uploader.py
32.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Uploads a TensorBoard logdir to TensorBoard.dev."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import contextlib
import functools
import time
import grpc
import six
from tensorboard.compat.proto import summary_pb2
from tensorboard.uploader.proto import write_service_pb2
from tensorboard.uploader.proto import experiment_pb2
from tensorboard.uploader import logdir_loader
from tensorboard.uploader import util
from tensorboard import data_compat
from tensorboard import dataclass_compat
from tensorboard.backend.event_processing import directory_loader
from tensorboard.backend.event_processing import event_file_loader
from tensorboard.backend.event_processing import io_wrapper
from tensorboard.plugins.scalar import metadata as scalar_metadata
from tensorboard.util import grpc_util
from tensorboard.util import tb_logging
from tensorboard.util import tensor_util
# Minimum length of a logdir polling cycle in seconds. Shorter cycles will
# sleep to avoid spinning over the logdir, which isn't great for disks and can
# be expensive for network file systems.
_MIN_LOGDIR_POLL_INTERVAL_SECS = 5
# Minimum interval between initiating write RPCs. When writes would otherwise
# happen more frequently, the process will sleep to use up the rest of the time.
_MIN_WRITE_RPC_INTERVAL_SECS = 5
# Minimum interval between initiating blob write RPC streams. When writes would
# otherwise happen more frequently, the process will sleep to use up the rest of
# the time. This may differ from the above RPC rate limit, because blob streams
# are not batched, so sending a sequence of N blobs requires N streams, which
# could reasonably be sent more frequently.
_MIN_BLOB_WRITE_RPC_INTERVAL_SECS = 1
# Age in seconds of last write after which an event file is considered inactive.
# TODO(@nfelt): consolidate with TensorBoard --reload_multifile default logic.
_EVENT_FILE_INACTIVE_SECS = 4000
# Maximum length of a base-128 varint as used to encode a 64-bit value
# (without the "msb of last byte is bit 63" optimization, to be
# compatible with protobuf and golang varints).
_MAX_VARINT64_LENGTH_BYTES = 10
# Maximum outgoing request size. The server-side limit is 4 MiB [1]; we
# should pad a bit to mitigate any errors in our bookkeeping. Currently,
# we pad a lot, because using higher request sizes causes occasional
# Deadline Exceeded errors in the RPC server.
#
# [1]: https://github.com/grpc/grpc/blob/e70d8582b4b0eedc45e3d25a57b58a08b94a9f4a/include/grpc/impl/codegen/grpc_types.h#L447 # pylint: disable=line-too-long
_MAX_REQUEST_LENGTH_BYTES = 1024 * 128
logger = tb_logging.get_logger()
# Leave breathing room within 2^22 (4 MiB) gRPC limit, using 256 KiB chunks
BLOB_CHUNK_SIZE = (2 ** 22) - (2 ** 18)
class TensorBoardUploader(object):
"""Uploads a TensorBoard logdir to TensorBoard.dev."""
def __init__(
self,
writer_client,
logdir,
allowed_plugins,
max_blob_size,
logdir_poll_rate_limiter=None,
rpc_rate_limiter=None,
blob_rpc_rate_limiter=None,
name=None,
description=None,
):
"""Constructs a TensorBoardUploader.
Args:
writer_client: a TensorBoardWriterService stub instance
logdir: path of the log directory to upload
allowed_plugins: collection of string plugin names; events will only
be uploaded if their time series's metadata specifies one of these
plugin names
max_blob_size: the maximum allowed size for blob uploads.
logdir_poll_rate_limiter: a `RateLimiter` to use to limit logdir
polling frequency, to avoid thrashing disks, especially on networked
file systems
rpc_rate_limiter: a `RateLimiter` to use to limit write RPC frequency.
Note this limit applies at the level of single RPCs in the Scalar
and Tensor case, but at the level of an entire blob upload in the
Blob case-- which may require a few preparatory RPCs and a stream
of chunks. Note the chunk stream is internally rate-limited by
backpressure from the server, so it is not a concern that we do not
explicitly rate-limit within the stream here.
name: String name to assign to the experiment.
description: String description to assign to the experiment.
"""
self._api = writer_client
self._logdir = logdir
self._allowed_plugins = frozenset(allowed_plugins)
self._max_blob_size = max_blob_size
self._name = name
self._description = description
self._request_sender = None
if logdir_poll_rate_limiter is None:
self._logdir_poll_rate_limiter = util.RateLimiter(
_MIN_LOGDIR_POLL_INTERVAL_SECS
)
else:
self._logdir_poll_rate_limiter = logdir_poll_rate_limiter
if rpc_rate_limiter is None:
self._rpc_rate_limiter = util.RateLimiter(
_MIN_WRITE_RPC_INTERVAL_SECS
)
else:
self._rpc_rate_limiter = rpc_rate_limiter
if blob_rpc_rate_limiter is None:
self._blob_rpc_rate_limiter = util.RateLimiter(
_MIN_BLOB_WRITE_RPC_INTERVAL_SECS
)
else:
self._blob_rpc_rate_limiter = blob_rpc_rate_limiter
active_filter = (
lambda secs: secs + _EVENT_FILE_INACTIVE_SECS >= time.time()
)
directory_loader_factory = functools.partial(
directory_loader.DirectoryLoader,
loader_factory=event_file_loader.TimestampedEventFileLoader,
path_filter=io_wrapper.IsTensorFlowEventsFile,
active_filter=active_filter,
)
self._logdir_loader = logdir_loader.LogdirLoader(
self._logdir, directory_loader_factory
)
def create_experiment(self):
"""Creates an Experiment for this upload session and returns the ID."""
logger.info("Creating experiment")
request = write_service_pb2.CreateExperimentRequest(
name=self._name, description=self._description
)
response = grpc_util.call_with_retries(
self._api.CreateExperiment, request
)
self._request_sender = _BatchedRequestSender(
response.experiment_id,
self._api,
allowed_plugins=self._allowed_plugins,
max_blob_size=self._max_blob_size,
rpc_rate_limiter=self._rpc_rate_limiter,
blob_rpc_rate_limiter=self._blob_rpc_rate_limiter,
)
return response.experiment_id
def start_uploading(self):
"""Blocks forever to continuously upload data from the logdir.
Raises:
RuntimeError: If `create_experiment` has not yet been called.
ExperimentNotFoundError: If the experiment is deleted during the
course of the upload.
"""
if self._request_sender is None:
raise RuntimeError(
"Must call create_experiment() before start_uploading()"
)
while True:
self._logdir_poll_rate_limiter.tick()
self._upload_once()
def _upload_once(self):
"""Runs one upload cycle, sending zero or more RPCs."""
logger.info("Starting an upload cycle")
sync_start_time = time.time()
self._logdir_loader.synchronize_runs()
sync_duration_secs = time.time() - sync_start_time
logger.info("Logdir sync took %.3f seconds", sync_duration_secs)
run_to_events = self._logdir_loader.get_run_events()
self._request_sender.send_requests(run_to_events)
def update_experiment_metadata(
writer_client, experiment_id, name=None, description=None
):
"""Modifies user data associated with an experiment.
Args:
writer_client: a TensorBoardWriterService stub instance
experiment_id: string ID of the experiment to modify
name: If provided, modifies name of experiment to this value.
description: If provided, modifies the description of the experiment to
this value
Raises:
ExperimentNotFoundError: If no such experiment exists.
PermissionDeniedError: If the user is not authorized to modify this
experiment.
InvalidArgumentError: If the server rejected the name or description, if,
for instance, the size limits have changed on the server.
"""
logger.info("Modifying experiment %r", experiment_id)
request = write_service_pb2.UpdateExperimentRequest()
request.experiment.experiment_id = experiment_id
if name is not None:
logger.info("Setting exp %r name to %r", experiment_id, name)
request.experiment.name = name
request.experiment_mask.name = True
if description is not None:
logger.info(
"Setting exp %r description to %r", experiment_id, description
)
request.experiment.description = description
request.experiment_mask.description = True
try:
grpc_util.call_with_retries(writer_client.UpdateExperiment, request)
except grpc.RpcError as e:
if e.code() == grpc.StatusCode.NOT_FOUND:
raise ExperimentNotFoundError()
if e.code() == grpc.StatusCode.PERMISSION_DENIED:
raise PermissionDeniedError()
if e.code() == grpc.StatusCode.INVALID_ARGUMENT:
raise InvalidArgumentError(e.details())
raise
def delete_experiment(writer_client, experiment_id):
"""Permanently deletes an experiment and all of its contents.
Args:
writer_client: a TensorBoardWriterService stub instance
experiment_id: string ID of the experiment to delete
Raises:
ExperimentNotFoundError: If no such experiment exists.
PermissionDeniedError: If the user is not authorized to delete this
experiment.
RuntimeError: On unexpected failure.
"""
logger.info("Deleting experiment %r", experiment_id)
request = write_service_pb2.DeleteExperimentRequest()
request.experiment_id = experiment_id
try:
grpc_util.call_with_retries(writer_client.DeleteExperiment, request)
except grpc.RpcError as e:
if e.code() == grpc.StatusCode.NOT_FOUND:
raise ExperimentNotFoundError()
if e.code() == grpc.StatusCode.PERMISSION_DENIED:
raise PermissionDeniedError()
raise
class InvalidArgumentError(RuntimeError):
pass
class ExperimentNotFoundError(RuntimeError):
pass
class PermissionDeniedError(RuntimeError):
pass
class _OutOfSpaceError(Exception):
"""Action could not proceed without overflowing request budget.
This is a signaling exception (like `StopIteration`) used internally
by `_*RequestSender`; it does not mean that anything has gone wrong.
"""
pass
class _BatchedRequestSender(object):
"""Helper class for building requests that fit under a size limit.
This class maintains stateful request builders for each of the possible
request types (scalars, tensors, and blobs). These accumulate batches
independently, each maintaining its own byte budget and emitting a request
when the batch becomes full. As a consequence, events of different types
will likely be sent to the backend out of order. E.g., in the extreme case,
a single tensor-flavored request may be sent only when the event stream is
exhausted, even though many more recent scalar events were sent earlier.
This class is not threadsafe. Use external synchronization if
calling its methods concurrently.
"""
def __init__(
self,
experiment_id,
api,
allowed_plugins,
max_blob_size,
rpc_rate_limiter,
blob_rpc_rate_limiter,
):
# Map from `(run_name, tag_name)` to `SummaryMetadata` if the time
# series is a scalar time series, else to `_NON_SCALAR_TIME_SERIES`.
self._tag_metadata = {}
self._allowed_plugins = frozenset(allowed_plugins)
self._scalar_request_sender = _ScalarBatchedRequestSender(
experiment_id, api, rpc_rate_limiter,
)
self._blob_request_sender = _BlobRequestSender(
experiment_id, api, blob_rpc_rate_limiter, max_blob_size
)
# TODO(nielsene): add tensor case here
def send_requests(self, run_to_events):
"""Accepts a stream of TF events and sends batched write RPCs.
Each sent request will be at most `_MAX_REQUEST_LENGTH_BYTES`
bytes long.
Args:
run_to_events: Mapping from run name to generator of `tf.Event`
values, as returned by `LogdirLoader.get_run_events`.
Raises:
RuntimeError: If no progress can be made because even a single
point is too large (say, due to a gigabyte-long tag name).
"""
for (run_name, event, orig_value) in self._run_values(run_to_events):
value = data_compat.migrate_value(orig_value)
time_series_key = (run_name, value.tag)
# The metadata for a time series is memorized on the first event.
# If later events arrive with a mismatching plugin_name, they are
# ignored with a warning.
metadata = self._tag_metadata.get(time_series_key)
first_in_time_series = False
if metadata is None:
first_in_time_series = True
metadata = value.metadata
self._tag_metadata[time_series_key] = metadata
plugin_name = metadata.plugin_data.plugin_name
if value.HasField("metadata") and (
plugin_name != value.metadata.plugin_data.plugin_name
):
logger.warning(
"Mismatching plugin names for %s. Expected %s, found %s.",
time_series_key,
metadata.plugin_data.plugin_name,
value.metadata.plugin_data.plugin_name,
)
continue
if plugin_name not in self._allowed_plugins:
if first_in_time_series:
logger.info(
"Skipping time series %r with unsupported plugin name %r",
time_series_key,
plugin_name,
)
continue
if metadata.data_class == summary_pb2.DATA_CLASS_SCALAR:
self._scalar_request_sender.add_event(
run_name, event, value, metadata
)
# TODO(nielsene): add Tensor sender
# elif metadata.data_class == summary_pb2.DATA_CLASS_TENSOR:
# self._tensor_request_sender.add_event(
# run_name, event, value, metadata
# )
elif metadata.data_class == summary_pb2.DATA_CLASS_BLOB_SEQUENCE:
self._blob_request_sender.add_event(
run_name, event, value, metadata
)
self._scalar_request_sender.flush()
# TODO(nielsene): add tensor case here
self._blob_request_sender.flush()
def _run_values(self, run_to_events):
"""Helper generator to create a single stream of work items.
The events are passed through the `data_compat` and `dataclass_compat`
layers before being emitted, so downstream consumers may process them
uniformly.
Note that `dataclass_compat` may emit multiple variants of
the same event, for backwards compatibility. Thus this stream should
be filtered to obtain the desired version of each event. Here, we
ignore any event that does not have a `summary` field.
Furthermore, the events emitted here could contain values that do not
have `metadata.data_class` set; these too should be ignored. In
`_send_summary_value(...)` above, we switch on `metadata.data_class`
and drop any values with an unknown (i.e., absent or unrecognized)
`data_class`.
"""
# Note that this join in principle has deletion anomalies: if the input
# stream contains runs with no events, or events with no values, we'll
# lose that information. This is not a problem: we would need to prune
# such data from the request anyway.
for (run_name, events) in six.iteritems(run_to_events):
for event in events:
v2_event = data_compat.migrate_event(event)
dataclass_events = dataclass_compat.migrate_event(v2_event)
for dataclass_event in dataclass_events:
if dataclass_event.summary:
for value in dataclass_event.summary.value:
yield (run_name, event, value)
class _ScalarBatchedRequestSender(object):
"""Helper class for building requests that fit under a size limit.
This class accumulates a current request. `add_event(...)` may or may not
send the request (and start a new one). After all `add_event(...)` calls
are complete, a final call to `flush()` is needed to send the final request.
This class is not threadsafe. Use external synchronization if calling its
methods concurrently.
"""
def __init__(self, experiment_id, api, rpc_rate_limiter):
if experiment_id is None:
raise ValueError("experiment_id cannot be None")
self._experiment_id = experiment_id
self._api = api
self._rpc_rate_limiter = rpc_rate_limiter
# A lower bound on the number of bytes that we may yet add to the
# request.
self._byte_budget = None # type: int
self._runs = {} # cache: map from run name to `Run` proto in request
self._tags = (
{}
) # cache: map from `(run, tag)` to `Tag` proto in run in request
self._new_request()
def _new_request(self):
"""Allocates a new request and refreshes the budget."""
self._request = write_service_pb2.WriteScalarRequest()
self._runs.clear()
self._tags.clear()
self._byte_budget = _MAX_REQUEST_LENGTH_BYTES
self._request.experiment_id = self._experiment_id
self._byte_budget -= self._request.ByteSize()
if self._byte_budget < 0:
raise RuntimeError("Byte budget too small for experiment ID")
def add_event(self, run_name, event, value, metadata):
"""Attempts to add the given event to the current request.
If the event cannot be added to the current request because the byte
budget is exhausted, the request is flushed, and the event is added
to the next request.
"""
try:
self._add_event_internal(run_name, event, value, metadata)
except _OutOfSpaceError:
self.flush()
# Try again. This attempt should never produce OutOfSpaceError
# because we just flushed.
try:
self._add_event_internal(run_name, event, value, metadata)
except _OutOfSpaceError:
raise RuntimeError("add_event failed despite flush")
def _add_event_internal(self, run_name, event, value, metadata):
run_proto = self._runs.get(run_name)
if run_proto is None:
run_proto = self._create_run(run_name)
self._runs[run_name] = run_proto
tag_proto = self._tags.get((run_name, value.tag))
if tag_proto is None:
tag_proto = self._create_tag(run_proto, value.tag, metadata)
self._tags[(run_name, value.tag)] = tag_proto
self._create_point(tag_proto, event, value)
def flush(self):
"""Sends the active request after removing empty runs and tags.
Starts a new, empty active request.
"""
request = self._request
for (run_idx, run) in reversed(list(enumerate(request.runs))):
for (tag_idx, tag) in reversed(list(enumerate(run.tags))):
if not tag.points:
del run.tags[tag_idx]
if not run.tags:
del request.runs[run_idx]
if not request.runs:
return
self._rpc_rate_limiter.tick()
with _request_logger(request, request.runs):
try:
# TODO(@nfelt): execute this RPC asynchronously.
grpc_util.call_with_retries(self._api.WriteScalar, request)
except grpc.RpcError as e:
if e.code() == grpc.StatusCode.NOT_FOUND:
raise ExperimentNotFoundError()
logger.error("Upload call failed with error %s", e)
self._new_request()
def _create_run(self, run_name):
"""Adds a run to the live request, if there's space.
Args:
run_name: String name of the run to add.
Returns:
The `WriteScalarRequest.Run` that was added to `request.runs`.
Raises:
_OutOfSpaceError: If adding the run would exceed the remaining
request budget.
"""
run_proto = self._request.runs.add(name=run_name)
# We can't calculate the proto key cost exactly ahead of time, as
# it depends on the total size of all tags. Be conservative.
cost = run_proto.ByteSize() + _MAX_VARINT64_LENGTH_BYTES + 1
if cost > self._byte_budget:
raise _OutOfSpaceError()
self._byte_budget -= cost
return run_proto
def _create_tag(self, run_proto, tag_name, metadata):
"""Adds a tag for the given value, if there's space.
Args:
run_proto: `WriteScalarRequest.Run` proto to which to add a tag.
tag_name: String name of the tag to add (as `value.tag`).
metadata: TensorBoard `SummaryMetadata` proto from the first
occurrence of this time series.
Returns:
The `WriteScalarRequest.Tag` that was added to `run_proto.tags`.
Raises:
_OutOfSpaceError: If adding the tag would exceed the remaining
request budget.
"""
tag_proto = run_proto.tags.add(name=tag_name)
tag_proto.metadata.CopyFrom(metadata)
submessage_cost = tag_proto.ByteSize()
# We can't calculate the proto key cost exactly ahead of time, as
# it depends on the number of points. Be conservative.
cost = submessage_cost + _MAX_VARINT64_LENGTH_BYTES + 1
if cost > self._byte_budget:
raise _OutOfSpaceError()
self._byte_budget -= cost
return tag_proto
def _create_point(self, tag_proto, event, value):
"""Adds a scalar point to the given tag, if there's space.
Args:
tag_proto: `WriteScalarRequest.Tag` proto to which to add a point.
event: Enclosing `Event` proto with the step and wall time data.
value: Scalar `Summary.Value` proto with the actual scalar data.
Returns:
The `ScalarPoint` that was added to `tag_proto.points`.
Raises:
_OutOfSpaceError: If adding the point would exceed the remaining
request budget.
"""
point = tag_proto.points.add()
point.step = event.step
# TODO(@nfelt): skip tensor roundtrip for Value with simple_value set
point.value = tensor_util.make_ndarray(value.tensor).item()
util.set_timestamp(point.wall_time, event.wall_time)
submessage_cost = point.ByteSize()
cost = submessage_cost + _varint_cost(submessage_cost) + 1 # proto key
if cost > self._byte_budget:
tag_proto.points.pop()
raise _OutOfSpaceError()
self._byte_budget -= cost
return point
class _BlobRequestSender(object):
"""Uploader for blob-type event data.
Unlike the other types, this class does not accumulate events in batches;
every blob is sent individually and immediately. Nonetheless we retain
the `add_event()`/`flush()` structure for symmetry.
This class is not threadsafe. Use external synchronization if calling its
methods concurrently.
"""
def __init__(self, experiment_id, api, rpc_rate_limiter, max_blob_size):
if experiment_id is None:
raise ValueError("experiment_id cannot be None")
self._experiment_id = experiment_id
self._api = api
self._rpc_rate_limiter = rpc_rate_limiter
self._max_blob_size = max_blob_size
# Start in the empty state, just like self._new_request().
self._run_name = None
self._event = None
self._value = None
self._metadata = None
def _new_request(self):
"""Declares the previous event complete."""
self._run_name = None
self._event = None
self._value = None
self._metadata = None
def add_event(
self, run_name, event, value, metadata,
):
"""Attempts to add the given event to the current request.
If the event cannot be added to the current request because the byte
budget is exhausted, the request is flushed, and the event is added
to the next request.
"""
if self._value:
raise RuntimeError("Tried to send blob while another is pending")
self._run_name = run_name
self._event = event # provides step and possibly plugin_name
self._value = value
# TODO(soergel): should we really unpack the tensor here, or ship
# it wholesale and unpack server side, or something else?
# TODO(soergel): can we extract the proto fields directly instead?
self._blobs = tensor_util.make_ndarray(self._value.tensor)
if self._blobs.ndim == 1:
self._metadata = metadata
self.flush()
else:
logger.warning(
"A blob sequence must be represented as a rank-1 Tensor. "
"Provided data has rank %d, for run %s, tag %s, step %s ('%s' plugin) .",
self._blobs.ndim,
run_name,
self._value.tag,
self._event.step,
metadata.plugin_data.plugin_name,
)
# Skip this upload.
self._new_request()
def flush(self):
"""Sends the current blob sequence fully, and clears it to make way for the next.
"""
if self._value:
blob_sequence_id = self._get_or_create_blob_sequence()
logger.info(
"Sending %d blobs for sequence id: %s",
len(self._blobs),
blob_sequence_id,
)
sent_blobs = 0
for seq_index, blob in enumerate(self._blobs):
# Note the _send_blob() stream is internally flow-controlled.
# This rate limit applies to *starting* the stream.
self._rpc_rate_limiter.tick()
sent_blobs += self._send_blob(blob_sequence_id, seq_index, blob)
logger.info(
"Sent %d of %d blobs for sequence id: %s",
sent_blobs,
len(self._blobs),
blob_sequence_id,
)
self._new_request()
def _get_or_create_blob_sequence(self):
request = write_service_pb2.GetOrCreateBlobSequenceRequest(
experiment_id=self._experiment_id,
run=self._run_name,
tag=self._value.tag,
step=self._event.step,
final_sequence_length=len(self._blobs),
metadata=self._metadata,
)
util.set_timestamp(request.wall_time, self._event.wall_time)
with _request_logger(request):
try:
# TODO(@nfelt): execute this RPC asynchronously.
response = grpc_util.call_with_retries(
self._api.GetOrCreateBlobSequence, request
)
blob_sequence_id = response.blob_sequence_id
except grpc.RpcError as e:
if e.code() == grpc.StatusCode.NOT_FOUND:
raise ExperimentNotFoundError()
logger.error("Upload call failed with error %s", e)
# TODO(soergel): clean up
raise
return blob_sequence_id
def _send_blob(self, blob_sequence_id, seq_index, blob):
"""Tries to send a single blob for a given index within a blob sequence.
The blob will not be sent if it was sent already, or if it is too large.
Returns:
The number of blobs successfully sent (i.e., 1 or 0).
"""
# TODO(soergel): retry and resume logic
if len(blob) > self._max_blob_size:
logger.warning(
"Blob too large; skipping. Size %d exceeds limit of %d bytes.",
len(blob),
self._max_blob_size,
)
return 0
request_iterator = self._write_blob_request_iterator(
blob_sequence_id, seq_index, blob
)
upload_start_time = time.time()
count = 0
# TODO(soergel): don't wait for responses for greater throughput
# See https://stackoverflow.com/questions/55029342/handling-async-streaming-request-in-grpc-python
try:
for response in self._api.WriteBlob(request_iterator):
count += 1
# TODO(soergel): validate responses? probably not.
pass
upload_duration_secs = time.time() - upload_start_time
logger.info(
"Upload for %d chunks totaling %d bytes took %.3f seconds (%.3f MB/sec)",
count,
len(blob),
upload_duration_secs,
len(blob) / upload_duration_secs / (1024 * 1024),
)
return 1
except grpc.RpcError as e:
if e.code() == grpc.StatusCode.ALREADY_EXISTS:
logger.error("Attempted to re-upload existing blob. Skipping.")
return 0
else:
logger.info("WriteBlob RPC call got error %s", e)
raise
def _write_blob_request_iterator(self, blob_sequence_id, seq_index, blob):
# For now all use cases have the blob in memory already.
# In the future we may want to stream from disk; that will require
# refactoring here.
# TODO(soergel): compute crc32c's to allow server-side data validation.
for offset in range(0, len(blob), BLOB_CHUNK_SIZE):
chunk = blob[offset : offset + BLOB_CHUNK_SIZE]
finalize_object = offset + BLOB_CHUNK_SIZE >= len(blob)
request = write_service_pb2.WriteBlobRequest(
blob_sequence_id=blob_sequence_id,
index=seq_index,
data=chunk,
offset=offset,
crc32c=None,
finalize_object=finalize_object,
final_crc32c=None,
blob_bytes=len(blob),
)
yield request
@contextlib.contextmanager
def _request_logger(request, runs=None):
upload_start_time = time.time()
request_bytes = request.ByteSize()
logger.info("Trying request of %d bytes", request_bytes)
yield
upload_duration_secs = time.time() - upload_start_time
if runs:
logger.info(
"Upload for %d runs (%d bytes) took %.3f seconds",
len(runs),
request_bytes,
upload_duration_secs,
)
else:
logger.info(
"Upload of (%d bytes) took %.3f seconds",
request_bytes,
upload_duration_secs,
)
def _varint_cost(n):
"""Computes the size of `n` encoded as an unsigned base-128 varint.
This should be consistent with the proto wire format:
<https://developers.google.com/protocol-buffers/docs/encoding#varints>
Args:
n: A non-negative integer.
Returns:
An integer number of bytes.
"""
result = 1
while n >= 128:
result += 1
n >>= 7
return result