조현아

update logs

...@@ -9,6 +9,8 @@ from torch.utils.tensorboard import SummaryWriter ...@@ -9,6 +9,8 @@ from torch.utils.tensorboard import SummaryWriter
9 9
10 from utils import * 10 from utils import *
11 11
12 +# command
13 +# python "eval.py" --model_path='logs/'
12 14
13 def eval(model_path): 15 def eval(model_path):
14 print('\n[+] Parse arguments') 16 print('\n[+] Parse arguments')
......
1 +{"use_cuda": true, "network": "resnet50", "dataset": "BraTS", "optimizer": "adam", "fast_auto_augment": true, "learning_rate": 0.0001, "seed": null, "num_workers": 4, "print_step": 100, "val_step": 100, "scheduler": "exp", "batch_size": 32, "start_step": 0, "max_step": 500, "augment_path": null}
...\ No newline at end of file ...\ No newline at end of file
1 +DEFALUT_CANDIDATES = [
2 + ShearXY,
3 + TranslateXY,
4 + # Rotate,
5 + # AutoContrast,
6 + # Invert,
7 + Equalize,
8 + Solarize,
9 + Posterize,
10 + # Contrast,
11 + # Color,
12 + Brightness,
13 + Sharpness,
14 + Cutout,
15 +# SamplePairing,
16 +]
17 +
18 +[+] Parse arguments
19 +Args(augment_path=None, batch_size=32, dataset='BraTS', fast_auto_augment=True, learning_rate=0.0001, max_step=500, network='resnet50', num_workers=4, optimizer='adam', print_step=100, scheduler='exp', seed=None, start_step=0, use_cuda=True, val_step=100)
20 +
21 +[+] Create log dir
22 +
23 +[+] Create network
24 +
25 +[+] Load dataset
26 +[+] Child 0 training started (GPU: 0)
27 +
28 +[+] Training step: 0/500 Elapsed time: 0.04min Learning rate: 9.999283e-05 Device name: GeForce GTX 1080 Ti
29 + Acc@1 : 0.000%
30 + Acc@5 : 0.000%
31 + Loss : 7.5784010887146
32 +
33 +[+] Training step: 100/500 Elapsed time: 0.48min Learning rate: 9.927842001747633e-05 Device name: GeForce GTX 1080 Ti
34 + Acc@1 : 78.125%
35 + Acc@5 : 100.000%
36 + Loss : 0.4084218442440033
37 +
38 +[+] Training step: 200/500 Elapsed time: 0.96min Learning rate: 9.856911421715387e-05 Device name: GeForce GTX 1080 Ti
39 + Acc@1 : 93.750%
40 + Acc@5 : 100.000%
41 + Loss : 0.2725507915019989
42 +
43 +[+] Training step: 300/500 Elapsed time: 1.42min Learning rate: 9.786487613163069e-05 Device name: GeForce GTX 1080 Ti
44 + Acc@1 : 90.625%
45 + Acc@5 : 100.000%
46 + Loss : 0.20991499722003937
47 +
48 +[+] Training step: 400/500 Elapsed time: 1.88min Learning rate: 9.716566955405027e-05 Device name: GeForce GTX 1080 Ti
49 + Acc@1 : 93.750%
50 + Acc@5 : 100.000%
51 + Loss : 0.2204296737909317
52 +100%|????????????????????????????????| 1/1 [00:01<00:00, 1.58s/trial, best loss: 0.8958249092102051]
53 +100%|?????????????????????????????????| 1/1 [00:01<00:00, 1.39s/trial, best loss: 1.509151816368103]
54 +[+] Child 1 training started (GPU: 0)
55 +
56 +[+] Training step: 0/500 Elapsed time: 0.03min Learning rate: 9.999283e-05 Device name: GeForce GTX 1080 Ti
57 + Acc@1 : 0.000%
58 + Acc@5 : 0.000%
59 + Loss : 7.634987831115723
60 +
61 +[+] Training step: 100/500 Elapsed time: 0.48min Learning rate: 9.927842001747633e-05 Device name: GeForce GTX 1080 Ti
62 + Acc@1 : 87.500%
63 + Acc@5 : 100.000%
64 + Loss : 0.29290342330932617
65 +
66 +[+] Training step: 200/500 Elapsed time: 0.96min Learning rate: 9.856911421715387e-05 Device name: GeForce GTX 1080 Ti
67 + Acc@1 : 90.625%
68 + Acc@5 : 100.000%
69 + Loss : 0.28638142347335815
70 +
71 +[+] Training step: 300/500 Elapsed time: 1.42min Learning rate: 9.786487613163069e-05 Device name: GeForce GTX 1080 Ti
72 + Acc@1 : 96.875%
73 + Acc@5 : 100.000%
74 + Loss : 0.06958930194377899
75 +
76 +[+] Training step: 400/500 Elapsed time: 1.88min Learning rate: 9.716566955405027e-05 Device name: GeForce GTX 1080 Ti
77 + Acc@1 : 100.000%
78 + Acc@5 : 100.000%
79 + Loss : 0.030036240816116333
80 +100%|??????????????????????????????????????????????????????????| 1/1 [00:01<00:00, 1.54s/trial, best loss: 2.1128218173980713]
81 +100%|??????????????????????????????????????????????????????????| 1/1 [00:01<00:00, 1.50s/trial, best loss: 1.9411643743515015]
82 +[+] Child 2 training started (GPU: 0)
83 +
84 +[+] Training step: 0/500 Elapsed time: 0.03min Learning rate: 9.999283e-05 Device name: GeForce GTX 1080 Ti
85 + Acc@1 : 0.000%
86 + Acc@5 : 0.000%
87 + Loss : 7.582807540893555
88 +
89 +[+] Training step: 100/500 Elapsed time: 0.49min Learning rate: 9.927842001747633e-05 Device name: GeForce GTX 1080 Ti
90 + Acc@1 : 75.000%
91 + Acc@5 : 100.000%
92 + Loss : 0.5312898755073547
93 +
94 +[+] Training step: 200/500 Elapsed time: 0.98min Learning rate: 9.856911421715387e-05 Device name: GeForce GTX 1080 Ti
95 + Acc@1 : 84.375%
96 + Acc@5 : 100.000%
97 + Loss : 0.4784519672393799
98 +
99 +[+] Training step: 300/500 Elapsed time: 1.45min Learning rate: 9.786487613163069e-05 Device name: GeForce GTX 1080 Ti
100 + Acc@1 : 100.000%
101 + Acc@5 : 100.000%
102 + Loss : 0.03968067467212677
103 +
104 +[+] Training step: 400/500 Elapsed time: 1.89min Learning rate: 9.716566955405027e-05 Device name: GeForce GTX 1080 Ti
105 + Acc@1 : 100.000%
106 + Acc@5 : 100.000%
107 + Loss : 0.025451302528381348
108 +100%|??????????????????????????????????????????????????????????| 1/1 [00:01<00:00, 1.53s/trial, best loss: 2.5077414512634277]
109 +100%|???????????????????????????????????????????????????????????| 1/1 [00:01<00:00, 1.59s/trial, best loss: 4.707443714141846]
110 +[+] Child 3 training started (GPU: 0)
111 +
112 +[+] Training step: 0/500 Elapsed time: 0.03min Learning rate: 9.999283e-05 Device name: GeForce GTX 1080 Ti
113 + Acc@1 : 0.000%
114 + Acc@5 : 0.000%
115 + Loss : 7.614710807800293
116 +
117 +[+] Training step: 100/500 Elapsed time: 0.49min Learning rate: 9.927842001747633e-05 Device name: GeForce GTX 1080 Ti
118 + Acc@1 : 75.000%
119 + Acc@5 : 100.000%
120 + Loss : 0.46335405111312866
121 +
122 +[+] Training step: 200/500 Elapsed time: 0.96min Learning rate: 9.856911421715387e-05 Device name: GeForce GTX 1080 Ti
123 + Acc@1 : 90.625%
124 + Acc@5 : 100.000%
125 + Loss : 0.16135810315608978
126 +
127 +[+] Training step: 300/500 Elapsed time: 1.44min Learning rate: 9.786487613163069e-05 Device name: GeForce GTX 1080 Ti
128 + Acc@1 : 84.375%
129 + Acc@5 : 100.000%
130 + Loss : 0.4632360339164734
131 +
132 +[+] Training step: 400/500 Elapsed time: 1.90min Learning rate: 9.716566955405027e-05 Device name: GeForce GTX 1080 Ti
133 + Acc@1 : 100.000%
134 + Acc@5 : 100.000%
135 + Loss : 0.04105471074581146
136 +100%|???????????????????????????????????????????????????????????| 1/1 [00:01<00:00, 1.55s/trial, best loss: 2.492347240447998]
137 +100%|??????????????????????????????????????????????????????????| 1/1 [00:01<00:00, 1.56s/trial, best loss: 2.6143996715545654]
138 +RandomChoice(
139 + Compose(
140 + Pad(padding=4, fill=0, padding_mode=constant)
141 + RandomCrop(size=(32, 32), padding=None)
142 + RandomHorizontalFlip(p=0.5)
143 + Brightness(prob=0.47, magnitude=0.06)
144 + Sharpness(prob=0.52, magnitude=0.28)
145 + ToTensor()
146 +)
147 + Compose(
148 + Pad(padding=4, fill=0, padding_mode=constant)
149 + RandomCrop(size=(32, 32), padding=None)
150 + RandomHorizontalFlip(p=0.5)
151 + Solarize(prob=0.70, magnitude=0.03)
152 + Sharpness(prob=0.98, magnitude=0.62)
153 + ToTensor()
154 +)
155 + Compose(
156 + Pad(padding=4, fill=0, padding_mode=constant)
157 + RandomCrop(size=(32, 32), padding=None)
158 + RandomHorizontalFlip(p=0.5)
159 + Posterize(prob=0.08, magnitude=0.88)
160 + Solarize(prob=0.98, magnitude=0.76)
161 + ToTensor()
162 +)
163 + Compose(
164 + Pad(padding=4, fill=0, padding_mode=constant)
165 + RandomCrop(size=(32, 32), padding=None)
166 + RandomHorizontalFlip(p=0.5)
167 + Posterize(prob=0.37, magnitude=0.60)
168 + Cutout(prob=0.75, magnitude=0.83)
169 + ToTensor()
170 +)
171 + Compose(
172 + Pad(padding=4, fill=0, padding_mode=constant)
173 + RandomCrop(size=(32, 32), padding=None)
174 + RandomHorizontalFlip(p=0.5)
175 + ShearXY(prob=0.56, magnitude=0.86)
176 + Cutout(prob=0.37, magnitude=0.00)
177 + ToTensor()
178 +)
179 + Compose(
180 + Pad(padding=4, fill=0, padding_mode=constant)
181 + RandomCrop(size=(32, 32), padding=None)
182 + RandomHorizontalFlip(p=0.5)
183 + Sharpness(prob=0.09, magnitude=0.75)
184 + Equalize(prob=0.70, magnitude=0.90)
185 + ToTensor()
186 +)
187 + Compose(
188 + Pad(padding=4, fill=0, padding_mode=constant)
189 + RandomCrop(size=(32, 32), padding=None)
190 + RandomHorizontalFlip(p=0.5)
191 + TranslateXY(prob=0.67, magnitude=0.95)
192 + Posterize(prob=0.31, magnitude=0.92)
193 + ToTensor()
194 +)
195 + Compose(
196 + Pad(padding=4, fill=0, padding_mode=constant)
197 + RandomCrop(size=(32, 32), padding=None)
198 + RandomHorizontalFlip(p=0.5)
199 + Equalize(prob=0.32, magnitude=0.07)
200 + Posterize(prob=0.83, magnitude=0.82)
201 + ToTensor()
202 +)
203 +)
204 +
205 +[+] Start training
206 +
207 +[+] Use 1 GPUs
208 +
209 +[+] Using GPU: GeForce GTX 1080 Ti
210 +/opt/conda/lib/python3.7/site-packages/torch/nn/functional.py:2457: UserWarning: nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.
211 + warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.")
212 +/opt/conda/lib/python3.7/site-packages/torch/nn/functional.py:2539: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
213 + "See the documentation of nn.Upsample for details.".format(mode))
214 +
215 +[+] Training step: 0/500 Training epoch: 0/64 Elapsed time: 0.08min Learning rate: 9.999283e-05
216 + Acc@1 : 0.000%
217 + Acc@5 : 0.000%
218 + Loss : 7.677338123321533
219 + FW Time : 200.173ms
220 + BW Time : 22.200ms
221 +
222 +[+] Valid results
223 + Acc@1 : 47.767%
224 + Acc@5 : 100.000%
225 + Loss : 17.083898544311523
226 +
227 +[+] Model saved
228 +
229 +[+] Training step: 100/500 Training epoch: 0/64 Elapsed time: 0.88min Learning rate: 9.927842001747633e-05
230 + Acc@1 : 34.375%
231 + Acc@5 : 100.000%
232 + Loss : 0.9044204950332642
233 + FW Time : 20.693ms
234 + BW Time : 19.411ms
235 +
236 +[+] Valid results
237 + Acc@1 : 47.767%
238 + Acc@5 : 100.000%
239 + Loss : 10.917157173156738
240 +
241 +[+] Model saved
242 +
243 +[+] Training step: 200/500 Training epoch: 0/64 Elapsed time: 1.74min Learning rate: 9.856911421715387e-05
244 + Acc@1 : 34.375%
245 + Acc@5 : 100.000%
246 + Loss : 0.7641889452934265
247 + FW Time : 20.088ms
248 + BW Time : 9.569ms
249 +
250 +[+] Valid results
251 + Acc@1 : 47.767%
252 + Acc@5 : 100.000%
253 + Loss : 26.895051956176758
254 +
255 +[+] Model saved
256 +
257 +[+] Training step: 300/500 Training epoch: 0/64 Elapsed time: 2.57min Learning rate: 9.786487613163069e-05
258 + Acc@1 : 56.250%
259 + Acc@5 : 100.000%
260 + Loss : 0.8696596622467041
261 + FW Time : 19.580ms
262 + BW Time : 9.993ms
263 +OMP: Warning #190: Forking a process while a parallel region is active is potentially unsafe.
264 +
265 +[+] Valid results
266 + Acc@1 : 47.767%
267 + Acc@5 : 100.000%
268 + Loss : 11.694602966308594
269 +
270 +[+] Model saved
271 +
272 +[+] Training step: 400/500 Training epoch: 0/64 Elapsed time: 3.43min Learning rate: 9.716566955405027e-05
273 + Acc@1 : 71.875%
274 + Acc@5 : 100.000%
275 + Loss : 0.7189279198646545
276 + FW Time : 19.634ms
277 + BW Time : 16.867ms
278 +OMP: Warning #190: Forking a process while a parallel region is active is potentially unsafe.
279 +
280 +[+] Valid results
281 + Acc@1 : 47.767%
282 + Acc@5 : 100.000%
283 + Loss : 12.062773704528809
284 +[+] Valid results
285 + Acc@1 : 47.767%
286 + Acc@5 : 100.000%
287 + Loss : 12.063
288 + Infer Time(per image) : 2.722ms
...\ No newline at end of file ...\ No newline at end of file