utils_simple.py
2.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import argparse
import json
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torch.utils.data as data
import math
import copy
import time
import model
import torch.quantization
from torch.quantization import QuantStub, DeQuantStub
def run_benchmark(model_file, img_loader):
elapsed = 0
# myModel = torch.jit.load(model_file)
# torch.backends.quantized.engine='fbgemm'
# myModel.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
# myModel.eval()
myModel = model.Net()
# myModel = torch.quantization.quantize_dynamic(myModel, {torch.nn.Linear, torch.nn.Sequential}, dtype=torch.qint8)
# print(myModel)
# set quantization config for server (x86)
myModel.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
num_batches = 10
# # insert observers
torch.quantization.prepare(myModel, inplace=True)
# # Calibrate the model and collect statistics
with torch.no_grad():
for i, (images, target) in enumerate(img_loader):
images = images.float()
target = target.long()
if i < num_batches:
start = time.time()
output = myModel(images)
end = time.time()
# elapsed = elapsed + (end-start)
else:
break
# # convert to quantized version
torch.quantization.convert(myModel, inplace=True)
# quant = QuantStub()
with torch.no_grad():
for i, (images, target) in enumerate(img_loader):
images = images.float()
target = target.long()
if i < num_batches:
start = time.time()
output = myModel(images)
end = time.time()
elapsed = elapsed + (end-start)
else:
break
num_images = images.size()[0] * num_batches
print(elapsed)
print('Elapsed time: %3.0f ms' % (elapsed/num_images*1000))
return elapsed
def init_models(n_nets, args):
models = []
layer_shape = []
layer_type = []
for idx in range(n_nets):
models.append(model.Net())
for (k, v) in models[0].state_dict().items():
layer_shape.append(v.shape)
layer_type.append(k)
return models, layer_shape, layer_type