cloudpickle.py
52 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
"""
This class is defined to override standard pickle functionality
The goals of it follow:
-Serialize lambdas and nested functions to compiled byte code
-Deal with main module correctly
-Deal with other non-serializable objects
It does not include an unpickler, as standard python unpickling suffices.
This module was extracted from the `cloud` package, developed by `PiCloud, Inc.
<https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_.
Copyright (c) 2012, Regents of the University of California.
Copyright (c) 2009 `PiCloud, Inc. <https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the University of California, Berkeley nor the
names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
from __future__ import print_function
import abc
import dis
from functools import partial
import io
import itertools
import logging
import opcode
import operator
import pickle
import platform
import struct
import sys
import traceback
import types
import weakref
import uuid
import threading
try:
from enum import Enum
except ImportError:
Enum = None
# cloudpickle is meant for inter process communication: we expect all
# communicating processes to run the same Python version hence we favor
# communication speed over compatibility:
DEFAULT_PROTOCOL = pickle.HIGHEST_PROTOCOL
# Track the provenance of reconstructed dynamic classes to make it possible to
# recontruct instances from the matching singleton class definition when
# appropriate and preserve the usual "isinstance" semantics of Python objects.
_DYNAMIC_CLASS_TRACKER_BY_CLASS = weakref.WeakKeyDictionary()
_DYNAMIC_CLASS_TRACKER_BY_ID = weakref.WeakValueDictionary()
_DYNAMIC_CLASS_TRACKER_LOCK = threading.Lock()
PYPY = platform.python_implementation() == "PyPy"
builtin_code_type = None
if PYPY:
# builtin-code objects only exist in pypy
builtin_code_type = type(float.__new__.__code__)
if sys.version_info[0] < 3: # pragma: no branch
from pickle import Pickler
try:
from cStringIO import StringIO
except ImportError:
from StringIO import StringIO
import __builtin__ as builtins
string_types = (basestring,) # noqa
PY3 = False
PY2 = True
else:
from pickle import _Pickler as Pickler
from io import BytesIO as StringIO
string_types = (str,)
PY3 = True
PY2 = False
from importlib._bootstrap import _find_spec
import builtins
_extract_code_globals_cache = weakref.WeakKeyDictionary()
def _ensure_tracking(class_def):
with _DYNAMIC_CLASS_TRACKER_LOCK:
class_tracker_id = _DYNAMIC_CLASS_TRACKER_BY_CLASS.get(class_def)
if class_tracker_id is None:
class_tracker_id = uuid.uuid4().hex
_DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id
_DYNAMIC_CLASS_TRACKER_BY_ID[class_tracker_id] = class_def
return class_tracker_id
def _lookup_class_or_track(class_tracker_id, class_def):
if class_tracker_id is not None:
with _DYNAMIC_CLASS_TRACKER_LOCK:
class_def = _DYNAMIC_CLASS_TRACKER_BY_ID.setdefault(
class_tracker_id, class_def)
_DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id
return class_def
if sys.version_info[:2] >= (3, 5):
from pickle import _getattribute
elif sys.version_info[:2] >= (3, 4):
from pickle import _getattribute as _py34_getattribute
# pickle._getattribute does not return the parent under Python 3.4
def _getattribute(obj, name):
return _py34_getattribute(obj, name), None
else:
# pickle._getattribute is a python3 addition and enchancement of getattr,
# that can handle dotted attribute names. In cloudpickle for python2,
# handling dotted names is not needed, so we simply define _getattribute as
# a wrapper around getattr.
def _getattribute(obj, name):
return getattr(obj, name, None), None
def _whichmodule(obj, name):
"""Find the module an object belongs to.
This function differs from ``pickle.whichmodule`` in two ways:
- it does not mangle the cases where obj's module is __main__ and obj was
not found in any module.
- Errors arising during module introspection are ignored, as those errors
are considered unwanted side effects.
"""
module_name = getattr(obj, '__module__', None)
if module_name is not None:
return module_name
# Protect the iteration by using a copy of sys.modules against dynamic
# modules that trigger imports of other modules upon calls to getattr or
# other threads importing at the same time.
for module_name, module in sys.modules.copy().items():
# Some modules such as coverage can inject non-module objects inside
# sys.modules
if (
module_name == '__main__' or
module is None or
not isinstance(module, types.ModuleType)
):
continue
try:
if _getattribute(module, name)[0] is obj:
return module_name
except Exception:
pass
return None
def _is_global(obj, name=None):
"""Determine if obj can be pickled as attribute of a file-backed module"""
if name is None:
name = getattr(obj, '__qualname__', None)
if name is None:
name = getattr(obj, '__name__', None)
module_name = _whichmodule(obj, name)
if module_name is None:
# In this case, obj.__module__ is None AND obj was not found in any
# imported module. obj is thus treated as dynamic.
return False
if module_name == "__main__":
return False
module = sys.modules.get(module_name, None)
if module is None:
# The main reason why obj's module would not be imported is that this
# module has been dynamically created, using for example
# types.ModuleType. The other possibility is that module was removed
# from sys.modules after obj was created/imported. But this case is not
# supported, as the standard pickle does not support it either.
return False
# module has been added to sys.modules, but it can still be dynamic.
if _is_dynamic(module):
return False
try:
obj2, parent = _getattribute(module, name)
except AttributeError:
# obj was not found inside the module it points to
return False
return obj2 is obj
def _extract_code_globals(co):
"""
Find all globals names read or written to by codeblock co
"""
out_names = _extract_code_globals_cache.get(co)
if out_names is None:
names = co.co_names
out_names = {names[oparg] for _, oparg in _walk_global_ops(co)}
# Declaring a function inside another one using the "def ..."
# syntax generates a constant code object corresonding to the one
# of the nested function's As the nested function may itself need
# global variables, we need to introspect its code, extract its
# globals, (look for code object in it's co_consts attribute..) and
# add the result to code_globals
if co.co_consts:
for const in co.co_consts:
if isinstance(const, types.CodeType):
out_names |= _extract_code_globals(const)
_extract_code_globals_cache[co] = out_names
return out_names
def _find_imported_submodules(code, top_level_dependencies):
"""
Find currently imported submodules used by a function.
Submodules used by a function need to be detected and referenced for the
function to work correctly at depickling time. Because submodules can be
referenced as attribute of their parent package (``package.submodule``), we
need a special introspection technique that does not rely on GLOBAL-related
opcodes to find references of them in a code object.
Example:
```
import concurrent.futures
import cloudpickle
def func():
x = concurrent.futures.ThreadPoolExecutor
if __name__ == '__main__':
cloudpickle.dumps(func)
```
The globals extracted by cloudpickle in the function's state include the
concurrent package, but not its submodule (here, concurrent.futures), which
is the module used by func. Find_imported_submodules will detect the usage
of concurrent.futures. Saving this module alongside with func will ensure
that calling func once depickled does not fail due to concurrent.futures
not being imported
"""
subimports = []
# check if any known dependency is an imported package
for x in top_level_dependencies:
if (isinstance(x, types.ModuleType) and
hasattr(x, '__package__') and x.__package__):
# check if the package has any currently loaded sub-imports
prefix = x.__name__ + '.'
# A concurrent thread could mutate sys.modules,
# make sure we iterate over a copy to avoid exceptions
for name in list(sys.modules):
# Older versions of pytest will add a "None" module to
# sys.modules.
if name is not None and name.startswith(prefix):
# check whether the function can address the sub-module
tokens = set(name[len(prefix):].split('.'))
if not tokens - set(code.co_names):
subimports.append(sys.modules[name])
return subimports
def cell_set(cell, value):
"""Set the value of a closure cell.
The point of this function is to set the cell_contents attribute of a cell
after its creation. This operation is necessary in case the cell contains a
reference to the function the cell belongs to, as when calling the
function's constructor
``f = types.FunctionType(code, globals, name, argdefs, closure)``,
closure will not be able to contain the yet-to-be-created f.
In Python3.7, cell_contents is writeable, so setting the contents of a cell
can be done simply using
>>> cell.cell_contents = value
In earlier Python3 versions, the cell_contents attribute of a cell is read
only, but this limitation can be worked around by leveraging the Python 3
``nonlocal`` keyword.
In Python2 however, this attribute is read only, and there is no
``nonlocal`` keyword. For this reason, we need to come up with more
complicated hacks to set this attribute.
The chosen approach is to create a function with a STORE_DEREF opcode,
which sets the content of a closure variable. Typically:
>>> def inner(value):
... lambda: cell # the lambda makes cell a closure
... cell = value # cell is a closure, so this triggers a STORE_DEREF
(Note that in Python2, A STORE_DEREF can never be triggered from an inner
function. The function g for example here
>>> def f(var):
... def g():
... var += 1
... return g
will not modify the closure variable ``var```inplace, but instead try to
load a local variable var and increment it. As g does not assign the local
variable ``var`` any initial value, calling f(1)() will fail at runtime.)
Our objective is to set the value of a given cell ``cell``. So we need to
somewhat reference our ``cell`` object into the ``inner`` function so that
this object (and not the smoke cell of the lambda function) gets affected
by the STORE_DEREF operation.
In inner, ``cell`` is referenced as a cell variable (an enclosing variable
that is referenced by the inner function). If we create a new function
cell_set with the exact same code as ``inner``, but with ``cell`` marked as
a free variable instead, the STORE_DEREF will be applied on its closure -
``cell``, which we can specify explicitly during construction! The new
cell_set variable thus actually sets the contents of a specified cell!
Note: we do not make use of the ``nonlocal`` keyword to set the contents of
a cell in early python3 versions to limit possible syntax errors in case
test and checker libraries decide to parse the whole file.
"""
if sys.version_info[:2] >= (3, 7): # pragma: no branch
cell.cell_contents = value
else:
_cell_set = types.FunctionType(
_cell_set_template_code, {}, '_cell_set', (), (cell,),)
_cell_set(value)
def _make_cell_set_template_code():
def _cell_set_factory(value):
lambda: cell
cell = value
co = _cell_set_factory.__code__
if PY2: # pragma: no branch
_cell_set_template_code = types.CodeType(
co.co_argcount,
co.co_nlocals,
co.co_stacksize,
co.co_flags,
co.co_code,
co.co_consts,
co.co_names,
co.co_varnames,
co.co_filename,
co.co_name,
co.co_firstlineno,
co.co_lnotab,
co.co_cellvars, # co_freevars is initialized with co_cellvars
(), # co_cellvars is made empty
)
else:
_cell_set_template_code = types.CodeType(
co.co_argcount,
co.co_kwonlyargcount, # Python 3 only argument
co.co_nlocals,
co.co_stacksize,
co.co_flags,
co.co_code,
co.co_consts,
co.co_names,
co.co_varnames,
co.co_filename,
co.co_name,
co.co_firstlineno,
co.co_lnotab,
co.co_cellvars, # co_freevars is initialized with co_cellvars
(), # co_cellvars is made empty
)
return _cell_set_template_code
if sys.version_info[:2] < (3, 7):
_cell_set_template_code = _make_cell_set_template_code()
# relevant opcodes
STORE_GLOBAL = opcode.opmap['STORE_GLOBAL']
DELETE_GLOBAL = opcode.opmap['DELETE_GLOBAL']
LOAD_GLOBAL = opcode.opmap['LOAD_GLOBAL']
GLOBAL_OPS = (STORE_GLOBAL, DELETE_GLOBAL, LOAD_GLOBAL)
HAVE_ARGUMENT = dis.HAVE_ARGUMENT
EXTENDED_ARG = dis.EXTENDED_ARG
_BUILTIN_TYPE_NAMES = {}
for k, v in types.__dict__.items():
if type(v) is type:
_BUILTIN_TYPE_NAMES[v] = k
def _builtin_type(name):
return getattr(types, name)
if sys.version_info < (3, 4): # pragma: no branch
def _walk_global_ops(code):
"""
Yield (opcode, argument number) tuples for all
global-referencing instructions in *code*.
"""
code = getattr(code, 'co_code', b'')
if PY2: # pragma: no branch
code = map(ord, code)
n = len(code)
i = 0
extended_arg = 0
while i < n:
op = code[i]
i += 1
if op >= HAVE_ARGUMENT:
oparg = code[i] + code[i + 1] * 256 + extended_arg
extended_arg = 0
i += 2
if op == EXTENDED_ARG:
extended_arg = oparg * 65536
if op in GLOBAL_OPS:
yield op, oparg
else:
def _walk_global_ops(code):
"""
Yield (opcode, argument number) tuples for all
global-referencing instructions in *code*.
"""
for instr in dis.get_instructions(code):
op = instr.opcode
if op in GLOBAL_OPS:
yield op, instr.arg
def _extract_class_dict(cls):
"""Retrieve a copy of the dict of a class without the inherited methods"""
clsdict = dict(cls.__dict__) # copy dict proxy to a dict
if len(cls.__bases__) == 1:
inherited_dict = cls.__bases__[0].__dict__
else:
inherited_dict = {}
for base in reversed(cls.__bases__):
inherited_dict.update(base.__dict__)
to_remove = []
for name, value in clsdict.items():
try:
base_value = inherited_dict[name]
if value is base_value:
to_remove.append(name)
except KeyError:
pass
for name in to_remove:
clsdict.pop(name)
return clsdict
class CloudPickler(Pickler):
dispatch = Pickler.dispatch.copy()
def __init__(self, file, protocol=None):
if protocol is None:
protocol = DEFAULT_PROTOCOL
Pickler.__init__(self, file, protocol=protocol)
# map ids to dictionary. used to ensure that functions can share global env
self.globals_ref = {}
def dump(self, obj):
self.inject_addons()
try:
return Pickler.dump(self, obj)
except RuntimeError as e:
if 'recursion' in e.args[0]:
msg = """Could not pickle object as excessively deep recursion required."""
raise pickle.PicklingError(msg)
else:
raise
def save_memoryview(self, obj):
self.save(obj.tobytes())
dispatch[memoryview] = save_memoryview
if PY2: # pragma: no branch
def save_buffer(self, obj):
self.save(str(obj))
dispatch[buffer] = save_buffer # noqa: F821 'buffer' was removed in Python 3
def save_module(self, obj):
"""
Save a module as an import
"""
if _is_dynamic(obj):
obj.__dict__.pop('__builtins__', None)
self.save_reduce(dynamic_subimport, (obj.__name__, vars(obj)),
obj=obj)
else:
self.save_reduce(subimport, (obj.__name__,), obj=obj)
dispatch[types.ModuleType] = save_module
def save_codeobject(self, obj):
"""
Save a code object
"""
if PY3: # pragma: no branch
if hasattr(obj, "co_posonlyargcount"): # pragma: no branch
args = (
obj.co_argcount, obj.co_posonlyargcount,
obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize,
obj.co_flags, obj.co_code, obj.co_consts, obj.co_names,
obj.co_varnames, obj.co_filename, obj.co_name,
obj.co_firstlineno, obj.co_lnotab, obj.co_freevars,
obj.co_cellvars
)
else:
args = (
obj.co_argcount, obj.co_kwonlyargcount, obj.co_nlocals,
obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts,
obj.co_names, obj.co_varnames, obj.co_filename,
obj.co_name, obj.co_firstlineno, obj.co_lnotab,
obj.co_freevars, obj.co_cellvars
)
else:
args = (
obj.co_argcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code,
obj.co_consts, obj.co_names, obj.co_varnames, obj.co_filename, obj.co_name,
obj.co_firstlineno, obj.co_lnotab, obj.co_freevars, obj.co_cellvars
)
self.save_reduce(types.CodeType, args, obj=obj)
dispatch[types.CodeType] = save_codeobject
def save_function(self, obj, name=None):
""" Registered with the dispatch to handle all function types.
Determines what kind of function obj is (e.g. lambda, defined at
interactive prompt, etc) and handles the pickling appropriately.
"""
if _is_global(obj, name=name):
return Pickler.save_global(self, obj, name=name)
elif PYPY and isinstance(obj.__code__, builtin_code_type):
return self.save_pypy_builtin_func(obj)
else:
return self.save_function_tuple(obj)
dispatch[types.FunctionType] = save_function
def save_pypy_builtin_func(self, obj):
"""Save pypy equivalent of builtin functions.
PyPy does not have the concept of builtin-functions. Instead,
builtin-functions are simple function instances, but with a
builtin-code attribute.
Most of the time, builtin functions should be pickled by attribute. But
PyPy has flaky support for __qualname__, so some builtin functions such
as float.__new__ will be classified as dynamic. For this reason only,
we created this special routine. Because builtin-functions are not
expected to have closure or globals, there is no additional hack
(compared the one already implemented in pickle) to protect ourselves
from reference cycles. A simple (reconstructor, newargs, obj.__dict__)
tuple is save_reduced.
Note also that PyPy improved their support for __qualname__ in v3.6, so
this routing should be removed when cloudpickle supports only PyPy 3.6
and later.
"""
rv = (types.FunctionType, (obj.__code__, {}, obj.__name__,
obj.__defaults__, obj.__closure__),
obj.__dict__)
self.save_reduce(*rv, obj=obj)
def _save_dynamic_enum(self, obj, clsdict):
"""Special handling for dynamic Enum subclasses
Use a dedicated Enum constructor (inspired by EnumMeta.__call__) as the
EnumMeta metaclass has complex initialization that makes the Enum
subclasses hold references to their own instances.
"""
members = dict((e.name, e.value) for e in obj)
# Python 2.7 with enum34 can have no qualname:
qualname = getattr(obj, "__qualname__", None)
self.save_reduce(_make_skeleton_enum,
(obj.__bases__, obj.__name__, qualname, members,
obj.__module__, _ensure_tracking(obj), None),
obj=obj)
# Cleanup the clsdict that will be passed to _rehydrate_skeleton_class:
# Those attributes are already handled by the metaclass.
for attrname in ["_generate_next_value_", "_member_names_",
"_member_map_", "_member_type_",
"_value2member_map_"]:
clsdict.pop(attrname, None)
for member in members:
clsdict.pop(member)
def save_dynamic_class(self, obj):
"""Save a class that can't be stored as module global.
This method is used to serialize classes that are defined inside
functions, or that otherwise can't be serialized as attribute lookups
from global modules.
"""
clsdict = _extract_class_dict(obj)
clsdict.pop('__weakref__', None)
if issubclass(type(obj), abc.ABCMeta):
# If obj is an instance of an ABCMeta subclass, dont pickle the
# cache/negative caches populated during isinstance/issubclass
# checks, but pickle the list of registered subclasses of obj.
clsdict.pop('_abc_cache', None)
clsdict.pop('_abc_negative_cache', None)
clsdict.pop('_abc_negative_cache_version', None)
registry = clsdict.pop('_abc_registry', None)
if registry is None:
# in Python3.7+, the abc caches and registered subclasses of a
# class are bundled into the single _abc_impl attribute
clsdict.pop('_abc_impl', None)
(registry, _, _, _) = abc._get_dump(obj)
clsdict["_abc_impl"] = [subclass_weakref()
for subclass_weakref in registry]
else:
# In the above if clause, registry is a set of weakrefs -- in
# this case, registry is a WeakSet
clsdict["_abc_impl"] = [type_ for type_ in registry]
# On PyPy, __doc__ is a readonly attribute, so we need to include it in
# the initial skeleton class. This is safe because we know that the
# doc can't participate in a cycle with the original class.
type_kwargs = {'__doc__': clsdict.pop('__doc__', None)}
if "__slots__" in clsdict:
type_kwargs['__slots__'] = obj.__slots__
# pickle string length optimization: member descriptors of obj are
# created automatically from obj's __slots__ attribute, no need to
# save them in obj's state
if isinstance(obj.__slots__, string_types):
clsdict.pop(obj.__slots__)
else:
for k in obj.__slots__:
clsdict.pop(k, None)
# If type overrides __dict__ as a property, include it in the type
# kwargs. In Python 2, we can't set this attribute after construction.
__dict__ = clsdict.pop('__dict__', None)
if isinstance(__dict__, property):
type_kwargs['__dict__'] = __dict__
save = self.save
write = self.write
# We write pickle instructions explicitly here to handle the
# possibility that the type object participates in a cycle with its own
# __dict__. We first write an empty "skeleton" version of the class and
# memoize it before writing the class' __dict__ itself. We then write
# instructions to "rehydrate" the skeleton class by restoring the
# attributes from the __dict__.
#
# A type can appear in a cycle with its __dict__ if an instance of the
# type appears in the type's __dict__ (which happens for the stdlib
# Enum class), or if the type defines methods that close over the name
# of the type, (which is common for Python 2-style super() calls).
# Push the rehydration function.
save(_rehydrate_skeleton_class)
# Mark the start of the args tuple for the rehydration function.
write(pickle.MARK)
# Create and memoize an skeleton class with obj's name and bases.
if Enum is not None and issubclass(obj, Enum):
# Special handling of Enum subclasses
self._save_dynamic_enum(obj, clsdict)
else:
# "Regular" class definition:
tp = type(obj)
self.save_reduce(_make_skeleton_class,
(tp, obj.__name__, obj.__bases__, type_kwargs,
_ensure_tracking(obj), None),
obj=obj)
# Now save the rest of obj's __dict__. Any references to obj
# encountered while saving will point to the skeleton class.
save(clsdict)
# Write a tuple of (skeleton_class, clsdict).
write(pickle.TUPLE)
# Call _rehydrate_skeleton_class(skeleton_class, clsdict)
write(pickle.REDUCE)
def save_function_tuple(self, func):
""" Pickles an actual func object.
A func comprises: code, globals, defaults, closure, and dict. We
extract and save these, injecting reducing functions at certain points
to recreate the func object. Keep in mind that some of these pieces
can contain a ref to the func itself. Thus, a naive save on these
pieces could trigger an infinite loop of save's. To get around that,
we first create a skeleton func object using just the code (this is
safe, since this won't contain a ref to the func), and memoize it as
soon as it's created. The other stuff can then be filled in later.
"""
if is_tornado_coroutine(func):
self.save_reduce(_rebuild_tornado_coroutine, (func.__wrapped__,),
obj=func)
return
save = self.save
write = self.write
code, f_globals, defaults, closure_values, dct, base_globals = self.extract_func_data(func)
save(_fill_function) # skeleton function updater
write(pickle.MARK) # beginning of tuple that _fill_function expects
# Extract currently-imported submodules used by func. Storing these
# modules in a smoke _cloudpickle_subimports attribute of the object's
# state will trigger the side effect of importing these modules at
# unpickling time (which is necessary for func to work correctly once
# depickled)
submodules = _find_imported_submodules(
code,
itertools.chain(f_globals.values(), closure_values or ()),
)
# create a skeleton function object and memoize it
save(_make_skel_func)
save((
code,
len(closure_values) if closure_values is not None else -1,
base_globals,
))
write(pickle.REDUCE)
self.memoize(func)
# save the rest of the func data needed by _fill_function
state = {
'globals': f_globals,
'defaults': defaults,
'dict': dct,
'closure_values': closure_values,
'module': func.__module__,
'name': func.__name__,
'doc': func.__doc__,
'_cloudpickle_submodules': submodules
}
if hasattr(func, '__annotations__') and sys.version_info >= (3, 7):
# Although annotations were added in Python3.4, It is not possible
# to properly pickle them until Python3.7. (See #193)
state['annotations'] = func.__annotations__
if hasattr(func, '__qualname__'):
state['qualname'] = func.__qualname__
if hasattr(func, '__kwdefaults__'):
state['kwdefaults'] = func.__kwdefaults__
save(state)
write(pickle.TUPLE)
write(pickle.REDUCE) # applies _fill_function on the tuple
def extract_func_data(self, func):
"""
Turn the function into a tuple of data necessary to recreate it:
code, globals, defaults, closure_values, dict
"""
code = func.__code__
# extract all global ref's
func_global_refs = _extract_code_globals(code)
# process all variables referenced by global environment
f_globals = {}
for var in func_global_refs:
if var in func.__globals__:
f_globals[var] = func.__globals__[var]
# defaults requires no processing
defaults = func.__defaults__
# process closure
closure = (
list(map(_get_cell_contents, func.__closure__))
if func.__closure__ is not None
else None
)
# save the dict
dct = func.__dict__
# base_globals represents the future global namespace of func at
# unpickling time. Looking it up and storing it in globals_ref allow
# functions sharing the same globals at pickling time to also
# share them once unpickled, at one condition: since globals_ref is
# an attribute of a Cloudpickler instance, and that a new CloudPickler is
# created each time pickle.dump or pickle.dumps is called, functions
# also need to be saved within the same invokation of
# cloudpickle.dump/cloudpickle.dumps (for example: cloudpickle.dumps([f1, f2])). There
# is no such limitation when using Cloudpickler.dump, as long as the
# multiple invokations are bound to the same Cloudpickler.
base_globals = self.globals_ref.setdefault(id(func.__globals__), {})
if base_globals == {}:
# Add module attributes used to resolve relative imports
# instructions inside func.
for k in ["__package__", "__name__", "__path__", "__file__"]:
# Some built-in functions/methods such as object.__new__ have
# their __globals__ set to None in PyPy
if func.__globals__ is not None and k in func.__globals__:
base_globals[k] = func.__globals__[k]
return (code, f_globals, defaults, closure, dct, base_globals)
if not PY3: # pragma: no branch
# Python3 comes with native reducers that allow builtin functions and
# methods pickling as module/class attributes. The following method
# extends this for python2.
# Please note that currently, neither pickle nor cloudpickle support
# dynamically created builtin functions/method pickling.
def save_builtin_function_or_method(self, obj):
is_bound = getattr(obj, '__self__', None) is not None
if is_bound:
# obj is a bound builtin method.
rv = (getattr, (obj.__self__, obj.__name__))
return self.save_reduce(obj=obj, *rv)
is_unbound = hasattr(obj, '__objclass__')
if is_unbound:
# obj is an unbound builtin method (accessed from its class)
rv = (getattr, (obj.__objclass__, obj.__name__))
return self.save_reduce(obj=obj, *rv)
# Otherwise, obj is not a method, but a function. Fallback to
# default pickling by attribute.
return Pickler.save_global(self, obj)
dispatch[types.BuiltinFunctionType] = save_builtin_function_or_method
# A comprehensive summary of the various kinds of builtin methods can
# be found in PEP 579: https://www.python.org/dev/peps/pep-0579/
classmethod_descriptor_type = type(float.__dict__['fromhex'])
wrapper_descriptor_type = type(float.__repr__)
method_wrapper_type = type(1.5.__repr__)
dispatch[classmethod_descriptor_type] = save_builtin_function_or_method
dispatch[wrapper_descriptor_type] = save_builtin_function_or_method
dispatch[method_wrapper_type] = save_builtin_function_or_method
if sys.version_info[:2] < (3, 4):
method_descriptor = type(str.upper)
dispatch[method_descriptor] = save_builtin_function_or_method
def save_getset_descriptor(self, obj):
return self.save_reduce(getattr, (obj.__objclass__, obj.__name__))
dispatch[types.GetSetDescriptorType] = save_getset_descriptor
def save_global(self, obj, name=None, pack=struct.pack):
"""
Save a "global".
The name of this method is somewhat misleading: all types get
dispatched here.
"""
if obj is type(None):
return self.save_reduce(type, (None,), obj=obj)
elif obj is type(Ellipsis):
return self.save_reduce(type, (Ellipsis,), obj=obj)
elif obj is type(NotImplemented):
return self.save_reduce(type, (NotImplemented,), obj=obj)
elif obj in _BUILTIN_TYPE_NAMES:
return self.save_reduce(
_builtin_type, (_BUILTIN_TYPE_NAMES[obj],), obj=obj)
elif name is not None:
Pickler.save_global(self, obj, name=name)
elif not _is_global(obj, name=name):
self.save_dynamic_class(obj)
else:
Pickler.save_global(self, obj, name=name)
dispatch[type] = save_global
if PY2:
dispatch[types.ClassType] = save_global
def save_instancemethod(self, obj):
# Memoization rarely is ever useful due to python bounding
if obj.__self__ is None:
self.save_reduce(getattr, (obj.im_class, obj.__name__))
else:
if PY3: # pragma: no branch
self.save_reduce(types.MethodType, (obj.__func__, obj.__self__), obj=obj)
else:
self.save_reduce(
types.MethodType,
(obj.__func__, obj.__self__, type(obj.__self__)), obj=obj)
dispatch[types.MethodType] = save_instancemethod
def save_inst(self, obj):
"""Inner logic to save instance. Based off pickle.save_inst"""
cls = obj.__class__
# Try the dispatch table (pickle module doesn't do it)
f = self.dispatch.get(cls)
if f:
f(self, obj) # Call unbound method with explicit self
return
memo = self.memo
write = self.write
save = self.save
if hasattr(obj, '__getinitargs__'):
args = obj.__getinitargs__()
len(args) # XXX Assert it's a sequence
pickle._keep_alive(args, memo)
else:
args = ()
write(pickle.MARK)
if self.bin:
save(cls)
for arg in args:
save(arg)
write(pickle.OBJ)
else:
for arg in args:
save(arg)
write(pickle.INST + cls.__module__ + '\n' + cls.__name__ + '\n')
self.memoize(obj)
try:
getstate = obj.__getstate__
except AttributeError:
stuff = obj.__dict__
else:
stuff = getstate()
pickle._keep_alive(stuff, memo)
save(stuff)
write(pickle.BUILD)
if PY2: # pragma: no branch
dispatch[types.InstanceType] = save_inst
def save_property(self, obj):
# properties not correctly saved in python
self.save_reduce(property, (obj.fget, obj.fset, obj.fdel, obj.__doc__), obj=obj)
dispatch[property] = save_property
def save_classmethod(self, obj):
orig_func = obj.__func__
self.save_reduce(type(obj), (orig_func,), obj=obj)
dispatch[classmethod] = save_classmethod
dispatch[staticmethod] = save_classmethod
def save_itemgetter(self, obj):
"""itemgetter serializer (needed for namedtuple support)"""
class Dummy:
def __getitem__(self, item):
return item
items = obj(Dummy())
if not isinstance(items, tuple):
items = (items,)
return self.save_reduce(operator.itemgetter, items)
if type(operator.itemgetter) is type:
dispatch[operator.itemgetter] = save_itemgetter
def save_attrgetter(self, obj):
"""attrgetter serializer"""
class Dummy(object):
def __init__(self, attrs, index=None):
self.attrs = attrs
self.index = index
def __getattribute__(self, item):
attrs = object.__getattribute__(self, "attrs")
index = object.__getattribute__(self, "index")
if index is None:
index = len(attrs)
attrs.append(item)
else:
attrs[index] = ".".join([attrs[index], item])
return type(self)(attrs, index)
attrs = []
obj(Dummy(attrs))
return self.save_reduce(operator.attrgetter, tuple(attrs))
if type(operator.attrgetter) is type:
dispatch[operator.attrgetter] = save_attrgetter
def save_file(self, obj):
"""Save a file"""
try:
import StringIO as pystringIO # we can't use cStringIO as it lacks the name attribute
except ImportError:
import io as pystringIO
if not hasattr(obj, 'name') or not hasattr(obj, 'mode'):
raise pickle.PicklingError("Cannot pickle files that do not map to an actual file")
if obj is sys.stdout:
return self.save_reduce(getattr, (sys, 'stdout'), obj=obj)
if obj is sys.stderr:
return self.save_reduce(getattr, (sys, 'stderr'), obj=obj)
if obj is sys.stdin:
raise pickle.PicklingError("Cannot pickle standard input")
if obj.closed:
raise pickle.PicklingError("Cannot pickle closed files")
if hasattr(obj, 'isatty') and obj.isatty():
raise pickle.PicklingError("Cannot pickle files that map to tty objects")
if 'r' not in obj.mode and '+' not in obj.mode:
raise pickle.PicklingError("Cannot pickle files that are not opened for reading: %s" % obj.mode)
name = obj.name
retval = pystringIO.StringIO()
try:
# Read the whole file
curloc = obj.tell()
obj.seek(0)
contents = obj.read()
obj.seek(curloc)
except IOError:
raise pickle.PicklingError("Cannot pickle file %s as it cannot be read" % name)
retval.write(contents)
retval.seek(curloc)
retval.name = name
self.save(retval)
self.memoize(obj)
def save_ellipsis(self, obj):
self.save_reduce(_gen_ellipsis, ())
def save_not_implemented(self, obj):
self.save_reduce(_gen_not_implemented, ())
try: # Python 2
dispatch[file] = save_file
except NameError: # Python 3 # pragma: no branch
dispatch[io.TextIOWrapper] = save_file
dispatch[type(Ellipsis)] = save_ellipsis
dispatch[type(NotImplemented)] = save_not_implemented
def save_weakset(self, obj):
self.save_reduce(weakref.WeakSet, (list(obj),))
dispatch[weakref.WeakSet] = save_weakset
def save_logger(self, obj):
self.save_reduce(logging.getLogger, (obj.name,), obj=obj)
dispatch[logging.Logger] = save_logger
def save_root_logger(self, obj):
self.save_reduce(logging.getLogger, (), obj=obj)
dispatch[logging.RootLogger] = save_root_logger
if hasattr(types, "MappingProxyType"): # pragma: no branch
def save_mappingproxy(self, obj):
self.save_reduce(types.MappingProxyType, (dict(obj),), obj=obj)
dispatch[types.MappingProxyType] = save_mappingproxy
"""Special functions for Add-on libraries"""
def inject_addons(self):
"""Plug in system. Register additional pickling functions if modules already loaded"""
pass
# Tornado support
def is_tornado_coroutine(func):
"""
Return whether *func* is a Tornado coroutine function.
Running coroutines are not supported.
"""
if 'tornado.gen' not in sys.modules:
return False
gen = sys.modules['tornado.gen']
if not hasattr(gen, "is_coroutine_function"):
# Tornado version is too old
return False
return gen.is_coroutine_function(func)
def _rebuild_tornado_coroutine(func):
from tornado import gen
return gen.coroutine(func)
# Shorthands for legacy support
def dump(obj, file, protocol=None):
"""Serialize obj as bytes streamed into file
protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to
pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed
between processes running the same Python version.
Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure
compatibility with older versions of Python.
"""
CloudPickler(file, protocol=protocol).dump(obj)
def dumps(obj, protocol=None):
"""Serialize obj as a string of bytes allocated in memory
protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to
pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed
between processes running the same Python version.
Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure
compatibility with older versions of Python.
"""
file = StringIO()
try:
cp = CloudPickler(file, protocol=protocol)
cp.dump(obj)
return file.getvalue()
finally:
file.close()
# including pickles unloading functions in this namespace
load = pickle.load
loads = pickle.loads
# hack for __import__ not working as desired
def subimport(name):
__import__(name)
return sys.modules[name]
def dynamic_subimport(name, vars):
mod = types.ModuleType(name)
mod.__dict__.update(vars)
mod.__dict__['__builtins__'] = builtins.__dict__
return mod
def _gen_ellipsis():
return Ellipsis
def _gen_not_implemented():
return NotImplemented
def _get_cell_contents(cell):
try:
return cell.cell_contents
except ValueError:
# sentinel used by ``_fill_function`` which will leave the cell empty
return _empty_cell_value
def instance(cls):
"""Create a new instance of a class.
Parameters
----------
cls : type
The class to create an instance of.
Returns
-------
instance : cls
A new instance of ``cls``.
"""
return cls()
@instance
class _empty_cell_value(object):
"""sentinel for empty closures
"""
@classmethod
def __reduce__(cls):
return cls.__name__
def _fill_function(*args):
"""Fills in the rest of function data into the skeleton function object
The skeleton itself is create by _make_skel_func().
"""
if len(args) == 2:
func = args[0]
state = args[1]
elif len(args) == 5:
# Backwards compat for cloudpickle v0.4.0, after which the `module`
# argument was introduced
func = args[0]
keys = ['globals', 'defaults', 'dict', 'closure_values']
state = dict(zip(keys, args[1:]))
elif len(args) == 6:
# Backwards compat for cloudpickle v0.4.1, after which the function
# state was passed as a dict to the _fill_function it-self.
func = args[0]
keys = ['globals', 'defaults', 'dict', 'module', 'closure_values']
state = dict(zip(keys, args[1:]))
else:
raise ValueError('Unexpected _fill_value arguments: %r' % (args,))
# - At pickling time, any dynamic global variable used by func is
# serialized by value (in state['globals']).
# - At unpickling time, func's __globals__ attribute is initialized by
# first retrieving an empty isolated namespace that will be shared
# with other functions pickled from the same original module
# by the same CloudPickler instance and then updated with the
# content of state['globals'] to populate the shared isolated
# namespace with all the global variables that are specifically
# referenced for this function.
func.__globals__.update(state['globals'])
func.__defaults__ = state['defaults']
func.__dict__ = state['dict']
if 'annotations' in state:
func.__annotations__ = state['annotations']
if 'doc' in state:
func.__doc__ = state['doc']
if 'name' in state:
func.__name__ = state['name']
if 'module' in state:
func.__module__ = state['module']
if 'qualname' in state:
func.__qualname__ = state['qualname']
if 'kwdefaults' in state:
func.__kwdefaults__ = state['kwdefaults']
# _cloudpickle_subimports is a set of submodules that must be loaded for
# the pickled function to work correctly at unpickling time. Now that these
# submodules are depickled (hence imported), they can be removed from the
# object's state (the object state only served as a reference holder to
# these submodules)
if '_cloudpickle_submodules' in state:
state.pop('_cloudpickle_submodules')
cells = func.__closure__
if cells is not None:
for cell, value in zip(cells, state['closure_values']):
if value is not _empty_cell_value:
cell_set(cell, value)
return func
def _make_empty_cell():
if False:
# trick the compiler into creating an empty cell in our lambda
cell = None
raise AssertionError('this route should not be executed')
return (lambda: cell).__closure__[0]
def _make_skel_func(code, cell_count, base_globals=None):
""" Creates a skeleton function object that contains just the provided
code and the correct number of cells in func_closure. All other
func attributes (e.g. func_globals) are empty.
"""
# This is backward-compatibility code: for cloudpickle versions between
# 0.5.4 and 0.7, base_globals could be a string or None. base_globals
# should now always be a dictionary.
if base_globals is None or isinstance(base_globals, str):
base_globals = {}
base_globals['__builtins__'] = __builtins__
closure = (
tuple(_make_empty_cell() for _ in range(cell_count))
if cell_count >= 0 else
None
)
return types.FunctionType(code, base_globals, None, None, closure)
def _make_skeleton_class(type_constructor, name, bases, type_kwargs,
class_tracker_id, extra):
"""Build dynamic class with an empty __dict__ to be filled once memoized
If class_tracker_id is not None, try to lookup an existing class definition
matching that id. If none is found, track a newly reconstructed class
definition under that id so that other instances stemming from the same
class id will also reuse this class definition.
The "extra" variable is meant to be a dict (or None) that can be used for
forward compatibility shall the need arise.
"""
skeleton_class = type_constructor(name, bases, type_kwargs)
return _lookup_class_or_track(class_tracker_id, skeleton_class)
def _rehydrate_skeleton_class(skeleton_class, class_dict):
"""Put attributes from `class_dict` back on `skeleton_class`.
See CloudPickler.save_dynamic_class for more info.
"""
registry = None
for attrname, attr in class_dict.items():
if attrname == "_abc_impl":
registry = attr
else:
setattr(skeleton_class, attrname, attr)
if registry is not None:
for subclass in registry:
skeleton_class.register(subclass)
return skeleton_class
def _make_skeleton_enum(bases, name, qualname, members, module,
class_tracker_id, extra):
"""Build dynamic enum with an empty __dict__ to be filled once memoized
The creation of the enum class is inspired by the code of
EnumMeta._create_.
If class_tracker_id is not None, try to lookup an existing enum definition
matching that id. If none is found, track a newly reconstructed enum
definition under that id so that other instances stemming from the same
class id will also reuse this enum definition.
The "extra" variable is meant to be a dict (or None) that can be used for
forward compatibility shall the need arise.
"""
# enums always inherit from their base Enum class at the last position in
# the list of base classes:
enum_base = bases[-1]
metacls = enum_base.__class__
classdict = metacls.__prepare__(name, bases)
for member_name, member_value in members.items():
classdict[member_name] = member_value
enum_class = metacls.__new__(metacls, name, bases, classdict)
enum_class.__module__ = module
# Python 2.7 compat
if qualname is not None:
enum_class.__qualname__ = qualname
return _lookup_class_or_track(class_tracker_id, enum_class)
def _is_dynamic(module):
"""
Return True if the module is special module that cannot be imported by its
name.
"""
# Quick check: module that have __file__ attribute are not dynamic modules.
if hasattr(module, '__file__'):
return False
if hasattr(module, '__spec__'):
if module.__spec__ is not None:
return False
# In PyPy, Some built-in modules such as _codecs can have their
# __spec__ attribute set to None despite being imported. For such
# modules, the ``_find_spec`` utility of the standard library is used.
parent_name = module.__name__.rpartition('.')[0]
if parent_name: # pragma: no cover
# This code handles the case where an imported package (and not
# module) remains with __spec__ set to None. It is however untested
# as no package in the PyPy stdlib has __spec__ set to None after
# it is imported.
try:
parent = sys.modules[parent_name]
except KeyError:
msg = "parent {!r} not in sys.modules"
raise ImportError(msg.format(parent_name))
else:
pkgpath = parent.__path__
else:
pkgpath = None
return _find_spec(module.__name__, pkgpath, module) is None
else:
# Backward compat for Python 2
import imp
try:
path = None
for part in module.__name__.split('.'):
if path is not None:
path = [path]
f, path, description = imp.find_module(part, path)
if f is not None:
f.close()
except ImportError:
return True
return False