test_quadpack.py 13.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
import sys
import math
import numpy as np
from numpy import sqrt, cos, sin, arctan, exp, log, pi, Inf
from numpy.testing import (assert_,
        assert_allclose, assert_array_less, assert_almost_equal)
import pytest

from scipy.integrate import quad, dblquad, tplquad, nquad
from scipy._lib._ccallback import LowLevelCallable

import ctypes
import ctypes.util
from scipy._lib._ccallback_c import sine_ctypes

import scipy.integrate._test_multivariate as clib_test


def assert_quad(value_and_err, tabled_value, errTol=1.5e-8):
    value, err = value_and_err
    assert_allclose(value, tabled_value, atol=err, rtol=0)
    if errTol is not None:
        assert_array_less(err, errTol)


def get_clib_test_routine(name, restype, *argtypes):
    ptr = getattr(clib_test, name)
    return ctypes.cast(ptr, ctypes.CFUNCTYPE(restype, *argtypes))


class TestCtypesQuad(object):
    def setup_method(self):
        if sys.platform == 'win32':
            files = ['api-ms-win-crt-math-l1-1-0.dll']
        elif sys.platform == 'darwin':
            files = ['libm.dylib']
        else:
            files = ['libm.so', 'libm.so.6']

        for file in files:
            try:
                self.lib = ctypes.CDLL(file)
                break
            except OSError:
                pass
        else:
            # This test doesn't work on some Linux platforms (Fedora for
            # example) that put an ld script in libm.so - see gh-5370
            pytest.skip("Ctypes can't import libm.so")

        restype = ctypes.c_double
        argtypes = (ctypes.c_double,)
        for name in ['sin', 'cos', 'tan']:
            func = getattr(self.lib, name)
            func.restype = restype
            func.argtypes = argtypes

    def test_typical(self):
        assert_quad(quad(self.lib.sin, 0, 5), quad(math.sin, 0, 5)[0])
        assert_quad(quad(self.lib.cos, 0, 5), quad(math.cos, 0, 5)[0])
        assert_quad(quad(self.lib.tan, 0, 1), quad(math.tan, 0, 1)[0])

    def test_ctypes_sine(self):
        quad(LowLevelCallable(sine_ctypes), 0, 1)

    def test_ctypes_variants(self):
        sin_0 = get_clib_test_routine('_sin_0', ctypes.c_double,
                                      ctypes.c_double, ctypes.c_void_p)

        sin_1 = get_clib_test_routine('_sin_1', ctypes.c_double,
                                      ctypes.c_int, ctypes.POINTER(ctypes.c_double),
                                      ctypes.c_void_p)

        sin_2 = get_clib_test_routine('_sin_2', ctypes.c_double,
                                      ctypes.c_double)

        sin_3 = get_clib_test_routine('_sin_3', ctypes.c_double,
                                      ctypes.c_int, ctypes.POINTER(ctypes.c_double))

        sin_4 = get_clib_test_routine('_sin_3', ctypes.c_double,
                                      ctypes.c_int, ctypes.c_double)

        all_sigs = [sin_0, sin_1, sin_2, sin_3, sin_4]
        legacy_sigs = [sin_2, sin_4]
        legacy_only_sigs = [sin_4]

        # LowLevelCallables work for new signatures
        for j, func in enumerate(all_sigs):
            callback = LowLevelCallable(func)
            if func in legacy_only_sigs:
                pytest.raises(ValueError, quad, callback, 0, pi)
            else:
                assert_allclose(quad(callback, 0, pi)[0], 2.0)

        # Plain ctypes items work only for legacy signatures
        for j, func in enumerate(legacy_sigs):
            if func in legacy_sigs:
                assert_allclose(quad(func, 0, pi)[0], 2.0)
            else:
                pytest.raises(ValueError, quad, func, 0, pi)


class TestMultivariateCtypesQuad(object):
    def setup_method(self):
        restype = ctypes.c_double
        argtypes = (ctypes.c_int, ctypes.c_double)
        for name in ['_multivariate_typical', '_multivariate_indefinite',
                     '_multivariate_sin']:
            func = get_clib_test_routine(name, restype, *argtypes)
            setattr(self, name, func)

    def test_typical(self):
        # 1) Typical function with two extra arguments:
        assert_quad(quad(self._multivariate_typical, 0, pi, (2, 1.8)),
                    0.30614353532540296487)

    def test_indefinite(self):
        # 2) Infinite integration limits --- Euler's constant
        assert_quad(quad(self._multivariate_indefinite, 0, Inf),
                    0.577215664901532860606512)

    def test_threadsafety(self):
        # Ensure multivariate ctypes are threadsafe
        def threadsafety(y):
            return y + quad(self._multivariate_sin, 0, 1)[0]
        assert_quad(quad(threadsafety, 0, 1), 0.9596976941318602)


class TestQuad(object):
    def test_typical(self):
        # 1) Typical function with two extra arguments:
        def myfunc(x, n, z):       # Bessel function integrand
            return cos(n*x-z*sin(x))/pi
        assert_quad(quad(myfunc, 0, pi, (2, 1.8)), 0.30614353532540296487)

    def test_indefinite(self):
        # 2) Infinite integration limits --- Euler's constant
        def myfunc(x):           # Euler's constant integrand
            return -exp(-x)*log(x)
        assert_quad(quad(myfunc, 0, Inf), 0.577215664901532860606512)

    def test_singular(self):
        # 3) Singular points in region of integration.
        def myfunc(x):
            if 0 < x < 2.5:
                return sin(x)
            elif 2.5 <= x <= 5.0:
                return exp(-x)
            else:
                return 0.0

        assert_quad(quad(myfunc, 0, 10, points=[2.5, 5.0]),
                    1 - cos(2.5) + exp(-2.5) - exp(-5.0))

    def test_sine_weighted_finite(self):
        # 4) Sine weighted integral (finite limits)
        def myfunc(x, a):
            return exp(a*(x-1))

        ome = 2.0**3.4
        assert_quad(quad(myfunc, 0, 1, args=20, weight='sin', wvar=ome),
                    (20*sin(ome)-ome*cos(ome)+ome*exp(-20))/(20**2 + ome**2))

    def test_sine_weighted_infinite(self):
        # 5) Sine weighted integral (infinite limits)
        def myfunc(x, a):
            return exp(-x*a)

        a = 4.0
        ome = 3.0
        assert_quad(quad(myfunc, 0, Inf, args=a, weight='sin', wvar=ome),
                    ome/(a**2 + ome**2))

    def test_cosine_weighted_infinite(self):
        # 6) Cosine weighted integral (negative infinite limits)
        def myfunc(x, a):
            return exp(x*a)

        a = 2.5
        ome = 2.3
        assert_quad(quad(myfunc, -Inf, 0, args=a, weight='cos', wvar=ome),
                    a/(a**2 + ome**2))

    def test_algebraic_log_weight(self):
        # 6) Algebraic-logarithmic weight.
        def myfunc(x, a):
            return 1/(1+x+2**(-a))

        a = 1.5
        assert_quad(quad(myfunc, -1, 1, args=a, weight='alg',
                         wvar=(-0.5, -0.5)),
                    pi/sqrt((1+2**(-a))**2 - 1))

    def test_cauchypv_weight(self):
        # 7) Cauchy prinicpal value weighting w(x) = 1/(x-c)
        def myfunc(x, a):
            return 2.0**(-a)/((x-1)**2+4.0**(-a))

        a = 0.4
        tabledValue = ((2.0**(-0.4)*log(1.5) -
                        2.0**(-1.4)*log((4.0**(-a)+16) / (4.0**(-a)+1)) -
                        arctan(2.0**(a+2)) -
                        arctan(2.0**a)) /
                       (4.0**(-a) + 1))
        assert_quad(quad(myfunc, 0, 5, args=0.4, weight='cauchy', wvar=2.0),
                    tabledValue, errTol=1.9e-8)

    def test_b_less_than_a(self):
        def f(x, p, q):
            return p * np.exp(-q*x)

        val_1, err_1 = quad(f, 0, np.inf, args=(2, 3))
        val_2, err_2 = quad(f, np.inf, 0, args=(2, 3))
        assert_allclose(val_1, -val_2, atol=max(err_1, err_2))

    def test_b_less_than_a_2(self):
        def f(x, s):
            return np.exp(-x**2 / 2 / s) / np.sqrt(2.*s)

        val_1, err_1 = quad(f, -np.inf, np.inf, args=(2,))
        val_2, err_2 = quad(f, np.inf, -np.inf, args=(2,))
        assert_allclose(val_1, -val_2, atol=max(err_1, err_2))

    def test_b_less_than_a_3(self):
        def f(x):
            return 1.0

        val_1, err_1 = quad(f, 0, 1, weight='alg', wvar=(0, 0))
        val_2, err_2 = quad(f, 1, 0, weight='alg', wvar=(0, 0))
        assert_allclose(val_1, -val_2, atol=max(err_1, err_2))

    def test_b_less_than_a_full_output(self):
        def f(x):
            return 1.0

        res_1 = quad(f, 0, 1, weight='alg', wvar=(0, 0), full_output=True)
        res_2 = quad(f, 1, 0, weight='alg', wvar=(0, 0), full_output=True)
        err = max(res_1[1], res_2[1])
        assert_allclose(res_1[0], -res_2[0], atol=err)

    def test_double_integral(self):
        # 8) Double Integral test
        def simpfunc(y, x):       # Note order of arguments.
            return x+y

        a, b = 1.0, 2.0
        assert_quad(dblquad(simpfunc, a, b, lambda x: x, lambda x: 2*x),
                    5/6.0 * (b**3.0-a**3.0))

    def test_double_integral2(self):
        def func(x0, x1, t0, t1):
            return x0 + x1 + t0 + t1
        g = lambda x: x
        h = lambda x: 2 * x
        args = 1, 2
        assert_quad(dblquad(func, 1, 2, g, h, args=args),35./6 + 9*.5)

    def test_double_integral3(self):
        def func(x0, x1):
            return x0 + x1 + 1 + 2
        assert_quad(dblquad(func, 1, 2, 1, 2),6.)
        
    def test_triple_integral(self):
        # 9) Triple Integral test
        def simpfunc(z, y, x, t):      # Note order of arguments.
            return (x+y+z)*t

        a, b = 1.0, 2.0
        assert_quad(tplquad(simpfunc, a, b,
                            lambda x: x, lambda x: 2*x,
                            lambda x, y: x - y, lambda x, y: x + y,
                            (2.,)),
                     2*8/3.0 * (b**4.0 - a**4.0))


class TestNQuad(object):
    def test_fixed_limits(self):
        def func1(x0, x1, x2, x3):
            val = (x0**2 + x1*x2 - x3**3 + np.sin(x0) +
                   (1 if (x0 - 0.2*x3 - 0.5 - 0.25*x1 > 0) else 0))
            return val

        def opts_basic(*args):
            return {'points': [0.2*args[2] + 0.5 + 0.25*args[0]]}

        res = nquad(func1, [[0, 1], [-1, 1], [.13, .8], [-.15, 1]],
                    opts=[opts_basic, {}, {}, {}], full_output=True)
        assert_quad(res[:-1], 1.5267454070738635)
        assert_(res[-1]['neval'] > 0 and res[-1]['neval'] < 4e5) 
        
    def test_variable_limits(self):
        scale = .1

        def func2(x0, x1, x2, x3, t0, t1):
            val = (x0*x1*x3**2 + np.sin(x2) + 1 +
                   (1 if x0 + t1*x1 - t0 > 0 else 0))
            return val

        def lim0(x1, x2, x3, t0, t1):
            return [scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) - 1,
                    scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) + 1]

        def lim1(x2, x3, t0, t1):
            return [scale * (t0*x2 + t1*x3) - 1,
                    scale * (t0*x2 + t1*x3) + 1]

        def lim2(x3, t0, t1):
            return [scale * (x3 + t0**2*t1**3) - 1,
                    scale * (x3 + t0**2*t1**3) + 1]

        def lim3(t0, t1):
            return [scale * (t0 + t1) - 1, scale * (t0 + t1) + 1]

        def opts0(x1, x2, x3, t0, t1):
            return {'points': [t0 - t1*x1]}

        def opts1(x2, x3, t0, t1):
            return {}

        def opts2(x3, t0, t1):
            return {}

        def opts3(t0, t1):
            return {}

        res = nquad(func2, [lim0, lim1, lim2, lim3], args=(0, 0),
                    opts=[opts0, opts1, opts2, opts3])
        assert_quad(res, 25.066666666666663)

    def test_square_separate_ranges_and_opts(self):
        def f(y, x):
            return 1.0

        assert_quad(nquad(f, [[-1, 1], [-1, 1]], opts=[{}, {}]), 4.0)

    def test_square_aliased_ranges_and_opts(self):
        def f(y, x):
            return 1.0

        r = [-1, 1]
        opt = {}
        assert_quad(nquad(f, [r, r], opts=[opt, opt]), 4.0)

    def test_square_separate_fn_ranges_and_opts(self):
        def f(y, x):
            return 1.0

        def fn_range0(*args):
            return (-1, 1)

        def fn_range1(*args):
            return (-1, 1)

        def fn_opt0(*args):
            return {}

        def fn_opt1(*args):
            return {}

        ranges = [fn_range0, fn_range1]
        opts = [fn_opt0, fn_opt1]
        assert_quad(nquad(f, ranges, opts=opts), 4.0)

    def test_square_aliased_fn_ranges_and_opts(self):
        def f(y, x):
            return 1.0

        def fn_range(*args):
            return (-1, 1)

        def fn_opt(*args):
            return {}

        ranges = [fn_range, fn_range]
        opts = [fn_opt, fn_opt]
        assert_quad(nquad(f, ranges, opts=opts), 4.0)

    def test_matching_quad(self):
        def func(x):
            return x**2 + 1

        res, reserr = quad(func, 0, 4)
        res2, reserr2 = nquad(func, ranges=[[0, 4]])
        assert_almost_equal(res, res2)
        assert_almost_equal(reserr, reserr2)

    def test_matching_dblquad(self):
        def func2d(x0, x1):
            return x0**2 + x1**3 - x0 * x1 + 1

        res, reserr = dblquad(func2d, -2, 2, lambda x: -3, lambda x: 3)
        res2, reserr2 = nquad(func2d, [[-3, 3], (-2, 2)])
        assert_almost_equal(res, res2)
        assert_almost_equal(reserr, reserr2)

    def test_matching_tplquad(self):
        def func3d(x0, x1, x2, c0, c1):
            return x0**2 + c0 * x1**3 - x0 * x1 + 1 + c1 * np.sin(x2)

        res = tplquad(func3d, -1, 2, lambda x: -2, lambda x: 2,
                      lambda x, y: -np.pi, lambda x, y: np.pi,
                      args=(2, 3))
        res2 = nquad(func3d, [[-np.pi, np.pi], [-2, 2], (-1, 2)], args=(2, 3))
        assert_almost_equal(res, res2)

    def test_dict_as_opts(self):
        try:
            nquad(lambda x, y: x * y, [[0, 1], [0, 1]], opts={'epsrel': 0.0001})
        except(TypeError):
            assert False