cloudpickle.py
29.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
"""
This class is defined to override standard pickle functionality
The goals of it follow:
-Serialize lambdas and nested functions to compiled byte code
-Deal with main module correctly
-Deal with other non-serializable objects
It does not include an unpickler, as standard python unpickling suffices.
This module was extracted from the `cloud` package, developed by `PiCloud, Inc.
<https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_.
Copyright (c) 2012, Regents of the University of California.
Copyright (c) 2009 `PiCloud, Inc. <https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the University of California, Berkeley nor the
names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
from __future__ import print_function
import builtins
import dis
import opcode
import platform
import sys
import types
import weakref
import uuid
import threading
import typing
import warnings
from .compat import pickle
from typing import Generic, Union, Tuple, Callable
from pickle import _getattribute
from importlib._bootstrap import _find_spec
try: # pragma: no branch
import typing_extensions as _typing_extensions
from typing_extensions import Literal, Final
except ImportError:
_typing_extensions = Literal = Final = None
if sys.version_info >= (3, 5, 3):
from typing import ClassVar
else: # pragma: no cover
ClassVar = None
if sys.version_info >= (3, 8):
from types import CellType
else:
def f():
a = 1
def g():
return a
return g
CellType = type(f().__closure__[0])
# cloudpickle is meant for inter process communication: we expect all
# communicating processes to run the same Python version hence we favor
# communication speed over compatibility:
DEFAULT_PROTOCOL = pickle.HIGHEST_PROTOCOL
# Track the provenance of reconstructed dynamic classes to make it possible to
# recontruct instances from the matching singleton class definition when
# appropriate and preserve the usual "isinstance" semantics of Python objects.
_DYNAMIC_CLASS_TRACKER_BY_CLASS = weakref.WeakKeyDictionary()
_DYNAMIC_CLASS_TRACKER_BY_ID = weakref.WeakValueDictionary()
_DYNAMIC_CLASS_TRACKER_LOCK = threading.Lock()
PYPY = platform.python_implementation() == "PyPy"
builtin_code_type = None
if PYPY:
# builtin-code objects only exist in pypy
builtin_code_type = type(float.__new__.__code__)
_extract_code_globals_cache = weakref.WeakKeyDictionary()
def _get_or_create_tracker_id(class_def):
with _DYNAMIC_CLASS_TRACKER_LOCK:
class_tracker_id = _DYNAMIC_CLASS_TRACKER_BY_CLASS.get(class_def)
if class_tracker_id is None:
class_tracker_id = uuid.uuid4().hex
_DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id
_DYNAMIC_CLASS_TRACKER_BY_ID[class_tracker_id] = class_def
return class_tracker_id
def _lookup_class_or_track(class_tracker_id, class_def):
if class_tracker_id is not None:
with _DYNAMIC_CLASS_TRACKER_LOCK:
class_def = _DYNAMIC_CLASS_TRACKER_BY_ID.setdefault(
class_tracker_id, class_def)
_DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id
return class_def
def _whichmodule(obj, name):
"""Find the module an object belongs to.
This function differs from ``pickle.whichmodule`` in two ways:
- it does not mangle the cases where obj's module is __main__ and obj was
not found in any module.
- Errors arising during module introspection are ignored, as those errors
are considered unwanted side effects.
"""
if sys.version_info[:2] < (3, 7) and isinstance(obj, typing.TypeVar): # pragma: no branch # noqa
# Workaround bug in old Python versions: prior to Python 3.7,
# T.__module__ would always be set to "typing" even when the TypeVar T
# would be defined in a different module.
#
# For such older Python versions, we ignore the __module__ attribute of
# TypeVar instances and instead exhaustively lookup those instances in
# all currently imported modules.
module_name = None
else:
module_name = getattr(obj, '__module__', None)
if module_name is not None:
return module_name
# Protect the iteration by using a copy of sys.modules against dynamic
# modules that trigger imports of other modules upon calls to getattr or
# other threads importing at the same time.
for module_name, module in sys.modules.copy().items():
# Some modules such as coverage can inject non-module objects inside
# sys.modules
if (
module_name == '__main__' or
module is None or
not isinstance(module, types.ModuleType)
):
continue
try:
if _getattribute(module, name)[0] is obj:
return module_name
except Exception:
pass
return None
def _is_importable(obj, name=None):
"""Dispatcher utility to test the importability of various constructs."""
if isinstance(obj, types.FunctionType):
return _lookup_module_and_qualname(obj, name=name) is not None
elif issubclass(type(obj), type):
return _lookup_module_and_qualname(obj, name=name) is not None
elif isinstance(obj, types.ModuleType):
# We assume that sys.modules is primarily used as a cache mechanism for
# the Python import machinery. Checking if a module has been added in
# is sys.modules therefore a cheap and simple heuristic to tell us whether
# we can assume that a given module could be imported by name in
# another Python process.
return obj.__name__ in sys.modules
else:
raise TypeError(
"cannot check importability of {} instances".format(
type(obj).__name__)
)
def _lookup_module_and_qualname(obj, name=None):
if name is None:
name = getattr(obj, '__qualname__', None)
if name is None: # pragma: no cover
# This used to be needed for Python 2.7 support but is probably not
# needed anymore. However we keep the __name__ introspection in case
# users of cloudpickle rely on this old behavior for unknown reasons.
name = getattr(obj, '__name__', None)
module_name = _whichmodule(obj, name)
if module_name is None:
# In this case, obj.__module__ is None AND obj was not found in any
# imported module. obj is thus treated as dynamic.
return None
if module_name == "__main__":
return None
# Note: if module_name is in sys.modules, the corresponding module is
# assumed importable at unpickling time. See #357
module = sys.modules.get(module_name, None)
if module is None:
# The main reason why obj's module would not be imported is that this
# module has been dynamically created, using for example
# types.ModuleType. The other possibility is that module was removed
# from sys.modules after obj was created/imported. But this case is not
# supported, as the standard pickle does not support it either.
return None
try:
obj2, parent = _getattribute(module, name)
except AttributeError:
# obj was not found inside the module it points to
return None
if obj2 is not obj:
return None
return module, name
def _extract_code_globals(co):
"""
Find all globals names read or written to by codeblock co
"""
out_names = _extract_code_globals_cache.get(co)
if out_names is None:
names = co.co_names
out_names = {names[oparg] for _, oparg in _walk_global_ops(co)}
# Declaring a function inside another one using the "def ..."
# syntax generates a constant code object corresonding to the one
# of the nested function's As the nested function may itself need
# global variables, we need to introspect its code, extract its
# globals, (look for code object in it's co_consts attribute..) and
# add the result to code_globals
if co.co_consts:
for const in co.co_consts:
if isinstance(const, types.CodeType):
out_names |= _extract_code_globals(const)
_extract_code_globals_cache[co] = out_names
return out_names
def _find_imported_submodules(code, top_level_dependencies):
"""
Find currently imported submodules used by a function.
Submodules used by a function need to be detected and referenced for the
function to work correctly at depickling time. Because submodules can be
referenced as attribute of their parent package (``package.submodule``), we
need a special introspection technique that does not rely on GLOBAL-related
opcodes to find references of them in a code object.
Example:
```
import concurrent.futures
import cloudpickle
def func():
x = concurrent.futures.ThreadPoolExecutor
if __name__ == '__main__':
cloudpickle.dumps(func)
```
The globals extracted by cloudpickle in the function's state include the
concurrent package, but not its submodule (here, concurrent.futures), which
is the module used by func. Find_imported_submodules will detect the usage
of concurrent.futures. Saving this module alongside with func will ensure
that calling func once depickled does not fail due to concurrent.futures
not being imported
"""
subimports = []
# check if any known dependency is an imported package
for x in top_level_dependencies:
if (isinstance(x, types.ModuleType) and
hasattr(x, '__package__') and x.__package__):
# check if the package has any currently loaded sub-imports
prefix = x.__name__ + '.'
# A concurrent thread could mutate sys.modules,
# make sure we iterate over a copy to avoid exceptions
for name in list(sys.modules):
# Older versions of pytest will add a "None" module to
# sys.modules.
if name is not None and name.startswith(prefix):
# check whether the function can address the sub-module
tokens = set(name[len(prefix):].split('.'))
if not tokens - set(code.co_names):
subimports.append(sys.modules[name])
return subimports
def cell_set(cell, value):
"""Set the value of a closure cell.
The point of this function is to set the cell_contents attribute of a cell
after its creation. This operation is necessary in case the cell contains a
reference to the function the cell belongs to, as when calling the
function's constructor
``f = types.FunctionType(code, globals, name, argdefs, closure)``,
closure will not be able to contain the yet-to-be-created f.
In Python3.7, cell_contents is writeable, so setting the contents of a cell
can be done simply using
>>> cell.cell_contents = value
In earlier Python3 versions, the cell_contents attribute of a cell is read
only, but this limitation can be worked around by leveraging the Python 3
``nonlocal`` keyword.
In Python2 however, this attribute is read only, and there is no
``nonlocal`` keyword. For this reason, we need to come up with more
complicated hacks to set this attribute.
The chosen approach is to create a function with a STORE_DEREF opcode,
which sets the content of a closure variable. Typically:
>>> def inner(value):
... lambda: cell # the lambda makes cell a closure
... cell = value # cell is a closure, so this triggers a STORE_DEREF
(Note that in Python2, A STORE_DEREF can never be triggered from an inner
function. The function g for example here
>>> def f(var):
... def g():
... var += 1
... return g
will not modify the closure variable ``var```inplace, but instead try to
load a local variable var and increment it. As g does not assign the local
variable ``var`` any initial value, calling f(1)() will fail at runtime.)
Our objective is to set the value of a given cell ``cell``. So we need to
somewhat reference our ``cell`` object into the ``inner`` function so that
this object (and not the smoke cell of the lambda function) gets affected
by the STORE_DEREF operation.
In inner, ``cell`` is referenced as a cell variable (an enclosing variable
that is referenced by the inner function). If we create a new function
cell_set with the exact same code as ``inner``, but with ``cell`` marked as
a free variable instead, the STORE_DEREF will be applied on its closure -
``cell``, which we can specify explicitly during construction! The new
cell_set variable thus actually sets the contents of a specified cell!
Note: we do not make use of the ``nonlocal`` keyword to set the contents of
a cell in early python3 versions to limit possible syntax errors in case
test and checker libraries decide to parse the whole file.
"""
if sys.version_info[:2] >= (3, 7): # pragma: no branch
cell.cell_contents = value
else:
_cell_set = types.FunctionType(
_cell_set_template_code, {}, '_cell_set', (), (cell,),)
_cell_set(value)
def _make_cell_set_template_code():
def _cell_set_factory(value):
lambda: cell
cell = value
co = _cell_set_factory.__code__
_cell_set_template_code = types.CodeType(
co.co_argcount,
co.co_kwonlyargcount, # Python 3 only argument
co.co_nlocals,
co.co_stacksize,
co.co_flags,
co.co_code,
co.co_consts,
co.co_names,
co.co_varnames,
co.co_filename,
co.co_name,
co.co_firstlineno,
co.co_lnotab,
co.co_cellvars, # co_freevars is initialized with co_cellvars
(), # co_cellvars is made empty
)
return _cell_set_template_code
if sys.version_info[:2] < (3, 7):
_cell_set_template_code = _make_cell_set_template_code()
# relevant opcodes
STORE_GLOBAL = opcode.opmap['STORE_GLOBAL']
DELETE_GLOBAL = opcode.opmap['DELETE_GLOBAL']
LOAD_GLOBAL = opcode.opmap['LOAD_GLOBAL']
GLOBAL_OPS = (STORE_GLOBAL, DELETE_GLOBAL, LOAD_GLOBAL)
HAVE_ARGUMENT = dis.HAVE_ARGUMENT
EXTENDED_ARG = dis.EXTENDED_ARG
_BUILTIN_TYPE_NAMES = {}
for k, v in types.__dict__.items():
if type(v) is type:
_BUILTIN_TYPE_NAMES[v] = k
def _builtin_type(name):
if name == "ClassType": # pragma: no cover
# Backward compat to load pickle files generated with cloudpickle
# < 1.3 even if loading pickle files from older versions is not
# officially supported.
return type
return getattr(types, name)
def _walk_global_ops(code):
"""
Yield (opcode, argument number) tuples for all
global-referencing instructions in *code*.
"""
for instr in dis.get_instructions(code):
op = instr.opcode
if op in GLOBAL_OPS:
yield op, instr.arg
def _extract_class_dict(cls):
"""Retrieve a copy of the dict of a class without the inherited methods"""
clsdict = dict(cls.__dict__) # copy dict proxy to a dict
if len(cls.__bases__) == 1:
inherited_dict = cls.__bases__[0].__dict__
else:
inherited_dict = {}
for base in reversed(cls.__bases__):
inherited_dict.update(base.__dict__)
to_remove = []
for name, value in clsdict.items():
try:
base_value = inherited_dict[name]
if value is base_value:
to_remove.append(name)
except KeyError:
pass
for name in to_remove:
clsdict.pop(name)
return clsdict
if sys.version_info[:2] < (3, 7): # pragma: no branch
def _is_parametrized_type_hint(obj):
# This is very cheap but might generate false positives.
# general typing Constructs
is_typing = getattr(obj, '__origin__', None) is not None
# typing_extensions.Literal
is_litteral = getattr(obj, '__values__', None) is not None
# typing_extensions.Final
is_final = getattr(obj, '__type__', None) is not None
# typing.Union/Tuple for old Python 3.5
is_union = getattr(obj, '__union_params__', None) is not None
is_tuple = getattr(obj, '__tuple_params__', None) is not None
is_callable = (
getattr(obj, '__result__', None) is not None and
getattr(obj, '__args__', None) is not None
)
return any((is_typing, is_litteral, is_final, is_union, is_tuple,
is_callable))
def _create_parametrized_type_hint(origin, args):
return origin[args]
else:
_is_parametrized_type_hint = None
_create_parametrized_type_hint = None
def parametrized_type_hint_getinitargs(obj):
# The distorted type check sematic for typing construct becomes:
# ``type(obj) is type(TypeHint)``, which means "obj is a
# parametrized TypeHint"
if type(obj) is type(Literal): # pragma: no branch
initargs = (Literal, obj.__values__)
elif type(obj) is type(Final): # pragma: no branch
initargs = (Final, obj.__type__)
elif type(obj) is type(ClassVar):
initargs = (ClassVar, obj.__type__)
elif type(obj) is type(Generic):
parameters = obj.__parameters__
if len(obj.__parameters__) > 0:
# in early Python 3.5, __parameters__ was sometimes
# preferred to __args__
initargs = (obj.__origin__, parameters)
else:
initargs = (obj.__origin__, obj.__args__)
elif type(obj) is type(Union):
if sys.version_info < (3, 5, 3): # pragma: no cover
initargs = (Union, obj.__union_params__)
else:
initargs = (Union, obj.__args__)
elif type(obj) is type(Tuple):
if sys.version_info < (3, 5, 3): # pragma: no cover
initargs = (Tuple, obj.__tuple_params__)
else:
initargs = (Tuple, obj.__args__)
elif type(obj) is type(Callable):
if sys.version_info < (3, 5, 3): # pragma: no cover
args = obj.__args__
result = obj.__result__
if args != Ellipsis:
if isinstance(args, tuple):
args = list(args)
else:
args = [args]
else:
(*args, result) = obj.__args__
if len(args) == 1 and args[0] is Ellipsis:
args = Ellipsis
else:
args = list(args)
initargs = (Callable, (args, result))
else: # pragma: no cover
raise pickle.PicklingError(
"Cloudpickle Error: Unknown type {}".format(type(obj))
)
return initargs
# Tornado support
def is_tornado_coroutine(func):
"""
Return whether *func* is a Tornado coroutine function.
Running coroutines are not supported.
"""
if 'tornado.gen' not in sys.modules:
return False
gen = sys.modules['tornado.gen']
if not hasattr(gen, "is_coroutine_function"):
# Tornado version is too old
return False
return gen.is_coroutine_function(func)
def _rebuild_tornado_coroutine(func):
from tornado import gen
return gen.coroutine(func)
# including pickles unloading functions in this namespace
load = pickle.load
loads = pickle.loads
# hack for __import__ not working as desired
def subimport(name):
__import__(name)
return sys.modules[name]
def dynamic_subimport(name, vars):
mod = types.ModuleType(name)
mod.__dict__.update(vars)
mod.__dict__['__builtins__'] = builtins.__dict__
return mod
def _gen_ellipsis():
return Ellipsis
def _gen_not_implemented():
return NotImplemented
def _get_cell_contents(cell):
try:
return cell.cell_contents
except ValueError:
# sentinel used by ``_fill_function`` which will leave the cell empty
return _empty_cell_value
def instance(cls):
"""Create a new instance of a class.
Parameters
----------
cls : type
The class to create an instance of.
Returns
-------
instance : cls
A new instance of ``cls``.
"""
return cls()
@instance
class _empty_cell_value(object):
"""sentinel for empty closures
"""
@classmethod
def __reduce__(cls):
return cls.__name__
def _fill_function(*args):
"""Fills in the rest of function data into the skeleton function object
The skeleton itself is create by _make_skel_func().
"""
if len(args) == 2:
func = args[0]
state = args[1]
elif len(args) == 5:
# Backwards compat for cloudpickle v0.4.0, after which the `module`
# argument was introduced
func = args[0]
keys = ['globals', 'defaults', 'dict', 'closure_values']
state = dict(zip(keys, args[1:]))
elif len(args) == 6:
# Backwards compat for cloudpickle v0.4.1, after which the function
# state was passed as a dict to the _fill_function it-self.
func = args[0]
keys = ['globals', 'defaults', 'dict', 'module', 'closure_values']
state = dict(zip(keys, args[1:]))
else:
raise ValueError('Unexpected _fill_value arguments: %r' % (args,))
# - At pickling time, any dynamic global variable used by func is
# serialized by value (in state['globals']).
# - At unpickling time, func's __globals__ attribute is initialized by
# first retrieving an empty isolated namespace that will be shared
# with other functions pickled from the same original module
# by the same CloudPickler instance and then updated with the
# content of state['globals'] to populate the shared isolated
# namespace with all the global variables that are specifically
# referenced for this function.
func.__globals__.update(state['globals'])
func.__defaults__ = state['defaults']
func.__dict__ = state['dict']
if 'annotations' in state:
func.__annotations__ = state['annotations']
if 'doc' in state:
func.__doc__ = state['doc']
if 'name' in state:
func.__name__ = state['name']
if 'module' in state:
func.__module__ = state['module']
if 'qualname' in state:
func.__qualname__ = state['qualname']
if 'kwdefaults' in state:
func.__kwdefaults__ = state['kwdefaults']
# _cloudpickle_subimports is a set of submodules that must be loaded for
# the pickled function to work correctly at unpickling time. Now that these
# submodules are depickled (hence imported), they can be removed from the
# object's state (the object state only served as a reference holder to
# these submodules)
if '_cloudpickle_submodules' in state:
state.pop('_cloudpickle_submodules')
cells = func.__closure__
if cells is not None:
for cell, value in zip(cells, state['closure_values']):
if value is not _empty_cell_value:
cell_set(cell, value)
return func
def _make_empty_cell():
if False:
# trick the compiler into creating an empty cell in our lambda
cell = None
raise AssertionError('this route should not be executed')
return (lambda: cell).__closure__[0]
def _make_cell(value=_empty_cell_value):
cell = _make_empty_cell()
if value is not _empty_cell_value:
cell_set(cell, value)
return cell
def _make_skel_func(code, cell_count, base_globals=None):
""" Creates a skeleton function object that contains just the provided
code and the correct number of cells in func_closure. All other
func attributes (e.g. func_globals) are empty.
"""
# This function is deprecated and should be removed in cloudpickle 1.7
warnings.warn(
"A pickle file created using an old (<=1.4.1) version of cloudpicke "
"is currently being loaded. This is not supported by cloudpickle and "
"will break in cloudpickle 1.7", category=UserWarning
)
# This is backward-compatibility code: for cloudpickle versions between
# 0.5.4 and 0.7, base_globals could be a string or None. base_globals
# should now always be a dictionary.
if base_globals is None or isinstance(base_globals, str):
base_globals = {}
base_globals['__builtins__'] = __builtins__
closure = (
tuple(_make_empty_cell() for _ in range(cell_count))
if cell_count >= 0 else
None
)
return types.FunctionType(code, base_globals, None, None, closure)
def _make_skeleton_class(type_constructor, name, bases, type_kwargs,
class_tracker_id, extra):
"""Build dynamic class with an empty __dict__ to be filled once memoized
If class_tracker_id is not None, try to lookup an existing class definition
matching that id. If none is found, track a newly reconstructed class
definition under that id so that other instances stemming from the same
class id will also reuse this class definition.
The "extra" variable is meant to be a dict (or None) that can be used for
forward compatibility shall the need arise.
"""
skeleton_class = types.new_class(
name, bases, {'metaclass': type_constructor},
lambda ns: ns.update(type_kwargs)
)
return _lookup_class_or_track(class_tracker_id, skeleton_class)
def _rehydrate_skeleton_class(skeleton_class, class_dict):
"""Put attributes from `class_dict` back on `skeleton_class`.
See CloudPickler.save_dynamic_class for more info.
"""
registry = None
for attrname, attr in class_dict.items():
if attrname == "_abc_impl":
registry = attr
else:
setattr(skeleton_class, attrname, attr)
if registry is not None:
for subclass in registry:
skeleton_class.register(subclass)
return skeleton_class
def _make_skeleton_enum(bases, name, qualname, members, module,
class_tracker_id, extra):
"""Build dynamic enum with an empty __dict__ to be filled once memoized
The creation of the enum class is inspired by the code of
EnumMeta._create_.
If class_tracker_id is not None, try to lookup an existing enum definition
matching that id. If none is found, track a newly reconstructed enum
definition under that id so that other instances stemming from the same
class id will also reuse this enum definition.
The "extra" variable is meant to be a dict (or None) that can be used for
forward compatibility shall the need arise.
"""
# enums always inherit from their base Enum class at the last position in
# the list of base classes:
enum_base = bases[-1]
metacls = enum_base.__class__
classdict = metacls.__prepare__(name, bases)
for member_name, member_value in members.items():
classdict[member_name] = member_value
enum_class = metacls.__new__(metacls, name, bases, classdict)
enum_class.__module__ = module
enum_class.__qualname__ = qualname
return _lookup_class_or_track(class_tracker_id, enum_class)
def _make_typevar(name, bound, constraints, covariant, contravariant,
class_tracker_id):
tv = typing.TypeVar(
name, *constraints, bound=bound,
covariant=covariant, contravariant=contravariant
)
if class_tracker_id is not None:
return _lookup_class_or_track(class_tracker_id, tv)
else: # pragma: nocover
# Only for Python 3.5.3 compat.
return tv
def _decompose_typevar(obj):
try:
class_tracker_id = _get_or_create_tracker_id(obj)
except TypeError: # pragma: nocover
# TypeVar instances are not weakref-able in Python 3.5.3
class_tracker_id = None
return (
obj.__name__, obj.__bound__, obj.__constraints__,
obj.__covariant__, obj.__contravariant__,
class_tracker_id,
)
def _typevar_reduce(obj):
# TypeVar instances have no __qualname__ hence we pass the name explicitly.
module_and_name = _lookup_module_and_qualname(obj, name=obj.__name__)
if module_and_name is None:
return (_make_typevar, _decompose_typevar(obj))
return (getattr, module_and_name)
def _get_bases(typ):
if hasattr(typ, '__orig_bases__'):
# For generic types (see PEP 560)
bases_attr = '__orig_bases__'
else:
# For regular class objects
bases_attr = '__bases__'
return getattr(typ, bases_attr)
def _make_dict_keys(obj):
return dict.fromkeys(obj).keys()
def _make_dict_values(obj):
return {i: _ for i, _ in enumerate(obj)}.values()
def _make_dict_items(obj):
return obj.items()