x)
    bp : ndarray
        First `nt` zeros of Bi'(x)
    bi : ndarray
        Values of Bi(x) evaluated at first `nt` zeros of Bi'(x)
    bip : ndarray
        Values of Bi'(x) evaluated at first `nt` zeros of Bi(x)

    Examples
    --------
    >>> from scipy import special
    >>> b, bp, bi, bip = special.bi_zeros(3)
    >>> b
    array([-1.17371322, -3.2710933 , -4.83073784])
    >>> bp
    array([-2.29443968, -4.07315509, -5.51239573])
    >>> bi
    array([-0.45494438,  0.39652284, -0.36796916])
    >>> bip
    array([ 0.60195789, -0.76031014,  0.83699101])

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    kf = 2
    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
        raise ValueError("nt must be a positive integer scalar.")
    return specfun.airyzo(nt, kf)


def lmbda(v, x):
    r"""Jahnke-Emden Lambda function, Lambdav(x).

    This function is defined as [2]_,

    .. math:: \Lambda_v(x) = \Gamma(v+1) \frac{J_v(x)}{(x/2)^v},

    where :math:`\Gamma` is the gamma function and :math:`J_v` is the
    Bessel function of the first kind.

    Parameters
    ----------
    v : float
        Order of the Lambda function
    x : float
        Value at which to evaluate the function and derivatives

    Returns
    -------
    vl : ndarray
        Values of Lambda_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
    dl : ndarray
        Derivatives Lambda_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
    .. [2] Jahnke, E. and Emde, F. "Tables of Functions with Formulae and
           Curves" (4th ed.), Dover, 1945
    """
    if not (isscalar(v) and isscalar(x)):
        raise ValueError("arguments must be scalars.")
    if (v < 0):
        raise ValueError("argument must be > 0.")
    n = int(v)
    v0 = v - n
    if (n < 1):
        n1 = 1
    else:
        n1 = n
    v1 = n1 + v0
    if (v != floor(v)):
        vm, vl, dl = specfun.lamv(v1, x)
    else:
        vm, vl, dl = specfun.lamn(v1, x)
    return vl[:(n+1)], dl[:(n+1)]


def pbdv_seq(v, x):
    """Parabolic cylinder functions Dv(x) and derivatives.

    Parameters
    ----------
    v : float
        Order of the parabolic cylinder function
    x : float
        Value at which to evaluate the function and derivatives

    Returns
    -------
    dv : ndarray
        Values of D_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
    dp : ndarray
        Derivatives D_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 13.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not (isscalar(v) and isscalar(x)):
        raise ValueError("arguments must be scalars.")
    n = int(v)
    v0 = v-n
    if (n < 1):
        n1 = 1
    else:
        n1 = n
    v1 = n1 + v0
    dv, dp, pdf, pdd = specfun.pbdv(v1, x)
    return dv[:n1+1], dp[:n1+1]


def pbvv_seq(v, x):
    """Parabolic cylinder functions Vv(x) and derivatives.

    Parameters
    ----------
    v : float
        Order of the parabolic cylinder function
    x : float
        Value at which to evaluate the function and derivatives

    Returns
    -------
    dv : ndarray
        Values of V_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
    dp : ndarray
        Derivatives V_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 13.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not (isscalar(v) and isscalar(x)):
        raise ValueError("arguments must be scalars.")
    n = int(v)
    v0 = v-n
    if (n <= 1):
        n1 = 1
    else:
        n1 = n
    v1 = n1 + v0
    dv, dp, pdf, pdd = specfun.pbvv(v1, x)
    return dv[:n1+1], dp[:n1+1]


def pbdn_seq(n, z):
    """Parabolic cylinder functions Dn(z) and derivatives.

    Parameters
    ----------
    n : int
        Order of the parabolic cylinder function
    z : complex
        Value at which to evaluate the function and derivatives

    Returns
    -------
    dv : ndarray
        Values of D_i(z), for i=0, ..., i=n.
    dp : ndarray
        Derivatives D_i'(z), for i=0, ..., i=n.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 13.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not (isscalar(n) and isscalar(z)):
        raise ValueError("arguments must be scalars.")
    if (floor(n) != n):
        raise ValueError("n must be an integer.")
    if (abs(n) <= 1):
        n1 = 1
    else:
        n1 = n
    cpb, cpd = specfun.cpbdn(n1, z)
    return cpb[:n1+1], cpd[:n1+1]


def ber_zeros(nt):
    """Compute nt zeros of the Kelvin function ber(x).

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
        raise ValueError("nt must be positive integer scalar.")
    return specfun.klvnzo(nt, 1)


def bei_zeros(nt):
    """Compute nt zeros of the Kelvin function bei(x).

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
        raise ValueError("nt must be positive integer scalar.")
    return specfun.klvnzo(nt, 2)


def ker_zeros(nt):
    """Compute nt zeros of the Kelvin function ker(x).

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
        raise ValueError("nt must be positive integer scalar.")
    return specfun.klvnzo(nt, 3)


def kei_zeros(nt):
    """Compute nt zeros of the Kelvin function kei(x).
    """
    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
        raise ValueError("nt must be positive integer scalar.")
    return specfun.klvnzo(nt, 4)


def berp_zeros(nt):
    """Compute nt zeros of the Kelvin function ber'(x).

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
        raise ValueError("nt must be positive integer scalar.")
    return specfun.klvnzo(nt, 5)


def beip_zeros(nt):
    """Compute nt zeros of the Kelvin function bei'(x).

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
        raise ValueError("nt must be positive integer scalar.")
    return specfun.klvnzo(nt, 6)


def kerp_zeros(nt):
    """Compute nt zeros of the Kelvin function ker'(x).

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
        raise ValueError("nt must be positive integer scalar.")
    return specfun.klvnzo(nt, 7)


def keip_zeros(nt):
    """Compute nt zeros of the Kelvin function kei'(x).

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
        raise ValueError("nt must be positive integer scalar.")
    return specfun.klvnzo(nt, 8)


def kelvin_zeros(nt):
    """Compute nt zeros of all Kelvin functions.

    Returned in a length-8 tuple of arrays of length nt.  The tuple contains
    the arrays of zeros of (ber, bei, ker, kei, ber', bei', ker', kei').

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
        raise ValueError("nt must be positive integer scalar.")
    return (specfun.klvnzo(nt, 1),
            specfun.klvnzo(nt, 2),
            specfun.klvnzo(nt, 3),
            specfun.klvnzo(nt, 4),
            specfun.klvnzo(nt, 5),
            specfun.klvnzo(nt, 6),
            specfun.klvnzo(nt, 7),
            specfun.klvnzo(nt, 8))


def pro_cv_seq(m, n, c):
    """Characteristic values for prolate spheroidal wave functions.

    Compute a sequence of characteristic values for the prolate
    spheroidal wave functions for mode m and n'=m..n and spheroidal
    parameter c.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not (isscalar(m) and isscalar(n) and isscalar(c)):
        raise ValueError("Arguments must be scalars.")
    if (n != floor(n)) or (m != floor(m)):
        raise ValueError("Modes must be integers.")
    if (n-m > 199):
        raise ValueError("Difference between n and m is too large.")
    maxL = n-m+1
    return specfun.segv(m, n, c, 1)[1][:maxL]


def obl_cv_seq(m, n, c):
    """Characteristic values for oblate spheroidal wave functions.

    Compute a sequence of characteristic values for the oblate
    spheroidal wave functions for mode m and n'=m..n and spheroidal
    parameter c.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    """
    if not (isscalar(m) and isscalar(n) and isscalar(c)):
        raise ValueError("Arguments must be scalars.")
    if (n != floor(n)) or (m != floor(m)):
        raise ValueError("Modes must be integers.")
    if (n-m > 199):
        raise ValueError("Difference between n and m is too large.")
    maxL = n-m+1
    return specfun.segv(m, n, c, -1)[1][:maxL]


def comb(N, k, exact=False, repetition=False):
    """The number of combinations of N things taken k at a time.

    This is often expressed as "N choose k".

    Parameters
    ----------
    N : int, ndarray
        Number of things.
    k : int, ndarray
        Number of elements taken.
    exact : bool, optional
        If `exact` is False, then floating point precision is used, otherwise
        exact long integer is computed.
    repetition : bool, optional
        If `repetition` is True, then the number of combinations with
        repetition is computed.

    Returns
    -------
    val : int, float, ndarray
        The total number of combinations.

    See Also
    --------
    binom : Binomial coefficient ufunc

    Notes
    -----
    - Array arguments accepted only for exact=False case.
    - If N < 0, or k < 0, then 0 is returned.
    - If k > N and repetition=False, then 0 is returned.

    Examples
    --------
    >>> from scipy.special import comb
    >>> k = np.array([3, 4])
    >>> n = np.array([10, 10])
    >>> comb(n, k, exact=False)
    array([ 120.,  210.])
    >>> comb(10, 3, exact=True)
    120L
    >>> comb(10, 3, exact=True, repetition=True)
    220L

    """
    if repetition:
        return comb(N + k - 1, k, exact)
    if exact:
        return _comb_int(N, k)
    else:
        k, N = asarray(k), asarray(N)
        cond = (k <= N) & (N >= 0) & (k >= 0)
        vals = binom(N, k)
        if isinstance(vals, np.ndarray):
            vals[~cond] = 0
        elif not cond:
            vals = np.float64(0)
        return vals


def perm(N, k, exact=False):
    """Permutations of N things taken k at a time, i.e., k-permutations of N.

    It's also known as "partial permutations".

    Parameters
    ----------
    N : int, ndarray
        Number of things.
    k : int, ndarray
        Number of elements taken.
    exact : bool, optional
        If `exact` is False, then floating point precision is used, otherwise
        exact long integer is computed.

    Returns
    -------
    val : int, ndarray
        The number of k-permutations of N.

    Notes
    -----
    - Array arguments accepted only for exact=False case.
    - If k > N, N < 0, or k < 0, then a 0 is returned.

    Examples
    --------
    >>> from scipy.special import perm
    >>> k = np.array([3, 4])
    >>> n = np.array([10, 10])
    >>> perm(n, k)
    array([  720.,  5040.])
    >>> perm(10, 3, exact=True)
    720

    """
    if exact:
        if (k > N) or (N < 0) or (k < 0):
            return 0
        val = 1
        for i in xrange(N - k + 1, N + 1):
            val *= i
        return val
    else:
        k, N = asarray(k), asarray(N)
        cond = (k <= N) & (N >= 0) & (k >= 0)
        vals = poch(N - k + 1, k)
        if isinstance(vals, np.ndarray):
            vals[~cond] = 0
        elif not cond:
            vals = np.float64(0)
        return vals


# https://stackoverflow.com/a/16327037
def _range_prod(lo, hi):
    """
    Product of a range of numbers.

    Returns the product of
    lo * (lo+1) * (lo+2) * ... * (hi-2) * (hi-1) * hi
    = hi! / (lo-1)!

    Breaks into smaller products first for speed:
    _range_prod(2, 9) = ((2*3)*(4*5))*((6*7)*(8*9))
    """
    if lo + 1 < hi:
        mid = (hi + lo) // 2
        return _range_prod(lo, mid) * _range_prod(mid + 1, hi)
    if lo == hi:
        return lo
    return lo * hi


def factorial(n, exact=False):
    """
    The factorial of a number or array of numbers.

    The factorial of non-negative integer `n` is the product of all
    positive integers less than or equal to `n`::

        n! = n * (n - 1) * (n - 2) * ... * 1

    Parameters
    ----------
    n : int or array_like of ints
        Input values.  If ``n < 0``, the return value is 0.
    exact : bool, optional
        If True, calculate the answer exactly using long integer arithmetic.
        If False, result is approximated in floating point rapidly using the
        `gamma` function.
        Default is False.

    Returns
    -------
    nf : float or int or ndarray
        Factorial of `n`, as integer or float depending on `exact`.

    Notes
    -----
    For arrays with ``exact=True``, the factorial is computed only once, for
    the largest input, with each other result computed in the process.
    The output dtype is increased to ``int64`` or ``object`` if necessary.

    With ``exact=False`` the factorial is approximated using the gamma
    function:

    .. math:: n! = \\Gamma(n+1)

    Examples
    --------
    >>> from scipy.special import factorial
    >>> arr = np.array([3, 4, 5])
    >>> factorial(arr, exact=False)
    array([   6.,   24.,  120.])
    >>> factorial(arr, exact=True)
    array([  6,  24, 120])
    >>> factorial(5, exact=True)
    120L

    """
    if exact:
        if np.ndim(n) == 0:
            return 0 if n < 0 else math.factorial(n)
        else:
            n = asarray(n)
            un = np.unique(n).astype(object)

            # Convert to object array of long ints if np.int can't handle size
            if un[-1] > 20:
                dt = object
            elif un[-1] > 12:
                dt = np.int64
            else:
                dt = np.int

            out = np.empty_like(n, dtype=dt)

            # Handle invalid/trivial values
            un = un[un > 1]
            out[n < 2] = 1
            out[n < 0] = 0

            # Calculate products of each range of numbers
            if un.size:
                val = math.factorial(un[0])
                out[n == un[0]] = val
                for i in xrange(len(un) - 1):
                    prev = un[i] + 1
                    current = un[i + 1]
                    val *= _range_prod(prev, current)
                    out[n == current] = val
            return out
    else:
        if np.ndim(n) == 0:
            return 0 if n < 0 else gamma(n + 1)

        n = asarray(n)
        vals = gamma(n + 1)
        return where(n >= 0, vals, 0)


def factorial2(n, exact=False):
    """Double factorial.

    This is the factorial with every second value skipped.  E.g., ``7!! = 7 * 5
    * 3 * 1``.  It can be approximated numerically as::

      n!! = special.gamma(n/2+1)*2**((m+1)/2)/sqrt(pi)  n odd
          = 2**(n/2) * (n/2)!                           n even

    Parameters
    ----------
    n : int or array_like
        Calculate ``n!!``.  Arrays are only supported with `exact` set
        to False.  If ``n < 0``, the return value is 0.
    exact : bool, optional
        The result can be approximated rapidly using the gamma-formula
        above (default).  If `exact` is set to True, calculate the
        answer exactly using integer arithmetic.

    Returns
    -------
    nff : float or int
        Double factorial of `n`, as an int or a float depending on
        `exact`.

    Examples
    --------
    >>> from scipy.special import factorial2
    >>> factorial2(7, exact=False)
    array(105.00000000000001)
    >>> factorial2(7, exact=True)
    105L

    """
    if exact:
        if n < -1:
            return 0
        if n <= 0:
            return 1
        val = 1
        for k in xrange(n, 0, -2):
            val *= k
        return val
    else:
        n = asarray(n)
        vals = zeros(n.shape, 'd')
        cond1 = (n % 2) & (n >= -1)
        cond2 = (1-(n % 2)) & (n >= -1)
        oddn = extract(cond1, n)
        evenn = extract(cond2, n)
        nd2o = oddn / 2.0
        nd2e = evenn / 2.0
        place(vals, cond1, gamma(nd2o + 1) / sqrt(pi) * pow(2.0, nd2o + 0.5))
        place(vals, cond2, gamma(nd2e + 1) * pow(2.0, nd2e))
        return vals


def factorialk(n, k, exact=True):
    """Multifactorial of n of order k, n(!!...!).

    This is the multifactorial of n skipping k values.  For example,

      factorialk(17, 4) = 17!!!! = 17 * 13 * 9 * 5 * 1

    In particular, for any integer ``n``, we have

      factorialk(n, 1) = factorial(n)

      factorialk(n, 2) = factorial2(n)

    Parameters
    ----------
    n : int
        Calculate multifactorial. If `n` < 0, the return value is 0.
    k : int
        Order of multifactorial.
    exact : bool, optional
        If exact is set to True, calculate the answer exactly using
        integer arithmetic.

    Returns
    -------
    val : int
        Multifactorial of `n`.

    Raises
    ------
    NotImplementedError
        Raises when exact is False

    Examples
    --------
    >>> from scipy.special import factorialk
    >>> factorialk(5, 1, exact=True)
    120L
    >>> factorialk(5, 3, exact=True)
    10L

    """
    if exact:
        if n < 1-k:
            return 0
        if n <= 0:
            return 1
        val = 1
        for j in xrange(n, 0, -k):
            val = val*j
        return val
    else:
        raise NotImplementedError


def zeta(x, q=None, out=None):
    r"""
    Riemann or Hurwitz zeta function.

    Parameters
    ----------
    x : array_like of float
        Input data, must be real
    q : array_like of float, optional
        Input data, must be real.  Defaults to Riemann zeta.
    out : ndarray, optional
        Output array for the computed values.

    Returns
    -------
    out : array_like
        Values of zeta(x).

    Notes
    -----
    The two-argument version is the Hurwitz zeta function

    .. math::

        \zeta(x, q) = \sum_{k=0}^{\infty} \frac{1}{(k + q)^x};

    see [dlmf]_ for details. The Riemann zeta function corresponds to
    the case when ``q = 1``.

    See Also
    --------
    zetac

    References
    ----------
    .. [dlmf] NIST, Digital Library of Mathematical Functions,
        https://dlmf.nist.gov/25.11#i

    Examples
    --------
    >>> from scipy.special import zeta, polygamma, factorial

    Some specific values:

    >>> zeta(2), np.pi**2/6
    (1.6449340668482266, 1.6449340668482264)

    >>> zeta(4), np.pi**4/90
    (1.0823232337111381, 1.082323233711138)

    Relation to the `polygamma` function:

    >>> m = 3
    >>> x = 1.25
    >>> polygamma(m, x)
    array(2.782144009188397)
    >>> (-1)**(m+1) * factorial(m) * zeta(m+1, x)
    2.7821440091883969

    """
    if q is None:
        return ufuncs._riemann_zeta(x, out)
    else:
        return ufuncs._zeta(x, q, out)