data.py
16 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import logging
import numpy as np
import os
import math
import random
import torch
import torchvision
from PIL import Image
from torch.utils.data import SubsetRandomSampler, Sampler, Subset, ConcatDataset
import torch.distributed as dist
from torchvision.transforms import transforms
from sklearn.model_selection import StratifiedShuffleSplit
from theconf import Config as C
from FastAutoAugment.archive import arsaug_policy, autoaug_policy, autoaug_paper_cifar10, fa_reduced_cifar10, fa_reduced_svhn, fa_resnet50_rimagenet
from FastAutoAugment.augmentations import *
from FastAutoAugment.common import get_logger
from FastAutoAugment.imagenet import ImageNet
from FastAutoAugment.networks.efficientnet_pytorch.model import EfficientNet
logger = get_logger('Fast AutoAugment')
logger.setLevel(logging.INFO)
_IMAGENET_PCA = {
'eigval': [0.2175, 0.0188, 0.0045],
'eigvec': [
[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203],
]
}
_CIFAR_MEAN, _CIFAR_STD = (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)
def get_dataloaders(dataset, batch, dataroot, split=0.15, split_idx=0, multinode=False, target_lb=-1):
if 'cifar' in dataset or 'svhn' in dataset:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(_CIFAR_MEAN, _CIFAR_STD),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(_CIFAR_MEAN, _CIFAR_STD),
])
elif 'imagenet' in dataset:
input_size = 224
sized_size = 256
if 'efficientnet' in C.get()['model']['type']:
input_size = EfficientNet.get_image_size(C.get()['model']['type'])
sized_size = input_size + 32 # TODO
# sized_size = int(round(input_size / 224. * 256))
# sized_size = input_size
logger.info('size changed to %d/%d.' % (input_size, sized_size))
transform_train = transforms.Compose([
EfficientNetRandomCrop(input_size),
transforms.Resize((input_size, input_size), interpolation=Image.BICUBIC),
# transforms.RandomResizedCrop(input_size, scale=(0.1, 1.0), interpolation=Image.BICUBIC),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(
brightness=0.4,
contrast=0.4,
saturation=0.4,
),
transforms.ToTensor(),
Lighting(0.1, _IMAGENET_PCA['eigval'], _IMAGENET_PCA['eigvec']),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transform_test = transforms.Compose([
EfficientNetCenterCrop(input_size),
transforms.Resize((input_size, input_size), interpolation=Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
else:
raise ValueError('dataset=%s' % dataset)
total_aug = augs = None
if isinstance(C.get()['aug'], list):
logger.debug('augmentation provided.')
transform_train.transforms.insert(0, Augmentation(C.get()['aug']))
else:
logger.debug('augmentation: %s' % C.get()['aug'])
if C.get()['aug'] == 'fa_reduced_cifar10':
transform_train.transforms.insert(0, Augmentation(fa_reduced_cifar10()))
elif C.get()['aug'] == 'fa_reduced_imagenet':
transform_train.transforms.insert(0, Augmentation(fa_resnet50_rimagenet()))
elif C.get()['aug'] == 'fa_reduced_svhn':
transform_train.transforms.insert(0, Augmentation(fa_reduced_svhn()))
elif C.get()['aug'] == 'arsaug':
transform_train.transforms.insert(0, Augmentation(arsaug_policy()))
elif C.get()['aug'] == 'autoaug_cifar10':
transform_train.transforms.insert(0, Augmentation(autoaug_paper_cifar10()))
elif C.get()['aug'] == 'autoaug_extend':
transform_train.transforms.insert(0, Augmentation(autoaug_policy()))
elif C.get()['aug'] in ['default']:
pass
else:
raise ValueError('not found augmentations. %s' % C.get()['aug'])
if C.get()['cutout'] > 0:
transform_train.transforms.append(CutoutDefault(C.get()['cutout']))
if dataset == 'cifar10':
total_trainset = torchvision.datasets.CIFAR10(root=dataroot, train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR10(root=dataroot, train=False, download=True, transform=transform_test)
elif dataset == 'reduced_cifar10':
total_trainset = torchvision.datasets.CIFAR10(root=dataroot, train=True, download=True, transform=transform_train)
sss = StratifiedShuffleSplit(n_splits=1, test_size=46000, random_state=0) # 4000 trainset
sss = sss.split(list(range(len(total_trainset))), total_trainset.targets)
train_idx, valid_idx = next(sss)
targets = [total_trainset.targets[idx] for idx in train_idx]
total_trainset = Subset(total_trainset, train_idx)
total_trainset.targets = targets
testset = torchvision.datasets.CIFAR10(root=dataroot, train=False, download=True, transform=transform_test)
elif dataset == 'cifar100':
total_trainset = torchvision.datasets.CIFAR100(root=dataroot, train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR100(root=dataroot, train=False, download=True, transform=transform_test)
elif dataset == 'svhn':
trainset = torchvision.datasets.SVHN(root=dataroot, split='train', download=True, transform=transform_train)
extraset = torchvision.datasets.SVHN(root=dataroot, split='extra', download=True, transform=transform_train)
total_trainset = ConcatDataset([trainset, extraset])
testset = torchvision.datasets.SVHN(root=dataroot, split='test', download=True, transform=transform_test)
elif dataset == 'reduced_svhn':
total_trainset = torchvision.datasets.SVHN(root=dataroot, split='train', download=True, transform=transform_train)
sss = StratifiedShuffleSplit(n_splits=1, test_size=73257-1000, random_state=0) # 1000 trainset
sss = sss.split(list(range(len(total_trainset))), total_trainset.targets)
train_idx, valid_idx = next(sss)
targets = [total_trainset.targets[idx] for idx in train_idx]
total_trainset = Subset(total_trainset, train_idx)
total_trainset.targets = targets
testset = torchvision.datasets.SVHN(root=dataroot, split='test', download=True, transform=transform_test)
elif dataset == 'imagenet':
total_trainset = ImageNet(root=os.path.join(dataroot, 'imagenet-pytorch'), transform=transform_train)
testset = ImageNet(root=os.path.join(dataroot, 'imagenet-pytorch'), split='val', transform=transform_test)
# compatibility
total_trainset.targets = [lb for _, lb in total_trainset.samples]
elif dataset == 'reduced_imagenet':
# randomly chosen indices
# idx120 = sorted(random.sample(list(range(1000)), k=120))
idx120 = [16, 23, 52, 57, 76, 93, 95, 96, 99, 121, 122, 128, 148, 172, 181, 189, 202, 210, 232, 238, 257, 258, 259, 277, 283, 289, 295, 304, 307, 318, 322, 331, 337, 338, 345, 350, 361, 375, 376, 381, 388, 399, 401, 408, 424, 431, 432, 440, 447, 462, 464, 472, 483, 497, 506, 512, 530, 541, 553, 554, 557, 564, 570, 584, 612, 614, 619, 626, 631, 632, 650, 657, 658, 660, 674, 675, 680, 682, 691, 695, 699, 711, 734, 736, 741, 754, 757, 764, 769, 770, 780, 781, 787, 797, 799, 811, 822, 829, 830, 835, 837, 842, 843, 845, 873, 883, 897, 900, 902, 905, 913, 920, 925, 937, 938, 940, 941, 944, 949, 959]
total_trainset = ImageNet(root=os.path.join(dataroot, 'imagenet-pytorch'), transform=transform_train)
testset = ImageNet(root=os.path.join(dataroot, 'imagenet-pytorch'), split='val', transform=transform_test)
# compatibility
total_trainset.targets = [lb for _, lb in total_trainset.samples]
sss = StratifiedShuffleSplit(n_splits=1, test_size=len(total_trainset) - 50000, random_state=0) # 4000 trainset
sss = sss.split(list(range(len(total_trainset))), total_trainset.targets)
train_idx, valid_idx = next(sss)
# filter out
train_idx = list(filter(lambda x: total_trainset.labels[x] in idx120, train_idx))
valid_idx = list(filter(lambda x: total_trainset.labels[x] in idx120, valid_idx))
test_idx = list(filter(lambda x: testset.samples[x][1] in idx120, range(len(testset))))
targets = [idx120.index(total_trainset.targets[idx]) for idx in train_idx]
for idx in range(len(total_trainset.samples)):
if total_trainset.samples[idx][1] not in idx120:
continue
total_trainset.samples[idx] = (total_trainset.samples[idx][0], idx120.index(total_trainset.samples[idx][1]))
total_trainset = Subset(total_trainset, train_idx)
total_trainset.targets = targets
for idx in range(len(testset.samples)):
if testset.samples[idx][1] not in idx120:
continue
testset.samples[idx] = (testset.samples[idx][0], idx120.index(testset.samples[idx][1]))
testset = Subset(testset, test_idx)
print('reduced_imagenet train=', len(total_trainset))
else:
raise ValueError('invalid dataset name=%s' % dataset)
if total_aug is not None and augs is not None:
total_trainset.set_preaug(augs, total_aug)
print('set_preaug-')
train_sampler = None
if split > 0.0:
sss = StratifiedShuffleSplit(n_splits=5, test_size=split, random_state=0)
sss = sss.split(list(range(len(total_trainset))), total_trainset.targets)
for _ in range(split_idx + 1):
train_idx, valid_idx = next(sss)
if target_lb >= 0:
train_idx = [i for i in train_idx if total_trainset.targets[i] == target_lb]
valid_idx = [i for i in valid_idx if total_trainset.targets[i] == target_lb]
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetSampler(valid_idx)
if multinode:
train_sampler = torch.utils.data.distributed.DistributedSampler(Subset(total_trainset, train_idx), num_replicas=dist.get_world_size(), rank=dist.get_rank())
else:
valid_sampler = SubsetSampler([])
if multinode:
train_sampler = torch.utils.data.distributed.DistributedSampler(total_trainset, num_replicas=dist.get_world_size(), rank=dist.get_rank())
logger.info(f'----- dataset with DistributedSampler {dist.get_rank()}/{dist.get_world_size()}')
trainloader = torch.utils.data.DataLoader(
total_trainset, batch_size=batch, shuffle=True if train_sampler is None else False, num_workers=8, pin_memory=True,
sampler=train_sampler, drop_last=True)
validloader = torch.utils.data.DataLoader(
total_trainset, batch_size=batch, shuffle=False, num_workers=4, pin_memory=True,
sampler=valid_sampler, drop_last=False)
testloader = torch.utils.data.DataLoader(
testset, batch_size=batch, shuffle=False, num_workers=8, pin_memory=True,
drop_last=False
)
return train_sampler, trainloader, validloader, testloader
class CutoutDefault(object):
"""
Reference : https://github.com/quark0/darts/blob/master/cnn/utils.py
"""
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
class Augmentation(object):
def __init__(self, policies):
self.policies = policies
def __call__(self, img):
for _ in range(1):
policy = random.choice(self.policies)
for name, pr, level in policy:
if random.random() > pr:
continue
img = apply_augment(img, name, level)
return img
class EfficientNetRandomCrop:
def __init__(self, imgsize, min_covered=0.1, aspect_ratio_range=(3./4, 4./3), area_range=(0.08, 1.0), max_attempts=10):
assert 0.0 < min_covered
assert 0 < aspect_ratio_range[0] <= aspect_ratio_range[1]
assert 0 < area_range[0] <= area_range[1]
assert 1 <= max_attempts
self.min_covered = min_covered
self.aspect_ratio_range = aspect_ratio_range
self.area_range = area_range
self.max_attempts = max_attempts
self._fallback = EfficientNetCenterCrop(imgsize)
def __call__(self, img):
# https://github.com/tensorflow/tensorflow/blob/9274bcebb31322370139467039034f8ff852b004/tensorflow/core/kernels/sample_distorted_bounding_box_op.cc#L111
original_width, original_height = img.size
min_area = self.area_range[0] * (original_width * original_height)
max_area = self.area_range[1] * (original_width * original_height)
for _ in range(self.max_attempts):
aspect_ratio = random.uniform(*self.aspect_ratio_range)
height = int(round(math.sqrt(min_area / aspect_ratio)))
max_height = int(round(math.sqrt(max_area / aspect_ratio)))
if max_height * aspect_ratio > original_width:
max_height = (original_width + 0.5 - 1e-7) / aspect_ratio
max_height = int(max_height)
if max_height * aspect_ratio > original_width:
max_height -= 1
if max_height > original_height:
max_height = original_height
if height >= max_height:
height = max_height
height = int(round(random.uniform(height, max_height)))
width = int(round(height * aspect_ratio))
area = width * height
if area < min_area or area > max_area:
continue
if width > original_width or height > original_height:
continue
if area < self.min_covered * (original_width * original_height):
continue
if width == original_width and height == original_height:
return self._fallback(img) # https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/preprocessing.py#L102
x = random.randint(0, original_width - width)
y = random.randint(0, original_height - height)
return img.crop((x, y, x + width, y + height))
return self._fallback(img)
class EfficientNetCenterCrop:
def __init__(self, imgsize):
self.imgsize = imgsize
def __call__(self, img):
"""Crop the given PIL Image and resize it to desired size.
Args:
img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
output_size (sequence or int): (height, width) of the crop box. If int,
it is used for both directions
Returns:
PIL Image: Cropped image.
"""
image_width, image_height = img.size
image_short = min(image_width, image_height)
crop_size = float(self.imgsize) / (self.imgsize + 32) * image_short
crop_height, crop_width = crop_size, crop_size
crop_top = int(round((image_height - crop_height) / 2.))
crop_left = int(round((image_width - crop_width) / 2.))
return img.crop((crop_left, crop_top, crop_left + crop_width, crop_top + crop_height))
class SubsetSampler(Sampler):
r"""Samples elements from a given list of indices, without replacement.
Arguments:
indices (sequence): a sequence of indices
"""
def __init__(self, indices):
self.indices = indices
def __iter__(self):
return (i for i in self.indices)
def __len__(self):
return len(self.indices)