morestats.py 113 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
from __future__ import division, print_function, absolute_import

import math
import warnings
from collections import namedtuple

import numpy as np
from numpy import (isscalar, r_, log, around, unique, asarray,
                   zeros, arange, sort, amin, amax, any, atleast_1d,
                   sqrt, ceil, floor, array, compress,
                   pi, exp, ravel, count_nonzero, sin, cos, arctan2, hypot)

from scipy._lib.six import string_types
from scipy import optimize
from scipy import special
from . import statlib
from . import stats
from .stats import find_repeats, _contains_nan
from .contingency import chi2_contingency
from . import distributions
from ._distn_infrastructure import rv_generic


__all__ = ['mvsdist',
           'bayes_mvs', 'kstat', 'kstatvar', 'probplot', 'ppcc_max', 'ppcc_plot',
           'boxcox_llf', 'boxcox', 'boxcox_normmax', 'boxcox_normplot',
           'shapiro', 'anderson', 'ansari', 'bartlett', 'levene', 'binom_test',
           'fligner', 'mood', 'wilcoxon', 'median_test',
           'circmean', 'circvar', 'circstd', 'anderson_ksamp',
           'yeojohnson_llf', 'yeojohnson', 'yeojohnson_normmax',
           'yeojohnson_normplot'
           ]


Mean = namedtuple('Mean', ('statistic', 'minmax'))
Variance = namedtuple('Variance', ('statistic', 'minmax'))
Std_dev = namedtuple('Std_dev', ('statistic', 'minmax'))


def bayes_mvs(data, alpha=0.90):
    r"""
    Bayesian confidence intervals for the mean, var, and std.

    Parameters
    ----------
    data : array_like
        Input data, if multi-dimensional it is flattened to 1-D by `bayes_mvs`.
        Requires 2 or more data points.
    alpha : float, optional
        Probability that the returned confidence interval contains
        the true parameter.

    Returns
    -------
    mean_cntr, var_cntr, std_cntr : tuple
        The three results are for the mean, variance and standard deviation,
        respectively.  Each result is a tuple of the form::

            (center, (lower, upper))

        with `center` the mean of the conditional pdf of the value given the
        data, and `(lower, upper)` a confidence interval, centered on the
        median, containing the estimate to a probability ``alpha``.

    See Also
    --------
    mvsdist

    Notes
    -----
    Each tuple of mean, variance, and standard deviation estimates represent
    the (center, (lower, upper)) with center the mean of the conditional pdf
    of the value given the data and (lower, upper) is a confidence interval
    centered on the median, containing the estimate to a probability
    ``alpha``.

    Converts data to 1-D and assumes all data has the same mean and variance.
    Uses Jeffrey's prior for variance and std.

    Equivalent to ``tuple((x.mean(), x.interval(alpha)) for x in mvsdist(dat))``

    References
    ----------
    T.E. Oliphant, "A Bayesian perspective on estimating mean, variance, and
    standard-deviation from data", https://scholarsarchive.byu.edu/facpub/278,
    2006.

    Examples
    --------
    First a basic example to demonstrate the outputs:

    >>> from scipy import stats
    >>> data = [6, 9, 12, 7, 8, 8, 13]
    >>> mean, var, std = stats.bayes_mvs(data)
    >>> mean
    Mean(statistic=9.0, minmax=(7.103650222612533, 10.896349777387467))
    >>> var
    Variance(statistic=10.0, minmax=(3.176724206..., 24.45910382...))
    >>> std
    Std_dev(statistic=2.9724954732045084, minmax=(1.7823367265645143, 4.945614605014631))

    Now we generate some normally distributed random data, and get estimates of
    mean and standard deviation with 95% confidence intervals for those
    estimates:

    >>> n_samples = 100000
    >>> data = stats.norm.rvs(size=n_samples)
    >>> res_mean, res_var, res_std = stats.bayes_mvs(data, alpha=0.95)

    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> ax.hist(data, bins=100, density=True, label='Histogram of data')
    >>> ax.vlines(res_mean.statistic, 0, 0.5, colors='r', label='Estimated mean')
    >>> ax.axvspan(res_mean.minmax[0],res_mean.minmax[1], facecolor='r',
    ...            alpha=0.2, label=r'Estimated mean (95% limits)')
    >>> ax.vlines(res_std.statistic, 0, 0.5, colors='g', label='Estimated scale')
    >>> ax.axvspan(res_std.minmax[0],res_std.minmax[1], facecolor='g', alpha=0.2,
    ...            label=r'Estimated scale (95% limits)')

    >>> ax.legend(fontsize=10)
    >>> ax.set_xlim([-4, 4])
    >>> ax.set_ylim([0, 0.5])
    >>> plt.show()

    """
    m, v, s = mvsdist(data)
    if alpha >= 1 or alpha <= 0:
        raise ValueError("0 < alpha < 1 is required, but alpha=%s was given."
                         % alpha)

    m_res = Mean(m.mean(), m.interval(alpha))
    v_res = Variance(v.mean(), v.interval(alpha))
    s_res = Std_dev(s.mean(), s.interval(alpha))

    return m_res, v_res, s_res


def mvsdist(data):
    """
    'Frozen' distributions for mean, variance, and standard deviation of data.

    Parameters
    ----------
    data : array_like
        Input array. Converted to 1-D using ravel.
        Requires 2 or more data-points.

    Returns
    -------
    mdist : "frozen" distribution object
        Distribution object representing the mean of the data.
    vdist : "frozen" distribution object
        Distribution object representing the variance of the data.
    sdist : "frozen" distribution object
        Distribution object representing the standard deviation of the data.

    See Also
    --------
    bayes_mvs

    Notes
    -----
    The return values from ``bayes_mvs(data)`` is equivalent to
    ``tuple((x.mean(), x.interval(0.90)) for x in mvsdist(data))``.

    In other words, calling ``<dist>.mean()`` and ``<dist>.interval(0.90)``
    on the three distribution objects returned from this function will give
    the same results that are returned from `bayes_mvs`.

    References
    ----------
    T.E. Oliphant, "A Bayesian perspective on estimating mean, variance, and
    standard-deviation from data", https://scholarsarchive.byu.edu/facpub/278,
    2006.

    Examples
    --------
    >>> from scipy import stats
    >>> data = [6, 9, 12, 7, 8, 8, 13]
    >>> mean, var, std = stats.mvsdist(data)

    We now have frozen distribution objects "mean", "var" and "std" that we can
    examine:

    >>> mean.mean()
    9.0
    >>> mean.interval(0.95)
    (6.6120585482655692, 11.387941451734431)
    >>> mean.std()
    1.1952286093343936

    """
    x = ravel(data)
    n = len(x)
    if n < 2:
        raise ValueError("Need at least 2 data-points.")
    xbar = x.mean()
    C = x.var()
    if n > 1000:  # gaussian approximations for large n
        mdist = distributions.norm(loc=xbar, scale=math.sqrt(C / n))
        sdist = distributions.norm(loc=math.sqrt(C), scale=math.sqrt(C / (2. * n)))
        vdist = distributions.norm(loc=C, scale=math.sqrt(2.0 / n) * C)
    else:
        nm1 = n - 1
        fac = n * C / 2.
        val = nm1 / 2.
        mdist = distributions.t(nm1, loc=xbar, scale=math.sqrt(C / nm1))
        sdist = distributions.gengamma(val, -2, scale=math.sqrt(fac))
        vdist = distributions.invgamma(val, scale=fac)
    return mdist, vdist, sdist


def kstat(data, n=2):
    r"""
    Return the nth k-statistic (1<=n<=4 so far).

    The nth k-statistic k_n is the unique symmetric unbiased estimator of the
    nth cumulant kappa_n.

    Parameters
    ----------
    data : array_like
        Input array. Note that n-D input gets flattened.
    n : int, {1, 2, 3, 4}, optional
        Default is equal to 2.

    Returns
    -------
    kstat : float
        The nth k-statistic.

    See Also
    --------
    kstatvar: Returns an unbiased estimator of the variance of the k-statistic.
    moment: Returns the n-th central moment about the mean for a sample.

    Notes
    -----
    For a sample size n, the first few k-statistics are given by:

    .. math::

        k_{1} = \mu
        k_{2} = \frac{n}{n-1} m_{2}
        k_{3} = \frac{ n^{2} } {(n-1) (n-2)} m_{3}
        k_{4} = \frac{ n^{2} [(n + 1)m_{4} - 3(n - 1) m^2_{2}]} {(n-1) (n-2) (n-3)}

    where :math:`\mu` is the sample mean, :math:`m_2` is the sample
    variance, and :math:`m_i` is the i-th sample central moment.

    References
    ----------
    http://mathworld.wolfram.com/k-Statistic.html

    http://mathworld.wolfram.com/Cumulant.html

    Examples
    --------
    >>> from scipy import stats
    >>> rndm = np.random.RandomState(1234)

    As sample size increases, n-th moment and n-th k-statistic converge to the
    same number (although they aren't identical). In the case of the normal
    distribution, they converge to zero.

    >>> for n in [2, 3, 4, 5, 6, 7]:
    ...     x = rndm.normal(size=10**n)
    ...     m, k = stats.moment(x, 3), stats.kstat(x, 3)
    ...     print("%.3g %.3g %.3g" % (m, k, m-k))
    -0.631 -0.651 0.0194
    0.0282 0.0283 -8.49e-05
    -0.0454 -0.0454 1.36e-05
    7.53e-05 7.53e-05 -2.26e-09
    0.00166 0.00166 -4.99e-09
    -2.88e-06 -2.88e-06 8.63e-13
    """
    if n > 4 or n < 1:
        raise ValueError("k-statistics only supported for 1<=n<=4")
    n = int(n)
    S = np.zeros(n + 1, np.float64)
    data = ravel(data)
    N = data.size

    # raise ValueError on empty input
    if N == 0:
        raise ValueError("Data input must not be empty")

    # on nan input, return nan without warning
    if np.isnan(np.sum(data)):
        return np.nan

    for k in range(1, n + 1):
        S[k] = np.sum(data**k, axis=0)
    if n == 1:
        return S[1] * 1.0/N
    elif n == 2:
        return (N*S[2] - S[1]**2.0) / (N*(N - 1.0))
    elif n == 3:
        return (2*S[1]**3 - 3*N*S[1]*S[2] + N*N*S[3]) / (N*(N - 1.0)*(N - 2.0))
    elif n == 4:
        return ((-6*S[1]**4 + 12*N*S[1]**2 * S[2] - 3*N*(N-1.0)*S[2]**2 -
                 4*N*(N+1)*S[1]*S[3] + N*N*(N+1)*S[4]) /
                 (N*(N-1.0)*(N-2.0)*(N-3.0)))
    else:
        raise ValueError("Should not be here.")


def kstatvar(data, n=2):
    r"""
    Return an unbiased estimator of the variance of the k-statistic.

    See `kstat` for more details of the k-statistic.

    Parameters
    ----------
    data : array_like
        Input array. Note that n-D input gets flattened.
    n : int, {1, 2}, optional
        Default is equal to 2.

    Returns
    -------
    kstatvar : float
        The nth k-statistic variance.

    See Also
    --------
    kstat: Returns the n-th k-statistic.
    moment: Returns the n-th central moment about the mean for a sample.

    Notes
    -----
    The variances of the first few k-statistics are given by:

    .. math::

        var(k_{1}) = \frac{\kappa^2}{n}
        var(k_{2}) = \frac{\kappa^4}{n} + \frac{2\kappa^2_{2}}{n - 1}
        var(k_{3}) = \frac{\kappa^6}{n} + \frac{9 \kappa_2 \kappa_4}{n - 1} +
                     \frac{9 \kappa^2_{3}}{n - 1} +
                     \frac{6 n \kappa^3_{2}}{(n-1) (n-2)}
        var(k_{4}) = \frac{\kappa^8}{n} + \frac{16 \kappa_2 \kappa_6}{n - 1} +
                     \frac{48 \kappa_{3} \kappa_5}{n - 1} +
                     \frac{34 \kappa^2_{4}}{n-1} + \frac{72 n \kappa^2_{2} \kappa_4}{(n - 1) (n - 2)} +
                     \frac{144 n \kappa_{2} \kappa^2_{3}}{(n - 1) (n - 2)} +
                     \frac{24 (n + 1) n \kappa^4_{2}}{(n - 1) (n - 2) (n - 3)}
    """
    data = ravel(data)
    N = len(data)
    if n == 1:
        return kstat(data, n=2) * 1.0/N
    elif n == 2:
        k2 = kstat(data, n=2)
        k4 = kstat(data, n=4)
        return (2*N*k2**2 + (N-1)*k4) / (N*(N+1))
    else:
        raise ValueError("Only n=1 or n=2 supported.")


def _calc_uniform_order_statistic_medians(n):
    """
    Approximations of uniform order statistic medians.

    Parameters
    ----------
    n : int
        Sample size.

    Returns
    -------
    v : 1d float array
        Approximations of the order statistic medians.

    References
    ----------
    .. [1] James J. Filliben, "The Probability Plot Correlation Coefficient
           Test for Normality", Technometrics, Vol. 17, pp. 111-117, 1975.

    Examples
    --------
    Order statistics of the uniform distribution on the unit interval
    are marginally distributed according to beta distributions.
    The expectations of these order statistic are evenly spaced across
    the interval, but the distributions are skewed in a way that
    pushes the medians slightly towards the endpoints of the unit interval:

    >>> n = 4
    >>> k = np.arange(1, n+1)
    >>> from scipy.stats import beta
    >>> a = k
    >>> b = n-k+1
    >>> beta.mean(a, b)
    array([ 0.2,  0.4,  0.6,  0.8])
    >>> beta.median(a, b)
    array([ 0.15910358,  0.38572757,  0.61427243,  0.84089642])

    The Filliben approximation uses the exact medians of the smallest
    and greatest order statistics, and the remaining medians are approximated
    by points spread evenly across a sub-interval of the unit interval:

    >>> from scipy.morestats import _calc_uniform_order_statistic_medians
    >>> _calc_uniform_order_statistic_medians(n)
    array([ 0.15910358,  0.38545246,  0.61454754,  0.84089642])

    This plot shows the skewed distributions of the order statistics
    of a sample of size four from a uniform distribution on the unit interval:

    >>> import matplotlib.pyplot as plt
    >>> x = np.linspace(0.0, 1.0, num=50, endpoint=True)
    >>> pdfs = [beta.pdf(x, a[i], b[i]) for i in range(n)]
    >>> plt.figure()
    >>> plt.plot(x, pdfs[0], x, pdfs[1], x, pdfs[2], x, pdfs[3])

    """
    v = np.zeros(n, dtype=np.float64)
    v[-1] = 0.5**(1.0 / n)
    v[0] = 1 - v[-1]
    i = np.arange(2, n)
    v[1:-1] = (i - 0.3175) / (n + 0.365)
    return v


def _parse_dist_kw(dist, enforce_subclass=True):
    """Parse `dist` keyword.

    Parameters
    ----------
    dist : str or stats.distributions instance.
        Several functions take `dist` as a keyword, hence this utility
        function.
    enforce_subclass : bool, optional
        If True (default), `dist` needs to be a
        `_distn_infrastructure.rv_generic` instance.
        It can sometimes be useful to set this keyword to False, if a function
        wants to accept objects that just look somewhat like such an instance
        (for example, they have a ``ppf`` method).

    """
    if isinstance(dist, rv_generic):
        pass
    elif isinstance(dist, string_types):
        try:
            dist = getattr(distributions, dist)
        except AttributeError:
            raise ValueError("%s is not a valid distribution name" % dist)
    elif enforce_subclass:
        msg = ("`dist` should be a stats.distributions instance or a string "
               "with the name of such a distribution.")
        raise ValueError(msg)

    return dist


def _add_axis_labels_title(plot, xlabel, ylabel, title):
    """Helper function to add axes labels and a title to stats plots"""
    try:
        if hasattr(plot, 'set_title'):
            # Matplotlib Axes instance or something that looks like it
            plot.set_title(title)
            plot.set_xlabel(xlabel)
            plot.set_ylabel(ylabel)
        else:
            # matplotlib.pyplot module
            plot.title(title)
            plot.xlabel(xlabel)
            plot.ylabel(ylabel)
    except Exception:
        # Not an MPL object or something that looks (enough) like it.
        # Don't crash on adding labels or title
        pass


def probplot(x, sparams=(), dist='norm', fit=True, plot=None, rvalue=False):
    """
    Calculate quantiles for a probability plot, and optionally show the plot.

    Generates a probability plot of sample data against the quantiles of a
    specified theoretical distribution (the normal distribution by default).
    `probplot` optionally calculates a best-fit line for the data and plots the
    results using Matplotlib or a given plot function.

    Parameters
    ----------
    x : array_like
        Sample/response data from which `probplot` creates the plot.
    sparams : tuple, optional
        Distribution-specific shape parameters (shape parameters plus location
        and scale).
    dist : str or stats.distributions instance, optional
        Distribution or distribution function name. The default is 'norm' for a
        normal probability plot.  Objects that look enough like a
        stats.distributions instance (i.e. they have a ``ppf`` method) are also
        accepted.
    fit : bool, optional
        Fit a least-squares regression (best-fit) line to the sample data if
        True (default).
    plot : object, optional
        If given, plots the quantiles and least squares fit.
        `plot` is an object that has to have methods "plot" and "text".
        The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
        or a custom object with the same methods.
        Default is None, which means that no plot is created.

    Returns
    -------
    (osm, osr) : tuple of ndarrays
        Tuple of theoretical quantiles (osm, or order statistic medians) and
        ordered responses (osr).  `osr` is simply sorted input `x`.
        For details on how `osm` is calculated see the Notes section.
    (slope, intercept, r) : tuple of floats, optional
        Tuple  containing the result of the least-squares fit, if that is
        performed by `probplot`. `r` is the square root of the coefficient of
        determination.  If ``fit=False`` and ``plot=None``, this tuple is not
        returned.

    Notes
    -----
    Even if `plot` is given, the figure is not shown or saved by `probplot`;
    ``plt.show()`` or ``plt.savefig('figname.png')`` should be used after
    calling `probplot`.

    `probplot` generates a probability plot, which should not be confused with
    a Q-Q or a P-P plot.  Statsmodels has more extensive functionality of this
    type, see ``statsmodels.api.ProbPlot``.

    The formula used for the theoretical quantiles (horizontal axis of the
    probability plot) is Filliben's estimate::

        quantiles = dist.ppf(val), for

                0.5**(1/n),                  for i = n
          val = (i - 0.3175) / (n + 0.365),  for i = 2, ..., n-1
                1 - 0.5**(1/n),              for i = 1

    where ``i`` indicates the i-th ordered value and ``n`` is the total number
    of values.

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt
    >>> nsample = 100
    >>> np.random.seed(7654321)

    A t distribution with small degrees of freedom:

    >>> ax1 = plt.subplot(221)
    >>> x = stats.t.rvs(3, size=nsample)
    >>> res = stats.probplot(x, plot=plt)

    A t distribution with larger degrees of freedom:

    >>> ax2 = plt.subplot(222)
    >>> x = stats.t.rvs(25, size=nsample)
    >>> res = stats.probplot(x, plot=plt)

    A mixture of two normal distributions with broadcasting:

    >>> ax3 = plt.subplot(223)
    >>> x = stats.norm.rvs(loc=[0,5], scale=[1,1.5],
    ...                    size=(nsample//2,2)).ravel()
    >>> res = stats.probplot(x, plot=plt)

    A standard normal distribution:

    >>> ax4 = plt.subplot(224)
    >>> x = stats.norm.rvs(loc=0, scale=1, size=nsample)
    >>> res = stats.probplot(x, plot=plt)

    Produce a new figure with a loggamma distribution, using the ``dist`` and
    ``sparams`` keywords:

    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> x = stats.loggamma.rvs(c=2.5, size=500)
    >>> res = stats.probplot(x, dist=stats.loggamma, sparams=(2.5,), plot=ax)
    >>> ax.set_title("Probplot for loggamma dist with shape parameter 2.5")

    Show the results with Matplotlib:

    >>> plt.show()

    """
    x = np.asarray(x)
    _perform_fit = fit or (plot is not None)
    if x.size == 0:
        if _perform_fit:
            return (x, x), (np.nan, np.nan, 0.0)
        else:
            return x, x

    osm_uniform = _calc_uniform_order_statistic_medians(len(x))
    dist = _parse_dist_kw(dist, enforce_subclass=False)
    if sparams is None:
        sparams = ()
    if isscalar(sparams):
        sparams = (sparams,)
    if not isinstance(sparams, tuple):
        sparams = tuple(sparams)

    osm = dist.ppf(osm_uniform, *sparams)
    osr = sort(x)
    if _perform_fit:
        # perform a linear least squares fit.
        slope, intercept, r, prob, sterrest = stats.linregress(osm, osr)

    if plot is not None:
        plot.plot(osm, osr, 'bo', osm, slope*osm + intercept, 'r-')
        _add_axis_labels_title(plot, xlabel='Theoretical quantiles',
                               ylabel='Ordered Values',
                               title='Probability Plot')

        # Add R^2 value to the plot as text
        if rvalue:
            xmin = amin(osm)
            xmax = amax(osm)
            ymin = amin(x)
            ymax = amax(x)
            posx = xmin + 0.70 * (xmax - xmin)
            posy = ymin + 0.01 * (ymax - ymin)
            plot.text(posx, posy, "$R^2=%1.4f$" % r**2)

    if fit:
        return (osm, osr), (slope, intercept, r)
    else:
        return osm, osr


def ppcc_max(x, brack=(0.0, 1.0), dist='tukeylambda'):
    """
    Calculate the shape parameter that maximizes the PPCC.

    The probability plot correlation coefficient (PPCC) plot can be used to
    determine the optimal shape parameter for a one-parameter family of
    distributions.  ppcc_max returns the shape parameter that would maximize the
    probability plot correlation coefficient for the given data to a
    one-parameter family of distributions.

    Parameters
    ----------
    x : array_like
        Input array.
    brack : tuple, optional
        Triple (a,b,c) where (a<b<c). If bracket consists of two numbers (a, c)
        then they are assumed to be a starting interval for a downhill bracket
        search (see `scipy.optimize.brent`).
    dist : str or stats.distributions instance, optional
        Distribution or distribution function name.  Objects that look enough
        like a stats.distributions instance (i.e. they have a ``ppf`` method)
        are also accepted.  The default is ``'tukeylambda'``.

    Returns
    -------
    shape_value : float
        The shape parameter at which the probability plot correlation
        coefficient reaches its max value.

    See Also
    --------
    ppcc_plot, probplot, boxcox

    Notes
    -----
    The brack keyword serves as a starting point which is useful in corner
    cases. One can use a plot to obtain a rough visual estimate of the location
    for the maximum to start the search near it.

    References
    ----------
    .. [1] J.J. Filliben, "The Probability Plot Correlation Coefficient Test for
           Normality", Technometrics, Vol. 17, pp. 111-117, 1975.

    .. [2] https://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm

    Examples
    --------
    First we generate some random data from a Tukey-Lambda distribution,
    with shape parameter -0.7:

    >>> from scipy import stats
    >>> x = stats.tukeylambda.rvs(-0.7, loc=2, scale=0.5, size=10000,
    ...                           random_state=1234567) + 1e4

    Now we explore this data with a PPCC plot as well as the related
    probability plot and Box-Cox normplot.  A red line is drawn where we
    expect the PPCC value to be maximal (at the shape parameter -0.7 used
    above):

    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure(figsize=(8, 6))
    >>> ax = fig.add_subplot(111)
    >>> res = stats.ppcc_plot(x, -5, 5, plot=ax)

    We calculate the value where the shape should reach its maximum and a red
    line is drawn there. The line should coincide with the highest point in the
    ppcc_plot.

    >>> max = stats.ppcc_max(x)
    >>> ax.vlines(max, 0, 1, colors='r', label='Expected shape value')

    >>> plt.show()

    """
    dist = _parse_dist_kw(dist)
    osm_uniform = _calc_uniform_order_statistic_medians(len(x))
    osr = sort(x)

    # this function computes the x-axis values of the probability plot
    #  and computes a linear regression (including the correlation)
    #  and returns 1-r so that a minimization function maximizes the
    #  correlation
    def tempfunc(shape, mi, yvals, func):
        xvals = func(mi, shape)
        r, prob = stats.pearsonr(xvals, yvals)
        return 1 - r

    return optimize.brent(tempfunc, brack=brack, args=(osm_uniform, osr, dist.ppf))


def ppcc_plot(x, a, b, dist='tukeylambda', plot=None, N=80):
    """
    Calculate and optionally plot probability plot correlation coefficient.

    The probability plot correlation coefficient (PPCC) plot can be used to
    determine the optimal shape parameter for a one-parameter family of
    distributions.  It cannot be used for distributions without shape parameters
    (like the normal distribution) or with multiple shape parameters.

    By default a Tukey-Lambda distribution (`stats.tukeylambda`) is used. A
    Tukey-Lambda PPCC plot interpolates from long-tailed to short-tailed
    distributions via an approximately normal one, and is therefore particularly
    useful in practice.

    Parameters
    ----------
    x : array_like
        Input array.
    a, b : scalar
        Lower and upper bounds of the shape parameter to use.
    dist : str or stats.distributions instance, optional
        Distribution or distribution function name.  Objects that look enough
        like a stats.distributions instance (i.e. they have a ``ppf`` method)
        are also accepted.  The default is ``'tukeylambda'``.
    plot : object, optional
        If given, plots PPCC against the shape parameter.
        `plot` is an object that has to have methods "plot" and "text".
        The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
        or a custom object with the same methods.
        Default is None, which means that no plot is created.
    N : int, optional
        Number of points on the horizontal axis (equally distributed from
        `a` to `b`).

    Returns
    -------
    svals : ndarray
        The shape values for which `ppcc` was calculated.
    ppcc : ndarray
        The calculated probability plot correlation coefficient values.

    See Also
    --------
    ppcc_max, probplot, boxcox_normplot, tukeylambda

    References
    ----------
    J.J. Filliben, "The Probability Plot Correlation Coefficient Test for
    Normality", Technometrics, Vol. 17, pp. 111-117, 1975.

    Examples
    --------
    First we generate some random data from a Tukey-Lambda distribution,
    with shape parameter -0.7:

    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt
    >>> np.random.seed(1234567)
    >>> x = stats.tukeylambda.rvs(-0.7, loc=2, scale=0.5, size=10000) + 1e4

    Now we explore this data with a PPCC plot as well as the related
    probability plot and Box-Cox normplot.  A red line is drawn where we
    expect the PPCC value to be maximal (at the shape parameter -0.7 used
    above):

    >>> fig = plt.figure(figsize=(12, 4))
    >>> ax1 = fig.add_subplot(131)
    >>> ax2 = fig.add_subplot(132)
    >>> ax3 = fig.add_subplot(133)
    >>> res = stats.probplot(x, plot=ax1)
    >>> res = stats.boxcox_normplot(x, -5, 5, plot=ax2)
    >>> res = stats.ppcc_plot(x, -5, 5, plot=ax3)
    >>> ax3.vlines(-0.7, 0, 1, colors='r', label='Expected shape value')
    >>> plt.show()

    """
    if b <= a:
        raise ValueError("`b` has to be larger than `a`.")

    svals = np.linspace(a, b, num=N)
    ppcc = np.empty_like(svals)
    for k, sval in enumerate(svals):
        _, r2 = probplot(x, sval, dist=dist, fit=True)
        ppcc[k] = r2[-1]

    if plot is not None:
        plot.plot(svals, ppcc, 'x')
        _add_axis_labels_title(plot, xlabel='Shape Values',
                               ylabel='Prob Plot Corr. Coef.',
                               title='(%s) PPCC Plot' % dist)

    return svals, ppcc


def boxcox_llf(lmb, data):
    r"""The boxcox log-likelihood function.

    Parameters
    ----------
    lmb : scalar
        Parameter for Box-Cox transformation.  See `boxcox` for details.
    data : array_like
        Data to calculate Box-Cox log-likelihood for.  If `data` is
        multi-dimensional, the log-likelihood is calculated along the first
        axis.

    Returns
    -------
    llf : float or ndarray
        Box-Cox log-likelihood of `data` given `lmb`.  A float for 1-D `data`,
        an array otherwise.

    See Also
    --------
    boxcox, probplot, boxcox_normplot, boxcox_normmax

    Notes
    -----
    The Box-Cox log-likelihood function is defined here as

    .. math::

        llf = (\lambda - 1) \sum_i(\log(x_i)) -
              N/2 \log(\sum_i (y_i - \bar{y})^2 / N),

    where ``y`` is the Box-Cox transformed input data ``x``.

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt
    >>> from mpl_toolkits.axes_grid1.inset_locator import inset_axes
    >>> np.random.seed(1245)

    Generate some random variates and calculate Box-Cox log-likelihood values
    for them for a range of ``lmbda`` values:

    >>> x = stats.loggamma.rvs(5, loc=10, size=1000)
    >>> lmbdas = np.linspace(-2, 10)
    >>> llf = np.zeros(lmbdas.shape, dtype=float)
    >>> for ii, lmbda in enumerate(lmbdas):
    ...     llf[ii] = stats.boxcox_llf(lmbda, x)

    Also find the optimal lmbda value with `boxcox`:

    >>> x_most_normal, lmbda_optimal = stats.boxcox(x)

    Plot the log-likelihood as function of lmbda.  Add the optimal lmbda as a
    horizontal line to check that that's really the optimum:

    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> ax.plot(lmbdas, llf, 'b.-')
    >>> ax.axhline(stats.boxcox_llf(lmbda_optimal, x), color='r')
    >>> ax.set_xlabel('lmbda parameter')
    >>> ax.set_ylabel('Box-Cox log-likelihood')

    Now add some probability plots to show that where the log-likelihood is
    maximized the data transformed with `boxcox` looks closest to normal:

    >>> locs = [3, 10, 4]  # 'lower left', 'center', 'lower right'
    >>> for lmbda, loc in zip([-1, lmbda_optimal, 9], locs):
    ...     xt = stats.boxcox(x, lmbda=lmbda)
    ...     (osm, osr), (slope, intercept, r_sq) = stats.probplot(xt)
    ...     ax_inset = inset_axes(ax, width="20%", height="20%", loc=loc)
    ...     ax_inset.plot(osm, osr, 'c.', osm, slope*osm + intercept, 'k-')
    ...     ax_inset.set_xticklabels([])
    ...     ax_inset.set_yticklabels([])
    ...     ax_inset.set_title(r'$\lambda=%1.2f$' % lmbda)

    >>> plt.show()

    """
    data = np.asarray(data)
    N = data.shape[0]
    if N == 0:
        return np.nan

    logdata = np.log(data)

    # Compute the variance of the transformed data.
    if lmb == 0:
        variance = np.var(logdata, axis=0)
    else:
        # Transform without the constant offset 1/lmb.  The offset does
        # not effect the variance, and the subtraction of the offset can
        # lead to loss of precision.
        variance = np.var(data**lmb / lmb, axis=0)

    return (lmb - 1) * np.sum(logdata, axis=0) - N/2 * np.log(variance)


def _boxcox_conf_interval(x, lmax, alpha):
    # Need to find the lambda for which
    #  f(x,lmbda) >= f(x,lmax) - 0.5*chi^2_alpha;1
    fac = 0.5 * distributions.chi2.ppf(1 - alpha, 1)
    target = boxcox_llf(lmax, x) - fac

    def rootfunc(lmbda, data, target):
        return boxcox_llf(lmbda, data) - target

    # Find positive endpoint of interval in which answer is to be found
    newlm = lmax + 0.5
    N = 0
    while (rootfunc(newlm, x, target) > 0.0) and (N < 500):
        newlm += 0.1
        N += 1

    if N == 500:
        raise RuntimeError("Could not find endpoint.")

    lmplus = optimize.brentq(rootfunc, lmax, newlm, args=(x, target))

    # Now find negative interval in the same way
    newlm = lmax - 0.5
    N = 0
    while (rootfunc(newlm, x, target) > 0.0) and (N < 500):
        newlm -= 0.1
        N += 1

    if N == 500:
        raise RuntimeError("Could not find endpoint.")

    lmminus = optimize.brentq(rootfunc, newlm, lmax, args=(x, target))
    return lmminus, lmplus


def boxcox(x, lmbda=None, alpha=None):
    r"""
    Return a dataset transformed by a Box-Cox power transformation.

    Parameters
    ----------
    x : ndarray
        Input array.  Must be positive 1-dimensional.  Must not be constant.
    lmbda : {None, scalar}, optional
        If `lmbda` is not None, do the transformation for that value.

        If `lmbda` is None, find the lambda that maximizes the log-likelihood
        function and return it as the second output argument.
    alpha : {None, float}, optional
        If ``alpha`` is not None, return the ``100 * (1-alpha)%`` confidence
        interval for `lmbda` as the third output argument.
        Must be between 0.0 and 1.0.

    Returns
    -------
    boxcox : ndarray
        Box-Cox power transformed array.
    maxlog : float, optional
        If the `lmbda` parameter is None, the second returned argument is
        the lambda that maximizes the log-likelihood function.
    (min_ci, max_ci) : tuple of float, optional
        If `lmbda` parameter is None and ``alpha`` is not None, this returned
        tuple of floats represents the minimum and maximum confidence limits
        given ``alpha``.

    See Also
    --------
    probplot, boxcox_normplot, boxcox_normmax, boxcox_llf

    Notes
    -----
    The Box-Cox transform is given by::

        y = (x**lmbda - 1) / lmbda,  for lmbda > 0
            log(x),                  for lmbda = 0

    `boxcox` requires the input data to be positive.  Sometimes a Box-Cox
    transformation provides a shift parameter to achieve this; `boxcox` does
    not.  Such a shift parameter is equivalent to adding a positive constant to
    `x` before calling `boxcox`.

    The confidence limits returned when ``alpha`` is provided give the interval
    where:

    .. math::

        llf(\hat{\lambda}) - llf(\lambda) < \frac{1}{2}\chi^2(1 - \alpha, 1),

    with ``llf`` the log-likelihood function and :math:`\chi^2` the chi-squared
    function.

    References
    ----------
    G.E.P. Box and D.R. Cox, "An Analysis of Transformations", Journal of the
    Royal Statistical Society B, 26, 211-252 (1964).

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt

    We generate some random variates from a non-normal distribution and make a
    probability plot for it, to show it is non-normal in the tails:

    >>> fig = plt.figure()
    >>> ax1 = fig.add_subplot(211)
    >>> x = stats.loggamma.rvs(5, size=500) + 5
    >>> prob = stats.probplot(x, dist=stats.norm, plot=ax1)
    >>> ax1.set_xlabel('')
    >>> ax1.set_title('Probplot against normal distribution')

    We now use `boxcox` to transform the data so it's closest to normal:

    >>> ax2 = fig.add_subplot(212)
    >>> xt, _ = stats.boxcox(x)
    >>> prob = stats.probplot(xt, dist=stats.norm, plot=ax2)
    >>> ax2.set_title('Probplot after Box-Cox transformation')

    >>> plt.show()

    """
    x = np.asarray(x)
    if x.ndim != 1:
        raise ValueError("Data must be 1-dimensional.")

    if x.size == 0:
        return x

    if np.all(x == x[0]):
        raise ValueError("Data must not be constant.")

    if any(x <= 0):
        raise ValueError("Data must be positive.")

    if lmbda is not None:  # single transformation
        return special.boxcox(x, lmbda)

    # If lmbda=None, find the lmbda that maximizes the log-likelihood function.
    lmax = boxcox_normmax(x, method='mle')
    y = boxcox(x, lmax)

    if alpha is None:
        return y, lmax
    else:
        # Find confidence interval
        interval = _boxcox_conf_interval(x, lmax, alpha)
        return y, lmax, interval


def boxcox_normmax(x, brack=(-2.0, 2.0), method='pearsonr'):
    """Compute optimal Box-Cox transform parameter for input data.

    Parameters
    ----------
    x : array_like
        Input array.
    brack : 2-tuple, optional
        The starting interval for a downhill bracket search with
        `optimize.brent`.  Note that this is in most cases not critical; the
        final result is allowed to be outside this bracket.
    method : str, optional
        The method to determine the optimal transform parameter (`boxcox`
        ``lmbda`` parameter). Options are:

        'pearsonr'  (default)
            Maximizes the Pearson correlation coefficient between
            ``y = boxcox(x)`` and the expected values for ``y`` if `x` would be
            normally-distributed.

        'mle'
            Minimizes the log-likelihood `boxcox_llf`.  This is the method used
            in `boxcox`.

        'all'
            Use all optimization methods available, and return all results.
            Useful to compare different methods.

    Returns
    -------
    maxlog : float or ndarray
        The optimal transform parameter found.  An array instead of a scalar
        for ``method='all'``.

    See Also
    --------
    boxcox, boxcox_llf, boxcox_normplot

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt
    >>> np.random.seed(1234)  # make this example reproducible

    Generate some data and determine optimal ``lmbda`` in various ways:

    >>> x = stats.loggamma.rvs(5, size=30) + 5
    >>> y, lmax_mle = stats.boxcox(x)
    >>> lmax_pearsonr = stats.boxcox_normmax(x)

    >>> lmax_mle
    7.177...
    >>> lmax_pearsonr
    7.916...
    >>> stats.boxcox_normmax(x, method='all')
    array([ 7.91667384,  7.17718692])

    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> prob = stats.boxcox_normplot(x, -10, 10, plot=ax)
    >>> ax.axvline(lmax_mle, color='r')
    >>> ax.axvline(lmax_pearsonr, color='g', ls='--')

    >>> plt.show()

    """

    def _pearsonr(x, brack):
        osm_uniform = _calc_uniform_order_statistic_medians(len(x))
        xvals = distributions.norm.ppf(osm_uniform)

        def _eval_pearsonr(lmbda, xvals, samps):
            # This function computes the x-axis values of the probability plot
            # and computes a linear regression (including the correlation) and
            # returns ``1 - r`` so that a minimization function maximizes the
            # correlation.
            y = boxcox(samps, lmbda)
            yvals = np.sort(y)
            r, prob = stats.pearsonr(xvals, yvals)
            return 1 - r

        return optimize.brent(_eval_pearsonr, brack=brack, args=(xvals, x))

    def _mle(x, brack):
        def _eval_mle(lmb, data):
            # function to minimize
            return -boxcox_llf(lmb, data)

        return optimize.brent(_eval_mle, brack=brack, args=(x,))

    def _all(x, brack):
        maxlog = np.zeros(2, dtype=float)
        maxlog[0] = _pearsonr(x, brack)
        maxlog[1] = _mle(x, brack)
        return maxlog

    methods = {'pearsonr': _pearsonr,
               'mle': _mle,
               'all': _all}
    if method not in methods.keys():
        raise ValueError("Method %s not recognized." % method)

    optimfunc = methods[method]
    return optimfunc(x, brack)


def _normplot(method, x, la, lb, plot=None, N=80):
    """Compute parameters for a Box-Cox or Yeo-Johnson normality plot,
    optionally show it. See `boxcox_normplot` or `yeojohnson_normplot` for
    details."""

    if method == 'boxcox':
        title = 'Box-Cox Normality Plot'
        transform_func = boxcox
    else:
        title = 'Yeo-Johnson Normality Plot'
        transform_func = yeojohnson

    x = np.asarray(x)
    if x.size == 0:
        return x

    if lb <= la:
        raise ValueError("`lb` has to be larger than `la`.")

    lmbdas = np.linspace(la, lb, num=N)
    ppcc = lmbdas * 0.0
    for i, val in enumerate(lmbdas):
        # Determine for each lmbda the square root of correlation coefficient
        # of transformed x
        z = transform_func(x, lmbda=val)
        _, (_, _, r) = probplot(z, dist='norm', fit=True)
        ppcc[i] = r

    if plot is not None:
        plot.plot(lmbdas, ppcc, 'x')
        _add_axis_labels_title(plot, xlabel='$\\lambda$',
                               ylabel='Prob Plot Corr. Coef.',
                               title=title)

    return lmbdas, ppcc


def boxcox_normplot(x, la, lb, plot=None, N=80):
    """Compute parameters for a Box-Cox normality plot, optionally show it.

    A Box-Cox normality plot shows graphically what the best transformation
    parameter is to use in `boxcox` to obtain a distribution that is close
    to normal.

    Parameters
    ----------
    x : array_like
        Input array.
    la, lb : scalar
        The lower and upper bounds for the ``lmbda`` values to pass to `boxcox`
        for Box-Cox transformations.  These are also the limits of the
        horizontal axis of the plot if that is generated.
    plot : object, optional
        If given, plots the quantiles and least squares fit.
        `plot` is an object that has to have methods "plot" and "text".
        The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
        or a custom object with the same methods.
        Default is None, which means that no plot is created.
    N : int, optional
        Number of points on the horizontal axis (equally distributed from
        `la` to `lb`).

    Returns
    -------
    lmbdas : ndarray
        The ``lmbda`` values for which a Box-Cox transform was done.
    ppcc : ndarray
        Probability Plot Correlelation Coefficient, as obtained from `probplot`
        when fitting the Box-Cox transformed input `x` against a normal
        distribution.

    See Also
    --------
    probplot, boxcox, boxcox_normmax, boxcox_llf, ppcc_max

    Notes
    -----
    Even if `plot` is given, the figure is not shown or saved by
    `boxcox_normplot`; ``plt.show()`` or ``plt.savefig('figname.png')``
    should be used after calling `probplot`.

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt

    Generate some non-normally distributed data, and create a Box-Cox plot:

    >>> x = stats.loggamma.rvs(5, size=500) + 5
    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> prob = stats.boxcox_normplot(x, -20, 20, plot=ax)

    Determine and plot the optimal ``lmbda`` to transform ``x`` and plot it in
    the same plot:

    >>> _, maxlog = stats.boxcox(x)
    >>> ax.axvline(maxlog, color='r')

    >>> plt.show()

    """
    return _normplot('boxcox', x, la, lb, plot, N)


def yeojohnson(x, lmbda=None):
    r"""
    Return a dataset transformed by a Yeo-Johnson power transformation.

    Parameters
    ----------
    x : ndarray
        Input array.  Should be 1-dimensional.
    lmbda : float, optional
        If ``lmbda`` is ``None``, find the lambda that maximizes the
        log-likelihood function and return it as the second output argument.
        Otherwise the transformation is done for the given value.

    Returns
    -------
    yeojohnson: ndarray
        Yeo-Johnson power transformed array.
    maxlog : float, optional
        If the `lmbda` parameter is None, the second returned argument is
        the lambda that maximizes the log-likelihood function.

    See Also
    --------
    probplot, yeojohnson_normplot, yeojohnson_normmax, yeojohnson_llf, boxcox

    Notes
    -----
    The Yeo-Johnson transform is given by::

        y = ((x + 1)**lmbda - 1) / lmbda,                for x >= 0, lmbda != 0
            log(x + 1),                                  for x >= 0, lmbda = 0
            -((-x + 1)**(2 - lmbda) - 1) / (2 - lmbda),  for x < 0, lmbda != 2
            -log(-x + 1),                                for x < 0, lmbda = 2

    Unlike `boxcox`, `yeojohnson` does not require the input data to be
    positive.

    .. versionadded:: 1.2.0


    References
    ----------
    I. Yeo and R.A. Johnson, "A New Family of Power Transformations to
    Improve Normality or Symmetry", Biometrika 87.4 (2000):


    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt

    We generate some random variates from a non-normal distribution and make a
    probability plot for it, to show it is non-normal in the tails:

    >>> fig = plt.figure()
    >>> ax1 = fig.add_subplot(211)
    >>> x = stats.loggamma.rvs(5, size=500) + 5
    >>> prob = stats.probplot(x, dist=stats.norm, plot=ax1)
    >>> ax1.set_xlabel('')
    >>> ax1.set_title('Probplot against normal distribution')

    We now use `yeojohnson` to transform the data so it's closest to normal:

    >>> ax2 = fig.add_subplot(212)
    >>> xt, lmbda = stats.yeojohnson(x)
    >>> prob = stats.probplot(xt, dist=stats.norm, plot=ax2)
    >>> ax2.set_title('Probplot after Yeo-Johnson transformation')

    >>> plt.show()

    """

    x = np.asarray(x)
    if x.size == 0:
        return x

    if np.issubdtype(x.dtype, np.complexfloating):
        raise ValueError('Yeo-Johnson transformation is not defined for '
                         'complex numbers.')

    if np.issubdtype(x.dtype, np.integer):
        x = x.astype(np.float64, copy=False)

    if lmbda is not None:
        return _yeojohnson_transform(x, lmbda)

    # if lmbda=None, find the lmbda that maximizes the log-likelihood function.
    lmax = yeojohnson_normmax(x)
    y = _yeojohnson_transform(x, lmax)

    return y, lmax


def _yeojohnson_transform(x, lmbda):
    """Return x transformed by the Yeo-Johnson power transform with given
    parameter lmbda."""

    out = np.zeros_like(x)
    pos = x >= 0  # binary mask

    # when x >= 0
    if abs(lmbda) < np.spacing(1.):
        out[pos] = np.log1p(x[pos])
    else:  # lmbda != 0
        out[pos] = (np.power(x[pos] + 1, lmbda) - 1) / lmbda

    # when x < 0
    if abs(lmbda - 2) > np.spacing(1.):
        out[~pos] = -(np.power(-x[~pos] + 1, 2 - lmbda) - 1) / (2 - lmbda)
    else:  # lmbda == 2
        out[~pos] = -np.log1p(-x[~pos])

    return out


def yeojohnson_llf(lmb, data):
    r"""The yeojohnson log-likelihood function.

    Parameters
    ----------
    lmb : scalar
        Parameter for Yeo-Johnson transformation. See `yeojohnson` for
        details.
    data : array_like
        Data to calculate Yeo-Johnson log-likelihood for. If `data` is
        multi-dimensional, the log-likelihood is calculated along the first
        axis.

    Returns
    -------
    llf : float
        Yeo-Johnson log-likelihood of `data` given `lmb`.

    See Also
    --------
    yeojohnson, probplot, yeojohnson_normplot, yeojohnson_normmax

    Notes
    -----
    The Yeo-Johnson log-likelihood function is defined here as

    .. math::

        llf = N/2 \log(\hat{\sigma}^2) + (\lambda - 1)
              \sum_i \text{ sign }(x_i)\log(|x_i| + 1)

    where :math:`\hat{\sigma}^2` is estimated variance of the the Yeo-Johnson
    transformed input data ``x``.

    .. versionadded:: 1.2.0

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt
    >>> from mpl_toolkits.axes_grid1.inset_locator import inset_axes
    >>> np.random.seed(1245)

    Generate some random variates and calculate Yeo-Johnson log-likelihood
    values for them for a range of ``lmbda`` values:

    >>> x = stats.loggamma.rvs(5, loc=10, size=1000)
    >>> lmbdas = np.linspace(-2, 10)
    >>> llf = np.zeros(lmbdas.shape, dtype=float)
    >>> for ii, lmbda in enumerate(lmbdas):
    ...     llf[ii] = stats.yeojohnson_llf(lmbda, x)

    Also find the optimal lmbda value with `yeojohnson`:

    >>> x_most_normal, lmbda_optimal = stats.yeojohnson(x)

    Plot the log-likelihood as function of lmbda.  Add the optimal lmbda as a
    horizontal line to check that that's really the optimum:

    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> ax.plot(lmbdas, llf, 'b.-')
    >>> ax.axhline(stats.yeojohnson_llf(lmbda_optimal, x), color='r')
    >>> ax.set_xlabel('lmbda parameter')
    >>> ax.set_ylabel('Yeo-Johnson log-likelihood')

    Now add some probability plots to show that where the log-likelihood is
    maximized the data transformed with `yeojohnson` looks closest to normal:

    >>> locs = [3, 10, 4]  # 'lower left', 'center', 'lower right'
    >>> for lmbda, loc in zip([-1, lmbda_optimal, 9], locs):
    ...     xt = stats.yeojohnson(x, lmbda=lmbda)
    ...     (osm, osr), (slope, intercept, r_sq) = stats.probplot(xt)
    ...     ax_inset = inset_axes(ax, width="20%", height="20%", loc=loc)
    ...     ax_inset.plot(osm, osr, 'c.', osm, slope*osm + intercept, 'k-')
    ...     ax_inset.set_xticklabels([])
    ...     ax_inset.set_yticklabels([])
    ...     ax_inset.set_title(r'$\lambda=%1.2f$' % lmbda)

    >>> plt.show()

    """
    data = np.asarray(data)
    n_samples = data.shape[0]

    if n_samples == 0:
        return np.nan

    trans = _yeojohnson_transform(data, lmb)

    loglike = -n_samples / 2 * np.log(trans.var(axis=0))
    loglike += (lmb - 1) * (np.sign(data) * np.log(np.abs(data) + 1)).sum(axis=0)

    return loglike


def yeojohnson_normmax(x, brack=(-2, 2)):
    """
    Compute optimal Yeo-Johnson transform parameter.
    
    Compute optimal Yeo-Johnson transform parameter for input data, using
    maximum likelihood estimation.

    Parameters
    ----------
    x : array_like
        Input array.
    brack : 2-tuple, optional
        The starting interval for a downhill bracket search with
        `optimize.brent`. Note that this is in most cases not critical; the
        final result is allowed to be outside this bracket.

    Returns
    -------
    maxlog : float
        The optimal transform parameter found.

    See Also
    --------
    yeojohnson, yeojohnson_llf, yeojohnson_normplot

    Notes
    -----
    .. versionadded:: 1.2.0

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt
    >>> np.random.seed(1234)  # make this example reproducible

    Generate some data and determine optimal ``lmbda``

    >>> x = stats.loggamma.rvs(5, size=30) + 5
    >>> lmax = stats.yeojohnson_normmax(x)

    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> prob = stats.yeojohnson_normplot(x, -10, 10, plot=ax)
    >>> ax.axvline(lmax, color='r')

    >>> plt.show()

    """

    def _neg_llf(lmbda, data):
        return -yeojohnson_llf(lmbda, data)

    return optimize.brent(_neg_llf, brack=brack, args=(x,))


def yeojohnson_normplot(x, la, lb, plot=None, N=80):
    """Compute parameters for a Yeo-Johnson normality plot, optionally show it.

    A Yeo-Johnson normality plot shows graphically what the best
    transformation parameter is to use in `yeojohnson` to obtain a
    distribution that is close to normal.

    Parameters
    ----------
    x : array_like
        Input array.
    la, lb : scalar
        The lower and upper bounds for the ``lmbda`` values to pass to
        `yeojohnson` for Yeo-Johnson transformations. These are also the
        limits of the horizontal axis of the plot if that is generated.
    plot : object, optional
        If given, plots the quantiles and least squares fit.
        `plot` is an object that has to have methods "plot" and "text".
        The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
        or a custom object with the same methods.
        Default is None, which means that no plot is created.
    N : int, optional
        Number of points on the horizontal axis (equally distributed from
        `la` to `lb`).

    Returns
    -------
    lmbdas : ndarray
        The ``lmbda`` values for which a Yeo-Johnson transform was done.
    ppcc : ndarray
        Probability Plot Correlelation Coefficient, as obtained from `probplot`
        when fitting the Box-Cox transformed input `x` against a normal
        distribution.

    See Also
    --------
    probplot, yeojohnson, yeojohnson_normmax, yeojohnson_llf, ppcc_max

    Notes
    -----
    Even if `plot` is given, the figure is not shown or saved by
    `boxcox_normplot`; ``plt.show()`` or ``plt.savefig('figname.png')``
    should be used after calling `probplot`.

    .. versionadded:: 1.2.0

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt

    Generate some non-normally distributed data, and create a Yeo-Johnson plot:

    >>> x = stats.loggamma.rvs(5, size=500) + 5
    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> prob = stats.yeojohnson_normplot(x, -20, 20, plot=ax)

    Determine and plot the optimal ``lmbda`` to transform ``x`` and plot it in
    the same plot:

    >>> _, maxlog = stats.yeojohnson(x)
    >>> ax.axvline(maxlog, color='r')

    >>> plt.show()

    """
    return _normplot('yeojohnson', x, la, lb, plot, N)


def shapiro(x):
    """
    Perform the Shapiro-Wilk test for normality.

    The Shapiro-Wilk test tests the null hypothesis that the
    data was drawn from a normal distribution.

    Parameters
    ----------
    x : array_like
        Array of sample data.

    Returns
    -------
    W : float
        The test statistic.
    p-value : float
        The p-value for the hypothesis test.

    See Also
    --------
    anderson : The Anderson-Darling test for normality
    kstest : The Kolmogorov-Smirnov test for goodness of fit.

    Notes
    -----
    The algorithm used is described in [4]_ but censoring parameters as
    described are not implemented. For N > 5000 the W test statistic is accurate
    but the p-value may not be.

    The chance of rejecting the null hypothesis when it is true is close to 5%
    regardless of sample size.

    References
    ----------
    .. [1] https://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
    .. [2] Shapiro, S. S. & Wilk, M.B (1965). An analysis of variance test for
           normality (complete samples), Biometrika, Vol. 52, pp. 591-611.
    .. [3] Razali, N. M. & Wah, Y. B. (2011) Power comparisons of Shapiro-Wilk,
           Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests, Journal of
           Statistical Modeling and Analytics, Vol. 2, pp. 21-33.
    .. [4] ALGORITHM AS R94 APPL. STATIST. (1995) VOL. 44, NO. 4.

    Examples
    --------
    >>> from scipy import stats
    >>> np.random.seed(12345678)
    >>> x = stats.norm.rvs(loc=5, scale=3, size=100)
    >>> stats.shapiro(x)
    (0.9772805571556091, 0.08144091814756393)

    """
    x = np.ravel(x)

    N = len(x)
    if N < 3:
        raise ValueError("Data must be at least length 3.")

    a = zeros(N, 'f')
    init = 0

    y = sort(x)
    a, w, pw, ifault = statlib.swilk(y, a[:N//2], init)
    if ifault not in [0, 2]:
        warnings.warn("Input data for shapiro has range zero. The results "
                      "may not be accurate.")
    if N > 5000:
        warnings.warn("p-value may not be accurate for N > 5000.")

    return w, pw


# Values from Stephens, M A, "EDF Statistics for Goodness of Fit and
#             Some Comparisons", Journal of he American Statistical
#             Association, Vol. 69, Issue 347, Sept. 1974, pp 730-737
_Avals_norm = array([0.576, 0.656, 0.787, 0.918, 1.092])
_Avals_expon = array([0.922, 1.078, 1.341, 1.606, 1.957])
# From Stephens, M A, "Goodness of Fit for the Extreme Value Distribution",
#             Biometrika, Vol. 64, Issue 3, Dec. 1977, pp 583-588.
_Avals_gumbel = array([0.474, 0.637, 0.757, 0.877, 1.038])
# From Stephens, M A, "Tests of Fit for the Logistic Distribution Based
#             on the Empirical Distribution Function.", Biometrika,
#             Vol. 66, Issue 3, Dec. 1979, pp 591-595.
_Avals_logistic = array([0.426, 0.563, 0.660, 0.769, 0.906, 1.010])


AndersonResult = namedtuple('AndersonResult', ('statistic',
                                               'critical_values',
                                               'significance_level'))


def anderson(x, dist='norm'):
    """
    Anderson-Darling test for data coming from a particular distribution.

    The Anderson-Darling tests the null hypothesis that a sample is
    drawn from a population that follows a particular distribution.
    For the Anderson-Darling test, the critical values depend on
    which distribution is being tested against.  This function works
    for normal, exponential, logistic, or Gumbel (Extreme Value
    Type I) distributions.

    Parameters
    ----------
    x : array_like
        Array of sample data.
    dist : {'norm','expon','logistic','gumbel','gumbel_l', gumbel_r',
        'extreme1'}, optional
        the type of distribution to test against.  The default is 'norm'
        and 'extreme1', 'gumbel_l' and 'gumbel' are synonyms.

    Returns
    -------
    statistic : float
        The Anderson-Darling test statistic.
    critical_values : list
        The critical values for this distribution.
    significance_level : list
        The significance levels for the corresponding critical values
        in percents.  The function returns critical values for a
        differing set of significance levels depending on the
        distribution that is being tested against.

    See Also
    --------
    kstest : The Kolmogorov-Smirnov test for goodness-of-fit.

    Notes
    -----
    Critical values provided are for the following significance levels:

    normal/exponenential
        15%, 10%, 5%, 2.5%, 1%
    logistic
        25%, 10%, 5%, 2.5%, 1%, 0.5%
    Gumbel
        25%, 10%, 5%, 2.5%, 1%

    If the returned statistic is larger than these critical values then
    for the corresponding significance level, the null hypothesis that
    the data come from the chosen distribution can be rejected.
    The returned statistic is referred to as 'A2' in the references.

    References
    ----------
    .. [1] https://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
    .. [2] Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and
           Some Comparisons, Journal of the American Statistical Association,
           Vol. 69, pp. 730-737.
    .. [3] Stephens, M. A. (1976). Asymptotic Results for Goodness-of-Fit
           Statistics with Unknown Parameters, Annals of Statistics, Vol. 4,
           pp. 357-369.
    .. [4] Stephens, M. A. (1977). Goodness of Fit for the Extreme Value
           Distribution, Biometrika, Vol. 64, pp. 583-588.
    .. [5] Stephens, M. A. (1977). Goodness of Fit with Special Reference
           to Tests for Exponentiality , Technical Report No. 262,
           Department of Statistics, Stanford University, Stanford, CA.
    .. [6] Stephens, M. A. (1979). Tests of Fit for the Logistic Distribution
           Based on the Empirical Distribution Function, Biometrika, Vol. 66,
           pp. 591-595.

    """
    if dist not in ['norm', 'expon', 'gumbel', 'gumbel_l',
                    'gumbel_r', 'extreme1', 'logistic']:
        raise ValueError("Invalid distribution; dist must be 'norm', "
                         "'expon', 'gumbel', 'extreme1' or 'logistic'.")
    y = sort(x)
    xbar = np.mean(x, axis=0)
    N = len(y)
    if dist == 'norm':
        s = np.std(x, ddof=1, axis=0)
        w = (y - xbar) / s
        logcdf = distributions.norm.logcdf(w)
        logsf = distributions.norm.logsf(w)
        sig = array([15, 10, 5, 2.5, 1])
        critical = around(_Avals_norm / (1.0 + 4.0/N - 25.0/N/N), 3)
    elif dist == 'expon':
        w = y / xbar
        logcdf = distributions.expon.logcdf(w)
        logsf = distributions.expon.logsf(w)
        sig = array([15, 10, 5, 2.5, 1])
        critical = around(_Avals_expon / (1.0 + 0.6/N), 3)
    elif dist == 'logistic':
        def rootfunc(ab, xj, N):
            a, b = ab
            tmp = (xj - a) / b
            tmp2 = exp(tmp)
            val = [np.sum(1.0/(1+tmp2), axis=0) - 0.5*N,
                   np.sum(tmp*(1.0-tmp2)/(1+tmp2), axis=0) + N]
            return array(val)

        sol0 = array([xbar, np.std(x, ddof=1, axis=0)])
        sol = optimize.fsolve(rootfunc, sol0, args=(x, N), xtol=1e-5)
        w = (y - sol[0]) / sol[1]
        logcdf = distributions.logistic.logcdf(w)
        logsf = distributions.logistic.logsf(w)
        sig = array([25, 10, 5, 2.5, 1, 0.5])
        critical = around(_Avals_logistic / (1.0 + 0.25/N), 3)
    elif dist == 'gumbel_r':
        xbar, s = distributions.gumbel_r.fit(x)
        w = (y - xbar) / s
        logcdf = distributions.gumbel_r.logcdf(w)
        logsf = distributions.gumbel_r.logsf(w)
        sig = array([25, 10, 5, 2.5, 1])
        critical = around(_Avals_gumbel / (1.0 + 0.2/sqrt(N)), 3)
    else:  # (dist == 'gumbel') or (dist == 'gumbel_l') or (dist == 'extreme1')
        xbar, s = distributions.gumbel_l.fit(x)
        w = (y - xbar) / s
        logcdf = distributions.gumbel_l.logcdf(w)
        logsf = distributions.gumbel_l.logsf(w)
        sig = array([25, 10, 5, 2.5, 1])
        critical = around(_Avals_gumbel / (1.0 + 0.2/sqrt(N)), 3)

    i = arange(1, N + 1)
    A2 = -N - np.sum((2*i - 1.0) / N * (logcdf + logsf[::-1]), axis=0)

    return AndersonResult(A2, critical, sig)


def _anderson_ksamp_midrank(samples, Z, Zstar, k, n, N):
    """
    Compute A2akN equation 7 of Scholz and Stephens.

    Parameters
    ----------
    samples : sequence of 1-D array_like
        Array of sample arrays.
    Z : array_like
        Sorted array of all observations.
    Zstar : array_like
        Sorted array of unique observations.
    k : int
        Number of samples.
    n : array_like
        Number of observations in each sample.
    N : int
        Total number of observations.

    Returns
    -------
    A2aKN : float
        The A2aKN statistics of Scholz and Stephens 1987.
    """

    A2akN = 0.
    Z_ssorted_left = Z.searchsorted(Zstar, 'left')
    if N == Zstar.size:
        lj = 1.
    else:
        lj = Z.searchsorted(Zstar, 'right') - Z_ssorted_left
    Bj = Z_ssorted_left + lj / 2.
    for i in arange(0, k):
        s = np.sort(samples[i])
        s_ssorted_right = s.searchsorted(Zstar, side='right')
        Mij = s_ssorted_right.astype(float)
        fij = s_ssorted_right - s.searchsorted(Zstar, 'left')
        Mij -= fij / 2.
        inner = lj / float(N) * (N*Mij - Bj*n[i])**2 / (Bj*(N - Bj) - N*lj/4.)
        A2akN += inner.sum() / n[i]
    A2akN *= (N - 1.) / N
    return A2akN


def _anderson_ksamp_right(samples, Z, Zstar, k, n, N):
    """
    Compute A2akN equation 6 of Scholz & Stephens.

    Parameters
    ----------
    samples : sequence of 1-D array_like
        Array of sample arrays.
    Z : array_like
        Sorted array of all observations.
    Zstar : array_like
        Sorted array of unique observations.
    k : int
        Number of samples.
    n : array_like
        Number of observations in each sample.
    N : int
        Total number of observations.

    Returns
    -------
    A2KN : float
        The A2KN statistics of Scholz and Stephens 1987.
    """

    A2kN = 0.
    lj = Z.searchsorted(Zstar[:-1], 'right') - Z.searchsorted(Zstar[:-1],
                                                              'left')
    Bj = lj.cumsum()
    for i in arange(0, k):
        s = np.sort(samples[i])
        Mij = s.searchsorted(Zstar[:-1], side='right')
        inner = lj / float(N) * (N * Mij - Bj * n[i])**2 / (Bj * (N - Bj))
        A2kN += inner.sum() / n[i]
    return A2kN


Anderson_ksampResult = namedtuple('Anderson_ksampResult',
                                  ('statistic', 'critical_values',
                                   'significance_level'))


def anderson_ksamp(samples, midrank=True):
    """The Anderson-Darling test for k-samples.

    The k-sample Anderson-Darling test is a modification of the
    one-sample Anderson-Darling test. It tests the null hypothesis
    that k-samples are drawn from the same population without having
    to specify the distribution function of that population. The
    critical values depend on the number of samples.

    Parameters
    ----------
    samples : sequence of 1-D array_like
        Array of sample data in arrays.
    midrank : bool, optional
        Type of Anderson-Darling test which is computed. Default
        (True) is the midrank test applicable to continuous and
        discrete populations. If False, the right side empirical
        distribution is used.

    Returns
    -------
    statistic : float
        Normalized k-sample Anderson-Darling test statistic.
    critical_values : array
        The critical values for significance levels 25%, 10%, 5%, 2.5%, 1%,
        0.5%, 0.1%.
    significance_level : float
        An approximate significance level at which the null hypothesis for the
        provided samples can be rejected. The value is floored / capped at
        0.1% / 25%.

    Raises
    ------
    ValueError
        If less than 2 samples are provided, a sample is empty, or no
        distinct observations are in the samples.

    See Also
    --------
    ks_2samp : 2 sample Kolmogorov-Smirnov test
    anderson : 1 sample Anderson-Darling test

    Notes
    -----
    [1]_ defines three versions of the k-sample Anderson-Darling test:
    one for continuous distributions and two for discrete
    distributions, in which ties between samples may occur. The
    default of this routine is to compute the version based on the
    midrank empirical distribution function. This test is applicable
    to continuous and discrete data. If midrank is set to False, the
    right side empirical distribution is used for a test for discrete
    data. According to [1]_, the two discrete test statistics differ
    only slightly if a few collisions due to round-off errors occur in
    the test not adjusted for ties between samples.

    The critical values corresponding to the significance levels from 0.01
    to 0.25 are taken from [1]_. p-values are floored / capped
    at 0.1% / 25%. Since the range of critical values might be extended in
    future releases, it is recommended not to test ``p == 0.25``, but rather
    ``p >= 0.25`` (analogously for the lower bound).

    .. versionadded:: 0.14.0

    References
    ----------
    .. [1] Scholz, F. W and Stephens, M. A. (1987), K-Sample
           Anderson-Darling Tests, Journal of the American Statistical
           Association, Vol. 82, pp. 918-924.

    Examples
    --------
    >>> from scipy import stats
    >>> np.random.seed(314159)

    The null hypothesis that the two random samples come from the same
    distribution can be rejected at the 5% level because the returned
    test value is greater than the critical value for 5% (1.961) but
    not at the 2.5% level. The interpolation gives an approximate
    significance level of 3.2%:

    >>> stats.anderson_ksamp([np.random.normal(size=50),
    ... np.random.normal(loc=0.5, size=30)])
    (2.4615796189876105,
      array([ 0.325,  1.226,  1.961,  2.718,  3.752, 4.592, 6.546]),
      0.03176687568842282)


    The null hypothesis cannot be rejected for three samples from an
    identical distribution. The reported p-value (25%) has been capped and
    may not be very accurate (since it corresponds to the value 0.449
    whereas the statistic is -0.731):

    >>> stats.anderson_ksamp([np.random.normal(size=50),
    ... np.random.normal(size=30), np.random.normal(size=20)])
    (-0.73091722665244196,
      array([ 0.44925884,  1.3052767 ,  1.9434184 ,  2.57696569,  3.41634856,
      4.07210043, 5.56419101]),
      0.25)

    """
    k = len(samples)
    if (k < 2):
        raise ValueError("anderson_ksamp needs at least two samples")

    samples = list(map(np.asarray, samples))
    Z = np.sort(np.hstack(samples))
    N = Z.size
    Zstar = np.unique(Z)
    if Zstar.size < 2:
        raise ValueError("anderson_ksamp needs more than one distinct "
                         "observation")

    n = np.array([sample.size for sample in samples])
    if any(n == 0):
        raise ValueError("anderson_ksamp encountered sample without "
                         "observations")

    if midrank:
        A2kN = _anderson_ksamp_midrank(samples, Z, Zstar, k, n, N)
    else:
        A2kN = _anderson_ksamp_right(samples, Z, Zstar, k, n, N)

    H = (1. / n).sum()
    hs_cs = (1. / arange(N - 1, 1, -1)).cumsum()
    h = hs_cs[-1] + 1
    g = (hs_cs / arange(2, N)).sum()

    a = (4*g - 6) * (k - 1) + (10 - 6*g)*H
    b = (2*g - 4)*k**2 + 8*h*k + (2*g - 14*h - 4)*H - 8*h + 4*g - 6
    c = (6*h + 2*g - 2)*k**2 + (4*h - 4*g + 6)*k + (2*h - 6)*H + 4*h
    d = (2*h + 6)*k**2 - 4*h*k
    sigmasq = (a*N**3 + b*N**2 + c*N + d) / ((N - 1.) * (N - 2.) * (N - 3.))
    m = k - 1
    A2 = (A2kN - m) / math.sqrt(sigmasq)

    # The b_i values are the interpolation coefficients from Table 2
    # of Scholz and Stephens 1987
    b0 = np.array([0.675, 1.281, 1.645, 1.96, 2.326, 2.573, 3.085])
    b1 = np.array([-0.245, 0.25, 0.678, 1.149, 1.822, 2.364, 3.615])
    b2 = np.array([-0.105, -0.305, -0.362, -0.391, -0.396, -0.345, -0.154])
    critical = b0 + b1 / math.sqrt(m) + b2 / m

    sig = np.array([0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.001])
    if A2 < critical.min():
        p = sig.max()
        warnings.warn("p-value capped: true value larger than {}".format(p),
                      stacklevel=2)
    elif A2 > critical.max():
        p = sig.min()
        warnings.warn("p-value floored: true value smaller than {}".format(p),
                      stacklevel=2)
    else:
        # interpolation of probit of significance level
        pf = np.polyfit(critical, log(sig), 2)
        p = math.exp(np.polyval(pf, A2))

    return Anderson_ksampResult(A2, critical, p)


AnsariResult = namedtuple('AnsariResult', ('statistic', 'pvalue'))


def ansari(x, y):
    """
    Perform the Ansari-Bradley test for equal scale parameters.

    The Ansari-Bradley test is a non-parametric test for the equality
    of the scale parameter of the distributions from which two
    samples were drawn.

    Parameters
    ----------
    x, y : array_like
        Arrays of sample data.

    Returns
    -------
    statistic : float
        The Ansari-Bradley test statistic.
    pvalue : float
        The p-value of the hypothesis test.

    See Also
    --------
    fligner : A non-parametric test for the equality of k variances
    mood : A non-parametric test for the equality of two scale parameters

    Notes
    -----
    The p-value given is exact when the sample sizes are both less than
    55 and there are no ties, otherwise a normal approximation for the
    p-value is used.

    References
    ----------
    .. [1] Sprent, Peter and N.C. Smeeton.  Applied nonparametric statistical
           methods.  3rd ed. Chapman and Hall/CRC. 2001.  Section 5.8.2.

    """
    x, y = asarray(x), asarray(y)
    n = len(x)
    m = len(y)
    if m < 1:
        raise ValueError("Not enough other observations.")
    if n < 1:
        raise ValueError("Not enough test observations.")

    N = m + n
    xy = r_[x, y]  # combine
    rank = stats.rankdata(xy)
    symrank = amin(array((rank, N - rank + 1)), 0)
    AB = np.sum(symrank[:n], axis=0)
    uxy = unique(xy)
    repeats = (len(uxy) != len(xy))
    exact = ((m < 55) and (n < 55) and not repeats)
    if repeats and (m < 55 or n < 55):
        warnings.warn("Ties preclude use of exact statistic.")
    if exact:
        astart, a1, ifault = statlib.gscale(n, m)
        ind = AB - astart
        total = np.sum(a1, axis=0)
        if ind < len(a1)/2.0:
            cind = int(ceil(ind))
            if ind == cind:
                pval = 2.0 * np.sum(a1[:cind+1], axis=0) / total
            else:
                pval = 2.0 * np.sum(a1[:cind], axis=0) / total
        else:
            find = int(floor(ind))
            if ind == floor(ind):
                pval = 2.0 * np.sum(a1[find:], axis=0) / total
            else:
                pval = 2.0 * np.sum(a1[find+1:], axis=0) / total
        return AnsariResult(AB, min(1.0, pval))

    # otherwise compute normal approximation
    if N % 2:  # N odd
        mnAB = n * (N+1.0)**2 / 4.0 / N
        varAB = n * m * (N+1.0) * (3+N**2) / (48.0 * N**2)
    else:
        mnAB = n * (N+2.0) / 4.0
        varAB = m * n * (N+2) * (N-2.0) / 48 / (N-1.0)
    if repeats:   # adjust variance estimates
        # compute np.sum(tj * rj**2,axis=0)
        fac = np.sum(symrank**2, axis=0)
        if N % 2:  # N odd
            varAB = m * n * (16*N*fac - (N+1)**4) / (16.0 * N**2 * (N-1))
        else:  # N even
            varAB = m * n * (16*fac - N*(N+2)**2) / (16.0 * N * (N-1))

    z = (AB - mnAB) / sqrt(varAB)
    pval = distributions.norm.sf(abs(z)) * 2.0
    return AnsariResult(AB, pval)


BartlettResult = namedtuple('BartlettResult', ('statistic', 'pvalue'))


def bartlett(*args):
    """
    Perform Bartlett's test for equal variances.

    Bartlett's test tests the null hypothesis that all input samples
    are from populations with equal variances.  For samples
    from significantly non-normal populations, Levene's test
    `levene` is more robust.

    Parameters
    ----------
    sample1, sample2,... : array_like
        arrays of sample data.  Only 1d arrays are accepted, they may have
        different lengths.

    Returns
    -------
    statistic : float
        The test statistic.
    pvalue : float
        The p-value of the test.

    See Also
    --------
    fligner : A non-parametric test for the equality of k variances
    levene : A robust parametric test for equality of k variances

    Notes
    -----
    Conover et al. (1981) examine many of the existing parametric and
    nonparametric tests by extensive simulations and they conclude that the
    tests proposed by Fligner and Killeen (1976) and Levene (1960) appear to be
    superior in terms of robustness of departures from normality and power
    ([3]_).

    References
    ----------
    .. [1]  https://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm

    .. [2]  Snedecor, George W. and Cochran, William G. (1989), Statistical
              Methods, Eighth Edition, Iowa State University Press.

    .. [3] Park, C. and Lindsay, B. G. (1999). Robust Scale Estimation and
           Hypothesis Testing based on Quadratic Inference Function. Technical
           Report #99-03, Center for Likelihood Studies, Pennsylvania State
           University.

    .. [4] Bartlett, M. S. (1937). Properties of Sufficiency and Statistical
           Tests. Proceedings of the Royal Society of London. Series A,
           Mathematical and Physical Sciences, Vol. 160, No.901, pp. 268-282.

    """
    # Handle empty input and input that is not 1d
    for a in args:
        if np.asanyarray(a).size == 0:
            return BartlettResult(np.nan, np.nan)
        if np.asanyarray(a).ndim > 1:
            raise ValueError('Samples must be one-dimensional.')

    k = len(args)
    if k < 2:
        raise ValueError("Must enter at least two input sample vectors.")
    Ni = zeros(k)
    ssq = zeros(k, 'd')
    for j in range(k):
        Ni[j] = len(args[j])
        ssq[j] = np.var(args[j], ddof=1)
    Ntot = np.sum(Ni, axis=0)
    spsq = np.sum((Ni - 1)*ssq, axis=0) / (1.0*(Ntot - k))
    numer = (Ntot*1.0 - k) * log(spsq) - np.sum((Ni - 1.0)*log(ssq), axis=0)
    denom = 1.0 + 1.0/(3*(k - 1)) * ((np.sum(1.0/(Ni - 1.0), axis=0)) -
                                     1.0/(Ntot - k))
    T = numer / denom
    pval = distributions.chi2.sf(T, k - 1)  # 1 - cdf

    return BartlettResult(T, pval)


LeveneResult = namedtuple('LeveneResult', ('statistic', 'pvalue'))


def levene(*args, **kwds):
    """
    Perform Levene test for equal variances.

    The Levene test tests the null hypothesis that all input samples
    are from populations with equal variances.  Levene's test is an
    alternative to Bartlett's test `bartlett` in the case where
    there are significant deviations from normality.

    Parameters
    ----------
    sample1, sample2, ... : array_like
        The sample data, possibly with different lengths. Only one-dimensional
        samples are accepted.
    center : {'mean', 'median', 'trimmed'}, optional
        Which function of the data to use in the test.  The default
        is 'median'.
    proportiontocut : float, optional
        When `center` is 'trimmed', this gives the proportion of data points
        to cut from each end. (See `scipy.stats.trim_mean`.)
        Default is 0.05.

    Returns
    -------
    statistic : float
        The test statistic.
    pvalue : float
        The p-value for the test.

    Notes
    -----
    Three variations of Levene's test are possible.  The possibilities
    and their recommended usages are:

      * 'median' : Recommended for skewed (non-normal) distributions>
      * 'mean' : Recommended for symmetric, moderate-tailed distributions.
      * 'trimmed' : Recommended for heavy-tailed distributions.

    The test version using the mean was proposed in the original article
    of Levene ([2]_) while the median and trimmed mean have been studied by
    Brown and Forsythe ([3]_), sometimes also referred to as Brown-Forsythe
    test.

    References
    ----------
    .. [1]  https://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm
    .. [2]   Levene, H. (1960). In Contributions to Probability and Statistics:
               Essays in Honor of Harold Hotelling, I. Olkin et al. eds.,
               Stanford University Press, pp. 278-292.
    .. [3]  Brown, M. B. and Forsythe, A. B. (1974), Journal of the American
              Statistical Association, 69, 364-367

    """
    # Handle keyword arguments.
    center = 'median'
    proportiontocut = 0.05
    for kw, value in kwds.items():
        if kw not in ['center', 'proportiontocut']:
            raise TypeError("levene() got an unexpected keyword "
                            "argument '%s'" % kw)
        if kw == 'center':
            center = value
        else:
            proportiontocut = value

    k = len(args)
    if k < 2:
        raise ValueError("Must enter at least two input sample vectors.")
    # check for 1d input
    for j in range(k):
        if np.asanyarray(args[j]).ndim > 1:
            raise ValueError('Samples must be one-dimensional.')

    Ni = zeros(k)
    Yci = zeros(k, 'd')

    if center not in ['mean', 'median', 'trimmed']:
        raise ValueError("Keyword argument <center> must be 'mean', 'median'"
                         " or 'trimmed'.")

    if center == 'median':
        func = lambda x: np.median(x, axis=0)
    elif center == 'mean':
        func = lambda x: np.mean(x, axis=0)
    else:  # center == 'trimmed'
        args = tuple(stats.trimboth(np.sort(arg), proportiontocut)
                     for arg in args)
        func = lambda x: np.mean(x, axis=0)

    for j in range(k):
        Ni[j] = len(args[j])
        Yci[j] = func(args[j])
    Ntot = np.sum(Ni, axis=0)

    # compute Zij's
    Zij = [None] * k
    for i in range(k):
        Zij[i] = abs(asarray(args[i]) - Yci[i])

    # compute Zbari
    Zbari = zeros(k, 'd')
    Zbar = 0.0
    for i in range(k):
        Zbari[i] = np.mean(Zij[i], axis=0)
        Zbar += Zbari[i] * Ni[i]

    Zbar /= Ntot
    numer = (Ntot - k) * np.sum(Ni * (Zbari - Zbar)**2, axis=0)

    # compute denom_variance
    dvar = 0.0
    for i in range(k):
        dvar += np.sum((Zij[i] - Zbari[i])**2, axis=0)

    denom = (k - 1.0) * dvar

    W = numer / denom
    pval = distributions.f.sf(W, k-1, Ntot-k)  # 1 - cdf
    return LeveneResult(W, pval)


def binom_test(x, n=None, p=0.5, alternative='two-sided'):
    """
    Perform a test that the probability of success is p.

    This is an exact, two-sided test of the null hypothesis
    that the probability of success in a Bernoulli experiment
    is `p`.

    Parameters
    ----------
    x : int or array_like
        The number of successes, or if x has length 2, it is the
        number of successes and the number of failures.
    n : int
        The number of trials.  This is ignored if x gives both the
        number of successes and failures.
    p : float, optional
        The hypothesized probability of success.  ``0 <= p <= 1``. The
        default value is ``p = 0.5``.
    alternative : {'two-sided', 'greater', 'less'}, optional
        Indicates the alternative hypothesis. The default value is
        'two-sided'.

    Returns
    -------
    p-value : float
        The p-value of the hypothesis test.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Binomial_test

    Examples
    --------
    >>> from scipy import stats

    A car manufacturer claims that no more than 10% of their cars are unsafe.
    15 cars are inspected for safety, 3 were found to be unsafe. Test the
    manufacturer's claim:

    >>> stats.binom_test(3, n=15, p=0.1, alternative='greater')
    0.18406106910639114

    The null hypothesis cannot be rejected at the 5% level of significance
    because the returned p-value is greater than the critical value of 5%.

    """
    x = atleast_1d(x).astype(np.integer)
    if len(x) == 2:
        n = x[1] + x[0]
        x = x[0]
    elif len(x) == 1:
        x = x[0]
        if n is None or n < x:
            raise ValueError("n must be >= x")
        n = np.int_(n)
    else:
        raise ValueError("Incorrect length for x.")

    if (p > 1.0) or (p < 0.0):
        raise ValueError("p must be in range [0,1]")

    if alternative not in ('two-sided', 'less', 'greater'):
        raise ValueError("alternative not recognized\n"
                         "should be 'two-sided', 'less' or 'greater'")

    if alternative == 'less':
        pval = distributions.binom.cdf(x, n, p)
        return pval

    if alternative == 'greater':
        pval = distributions.binom.sf(x-1, n, p)
        return pval

    # if alternative was neither 'less' nor 'greater', then it's 'two-sided'
    d = distributions.binom.pmf(x, n, p)
    rerr = 1 + 1e-7
    if x == p * n:
        # special case as shortcut, would also be handled by `else` below
        pval = 1.
    elif x < p * n:
        i = np.arange(np.ceil(p * n), n+1)
        y = np.sum(distributions.binom.pmf(i, n, p) <= d*rerr, axis=0)
        pval = (distributions.binom.cdf(x, n, p) +
                distributions.binom.sf(n - y, n, p))
    else:
        i = np.arange(np.floor(p*n) + 1)
        y = np.sum(distributions.binom.pmf(i, n, p) <= d*rerr, axis=0)
        pval = (distributions.binom.cdf(y-1, n, p) +
                distributions.binom.sf(x-1, n, p))

    return min(1.0, pval)


def _apply_func(x, g, func):
    # g is list of indices into x
    #  separating x into different groups
    #  func should be applied over the groups
    g = unique(r_[0, g, len(x)])
    output = [func(x[g[k]:g[k+1]]) for k in range(len(g) - 1)]

    return asarray(output)


FlignerResult = namedtuple('FlignerResult', ('statistic', 'pvalue'))


def fligner(*args, **kwds):
    """
    Perform Fligner-Killeen test for equality of variance.

    Fligner's test tests the null hypothesis that all input samples
    are from populations with equal variances.  Fligner-Killeen's test is
    distribution free when populations are identical [2]_.

    Parameters
    ----------
    sample1, sample2, ... : array_like
        Arrays of sample data.  Need not be the same length.
    center : {'mean', 'median', 'trimmed'}, optional
        Keyword argument controlling which function of the data is used in
        computing the test statistic.  The default is 'median'.
    proportiontocut : float, optional
        When `center` is 'trimmed', this gives the proportion of data points
        to cut from each end. (See `scipy.stats.trim_mean`.)
        Default is 0.05.

    Returns
    -------
    statistic : float
        The test statistic.
    pvalue : float
        The p-value for the hypothesis test.

    See Also
    --------
    bartlett : A parametric test for equality of k variances in normal samples
    levene : A robust parametric test for equality of k variances

    Notes
    -----
    As with Levene's test there are three variants of Fligner's test that
    differ by the measure of central tendency used in the test.  See `levene`
    for more information.

    Conover et al. (1981) examine many of the existing parametric and
    nonparametric tests by extensive simulations and they conclude that the
    tests proposed by Fligner and Killeen (1976) and Levene (1960) appear to be
    superior in terms of robustness of departures from normality and power [3]_.

    References
    ----------
    .. [1] Park, C. and Lindsay, B. G. (1999). Robust Scale Estimation and
           Hypothesis Testing based on Quadratic Inference Function. Technical
           Report #99-03, Center for Likelihood Studies, Pennsylvania State
           University.
           https://cecas.clemson.edu/~cspark/cv/paper/qif/draftqif2.pdf

    .. [2] Fligner, M.A. and Killeen, T.J. (1976). Distribution-free two-sample
           tests for scale. 'Journal of the American Statistical Association.'
           71(353), 210-213.

    .. [3] Park, C. and Lindsay, B. G. (1999). Robust Scale Estimation and
           Hypothesis Testing based on Quadratic Inference Function. Technical
           Report #99-03, Center for Likelihood Studies, Pennsylvania State
           University.

    .. [4] Conover, W. J., Johnson, M. E. and Johnson M. M. (1981). A
           comparative study of tests for homogeneity of variances, with
           applications to the outer continental shelf biding data.
           Technometrics, 23(4), 351-361.

    """
    # Handle empty input
    for a in args:
        if np.asanyarray(a).size == 0:
            return FlignerResult(np.nan, np.nan)

    # Handle keyword arguments.
    center = 'median'
    proportiontocut = 0.05
    for kw, value in kwds.items():
        if kw not in ['center', 'proportiontocut']:
            raise TypeError("fligner() got an unexpected keyword "
                            "argument '%s'" % kw)
        if kw == 'center':
            center = value
        else:
            proportiontocut = value

    k = len(args)
    if k < 2:
        raise ValueError("Must enter at least two input sample vectors.")

    if center not in ['mean', 'median', 'trimmed']:
        raise ValueError("Keyword argument <center> must be 'mean', 'median'"
                        " or 'trimmed'.")

    if center == 'median':
        func = lambda x: np.median(x, axis=0)
    elif center == 'mean':
        func = lambda x: np.mean(x, axis=0)
    else:  # center == 'trimmed'
        args = tuple(stats.trimboth(arg, proportiontocut) for arg in args)
        func = lambda x: np.mean(x, axis=0)

    Ni = asarray([len(args[j]) for j in range(k)])
    Yci = asarray([func(args[j]) for j in range(k)])
    Ntot = np.sum(Ni, axis=0)
    # compute Zij's
    Zij = [abs(asarray(args[i]) - Yci[i]) for i in range(k)]
    allZij = []
    g = [0]
    for i in range(k):
        allZij.extend(list(Zij[i]))
        g.append(len(allZij))

    ranks = stats.rankdata(allZij)
    a = distributions.norm.ppf(ranks / (2*(Ntot + 1.0)) + 0.5)

    # compute Aibar
    Aibar = _apply_func(a, g, np.sum) / Ni
    anbar = np.mean(a, axis=0)
    varsq = np.var(a, axis=0, ddof=1)
    Xsq = np.sum(Ni * (asarray(Aibar) - anbar)**2.0, axis=0) / varsq
    pval = distributions.chi2.sf(Xsq, k - 1)  # 1 - cdf
    return FlignerResult(Xsq, pval)


def mood(x, y, axis=0):
    """
    Perform Mood's test for equal scale parameters.

    Mood's two-sample test for scale parameters is a non-parametric
    test for the null hypothesis that two samples are drawn from the
    same distribution with the same scale parameter.

    Parameters
    ----------
    x, y : array_like
        Arrays of sample data.
    axis : int, optional
        The axis along which the samples are tested.  `x` and `y` can be of
        different length along `axis`.
        If `axis` is None, `x` and `y` are flattened and the test is done on
        all values in the flattened arrays.

    Returns
    -------
    z : scalar or ndarray
        The z-score for the hypothesis test.  For 1-D inputs a scalar is
        returned.
    p-value : scalar ndarray
        The p-value for the hypothesis test.

    See Also
    --------
    fligner : A non-parametric test for the equality of k variances
    ansari : A non-parametric test for the equality of 2 variances
    bartlett : A parametric test for equality of k variances in normal samples
    levene : A parametric test for equality of k variances

    Notes
    -----
    The data are assumed to be drawn from probability distributions ``f(x)``
    and ``f(x/s) / s`` respectively, for some probability density function f.
    The null hypothesis is that ``s == 1``.

    For multi-dimensional arrays, if the inputs are of shapes
    ``(n0, n1, n2, n3)``  and ``(n0, m1, n2, n3)``, then if ``axis=1``, the
    resulting z and p values will have shape ``(n0, n2, n3)``.  Note that
    ``n1`` and ``m1`` don't have to be equal, but the other dimensions do.

    Examples
    --------
    >>> from scipy import stats
    >>> np.random.seed(1234)
    >>> x2 = np.random.randn(2, 45, 6, 7)
    >>> x1 = np.random.randn(2, 30, 6, 7)
    >>> z, p = stats.mood(x1, x2, axis=1)
    >>> p.shape
    (2, 6, 7)

    Find the number of points where the difference in scale is not significant:

    >>> (p > 0.1).sum()
    74

    Perform the test with different scales:

    >>> x1 = np.random.randn(2, 30)
    >>> x2 = np.random.randn(2, 35) * 10.0
    >>> stats.mood(x1, x2, axis=1)
    (array([-5.7178125 , -5.25342163]), array([  1.07904114e-08,   1.49299218e-07]))

    """
    x = np.asarray(x, dtype=float)
    y = np.asarray(y, dtype=float)

    if axis is None:
        x = x.flatten()
        y = y.flatten()
        axis = 0

    # Determine shape of the result arrays
    res_shape = tuple([x.shape[ax] for ax in range(len(x.shape)) if ax != axis])
    if not (res_shape == tuple([y.shape[ax] for ax in range(len(y.shape)) if
                                ax != axis])):
        raise ValueError("Dimensions of x and y on all axes except `axis` "
                         "should match")

    n = x.shape[axis]
    m = y.shape[axis]
    N = m + n
    if N < 3:
        raise ValueError("Not enough observations.")

    xy = np.concatenate((x, y), axis=axis)
    if axis != 0:
        xy = np.rollaxis(xy, axis)

    xy = xy.reshape(xy.shape[0], -1)

    # Generalized to the n-dimensional case by adding the axis argument, and
    # using for loops, since rankdata is not vectorized.  For improving
    # performance consider vectorizing rankdata function.
    all_ranks = np.zeros_like(xy)
    for j in range(xy.shape[1]):
        all_ranks[:, j] = stats.rankdata(xy[:, j])

    Ri = all_ranks[:n]
    M = np.sum((Ri - (N + 1.0) / 2)**2, axis=0)
    # Approx stat.
    mnM = n * (N * N - 1.0) / 12
    varM = m * n * (N + 1.0) * (N + 2) * (N - 2) / 180
    z = (M - mnM) / sqrt(varM)

    # sf for right tail, cdf for left tail.  Factor 2 for two-sidedness
    z_pos = z > 0
    pval = np.zeros_like(z)
    pval[z_pos] = 2 * distributions.norm.sf(z[z_pos])
    pval[~z_pos] = 2 * distributions.norm.cdf(z[~z_pos])

    if res_shape == ():
        # Return scalars, not 0-D arrays
        z = z[0]
        pval = pval[0]
    else:
        z.shape = res_shape
        pval.shape = res_shape

    return z, pval


WilcoxonResult = namedtuple('WilcoxonResult', ('statistic', 'pvalue'))


def wilcoxon(x, y=None, zero_method="wilcox", correction=False,
             alternative="two-sided"):
    """
    Calculate the Wilcoxon signed-rank test.

    The Wilcoxon signed-rank test tests the null hypothesis that two
    related paired samples come from the same distribution. In particular,
    it tests whether the distribution of the differences x - y is symmetric
    about zero. It is a non-parametric version of the paired T-test.

    Parameters
    ----------
    x : array_like
        Either the first set of measurements (in which case `y` is the second
        set of measurements), or the differences between two sets of
        measurements (in which case `y` is not to be specified.)  Must be
        one-dimensional.
    y : array_like, optional
        Either the second set of measurements (if `x` is the first set of
        measurements), or not specified (if `x` is the differences between
        two sets of measurements.)  Must be one-dimensional.
    zero_method : {'pratt', 'wilcox', 'zsplit'}, optional
        The following options are available (default is 'wilcox'):
     
          * 'pratt': Includes zero-differences in the ranking process,
            but drops the ranks of the zeros, see [4]_, (more conservative).
          * 'wilcox': Discards all zero-differences, the default.
          * 'zsplit': Includes zero-differences in the ranking process and 
            split the zero rank between positive and negative ones.
    correction : bool, optional
        If True, apply continuity correction by adjusting the Wilcoxon rank
        statistic by 0.5 towards the mean value when computing the
        z-statistic.  Default is False.
    alternative : {"two-sided", "greater", "less"}, optional
        The alternative hypothesis to be tested, see Notes. Default is
        "two-sided".

    Returns
    -------
    statistic : float
        If `alternative` is "two-sided", the sum of the ranks of the
        differences above or below zero, whichever is smaller.
        Otherwise the sum of the ranks of the differences above zero.
    pvalue : float
        The p-value for the test depending on `alternative`.

    See Also
    --------
    kruskal, mannwhitneyu

    Notes
    -----
    The test has been introduced in [4]_. Given n independent samples
    (xi, yi) from a bivariate distribution (i.e. paired samples),
    it computes the differences di = xi - yi. One assumption of the test
    is that the differences are symmetric, see [2]_.
    The two-sided test has the null hypothesis that the median of the
    differences is zero against the alternative that it is different from
    zero. The one-sided test has the null hypothesis that the median is 
    positive against the alternative that it is negative 
    (``alternative == 'less'``), or vice versa (``alternative == 'greater.'``).

    The test uses a normal approximation to derive the p-value (if
    ``zero_method == 'pratt'``, the approximation is adjusted as in [5]_).
    A typical rule is to require that n > 20 ([2]_, p. 383). For smaller n,
    exact tables can be used to find critical values.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
    .. [2] Conover, W.J., Practical Nonparametric Statistics, 1971.
    .. [3] Pratt, J.W., Remarks on Zeros and Ties in the Wilcoxon Signed
       Rank Procedures, Journal of the American Statistical Association,
       Vol. 54, 1959, pp. 655-667. :doi:`10.1080/01621459.1959.10501526`
    .. [4] Wilcoxon, F., Individual Comparisons by Ranking Methods,
       Biometrics Bulletin, Vol. 1, 1945, pp. 80-83. :doi:`10.2307/3001968`
    .. [5] Cureton, E.E., The Normal Approximation to the Signed-Rank
       Sampling Distribution When Zero Differences are Present,
       Journal of the American Statistical Association, Vol. 62, 1967,
       pp. 1068-1069. :doi:`10.1080/01621459.1967.10500917`

    Examples
    --------
    In [4]_, the differences in height between cross- and self-fertilized
    corn plants is given as follows:

    >>> d = [6, 8, 14, 16, 23, 24, 28, 29, 41, -48, 49, 56, 60, -67, 75]

    Cross-fertilized plants appear to be be higher. To test the null
    hypothesis that there is no height difference, we can apply the
    two-sided test:

    >>> from scipy.stats import wilcoxon
    >>> w, p = wilcoxon(d)
    >>> w, p
    (24.0, 0.04088813291185591)

    Hence, we would reject the null hypothesis at a confidence level of 5%,
    concluding that there is a difference in height between the groups.
    To confirm that the median of the differences can be assumed to be
    positive, we use:

    >>> w, p = wilcoxon(d, alternative='greater')
    >>> w, p
    (96.0, 0.020444066455927955)

    This shows that the null hypothesis that the median is negative can be
    rejected at a confidence level of 5% in favor of the alternative that
    the median is greater than zero. The p-value based on the approximation
    is within the range of 0.019 and 0.054 given in [2]_.
    Note that the statistic changed to 96 in the one-sided case (the sum
    of ranks of positive differences) whereas it is 24 in the two-sided
    case (the minimum of sum of ranks above and below zero).

    """

    if zero_method not in ["wilcox", "pratt", "zsplit"]:
        raise ValueError("Zero method should be either 'wilcox' "
                         "or 'pratt' or 'zsplit'")

    if alternative not in ["two-sided", "less", "greater"]:
        raise ValueError("Alternative must be either 'two-sided', "
                         "'greater' or 'less'")

    if y is None:
        d = asarray(x)
        if d.ndim > 1:
            raise ValueError('Sample x must be one-dimensional.')
    else:
        x, y = map(asarray, (x, y))
        if x.ndim > 1 or y.ndim > 1:
            raise ValueError('Samples x and y must be one-dimensional.')
        if len(x) != len(y):
            raise ValueError('The samples x and y must have the same length.')
        d = x - y

    if zero_method in ["wilcox", "pratt"]:
        n_zero = np.sum(d == 0, axis=0)
        if n_zero == len(d):
            raise ValueError("zero_method 'wilcox' and 'pratt' do not work if "
                             "the x - y is zero for all elements.")

    if zero_method == "wilcox":
        # Keep all non-zero differences
        d = compress(np.not_equal(d, 0), d, axis=-1)

    count = len(d)
    if count < 10:
        warnings.warn("Sample size too small for normal approximation.")

    r = stats.rankdata(abs(d))
    r_plus = np.sum((d > 0) * r, axis=0)
    r_minus = np.sum((d < 0) * r, axis=0)

    if zero_method == "zsplit":
        r_zero = np.sum((d == 0) * r, axis=0)
        r_plus += r_zero / 2.
        r_minus += r_zero / 2.

    # return min for two-sided test, but r_plus for one-sided test
    # the literature is not consistent here
    # r_plus is more informative since r_plus + r_minus = count*(count+1)/2,
    # i.e. the sum of the ranks, so r_minus and the min can be inferred
    # (If alternative='pratt', r_plus + r_minus = count*(count+1)/2 - r_zero.)
    # [3] uses the r_plus for the one-sided test, keep min for two-sided test
    # to keep backwards compatibility
    if alternative == "two-sided":
        T = min(r_plus, r_minus)
    else:
        T = r_plus
    mn = count * (count + 1.) * 0.25
    se = count * (count + 1.) * (2. * count + 1.)

    if zero_method == "pratt":
        r = r[d != 0]
        # normal approximation needs to be adjusted, see Cureton (1967)
        mn -= n_zero * (n_zero + 1.) * 0.25
        se -= n_zero * (n_zero + 1.) * (2. * n_zero + 1.)

    replist, repnum = find_repeats(r)
    if repnum.size != 0:
        # Correction for repeated elements.
        se -= 0.5 * (repnum * (repnum * repnum - 1)).sum()

    se = sqrt(se / 24)

    # apply continuity correction if applicable
    d = 0
    if correction:
        if alternative == "two-sided":
            d = 0.5 * np.sign(T - mn)
        elif alternative == "less":
            d = -0.5
        else:
            d = 0.5

    # compute statistic and p-value using normal approximation
    z = (T - mn - d) / se
    if alternative == "two-sided":
        prob = 2. * distributions.norm.sf(abs(z))
    elif alternative == "greater":
        # large T = r_plus indicates x is greater than y; i.e.
        # accept alternative in that case and return small p-value (sf)
        prob = distributions.norm.sf(z)
    else:
        prob = distributions.norm.cdf(z)

    return WilcoxonResult(T, prob)


def median_test(*args, **kwds):
    """
    Perform a Mood's median test.

    Test that two or more samples come from populations with the same median.

    Let ``n = len(args)`` be the number of samples.  The "grand median" of
    all the data is computed, and a contingency table is formed by
    classifying the values in each sample as being above or below the grand
    median.  The contingency table, along with `correction` and `lambda_`,
    are passed to `scipy.stats.chi2_contingency` to compute the test statistic
    and p-value.

    Parameters
    ----------
    sample1, sample2, ... : array_like
        The set of samples.  There must be at least two samples.
        Each sample must be a one-dimensional sequence containing at least
        one value.  The samples are not required to have the same length.
    ties : str, optional
        Determines how values equal to the grand median are classified in
        the contingency table.  The string must be one of::

            "below":
                Values equal to the grand median are counted as "below".
            "above":
                Values equal to the grand median are counted as "above".
            "ignore":
                Values equal to the grand median are not counted.

        The default is "below".
    correction : bool, optional
        If True, *and* there are just two samples, apply Yates' correction
        for continuity when computing the test statistic associated with
        the contingency table.  Default is True.
    lambda_ : float or str, optional
        By default, the statistic computed in this test is Pearson's
        chi-squared statistic.  `lambda_` allows a statistic from the
        Cressie-Read power divergence family to be used instead.  See
        `power_divergence` for details.
        Default is 1 (Pearson's chi-squared statistic).
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    stat : float
        The test statistic.  The statistic that is returned is determined by
        `lambda_`.  The default is Pearson's chi-squared statistic.
    p : float
        The p-value of the test.
    m : float
        The grand median.
    table : ndarray
        The contingency table.  The shape of the table is (2, n), where
        n is the number of samples.  The first row holds the counts of the
        values above the grand median, and the second row holds the counts
        of the values below the grand median.  The table allows further
        analysis with, for example, `scipy.stats.chi2_contingency`, or with
        `scipy.stats.fisher_exact` if there are two samples, without having
        to recompute the table.  If ``nan_policy`` is "propagate" and there
        are nans in the input, the return value for ``table`` is ``None``.

    See Also
    --------
    kruskal : Compute the Kruskal-Wallis H-test for independent samples.
    mannwhitneyu : Computes the Mann-Whitney rank test on samples x and y.

    Notes
    -----
    .. versionadded:: 0.15.0

    References
    ----------
    .. [1] Mood, A. M., Introduction to the Theory of Statistics. McGraw-Hill
        (1950), pp. 394-399.
    .. [2] Zar, J. H., Biostatistical Analysis, 5th ed. Prentice Hall (2010).
        See Sections 8.12 and 10.15.

    Examples
    --------
    A biologist runs an experiment in which there are three groups of plants.
    Group 1 has 16 plants, group 2 has 15 plants, and group 3 has 17 plants.
    Each plant produces a number of seeds.  The seed counts for each group
    are::

        Group 1: 10 14 14 18 20 22 24 25 31 31 32 39 43 43 48 49
        Group 2: 28 30 31 33 34 35 36 40 44 55 57 61 91 92 99
        Group 3:  0  3  9 22 23 25 25 33 34 34 40 45 46 48 62 67 84

    The following code applies Mood's median test to these samples.

    >>> g1 = [10, 14, 14, 18, 20, 22, 24, 25, 31, 31, 32, 39, 43, 43, 48, 49]
    >>> g2 = [28, 30, 31, 33, 34, 35, 36, 40, 44, 55, 57, 61, 91, 92, 99]
    >>> g3 = [0, 3, 9, 22, 23, 25, 25, 33, 34, 34, 40, 45, 46, 48, 62, 67, 84]
    >>> from scipy.stats import median_test
    >>> stat, p, med, tbl = median_test(g1, g2, g3)

    The median is

    >>> med
    34.0

    and the contingency table is

    >>> tbl
    array([[ 5, 10,  7],
           [11,  5, 10]])

    `p` is too large to conclude that the medians are not the same:

    >>> p
    0.12609082774093244

    The "G-test" can be performed by passing ``lambda_="log-likelihood"`` to
    `median_test`.

    >>> g, p, med, tbl = median_test(g1, g2, g3, lambda_="log-likelihood")
    >>> p
    0.12224779737117837

    The median occurs several times in the data, so we'll get a different
    result if, for example, ``ties="above"`` is used:

    >>> stat, p, med, tbl = median_test(g1, g2, g3, ties="above")
    >>> p
    0.063873276069553273

    >>> tbl
    array([[ 5, 11,  9],
           [11,  4,  8]])

    This example demonstrates that if the data set is not large and there
    are values equal to the median, the p-value can be sensitive to the
    choice of `ties`.

    """
    ties = kwds.pop('ties', 'below')
    correction = kwds.pop('correction', True)
    lambda_ = kwds.pop('lambda_', None)
    nan_policy = kwds.pop('nan_policy', 'propagate')

    if len(kwds) > 0:
        bad_kwd = kwds.keys()[0]
        raise TypeError("median_test() got an unexpected keyword "
                        "argument %r" % bad_kwd)

    if len(args) < 2:
        raise ValueError('median_test requires two or more samples.')

    ties_options = ['below', 'above', 'ignore']
    if ties not in ties_options:
        raise ValueError("invalid 'ties' option '%s'; 'ties' must be one "
                         "of: %s" % (ties, str(ties_options)[1:-1]))

    data = [np.asarray(arg) for arg in args]

    # Validate the sizes and shapes of the arguments.
    for k, d in enumerate(data):
        if d.size == 0:
            raise ValueError("Sample %d is empty. All samples must "
                             "contain at least one value." % (k + 1))
        if d.ndim != 1:
            raise ValueError("Sample %d has %d dimensions.  All "
                             "samples must be one-dimensional sequences." %
                             (k + 1, d.ndim))

    cdata = np.concatenate(data)
    contains_nan, nan_policy = _contains_nan(cdata, nan_policy)
    if contains_nan and nan_policy == 'propagate':
        return np.nan, np.nan, np.nan, None

    if contains_nan:
        grand_median = np.median(cdata[~np.isnan(cdata)])
    else:
        grand_median = np.median(cdata)
    # When the minimum version of numpy supported by scipy is 1.9.0,
    # the above if/else statement can be replaced by the single line:
    #     grand_median = np.nanmedian(cdata)

    # Create the contingency table.
    table = np.zeros((2, len(data)), dtype=np.int64)
    for k, sample in enumerate(data):
        sample = sample[~np.isnan(sample)]

        nabove = count_nonzero(sample > grand_median)
        nbelow = count_nonzero(sample < grand_median)
        nequal = sample.size - (nabove + nbelow)
        table[0, k] += nabove
        table[1, k] += nbelow
        if ties == "below":
            table[1, k] += nequal
        elif ties == "above":
            table[0, k] += nequal

    # Check that no row or column of the table is all zero.
    # Such a table can not be given to chi2_contingency, because it would have
    # a zero in the table of expected frequencies.
    rowsums = table.sum(axis=1)
    if rowsums[0] == 0:
        raise ValueError("All values are below the grand median (%r)." %
                         grand_median)
    if rowsums[1] == 0:
        raise ValueError("All values are above the grand median (%r)." %
                         grand_median)
    if ties == "ignore":
        # We already checked that each sample has at least one value, but it
        # is possible that all those values equal the grand median.  If `ties`
        # is "ignore", that would result in a column of zeros in `table`.  We
        # check for that case here.
        zero_cols = np.nonzero((table == 0).all(axis=0))[0]
        if len(zero_cols) > 0:
            msg = ("All values in sample %d are equal to the grand "
                   "median (%r), so they are ignored, resulting in an "
                   "empty sample." % (zero_cols[0] + 1, grand_median))
            raise ValueError(msg)

    stat, p, dof, expected = chi2_contingency(table, lambda_=lambda_,
                                              correction=correction)
    return stat, p, grand_median, table


def _circfuncs_common(samples, high, low, nan_policy='propagate'):
    # Ensure samples are array-like and size is not zero
    samples = np.asarray(samples)
    if samples.size == 0:
        return np.nan, np.asarray(np.nan), np.asarray(np.nan), None

    # Recast samples as radians that range between 0 and 2 pi and calculate
    # the sine and cosine
    sin_samp = sin((samples - low)*2.*pi / (high - low))
    cos_samp = cos((samples - low)*2.*pi / (high - low))

    # Apply the NaN policy
    contains_nan, nan_policy = _contains_nan(samples, nan_policy)
    if contains_nan and nan_policy == 'omit':
        mask = np.isnan(samples)
        # Set the sines and cosines that are NaN to zero
        sin_samp[mask] = 0.0
        cos_samp[mask] = 0.0
    else:
        mask = None

    return samples, sin_samp, cos_samp, mask


def circmean(samples, high=2*pi, low=0, axis=None, nan_policy='propagate'):
    """
    Compute the circular mean for samples in a range.

    Parameters
    ----------
    samples : array_like
        Input array.
    high : float or int, optional
        High boundary for circular mean range.  Default is ``2*pi``.
    low : float or int, optional
        Low boundary for circular mean range.  Default is 0.
    axis : int, optional
        Axis along which means are computed.  The default is to compute
        the mean of the flattened array.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    circmean : float
        Circular mean.

    Examples
    --------
    >>> from scipy.stats import circmean
    >>> circmean([0.1, 2*np.pi+0.2, 6*np.pi+0.3])
    0.2

    >>> from scipy.stats import circmean
    >>> circmean([0.2, 1.4, 2.6], high = 1, low = 0)
    0.4

    """
    samples, sin_samp, cos_samp, nmask = _circfuncs_common(samples, high, low,
                                                           nan_policy=nan_policy)
    sin_sum = sin_samp.sum(axis=axis)
    cos_sum = cos_samp.sum(axis=axis)
    res = arctan2(sin_sum, cos_sum)

    mask_nan = ~np.isnan(res)
    if mask_nan.ndim > 0:
        mask = res[mask_nan] < 0
    else:
        mask = res < 0

    if mask.ndim > 0:
        mask_nan[mask_nan] = mask
        res[mask_nan] += 2*pi
    elif mask:
        res += 2*pi

    # Set output to NaN if no samples went into the mean
    if nmask is not None:
        if nmask.all():
            res = np.full(shape=res.shape, fill_value=np.nan)
        else:
            # Find out if any of the axis that are being averaged consist
            # entirely of NaN.  If one exists, set the result (res) to NaN
            nshape = 0 if axis is None else axis
            smask = nmask.shape[nshape] == nmask.sum(axis=axis)
            if smask.any():
                res[smask] = np.nan

    return res*(high - low)/2.0/pi + low


def circvar(samples, high=2*pi, low=0, axis=None, nan_policy='propagate'):
    """
    Compute the circular variance for samples assumed to be in a range.

    Parameters
    ----------
    samples : array_like
        Input array.
    high : float or int, optional
        High boundary for circular variance range.  Default is ``2*pi``.
    low : float or int, optional
        Low boundary for circular variance range.  Default is 0.
    axis : int, optional
        Axis along which variances are computed.  The default is to compute
        the variance of the flattened array.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    circvar : float
        Circular variance.

    Notes
    -----
    This uses a definition of circular variance that in the limit of small
    angles returns a number close to the 'linear' variance.

    Examples
    --------
    >>> from scipy.stats import circvar
    >>> circvar([0, 2*np.pi/3, 5*np.pi/3])
    2.19722457734

    """
    samples, sin_samp, cos_samp, mask = _circfuncs_common(samples, high, low,
                                                          nan_policy=nan_policy)
    if mask is None:
        sin_mean = sin_samp.mean(axis=axis)
        cos_mean = cos_samp.mean(axis=axis)
    else:
        nsum = np.asarray(np.sum(~mask, axis=axis).astype(float))
        nsum[nsum == 0] = np.nan
        sin_mean = sin_samp.sum(axis=axis) / nsum
        cos_mean = cos_samp.sum(axis=axis) / nsum
    R = hypot(sin_mean, cos_mean)

    return ((high - low)/2.0/pi)**2 * 2 * log(1/R)


def circstd(samples, high=2*pi, low=0, axis=None, nan_policy='propagate'):
    """
    Compute the circular standard deviation for samples assumed to be in the
    range [low to high].

    Parameters
    ----------
    samples : array_like
        Input array.
    high : float or int, optional
        High boundary for circular standard deviation range.
        Default is ``2*pi``.
    low : float or int, optional
        Low boundary for circular standard deviation range.  Default is 0.
    axis : int, optional
        Axis along which standard deviations are computed.  The default is
        to compute the standard deviation of the flattened array.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    circstd : float
        Circular standard deviation.

    Notes
    -----
    This uses a definition of circular standard deviation that in the limit of
    small angles returns a number close to the 'linear' standard deviation.

    Examples
    --------
    >>> from scipy.stats import circstd
    >>> circstd([0, 0.1*np.pi/2, 0.001*np.pi, 0.03*np.pi/2])
    0.063564063306

    """
    samples, sin_samp, cos_samp, mask = _circfuncs_common(samples, high, low,
                                                          nan_policy=nan_policy)
    if mask is None:
        sin_mean = sin_samp.mean(axis=axis)
        cos_mean = cos_samp.mean(axis=axis)
    else:
        nsum = np.asarray(np.sum(~mask, axis=axis).astype(float))
        nsum[nsum == 0] = np.nan
        sin_mean = sin_samp.sum(axis=axis) / nsum
        cos_mean = cos_samp.sum(axis=axis) / nsum
    R = hypot(sin_mean, cos_mean)

    return ((high - low)/2.0/pi) * sqrt(-2*log(R))