pkcs1.py 14 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
# -*- coding: utf-8 -*-
#
#  Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      https://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Functions for PKCS#1 version 1.5 encryption and signing

This module implements certain functionality from PKCS#1 version 1.5. For a
very clear example, read http://www.di-mgt.com.au/rsa_alg.html#pkcs1schemes

At least 8 bytes of random padding is used when encrypting a message. This makes
these methods much more secure than the ones in the ``rsa`` module.

WARNING: this module leaks information when decryption fails. The exceptions
that are raised contain the Python traceback information, which can be used to
deduce where in the process the failure occurred. DO NOT PASS SUCH INFORMATION
to your users.
"""

import hashlib
import os

from rsa._compat import range
from rsa import common, transform, core

# ASN.1 codes that describe the hash algorithm used.
HASH_ASN1 = {
    'MD5': b'\x30\x20\x30\x0c\x06\x08\x2a\x86\x48\x86\xf7\x0d\x02\x05\x05\x00\x04\x10',
    'SHA-1': b'\x30\x21\x30\x09\x06\x05\x2b\x0e\x03\x02\x1a\x05\x00\x04\x14',
    'SHA-224': b'\x30\x2d\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x04\x05\x00\x04\x1c',
    'SHA-256': b'\x30\x31\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x01\x05\x00\x04\x20',
    'SHA-384': b'\x30\x41\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x02\x05\x00\x04\x30',
    'SHA-512': b'\x30\x51\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x03\x05\x00\x04\x40',
}

HASH_METHODS = {
    'MD5': hashlib.md5,
    'SHA-1': hashlib.sha1,
    'SHA-224': hashlib.sha224,
    'SHA-256': hashlib.sha256,
    'SHA-384': hashlib.sha384,
    'SHA-512': hashlib.sha512,
}


class CryptoError(Exception):
    """Base class for all exceptions in this module."""


class DecryptionError(CryptoError):
    """Raised when decryption fails."""


class VerificationError(CryptoError):
    """Raised when verification fails."""


def _pad_for_encryption(message, target_length):
    r"""Pads the message for encryption, returning the padded message.

    :return: 00 02 RANDOM_DATA 00 MESSAGE

    >>> block = _pad_for_encryption(b'hello', 16)
    >>> len(block)
    16
    >>> block[0:2]
    b'\x00\x02'
    >>> block[-6:]
    b'\x00hello'

    """

    max_msglength = target_length - 11
    msglength = len(message)

    if msglength > max_msglength:
        raise OverflowError('%i bytes needed for message, but there is only'
                            ' space for %i' % (msglength, max_msglength))

    # Get random padding
    padding = b''
    padding_length = target_length - msglength - 3

    # We remove 0-bytes, so we'll end up with less padding than we've asked for,
    # so keep adding data until we're at the correct length.
    while len(padding) < padding_length:
        needed_bytes = padding_length - len(padding)

        # Always read at least 8 bytes more than we need, and trim off the rest
        # after removing the 0-bytes. This increases the chance of getting
        # enough bytes, especially when needed_bytes is small
        new_padding = os.urandom(needed_bytes + 5)
        new_padding = new_padding.replace(b'\x00', b'')
        padding = padding + new_padding[:needed_bytes]

    assert len(padding) == padding_length

    return b''.join([b'\x00\x02',
                     padding,
                     b'\x00',
                     message])


def _pad_for_signing(message, target_length):
    r"""Pads the message for signing, returning the padded message.

    The padding is always a repetition of FF bytes.

    :return: 00 01 PADDING 00 MESSAGE

    >>> block = _pad_for_signing(b'hello', 16)
    >>> len(block)
    16
    >>> block[0:2]
    b'\x00\x01'
    >>> block[-6:]
    b'\x00hello'
    >>> block[2:-6]
    b'\xff\xff\xff\xff\xff\xff\xff\xff'

    """

    max_msglength = target_length - 11
    msglength = len(message)

    if msglength > max_msglength:
        raise OverflowError('%i bytes needed for message, but there is only'
                            ' space for %i' % (msglength, max_msglength))

    padding_length = target_length - msglength - 3

    return b''.join([b'\x00\x01',
                     padding_length * b'\xff',
                     b'\x00',
                     message])


def encrypt(message, pub_key):
    """Encrypts the given message using PKCS#1 v1.5

    :param message: the message to encrypt. Must be a byte string no longer than
        ``k-11`` bytes, where ``k`` is the number of bytes needed to encode
        the ``n`` component of the public key.
    :param pub_key: the :py:class:`rsa.PublicKey` to encrypt with.
    :raise OverflowError: when the message is too large to fit in the padded
        block.

    >>> from rsa import key, common
    >>> (pub_key, priv_key) = key.newkeys(256)
    >>> message = b'hello'
    >>> crypto = encrypt(message, pub_key)

    The crypto text should be just as long as the public key 'n' component:

    >>> len(crypto) == common.byte_size(pub_key.n)
    True

    """

    keylength = common.byte_size(pub_key.n)
    padded = _pad_for_encryption(message, keylength)

    payload = transform.bytes2int(padded)
    encrypted = core.encrypt_int(payload, pub_key.e, pub_key.n)
    block = transform.int2bytes(encrypted, keylength)

    return block


def decrypt(crypto, priv_key):
    r"""Decrypts the given message using PKCS#1 v1.5

    The decryption is considered 'failed' when the resulting cleartext doesn't
    start with the bytes 00 02, or when the 00 byte between the padding and
    the message cannot be found.

    :param crypto: the crypto text as returned by :py:func:`rsa.encrypt`
    :param priv_key: the :py:class:`rsa.PrivateKey` to decrypt with.
    :raise DecryptionError: when the decryption fails. No details are given as
        to why the code thinks the decryption fails, as this would leak
        information about the private key.


    >>> import rsa
    >>> (pub_key, priv_key) = rsa.newkeys(256)

    It works with strings:

    >>> crypto = encrypt(b'hello', pub_key)
    >>> decrypt(crypto, priv_key)
    b'hello'

    And with binary data:

    >>> crypto = encrypt(b'\x00\x00\x00\x00\x01', pub_key)
    >>> decrypt(crypto, priv_key)
    b'\x00\x00\x00\x00\x01'

    Altering the encrypted information will *likely* cause a
    :py:class:`rsa.pkcs1.DecryptionError`. If you want to be *sure*, use
    :py:func:`rsa.sign`.


    .. warning::

        Never display the stack trace of a
        :py:class:`rsa.pkcs1.DecryptionError` exception. It shows where in the
        code the exception occurred, and thus leaks information about the key.
        It's only a tiny bit of information, but every bit makes cracking the
        keys easier.

    >>> crypto = encrypt(b'hello', pub_key)
    >>> crypto = crypto[0:5] + b'X' + crypto[6:] # change a byte
    >>> decrypt(crypto, priv_key)
    Traceback (most recent call last):
    ...
    rsa.pkcs1.DecryptionError: Decryption failed

    """

    blocksize = common.byte_size(priv_key.n)
    encrypted = transform.bytes2int(crypto)
    decrypted = priv_key.blinded_decrypt(encrypted)
    cleartext = transform.int2bytes(decrypted, blocksize)

    # If we can't find the cleartext marker, decryption failed.
    if cleartext[0:2] != b'\x00\x02':
        raise DecryptionError('Decryption failed')

    # Find the 00 separator between the padding and the message
    try:
        sep_idx = cleartext.index(b'\x00', 2)
    except ValueError:
        raise DecryptionError('Decryption failed')

    return cleartext[sep_idx + 1:]


def sign_hash(hash_value, priv_key, hash_method):
    """Signs a precomputed hash with the private key.

    Hashes the message, then signs the hash with the given key. This is known
    as a "detached signature", because the message itself isn't altered.

    :param hash_value: A precomputed hash to sign (ignores message). Should be set to
        None if needing to hash and sign message.
    :param priv_key: the :py:class:`rsa.PrivateKey` to sign with
    :param hash_method: the hash method used on the message. Use 'MD5', 'SHA-1',
        'SHA-224', SHA-256', 'SHA-384' or 'SHA-512'.
    :return: a message signature block.
    :raise OverflowError: if the private key is too small to contain the
        requested hash.

    """

    # Get the ASN1 code for this hash method
    if hash_method not in HASH_ASN1:
        raise ValueError('Invalid hash method: %s' % hash_method)
    asn1code = HASH_ASN1[hash_method]

    # Encrypt the hash with the private key
    cleartext = asn1code + hash_value
    keylength = common.byte_size(priv_key.n)
    padded = _pad_for_signing(cleartext, keylength)

    payload = transform.bytes2int(padded)
    encrypted = priv_key.blinded_encrypt(payload)
    block = transform.int2bytes(encrypted, keylength)

    return block


def sign(message, priv_key, hash_method):
    """Signs the message with the private key.

    Hashes the message, then signs the hash with the given key. This is known
    as a "detached signature", because the message itself isn't altered.

    :param message: the message to sign. Can be an 8-bit string or a file-like
        object. If ``message`` has a ``read()`` method, it is assumed to be a
        file-like object.
    :param priv_key: the :py:class:`rsa.PrivateKey` to sign with
    :param hash_method: the hash method used on the message. Use 'MD5', 'SHA-1',
        'SHA-224', SHA-256', 'SHA-384' or 'SHA-512'.
    :return: a message signature block.
    :raise OverflowError: if the private key is too small to contain the
        requested hash.

    """

    msg_hash = compute_hash(message, hash_method)
    return sign_hash(msg_hash, priv_key, hash_method)


def verify(message, signature, pub_key):
    """Verifies that the signature matches the message.

    The hash method is detected automatically from the signature.

    :param message: the signed message. Can be an 8-bit string or a file-like
        object. If ``message`` has a ``read()`` method, it is assumed to be a
        file-like object.
    :param signature: the signature block, as created with :py:func:`rsa.sign`.
    :param pub_key: the :py:class:`rsa.PublicKey` of the person signing the message.
    :raise VerificationError: when the signature doesn't match the message.
    :returns: the name of the used hash.

    """

    keylength = common.byte_size(pub_key.n)
    encrypted = transform.bytes2int(signature)
    decrypted = core.decrypt_int(encrypted, pub_key.e, pub_key.n)
    clearsig = transform.int2bytes(decrypted, keylength)

    # Get the hash method
    method_name = _find_method_hash(clearsig)
    message_hash = compute_hash(message, method_name)

    # Reconstruct the expected padded hash
    cleartext = HASH_ASN1[method_name] + message_hash
    expected = _pad_for_signing(cleartext, keylength)

    # Compare with the signed one
    if expected != clearsig:
        raise VerificationError('Verification failed')

    return method_name


def find_signature_hash(signature, pub_key):
    """Returns the hash name detected from the signature.

    If you also want to verify the message, use :py:func:`rsa.verify()` instead.
    It also returns the name of the used hash.

    :param signature: the signature block, as created with :py:func:`rsa.sign`.
    :param pub_key: the :py:class:`rsa.PublicKey` of the person signing the message.
    :returns: the name of the used hash.
    """

    keylength = common.byte_size(pub_key.n)
    encrypted = transform.bytes2int(signature)
    decrypted = core.decrypt_int(encrypted, pub_key.e, pub_key.n)
    clearsig = transform.int2bytes(decrypted, keylength)

    return _find_method_hash(clearsig)


def yield_fixedblocks(infile, blocksize):
    """Generator, yields each block of ``blocksize`` bytes in the input file.

    :param infile: file to read and separate in blocks.
    :param blocksize: block size in bytes.
    :returns: a generator that yields the contents of each block
    """

    while True:
        block = infile.read(blocksize)

        read_bytes = len(block)
        if read_bytes == 0:
            break

        yield block

        if read_bytes < blocksize:
            break


def compute_hash(message, method_name):
    """Returns the message digest.

    :param message: the signed message. Can be an 8-bit string or a file-like
        object. If ``message`` has a ``read()`` method, it is assumed to be a
        file-like object.
    :param method_name: the hash method, must be a key of
        :py:const:`HASH_METHODS`.

    """

    if method_name not in HASH_METHODS:
        raise ValueError('Invalid hash method: %s' % method_name)

    method = HASH_METHODS[method_name]
    hasher = method()

    if hasattr(message, 'read') and hasattr(message.read, '__call__'):
        # read as 1K blocks
        for block in yield_fixedblocks(message, 1024):
            hasher.update(block)
    else:
        # hash the message object itself.
        hasher.update(message)

    return hasher.digest()


def _find_method_hash(clearsig):
    """Finds the hash method.

    :param clearsig: full padded ASN1 and hash.
    :return: the used hash method.
    :raise VerificationFailed: when the hash method cannot be found
    """

    for (hashname, asn1code) in HASH_ASN1.items():
        if asn1code in clearsig:
            return hashname

    raise VerificationError('Verification failed')


__all__ = ['encrypt', 'decrypt', 'sign', 'verify',
           'DecryptionError', 'VerificationError', 'CryptoError']

if __name__ == '__main__':
    print('Running doctests 1000x or until failure')
    import doctest

    for count in range(1000):
        (failures, tests) = doctest.testmod()
        if failures:
            break

        if count % 100 == 0 and count:
            print('%i times' % count)

    print('Doctests done')