tensorRT_test.py
7.33 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import tensorrt as trt
import pycuda.driver as cuda
import numpy as np
import torch
import pycuda.autoinit
import dataset
import model
import time
# print(dir(trt))
tensorrt_file_name = 'bert.plan'
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
trt_runtime = trt.Runtime(TRT_LOGGER)
with open(tensorrt_file_name, 'rb') as f:
engine_data = f.read()
engine = trt_runtime.deserialize_cuda_engine(engine_data)
context = engine.create_execution_context()
# class HostDeviceMem(object):
# def __init__(self, host_mem, device_mem):
# self.host = host_mem
# self.device = device_mem
# def __str__(self):
# return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)
# def __repr__(self):
# return self.__str__()
# inputs, outputs, bindings, stream = [], [], [], []
# for binding in engine:
# size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
# dtype = trt.nptype(engine.get_binding_dtype(binding))
# host_mem = cuda.pagelocked_empty(size, dtype)
# device_mem = cuda.mem_alloc(host_mem.nbytes)
# bindings.append(int(device_mem))
# if engine.binding_is_input(binding):
# inputs.append( HostDeviceMem(host_mem, device_mem) )
# else:
# outputs.append(HostDeviceMem(host_mem, device_mem))
# input_ids = np.ones([1, 1, 29, 29])
# numpy_array_input = [input_ids]
# hosts = [input.host for input in inputs]
# trt_types = [trt.int32]
# for numpy_array, host, trt_types in zip(numpy_array_input, hosts, trt_types):
# numpy_array = np.asarray(numpy_array).ravel()
# np.copyto(host, numpy_array)
# def do_inference(context, bindings, inputs, outputs, stream):
# [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
# context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
# [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
# stream.synchronize()
# return [out.host for out in outputs]
# trt_outputs = do_inference(
# context=context,
# bindings=bindings,
# inputs=inputs,
# outputs=outputs,
# stream=stream)
def infer(context, input_img, output_size, batch_size):
# Load engine
# engine = context.get_engine()
# assert(engine.get_nb_bindings() == 2)
# Convert input data to float32
input_img = input_img.astype(np.float32)
# Create host buffer to receive data
output = np.empty(output_size, dtype = np.float32)
# Allocate device memory
d_input = cuda.mem_alloc(batch_size * input_img.size * input_img.dtype.itemsize)
d_output = cuda.mem_alloc(batch_size * output.size * output.dtype.itemsize)
bindings = [int(d_input), int(d_output)]
stream = cuda.Stream()
# Transfer input data to device
cuda.memcpy_htod_async(d_input, input_img, stream)
# Execute model
context.execute_async(batch_size, bindings, stream.handle, None)
# Transfer predictions back
cuda.memcpy_dtoh_async(output, d_output, stream)
# Synchronize threads
stream.synchronize()
# Return predictions
return output
# kwargs = {"./dataset/DoS_dataset.csv" : './DoS_dataset.txt'}
# train_data_set, data_idx_map, net_class_count, net_data_count, test_data_set = dataset.GetCanDatasetUsingTxtKwarg(100, 0, **kwargs)
# testloader = torch.utils.data.DataLoader(test_data_set, batch_size=256,
# shuffle=False, num_workers=2)
check_time = time.time()
cnt = 0
temp = np.ones([256, 1, 29, 29])
for idx in range(100):
# for i, (inputs, labels) in enumerate(testloader):
trt_outputs = infer(context, temp, (256, 2), 256)
print(trt_outputs.shape)
# print(trt_outputs)
# print(np.argmax(trt_outputs, axis=0))
# cnt += 1
# if cnt == 100:
# break
print(time.time() - check_time)
tensorrt_file_name = 'bert_int.plan'
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
trt_runtime = trt.Runtime(TRT_LOGGER)
with open(tensorrt_file_name, 'rb') as f:
engine_data = f.read()
engine = trt_runtime.deserialize_cuda_engine(engine_data)
context = engine.create_execution_context()
check_time = time.time()
cnt = 0
temp = np.ones([256, 1, 29, 29])
for idx in range(100):
# for i, (inputs, labels) in enumerate(testloader):
trt_outputs = infer(context, temp, (256, 2), 256)
print(trt_outputs.shape)
# print(trt_outputs)
# print(np.argmax(trt_outputs, axis=0))
# cnt += 1
# if cnt == 100:
# break
print(time.time() - check_time)
test_model = model.Net().cuda()
check_time = time.time()
cnt = 0
temp = torch.randn(256, 1, 29, 29).cuda()
for idx in range(100):
# for i, (inputs, labels) in enumerate(testloader):
# inputs = inputs.float().cuda()
normal_outputs = test_model(temp)
# print(normal_outputs)
print(normal_outputs.shape)
cnt += 1
if cnt == 100:
break
print(time.time() - check_time)
import tensorrt as trt
import numpy as np
import pycuda.autoinit
import pycuda.driver as cuda
import time
model_path = "bert.onnx"
input_size = 32
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
# def build_engine(model_path):
# with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
# builder.max_workspace_size = 1<<20
# builder.max_batch_size = 1
# with open(model_path, "rb") as f:
# parser.parse(f.read())
# engine = builder.build_cuda_engine(network)
# return engine
def alloc_buf(engine):
# host cpu mem
h_in_size = trt.volume(engine.get_binding_shape(0))
h_out_size = trt.volume(engine.get_binding_shape(1))
h_in_dtype = trt.nptype(engine.get_binding_dtype(0))
h_out_dtype = trt.nptype(engine.get_binding_dtype(1))
in_cpu = cuda.pagelocked_empty(h_in_size, h_in_dtype)
out_cpu = cuda.pagelocked_empty(h_out_size, h_out_dtype)
# allocate gpu mem
in_gpu = cuda.mem_alloc(in_cpu.nbytes)
out_gpu = cuda.mem_alloc(out_cpu.nbytes)
stream = cuda.Stream()
return in_cpu, out_cpu, in_gpu, out_gpu, stream
def inference(engine, context, inputs, out_cpu, in_gpu, out_gpu, stream):
# async version
# with engine.create_execution_context() as context: # cost time to initialize
# cuda.memcpy_htod_async(in_gpu, inputs, stream)
# context.execute_async(1, [int(in_gpu), int(out_gpu)], stream.handle, None)
# cuda.memcpy_dtoh_async(out_cpu, out_gpu, stream)
# stream.synchronize()
# sync version
cuda.memcpy_htod(in_gpu, inputs)
context.execute(1, [int(in_gpu), int(out_gpu)])
cuda.memcpy_dtoh(out_cpu, out_gpu)
return out_cpu
if __name__ == "__main__":
inputs = np.random.random((1, 1, 29, 29)).astype(np.float32)
tensorrt_file_name = '/content/drive/My Drive/capstone1/CAN/bert.plan'
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
trt_runtime = trt.Runtime(TRT_LOGGER)
with open(tensorrt_file_name, 'rb') as f:
engine_data = f.read()
engine = trt_runtime.deserialize_cuda_engine(engine_data)
# engine = build_engine(model_path)
context = engine.create_execution_context()
for _ in range(10):
t1 = time.time()
in_cpu, out_cpu, in_gpu, out_gpu, stream = alloc_buf(engine)
res = inference(engine, context, inputs.reshape(-1), out_cpu, in_gpu, out_gpu, stream)
print(res)
print("cost time: ", time.time()-t1)