Toggle navigation
Toggle navigation
This project
Loading...
Sign in
2020-2-capstone-design1
/
HCS_project
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
김지훈
2020-11-13 16:12:33 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
92dff93ac011b62ff1708c4fbcf5b866ca298c71
92dff93a
1 parent
e2b95d2f
tensorRT ipynb
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
299 additions
and
0 deletions
코드/연합학습/quantization/install_tensorRT.ipynb
코드/연합학습/quantization/install_tensorRT.ipynb
0 → 100644
View file @
92dff93
{
"nbformat"
:
4
,
"nbformat_minor"
:
0
,
"metadata"
:
{
"colab"
:
{
"name"
:
"Untitled0.ipynb"
,
"provenance"
:
[],
"private_outputs"
:
true
,
"collapsed_sections"
:
[]
},
"kernelspec"
:
{
"name"
:
"python3"
,
"display_name"
:
"Python 3"
},
"accelerator"
:
"GPU"
},
"cells"
:
[
{
"cell_type"
:
"markdown"
,
"metadata"
:
{
"id"
:
"8k6IDrTDGZ5W"
},
"source"
:
[
"## Pytorch 추론시간 단축을 위한 정밀도 감소 - TensorRT / torch2trt library
\n
"
,
"
\n
"
,
"### 환경설정
\n
"
,
"
\n
"
,
"- [Nvidia developer portal](https://developer.nvidia.com/nvidia-tensorrt-7x-download) 회원가입
\n
"
,
"- TensorRT 7.0.0.11 for Ubuntu 1804 and CUDA 10.0 DEB local repo package 다운로드 후 colab 업로드
\n
"
,
"
\n
"
,
"### TensorRT 7.0 을 colab 에 설치하는 방법"
]
},
{
"cell_type"
:
"code"
,
"metadata"
:
{
"id"
:
"ApojKcRcGf2j"
},
"source"
:
[
"!nvcc --version"
],
"execution_count"
:
null
,
"outputs"
:
[]
},
{
"cell_type"
:
"markdown"
,
"metadata"
:
{
"id"
:
"NZD-bw7YIlHL"
},
"source"
:
[
"### colab CUDA 10.1 삭제"
]
},
{
"cell_type"
:
"code"
,
"metadata"
:
{
"id"
:
"jJQrjrcfIm8u"
},
"source"
:
[
"# remove CUDA 10.1
\n
"
,
"
\n
"
,
"!sudo apt-get --purge remove cuda nvidia* libnvidia-*
\n
"
,
"!sudo dpkg -l | grep cuda- | awk '{print $2}' | xargs -n1 dpkg --purge
\n
"
,
"!sudo apt-get remove cuda-*
\n
"
,
"!sudo apt autoremove
\n
"
,
"!sudo apt-get update"
],
"execution_count"
:
null
,
"outputs"
:
[]
},
{
"cell_type"
:
"markdown"
,
"metadata"
:
{
"id"
:
"tRhvY4fZIygS"
},
"source"
:
[
"### CUDA 10.0 설치 - 입력 세번 필요 (Y, 31, 1)"
]
},
{
"cell_type"
:
"code"
,
"metadata"
:
{
"id"
:
"73tZNq2WI41u"
},
"source"
:
[
"# Installing CUDA 10.0
\n
"
,
"
\n
"
,
"!wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.0.130-1_amd64.deb
\n
"
,
"!sudo dpkg -i cuda-repo-ubuntu1804_10.0.130-1_amd64.deb
\n
"
,
"!sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
\n
"
,
"!sudo apt-get update
\n
"
,
"!wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
\n
"
,
"!sudo apt install -y ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
\n
"
,
"!sudo apt-get update
\n
"
,
"
\n
"
,
"# Install NVIDIA driver
\n
"
,
"!sudo apt-get -y installnvidia-driver-418
\n
"
,
"
\n
"
,
"# Install development and runtime libraries (~4GB)
\n
"
,
"!sudo apt-get install -y
\\\n
"
,
" cuda-10-0
\\\n
"
,
" libcudnn7=7.6.2.24-1+cuda10.0
\\\n
"
,
" libcudnn7-dev=7.6.2.24-1+cuda10.0 --allow-change-held-packages"
],
"execution_count"
:
null
,
"outputs"
:
[]
},
{
"cell_type"
:
"code"
,
"metadata"
:
{
"id"
:
"5HAS_SQ7LBgj"
},
"source"
:
[
"!nvcc --version"
],
"execution_count"
:
null
,
"outputs"
:
[]
},
{
"cell_type"
:
"markdown"
,
"metadata"
:
{
"id"
:
"emv-dfsgLEE9"
},
"source"
:
[
"### TensorRT 설치 - colab .deb 파일 경로 확인"
]
},
{
"cell_type"
:
"code"
,
"metadata"
:
{
"id"
:
"YI96JETCLJ3I"
},
"source"
:
[
"# install tensorrt
\n
"
,
"!sudo dpkg -i
\"
/content/drive/My Drive/capstone1/CAN/nv-tensorrt-repo-ubuntu1804-cuda10.0-trt7.0.0.11-ga-20191216_1-1_amd64.deb
\"\n
"
,
"!sudo apt-key add /var/nv-tensorrt-repo-cuda10.0-trt7.0.0.11-ga-20191216/7fa2af80.pub
\n
"
,
"
\n
"
,
"!sudo apt-get update
\n
"
,
"
\n
"
,
"!sudo apt-get install libnvinfer7=7.0.0-1+cuda10.0 libnvonnxparsers7=7.0.0-1+cuda10.0 libnvparsers7=7.0.0-1+cuda10.0 libnvinfer-plugin7=7.0.0-1+cuda10.0 libnvinfer-dev=7.0.0-1+cuda10.0 libnvonnxparsers-dev=7.0.0-1+cuda10.0 libnvparsers-dev=7.0.0-1+cuda10.0 libnvinfer-plugin-dev=7.0.0-1+cuda10.0 python-libnvinfer=7.0.0-1+cuda10.0 python3-libnvinfer=7.0.0-1+cuda10.0
\n
"
,
"
\n
"
,
"!sudo apt-mark hold libnvinfer7 libnvonnxparsers7 libnvparsers7 libnvinfer-plugin7 libnvinfer-dev libnvonnxparsers-dev libnvparsers-dev libnvinfer-plugin-dev python-libnvinfer python3-libnvinfer
\n
"
,
"
\n
"
,
"!sudo apt-get install tensorrt"
],
"execution_count"
:
null
,
"outputs"
:
[]
},
{
"cell_type"
:
"markdown"
,
"metadata"
:
{
"id"
:
"DcpWP5snL2yy"
},
"source"
:
[
"### TensorRT 설치 확인"
]
},
{
"cell_type"
:
"code"
,
"metadata"
:
{
"id"
:
"uOW85nnxLdSB"
},
"source"
:
[
"!dpkg -l | grep TensorRT"
],
"execution_count"
:
null
,
"outputs"
:
[]
},
{
"cell_type"
:
"markdown"
,
"metadata"
:
{
"id"
:
"k7xHrhZuNb0U"
},
"source"
:
[
"### 런타임 다시시작하기"
]
},
{
"cell_type"
:
"markdown"
,
"metadata"
:
{
"id"
:
"8EQ__AkjMH9G"
},
"source"
:
[
"### [torch2trt](https://github.com/NVIDIA-AI-IOT/torch2trt) 라이브러리 설치"
]
},
{
"cell_type"
:
"code"
,
"metadata"
:
{
"id"
:
"k7IztAyvMGlP"
},
"source"
:
[
"cd /content/drive/My
\\
Drive/capstone1/CAN"
],
"execution_count"
:
null
,
"outputs"
:
[]
},
{
"cell_type"
:
"code"
,
"metadata"
:
{
"id"
:
"qR0V215wMHXF"
},
"source"
:
[
"!pip3 install pycuda
\n
"
,
"!git clone https://github.com/NVIDIA-AI-IOT/torch2trt"
],
"execution_count"
:
null
,
"outputs"
:
[]
},
{
"cell_type"
:
"code"
,
"metadata"
:
{
"id"
:
"fG9UtL6sNAgM"
},
"source"
:
[
"cd /content/drive/My
\\
Drive/capstone1/CAN/torch2trt"
],
"execution_count"
:
null
,
"outputs"
:
[]
},
{
"cell_type"
:
"code"
,
"metadata"
:
{
"id"
:
"iMEc08ilNDW8"
},
"source"
:
[
"!python setup.py install"
],
"execution_count"
:
null
,
"outputs"
:
[]
},
{
"cell_type"
:
"code"
,
"metadata"
:
{
"id"
:
"LpK7xRFdNVbr"
},
"source"
:
[
"import tensorrt
\n
"
,
"import torch2trt"
],
"execution_count"
:
null
,
"outputs"
:
[]
},
{
"cell_type"
:
"markdown"
,
"metadata"
:
{
"id"
:
"M1DDuNL4Npn-"
},
"source"
:
[
"### 추론시간 비교하기"
]
},
{
"cell_type"
:
"code"
,
"metadata"
:
{
"id"
:
"9WddajL5Pj6E"
},
"source"
:
[
"cd /content/drive/My
\\
Drive/capstone1/CAN"
],
"execution_count"
:
null
,
"outputs"
:
[]
},
{
"cell_type"
:
"code"
,
"metadata"
:
{
"id"
:
"PgKGWmSqNr4z"
},
"source"
:
[
"import utils
\n
"
,
"import numpy as np
\n
"
,
"import importlib
\n
"
,
"importlib.reload(utils)
\n
"
,
"
\n
"
,
"utils.run_benchmark('./weights/fed_avg_50_0.9688.pth')"
],
"execution_count"
:
null
,
"outputs"
:
[]
},
{
"cell_type"
:
"markdown"
,
"metadata"
:
{
"id"
:
"qh7_UaFsRykh"
},
"source"
:
[
"- torch: 464 msc / 96.87 % / 0.05931
\n
"
,
"- trt: 354 msc / 96.87 % / 0.05931
\n
"
,
"- trt float 16: 323 msc / 96.87 % / 0.05931
\n
"
,
"- trt int8 strict: 401 msc / 96.86 % / 06405
\n
"
,
"
\n
"
,
"
\n
"
,
"#### int8 양자화 실패한 이유 추측
\n
"
,
"- input 이 0.0 ~ 1.0 이기 때문에 계산이 전부 float 연산
\n
"
,
"- nvidia tensorRT 가 정확도가 너무 낮아질 경우 양자화 무시
\n
"
,
"- 사용법 미숙, 모델이 너무 간단함
\n
"
]
}
]
}
\ No newline at end of file
Please
register
or
login
to post a comment