Showing
7 changed files
with
291 additions
and
0 deletions
| ... | @@ -9,6 +9,8 @@ from torch.utils.tensorboard import SummaryWriter | ... | @@ -9,6 +9,8 @@ from torch.utils.tensorboard import SummaryWriter |
| 9 | 9 | ||
| 10 | from utils import * | 10 | from utils import * |
| 11 | 11 | ||
| 12 | +# command | ||
| 13 | +# python "eval.py" --model_path='logs/' | ||
| 12 | 14 | ||
| 13 | def eval(model_path): | 15 | def eval(model_path): |
| 14 | print('\n[+] Parse arguments') | 16 | print('\n[+] Parse arguments') | ... | ... |
No preview for this file type
This file is too large to display.
No preview for this file type
| 1 | +{"use_cuda": true, "network": "resnet50", "dataset": "BraTS", "optimizer": "adam", "fast_auto_augment": true, "learning_rate": 0.0001, "seed": null, "num_workers": 4, "print_step": 100, "val_step": 100, "scheduler": "exp", "batch_size": 32, "start_step": 0, "max_step": 500, "augment_path": null} | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
| 1 | +DEFALUT_CANDIDATES = [ | ||
| 2 | + ShearXY, | ||
| 3 | + TranslateXY, | ||
| 4 | + # Rotate, | ||
| 5 | + # AutoContrast, | ||
| 6 | + # Invert, | ||
| 7 | + Equalize, | ||
| 8 | + Solarize, | ||
| 9 | + Posterize, | ||
| 10 | + # Contrast, | ||
| 11 | + # Color, | ||
| 12 | + Brightness, | ||
| 13 | + Sharpness, | ||
| 14 | + Cutout, | ||
| 15 | +# SamplePairing, | ||
| 16 | +] | ||
| 17 | + | ||
| 18 | +[+] Parse arguments | ||
| 19 | +Args(augment_path=None, batch_size=32, dataset='BraTS', fast_auto_augment=True, learning_rate=0.0001, max_step=500, network='resnet50', num_workers=4, optimizer='adam', print_step=100, scheduler='exp', seed=None, start_step=0, use_cuda=True, val_step=100) | ||
| 20 | + | ||
| 21 | +[+] Create log dir | ||
| 22 | + | ||
| 23 | +[+] Create network | ||
| 24 | + | ||
| 25 | +[+] Load dataset | ||
| 26 | +[+] Child 0 training started (GPU: 0) | ||
| 27 | + | ||
| 28 | +[+] Training step: 0/500 Elapsed time: 0.04min Learning rate: 9.999283e-05 Device name: GeForce GTX 1080 Ti | ||
| 29 | + Acc@1 : 0.000% | ||
| 30 | + Acc@5 : 0.000% | ||
| 31 | + Loss : 7.5784010887146 | ||
| 32 | + | ||
| 33 | +[+] Training step: 100/500 Elapsed time: 0.48min Learning rate: 9.927842001747633e-05 Device name: GeForce GTX 1080 Ti | ||
| 34 | + Acc@1 : 78.125% | ||
| 35 | + Acc@5 : 100.000% | ||
| 36 | + Loss : 0.4084218442440033 | ||
| 37 | + | ||
| 38 | +[+] Training step: 200/500 Elapsed time: 0.96min Learning rate: 9.856911421715387e-05 Device name: GeForce GTX 1080 Ti | ||
| 39 | + Acc@1 : 93.750% | ||
| 40 | + Acc@5 : 100.000% | ||
| 41 | + Loss : 0.2725507915019989 | ||
| 42 | + | ||
| 43 | +[+] Training step: 300/500 Elapsed time: 1.42min Learning rate: 9.786487613163069e-05 Device name: GeForce GTX 1080 Ti | ||
| 44 | + Acc@1 : 90.625% | ||
| 45 | + Acc@5 : 100.000% | ||
| 46 | + Loss : 0.20991499722003937 | ||
| 47 | + | ||
| 48 | +[+] Training step: 400/500 Elapsed time: 1.88min Learning rate: 9.716566955405027e-05 Device name: GeForce GTX 1080 Ti | ||
| 49 | + Acc@1 : 93.750% | ||
| 50 | + Acc@5 : 100.000% | ||
| 51 | + Loss : 0.2204296737909317 | ||
| 52 | +100%|????????????????????????????????| 1/1 [00:01<00:00, 1.58s/trial, best loss: 0.8958249092102051] | ||
| 53 | +100%|?????????????????????????????????| 1/1 [00:01<00:00, 1.39s/trial, best loss: 1.509151816368103] | ||
| 54 | +[+] Child 1 training started (GPU: 0) | ||
| 55 | + | ||
| 56 | +[+] Training step: 0/500 Elapsed time: 0.03min Learning rate: 9.999283e-05 Device name: GeForce GTX 1080 Ti | ||
| 57 | + Acc@1 : 0.000% | ||
| 58 | + Acc@5 : 0.000% | ||
| 59 | + Loss : 7.634987831115723 | ||
| 60 | + | ||
| 61 | +[+] Training step: 100/500 Elapsed time: 0.48min Learning rate: 9.927842001747633e-05 Device name: GeForce GTX 1080 Ti | ||
| 62 | + Acc@1 : 87.500% | ||
| 63 | + Acc@5 : 100.000% | ||
| 64 | + Loss : 0.29290342330932617 | ||
| 65 | + | ||
| 66 | +[+] Training step: 200/500 Elapsed time: 0.96min Learning rate: 9.856911421715387e-05 Device name: GeForce GTX 1080 Ti | ||
| 67 | + Acc@1 : 90.625% | ||
| 68 | + Acc@5 : 100.000% | ||
| 69 | + Loss : 0.28638142347335815 | ||
| 70 | + | ||
| 71 | +[+] Training step: 300/500 Elapsed time: 1.42min Learning rate: 9.786487613163069e-05 Device name: GeForce GTX 1080 Ti | ||
| 72 | + Acc@1 : 96.875% | ||
| 73 | + Acc@5 : 100.000% | ||
| 74 | + Loss : 0.06958930194377899 | ||
| 75 | + | ||
| 76 | +[+] Training step: 400/500 Elapsed time: 1.88min Learning rate: 9.716566955405027e-05 Device name: GeForce GTX 1080 Ti | ||
| 77 | + Acc@1 : 100.000% | ||
| 78 | + Acc@5 : 100.000% | ||
| 79 | + Loss : 0.030036240816116333 | ||
| 80 | +100%|??????????????????????????????????????????????????????????| 1/1 [00:01<00:00, 1.54s/trial, best loss: 2.1128218173980713] | ||
| 81 | +100%|??????????????????????????????????????????????????????????| 1/1 [00:01<00:00, 1.50s/trial, best loss: 1.9411643743515015] | ||
| 82 | +[+] Child 2 training started (GPU: 0) | ||
| 83 | + | ||
| 84 | +[+] Training step: 0/500 Elapsed time: 0.03min Learning rate: 9.999283e-05 Device name: GeForce GTX 1080 Ti | ||
| 85 | + Acc@1 : 0.000% | ||
| 86 | + Acc@5 : 0.000% | ||
| 87 | + Loss : 7.582807540893555 | ||
| 88 | + | ||
| 89 | +[+] Training step: 100/500 Elapsed time: 0.49min Learning rate: 9.927842001747633e-05 Device name: GeForce GTX 1080 Ti | ||
| 90 | + Acc@1 : 75.000% | ||
| 91 | + Acc@5 : 100.000% | ||
| 92 | + Loss : 0.5312898755073547 | ||
| 93 | + | ||
| 94 | +[+] Training step: 200/500 Elapsed time: 0.98min Learning rate: 9.856911421715387e-05 Device name: GeForce GTX 1080 Ti | ||
| 95 | + Acc@1 : 84.375% | ||
| 96 | + Acc@5 : 100.000% | ||
| 97 | + Loss : 0.4784519672393799 | ||
| 98 | + | ||
| 99 | +[+] Training step: 300/500 Elapsed time: 1.45min Learning rate: 9.786487613163069e-05 Device name: GeForce GTX 1080 Ti | ||
| 100 | + Acc@1 : 100.000% | ||
| 101 | + Acc@5 : 100.000% | ||
| 102 | + Loss : 0.03968067467212677 | ||
| 103 | + | ||
| 104 | +[+] Training step: 400/500 Elapsed time: 1.89min Learning rate: 9.716566955405027e-05 Device name: GeForce GTX 1080 Ti | ||
| 105 | + Acc@1 : 100.000% | ||
| 106 | + Acc@5 : 100.000% | ||
| 107 | + Loss : 0.025451302528381348 | ||
| 108 | +100%|??????????????????????????????????????????????????????????| 1/1 [00:01<00:00, 1.53s/trial, best loss: 2.5077414512634277] | ||
| 109 | +100%|???????????????????????????????????????????????????????????| 1/1 [00:01<00:00, 1.59s/trial, best loss: 4.707443714141846] | ||
| 110 | +[+] Child 3 training started (GPU: 0) | ||
| 111 | + | ||
| 112 | +[+] Training step: 0/500 Elapsed time: 0.03min Learning rate: 9.999283e-05 Device name: GeForce GTX 1080 Ti | ||
| 113 | + Acc@1 : 0.000% | ||
| 114 | + Acc@5 : 0.000% | ||
| 115 | + Loss : 7.614710807800293 | ||
| 116 | + | ||
| 117 | +[+] Training step: 100/500 Elapsed time: 0.49min Learning rate: 9.927842001747633e-05 Device name: GeForce GTX 1080 Ti | ||
| 118 | + Acc@1 : 75.000% | ||
| 119 | + Acc@5 : 100.000% | ||
| 120 | + Loss : 0.46335405111312866 | ||
| 121 | + | ||
| 122 | +[+] Training step: 200/500 Elapsed time: 0.96min Learning rate: 9.856911421715387e-05 Device name: GeForce GTX 1080 Ti | ||
| 123 | + Acc@1 : 90.625% | ||
| 124 | + Acc@5 : 100.000% | ||
| 125 | + Loss : 0.16135810315608978 | ||
| 126 | + | ||
| 127 | +[+] Training step: 300/500 Elapsed time: 1.44min Learning rate: 9.786487613163069e-05 Device name: GeForce GTX 1080 Ti | ||
| 128 | + Acc@1 : 84.375% | ||
| 129 | + Acc@5 : 100.000% | ||
| 130 | + Loss : 0.4632360339164734 | ||
| 131 | + | ||
| 132 | +[+] Training step: 400/500 Elapsed time: 1.90min Learning rate: 9.716566955405027e-05 Device name: GeForce GTX 1080 Ti | ||
| 133 | + Acc@1 : 100.000% | ||
| 134 | + Acc@5 : 100.000% | ||
| 135 | + Loss : 0.04105471074581146 | ||
| 136 | +100%|???????????????????????????????????????????????????????????| 1/1 [00:01<00:00, 1.55s/trial, best loss: 2.492347240447998] | ||
| 137 | +100%|??????????????????????????????????????????????????????????| 1/1 [00:01<00:00, 1.56s/trial, best loss: 2.6143996715545654] | ||
| 138 | +RandomChoice( | ||
| 139 | + Compose( | ||
| 140 | + Pad(padding=4, fill=0, padding_mode=constant) | ||
| 141 | + RandomCrop(size=(32, 32), padding=None) | ||
| 142 | + RandomHorizontalFlip(p=0.5) | ||
| 143 | + Brightness(prob=0.47, magnitude=0.06) | ||
| 144 | + Sharpness(prob=0.52, magnitude=0.28) | ||
| 145 | + ToTensor() | ||
| 146 | +) | ||
| 147 | + Compose( | ||
| 148 | + Pad(padding=4, fill=0, padding_mode=constant) | ||
| 149 | + RandomCrop(size=(32, 32), padding=None) | ||
| 150 | + RandomHorizontalFlip(p=0.5) | ||
| 151 | + Solarize(prob=0.70, magnitude=0.03) | ||
| 152 | + Sharpness(prob=0.98, magnitude=0.62) | ||
| 153 | + ToTensor() | ||
| 154 | +) | ||
| 155 | + Compose( | ||
| 156 | + Pad(padding=4, fill=0, padding_mode=constant) | ||
| 157 | + RandomCrop(size=(32, 32), padding=None) | ||
| 158 | + RandomHorizontalFlip(p=0.5) | ||
| 159 | + Posterize(prob=0.08, magnitude=0.88) | ||
| 160 | + Solarize(prob=0.98, magnitude=0.76) | ||
| 161 | + ToTensor() | ||
| 162 | +) | ||
| 163 | + Compose( | ||
| 164 | + Pad(padding=4, fill=0, padding_mode=constant) | ||
| 165 | + RandomCrop(size=(32, 32), padding=None) | ||
| 166 | + RandomHorizontalFlip(p=0.5) | ||
| 167 | + Posterize(prob=0.37, magnitude=0.60) | ||
| 168 | + Cutout(prob=0.75, magnitude=0.83) | ||
| 169 | + ToTensor() | ||
| 170 | +) | ||
| 171 | + Compose( | ||
| 172 | + Pad(padding=4, fill=0, padding_mode=constant) | ||
| 173 | + RandomCrop(size=(32, 32), padding=None) | ||
| 174 | + RandomHorizontalFlip(p=0.5) | ||
| 175 | + ShearXY(prob=0.56, magnitude=0.86) | ||
| 176 | + Cutout(prob=0.37, magnitude=0.00) | ||
| 177 | + ToTensor() | ||
| 178 | +) | ||
| 179 | + Compose( | ||
| 180 | + Pad(padding=4, fill=0, padding_mode=constant) | ||
| 181 | + RandomCrop(size=(32, 32), padding=None) | ||
| 182 | + RandomHorizontalFlip(p=0.5) | ||
| 183 | + Sharpness(prob=0.09, magnitude=0.75) | ||
| 184 | + Equalize(prob=0.70, magnitude=0.90) | ||
| 185 | + ToTensor() | ||
| 186 | +) | ||
| 187 | + Compose( | ||
| 188 | + Pad(padding=4, fill=0, padding_mode=constant) | ||
| 189 | + RandomCrop(size=(32, 32), padding=None) | ||
| 190 | + RandomHorizontalFlip(p=0.5) | ||
| 191 | + TranslateXY(prob=0.67, magnitude=0.95) | ||
| 192 | + Posterize(prob=0.31, magnitude=0.92) | ||
| 193 | + ToTensor() | ||
| 194 | +) | ||
| 195 | + Compose( | ||
| 196 | + Pad(padding=4, fill=0, padding_mode=constant) | ||
| 197 | + RandomCrop(size=(32, 32), padding=None) | ||
| 198 | + RandomHorizontalFlip(p=0.5) | ||
| 199 | + Equalize(prob=0.32, magnitude=0.07) | ||
| 200 | + Posterize(prob=0.83, magnitude=0.82) | ||
| 201 | + ToTensor() | ||
| 202 | +) | ||
| 203 | +) | ||
| 204 | + | ||
| 205 | +[+] Start training | ||
| 206 | + | ||
| 207 | +[+] Use 1 GPUs | ||
| 208 | + | ||
| 209 | +[+] Using GPU: GeForce GTX 1080 Ti | ||
| 210 | +/opt/conda/lib/python3.7/site-packages/torch/nn/functional.py:2457: UserWarning: nn.functional.upsample is deprecated. Use nn.functional.interpolate instead. | ||
| 211 | + warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.") | ||
| 212 | +/opt/conda/lib/python3.7/site-packages/torch/nn/functional.py:2539: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. | ||
| 213 | + "See the documentation of nn.Upsample for details.".format(mode)) | ||
| 214 | + | ||
| 215 | +[+] Training step: 0/500 Training epoch: 0/64 Elapsed time: 0.08min Learning rate: 9.999283e-05 | ||
| 216 | + Acc@1 : 0.000% | ||
| 217 | + Acc@5 : 0.000% | ||
| 218 | + Loss : 7.677338123321533 | ||
| 219 | + FW Time : 200.173ms | ||
| 220 | + BW Time : 22.200ms | ||
| 221 | + | ||
| 222 | +[+] Valid results | ||
| 223 | + Acc@1 : 47.767% | ||
| 224 | + Acc@5 : 100.000% | ||
| 225 | + Loss : 17.083898544311523 | ||
| 226 | + | ||
| 227 | +[+] Model saved | ||
| 228 | + | ||
| 229 | +[+] Training step: 100/500 Training epoch: 0/64 Elapsed time: 0.88min Learning rate: 9.927842001747633e-05 | ||
| 230 | + Acc@1 : 34.375% | ||
| 231 | + Acc@5 : 100.000% | ||
| 232 | + Loss : 0.9044204950332642 | ||
| 233 | + FW Time : 20.693ms | ||
| 234 | + BW Time : 19.411ms | ||
| 235 | + | ||
| 236 | +[+] Valid results | ||
| 237 | + Acc@1 : 47.767% | ||
| 238 | + Acc@5 : 100.000% | ||
| 239 | + Loss : 10.917157173156738 | ||
| 240 | + | ||
| 241 | +[+] Model saved | ||
| 242 | + | ||
| 243 | +[+] Training step: 200/500 Training epoch: 0/64 Elapsed time: 1.74min Learning rate: 9.856911421715387e-05 | ||
| 244 | + Acc@1 : 34.375% | ||
| 245 | + Acc@5 : 100.000% | ||
| 246 | + Loss : 0.7641889452934265 | ||
| 247 | + FW Time : 20.088ms | ||
| 248 | + BW Time : 9.569ms | ||
| 249 | + | ||
| 250 | +[+] Valid results | ||
| 251 | + Acc@1 : 47.767% | ||
| 252 | + Acc@5 : 100.000% | ||
| 253 | + Loss : 26.895051956176758 | ||
| 254 | + | ||
| 255 | +[+] Model saved | ||
| 256 | + | ||
| 257 | +[+] Training step: 300/500 Training epoch: 0/64 Elapsed time: 2.57min Learning rate: 9.786487613163069e-05 | ||
| 258 | + Acc@1 : 56.250% | ||
| 259 | + Acc@5 : 100.000% | ||
| 260 | + Loss : 0.8696596622467041 | ||
| 261 | + FW Time : 19.580ms | ||
| 262 | + BW Time : 9.993ms | ||
| 263 | +OMP: Warning #190: Forking a process while a parallel region is active is potentially unsafe. | ||
| 264 | + | ||
| 265 | +[+] Valid results | ||
| 266 | + Acc@1 : 47.767% | ||
| 267 | + Acc@5 : 100.000% | ||
| 268 | + Loss : 11.694602966308594 | ||
| 269 | + | ||
| 270 | +[+] Model saved | ||
| 271 | + | ||
| 272 | +[+] Training step: 400/500 Training epoch: 0/64 Elapsed time: 3.43min Learning rate: 9.716566955405027e-05 | ||
| 273 | + Acc@1 : 71.875% | ||
| 274 | + Acc@5 : 100.000% | ||
| 275 | + Loss : 0.7189279198646545 | ||
| 276 | + FW Time : 19.634ms | ||
| 277 | + BW Time : 16.867ms | ||
| 278 | +OMP: Warning #190: Forking a process while a parallel region is active is potentially unsafe. | ||
| 279 | + | ||
| 280 | +[+] Valid results | ||
| 281 | + Acc@1 : 47.767% | ||
| 282 | + Acc@5 : 100.000% | ||
| 283 | + Loss : 12.062773704528809 | ||
| 284 | +[+] Valid results | ||
| 285 | + Acc@1 : 47.767% | ||
| 286 | + Acc@5 : 100.000% | ||
| 287 | + Loss : 12.063 | ||
| 288 | + Infer Time(per image) : 2.722ms | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
This file is too large to display.
-
Please register or login to post a comment