detect_mask_video_test4.py 21.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
# USAGE
# python detect_mask_video.py

# import the necessary packages
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
import numpy as np
import argparse
import os
import cv2
import sys
from PyQt5 import QtCore
from PyQt5 import QtWidgets
from PyQt5 import QtGui
from PyQt5 import QtTest
import pyaudio
import wave
import requests

#Audio
# Record Audio의 startRecording 메서드에서 input_device_index는 기기마다 다름.
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 16000
CHUNK = 1024
MAX_RECORD_SECONDS = 30
WAVE_OUTPUT_FILENAME = "saved_voice\\audiofile\\file.wav"
WAVE_ENROLL_FILENAME = "saved_voice\\enrollfile\\file.wav"
#URL
URL = 'http://163.180.146.68:7777/{}'
#SpeakerRecognition
THRESHOLD = 0.8
SPEAKER_ID = 'NA'

class ShowVideo(QtCore.QObject):
    flag_detect_mask = True
    run_video = True

    camera = cv2.VideoCapture(0)  # 연결된 영상장치 index, 기본은 0

    ret, image = camera.read()  # 2개의 값 리턴, 첫 번째는 프레임 읽음여부, 두 번째는 프레임 자체
    height, width = image.shape[:2]

    VideoSignal1 = QtCore.pyqtSignal(QtGui.QImage)  # VideoSignal1이라는 사용자 정의 시그널 생성

    def __init__(self, parent=None):
        super(ShowVideo, self).__init__(parent)

    @QtCore.pyqtSlot()
    def startVideo(self, faceNet, maskNet):
        global image

        run_video = True
        self.flag_detect_mask = True
        while run_video:
            ret, image = self.camera.read()

            # detect faces in the frame and determine if they are wearing a
            # face mask or not
            QtWidgets.QApplication.processEvents()
            if self.flag_detect_mask:
                (locs, preds) = detect_and_predict_mask(image, faceNet, maskNet)

                # QtWidgets.QApplication.processEvents()
            # if self.flag_detect_mask:
                frame = image
                # loop over the detected face locations and their corresponding
                # locations
                for (box, pred) in zip(locs, preds):
                    # unpack the bounding box and predictions
                    (startX, startY, endX, endY) = box
                    (mask, withoutMask) = pred

                    # determine the class label and color we'll use to draw
                    # the bounding box and text
                    label = "Mask" if mask > withoutMask else "No Mask"  # 박스 상단 출력 string
                    color = (0, 255, 0) if label == "Mask" else (0, 0, 255)

                    # include the probability in the label
                    label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)

                    # display the label and bounding box rectangle on the output
                    # frame
                    cv2.putText(frame, label, (startX, startY - 10),  # label에 string들어감
                                cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
                    cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
                image = frame
            ###
            color_swapped_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

            qt_image1 = QtGui.QImage(color_swapped_image.data,
                                     self.width,
                                     self.height,
                                     color_swapped_image.strides[0],
                                     QtGui.QImage.Format_RGB888)
            self.VideoSignal1.emit(qt_image1)

            loop = QtCore.QEventLoop()
            QtCore.QTimer.singleShot(25, loop.quit)  # 25 ms
            loop.exec_()

    @QtCore.pyqtSlot()
    def maskdetectionoff(self):
        self.flag_detect_mask = False


class ImageViewer(QtWidgets.QWidget):
    def __init__(self, parent=None):
        super(ImageViewer, self).__init__(parent)
        self.image = QtGui.QImage()
        self.setAttribute(QtCore.Qt.WA_OpaquePaintEvent)

    def paintEvent(self, event):
        painter = QtGui.QPainter(self)
        painter.drawImage(0, 0, self.image)
        self.image = QtGui.QImage()

    def initUI(self):
        self.setWindowTitle('Webcam')

    @QtCore.pyqtSlot(QtGui.QImage)
    def setImage(self, image):
        if image.isNull():
            print("Viewer Dropped frame!")

        self.image = image
        if image.size() != self.size():
            self.setFixedSize(image.size())
        self.update()


def detect_and_predict_mask(frame, faceNet, maskNet):
    # grab the dimensions of the frame and then construct a blob
    # from it
    (h, w) = frame.shape[:2]
    blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300),
                                 (104.0, 177.0, 123.0))

    # pass the blob through the network and obtain the face detections
    faceNet.setInput(blob)
    detections = faceNet.forward()

    # initialize our list of faces, their corresponding locations,
    # and the list of predictions from our face mask network
    faces = []
    locs = []
    preds = []

    # loop over the detections
    for i in range(0, detections.shape[2]):
        # extract the confidence (i.e., probability) associated with
        # the detection
        confidence = detections[0, 0, i, 2]

        # filter out weak detections by ensuring the confidence is
        # greater than the minimum confidence
        if confidence > args["confidence"]:
            # compute the (x, y)-coordinates of the bounding box for
            # the object
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")

            # ensure the bounding boxes fall within the dimensions of
            # the frame
            (startX, startY) = (max(0, startX), max(0, startY))
            (endX, endY) = (min(w - 1, endX), min(h - 1, endY))

            # extract the face ROI, convert it from BGR to RGB channel
            # ordering, resize it to 224x224, and preprocess it
            face = frame[startY:endY, startX:endX]
            face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
            face = cv2.resize(face, (224, 224))
            face = img_to_array(face)
            face = preprocess_input(face)

            # add the face and bounding boxes to their respective
            # lists
            faces.append(face)
            locs.append((startX, startY, endX, endY))

    # only make a predictions if at least one face was detected
    if len(faces) > 0:
        # for faster inference we'll make batch predictions on *all*
        # faces at the same time rather than one-by-one predictions
        # in the above `for` loop
        faces = np.array(faces, dtype="float32")
        preds = maskNet.predict(faces, batch_size=32)

    # return a 2-tuple of the face locations and their corresponding
    # locations
    return (locs, preds)


class SpeakerRecognition(QtWidgets.QWidget):
    verification_url = URL.format('verification')
    identification_url = URL.format('identification')
    enrollment_url = URL.format('enroll')
    speaker_id = ''

    def __init__(self, parent=None):
        super(SpeakerRecognition, self).__init__(parent)
        self.initUI()

    def initUI(self):
        self.label_1_1 = QtWidgets.QLabel('Result Message: ', self)
        self.label_1_2 = QtWidgets.QLabel('', self)
        self.push_button5 =QtWidgets.QPushButton('Authenticate', self)
        self.push_button5.clicked.connect(self.doAction)

        self.dialog_button = QtWidgets.QPushButton('화자 ID 입력:', self)
        self.dialog_button.clicked.connect(self.showDialog)
        self.le = QtWidgets.QLineEdit(self)

        self.register_button = QtWidgets.QPushButton('Register new voice', self)
        self.register_button.clicked.connect(self.switch_enrollment)

    def verification(self, speaker):
        try:
            with open(WAVE_OUTPUT_FILENAME, 'rb') as file_opened:
                files = {'file': file_opened}
                data = {'enroll_speaker': speaker}
                r = requests.post(self.verification_url, files=files, data=data)
                print(r.text)
                return r.text
        except FileNotFoundError:
            return False

    def identification(self):
        try:
            with open(WAVE_OUTPUT_FILENAME, 'rb') as file_opened:
                files = {'file': file_opened}
                r = requests.post(self.identification_url, files=files)
                print(r.text)
                return r.text
        except FileNotFoundError:
            return False

    def recognition(self):
        speaker = self.identification()
        if speaker == False:
            print('Record voice first!')
            return False

        percentage = self.verification(speaker)
        print(speaker, percentage)

        if float(percentage) >= THRESHOLD:
            result = '승인! 등록된 화자입니다.'
            #result = speaker
        else:
            result = '등록되지 않은 화자입니다!'
        return result

    @QtCore.pyqtSlot()
    def doAction(self):
        recog = self.recognition()
        if recog == False:
            self.label_1_2.setText('Voice not recorded, record voice first!')
        else:
            self.label_1_2.setText(recog)

    def enrollment(self, speaker_id):
        try:
            if speaker_id == '':
                return 0
            with open(WAVE_ENROLL_FILENAME, 'rb') as file_opened:
                files = {'file': file_opened}
                data = {'enroll_speaker': speaker_id}
                r = requests.post(self.enrollment_url, files=files, data=data)
                print(r.text)
                return r.text
        except FileNotFoundError:
            return 1

    def switch_enrollment(self):
        enroll = self.enrollment(self.speaker_id)
        if enroll == 1:
            self.label_1_2.setText('Voice not recorded, record voice first!')
        elif enroll == 0:
            self.label_1_2.setText('No speaker ID input!')
        else:
            self.label_1_2.setText("""New speaker registered!('%s')""" % self.speaker_id)
            self.speaker_id = ''
            self.le.setText(self.speaker_id)

    def showDialog(self):
        text, ok = QtWidgets.QInputDialog.getText(self, '화자 등록',
                                                  '등록할 화자 ID(Unique 값)을 입력하십시오:')
        if ok:
            self.le.setText(str(text))
            self.speaker_id = str(text)

class RecordAudio(QtCore.QObject):
    isrecording = False
    frames = []

    def __init__(self, parent=None):
        super(RecordAudio, self).__init__(parent)

    @QtCore.pyqtSlot()
    def startRecording(self):
        # start Recording
        self.audio = pyaudio.PyAudio()
        self.stream = self.audio.open(format=pyaudio.paInt16,
                                      channels=CHANNELS,
                                      rate=RATE,
                                      input=True,
                                      input_device_index=1,  # 기기마다 마이크 인덱스 다름
                                      frames_per_buffer=CHUNK)
        self.isrecording = True
        print("recording...")

        # frames = []
        self.frames.clear()

        for i in range(0, int(RATE / CHUNK * MAX_RECORD_SECONDS)):
            QtWidgets.QApplication.processEvents()
            if self.isrecording:
                data = self.stream.read(CHUNK)
                self.frames.append(data)
            else:
                print("Stopped recording")
                break
        print("finished recording")

        # stop Recording
        self.stream.stop_stream()
        self.stream.close()
        self.audio.terminate()
        waveFile = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
        waveFile.setnchannels(CHANNELS)
        waveFile.setsampwidth(self.audio.get_sample_size(FORMAT))
        waveFile.setframerate(RATE)
        waveFile.writeframes(b''.join(self.frames))
        waveFile.close()
        self.frames.clear()

    def stopRecording(self):
        print("stop called")
        self.isrecording = False

    def switch(self):
        if self.isrecording:
            QtTest.QTest.qWait(1 * 1000)
            self.stopRecording()
        else:
            self.startRecording()

class RecordAudio_enroll(QtCore.QObject):
    isrecording = False
    frames = []

    def __init__(self, parent=None):
        super(RecordAudio_enroll, self).__init__(parent)

    @QtCore.pyqtSlot()
    def startRecording(self):
        # start Recording
        self.audio = pyaudio.PyAudio()
        self.stream = self.audio.open(format=pyaudio.paInt16,
                                      channels=CHANNELS,
                                      rate=RATE,
                                      input=True,
                                      input_device_index=1,  # 기기마다 마이크 인덱스 다름
                                      frames_per_buffer=CHUNK)
        self.isrecording = True
        print("recording...")

        # frames = []
        self.frames.clear()

        for i in range(0, int(RATE / CHUNK * MAX_RECORD_SECONDS)):
            QtWidgets.QApplication.processEvents()
            if self.isrecording:
                data = self.stream.read(CHUNK)
                self.frames.append(data)
            else:
                print("Stopped recording")
                break
        print("finished recording")

        # stop Recording
        self.stream.stop_stream()
        self.stream.close()
        self.audio.terminate()
        waveFile = wave.open(WAVE_ENROLL_FILENAME, 'wb')
        waveFile.setnchannels(CHANNELS)
        waveFile.setsampwidth(self.audio.get_sample_size(FORMAT))
        waveFile.setframerate(RATE)
        waveFile.writeframes(b''.join(self.frames))
        waveFile.close()
        self.frames.clear()

    def stopRecording(self):
        print("stop called")
        self.isrecording = False

    def switch(self):
        if self.isrecording:
            QtTest.QTest.qWait(1 * 1000)
            self.stopRecording()
        else:
            self.startRecording()

class RecordViewer(QtWidgets.QWidget):
    def __init__(self, parent=None):
        super(RecordViewer, self).__init__(parent)
        self.initUI()

    def initUI(self):
        self.pbar = QtWidgets.QProgressBar(self)
        self.pbar.setFixedWidth(400)
        self.pbar.setMaximum(MAX_RECORD_SECONDS)
        self.pbar.setAlignment(QtCore.Qt.AlignCenter)

        self.push_button3 = QtWidgets.QPushButton('Start Audio Record', self)
        self.push_button3.clicked.connect(self.doAction)

        self.timer = QtCore.QBasicTimer()
        self.step = 0

    def timerEvent(self, e):
        if self.step >= MAX_RECORD_SECONDS:
            self.timer.stop()
            self.push_button3.setText("Restart")
            return
        self.step = self.step + 1
        self.pbar.setValue(self.step)
        self.pbar.setFormat("%d sec" % self.step)

    @QtCore.pyqtSlot()
    def doAction(self):
        if self.timer.isActive():
            self.timer.stop()
            self.push_button3.setText("Restart")
        else:
            self.pbar.reset()
            self.step = 0
            self.timer.start(1000, self)  # 1000/1000초마다 timer실행
            self.push_button3.setText("Stop")


if __name__ == '__main__':
    # construct the argument parser and parse the arguments
    ap = argparse.ArgumentParser()
    ap.add_argument("-f", "--face", type=str, default="face_detector",
                    help="path to face detector model directory")
    ap.add_argument("-m", "--model", type=str, default="mask_detector.model",
                    help="path to trained face mask detector model")
    ap.add_argument("-c", "--confidence", type=float, default=0.5,
                    help="minimum probability to filter weak detections")
    args = vars(ap.parse_args())

    # load our serialized face detector model from disk
    print("[INFO] loading face detector model...")
    prototxtPath = os.path.sep.join([args["face"], "deploy.prototxt"])
    weightsPath = os.path.sep.join([args["face"],
                                    "res10_300x300_ssd_iter_140000.caffemodel"])
    faceNet = cv2.dnn.readNet(prototxtPath, weightsPath)

    # load the face mask detector model from disk
    print("[INFO] loading face mask detector model...")
    maskNet = load_model(args["model"])

    app = QtWidgets.QApplication(sys.argv)  # app 생성

    thread = QtCore.QThread()
    thread.start()
    vid = ShowVideo()
    vid.moveToThread(thread)

    thread2 = QtCore.QThread()
    thread2.start()
    aud = RecordViewer()
    aud.moveToThread(thread2)

    thread3 = QtCore.QThread()
    thread3.start()
    mic = RecordAudio_enroll()
    mic.moveToThread(thread3)

    thread4 = QtCore.QThread()
    thread4.start()
    sr = SpeakerRecognition()
    sr.moveToThread(thread4)

    thread5 = QtCore.QThread()
    thread5.start()
    aud2 = RecordViewer()
    aud2.moveToThread(thread5)

    thread6 = QtCore.QThread()
    thread6.start()
    mic2 = RecordAudio()
    mic2.moveToThread(thread6)

    thread7 = QtCore.QThread()
    thread7.start()
    sr2 = SpeakerRecognition()
    sr2.moveToThread(thread7)


    image_viewer1 = ImageViewer()

    vid.VideoSignal1.connect(image_viewer1.setImage)

    push_button1 = QtWidgets.QPushButton('Start Mask Detection')
    push_button2 = QtWidgets.QPushButton('Mask Detection Off')
    push_button4 = QtWidgets.QPushButton('Close')

    push_button1.clicked.connect(lambda: vid.startVideo(faceNet, maskNet))
    push_button2.clicked.connect(vid.maskdetectionoff)
    aud.push_button3.clicked.connect(mic.switch)
    push_button4.clicked.connect(sys.exit)
    aud2.push_button3.clicked.connect(mic2.switch)

    empty_label = QtWidgets.QLabel()
    empty_label.setText('')

    L_groupBox = QtWidgets.QGroupBox("Mask Detection")
    LR_layout = QtWidgets.QVBoxLayout()
    LR_layout.addWidget(push_button1)
    LR_layout.addWidget(push_button2)
    LR_layout.addStretch(1)

    L_horizontal_layout1 = QtWidgets.QHBoxLayout()
    L_horizontal_layout1.addWidget(image_viewer1)
    L_horizontal_layout1.addLayout(LR_layout)
    L_groupBox.setLayout(L_horizontal_layout1)

    RU_groupBox = QtWidgets.QGroupBox("Voice Record")
    pbar_layout = QtWidgets.QHBoxLayout()
    pbar_layout.addWidget(aud.pbar)
    pbar_layout.addStretch(1)
    ##
    dialog_layout = QtWidgets.QHBoxLayout()
    dialog_layout.addWidget(sr2.dialog_button)
    dialog_layout.addWidget(sr2.le)
    dialog_layout.addStretch(1)

    register_layout = QtWidgets.QHBoxLayout()
    register_layout.addWidget(sr2.register_button)

    result_1_layout = QtWidgets.QHBoxLayout()
    result_1_layout.addWidget(sr2.label_1_1)
    result_1_layout.addWidget(sr2.label_1_2)
    result_1_layout.addStretch(1)
    ##
    RL_label1 = QtWidgets.QLabel()
    RL_label1.setText("Max Record Time: 30 sec")
    RL_label2 = QtWidgets.QLabel()
    RL_label2.setText("Press Start/Restart to begin recording")

    RL_layout = QtWidgets.QVBoxLayout()
    RL_layout.addLayout(pbar_layout)
    RL_layout.addWidget(RL_label1)
    RL_layout.addWidget(RL_label2)
    RL_layout.addLayout(dialog_layout)
    RL_layout.addLayout(result_1_layout)
    RL_layout.addStretch(1)

    push_button3_layout = QtWidgets.QHBoxLayout()
    push_button3_layout.addWidget(aud.push_button3)
    # push_button3_layout.addStretch(1)

    # close_layout = QtWidgets.QHBoxLayout()
    # close_layout.addWidget(push_button4)

    RR_layout = QtWidgets.QVBoxLayout()
    RR_layout.addLayout(push_button3_layout)
    RR_layout.addWidget(empty_label)
    RR_layout.addWidget(empty_label)
    RR_layout.addLayout(register_layout)
    RR_layout.addStretch(1)
    # RR_layout.addLayout(close_layout)

    R_horizontal_layout2 = QtWidgets.QHBoxLayout()
    R_horizontal_layout2.addLayout(RL_layout)
    R_horizontal_layout2.addLayout(RR_layout)
    RU_groupBox.setLayout(R_horizontal_layout2)


    RD_groupBox = QtWidgets.QGroupBox("Speaker Recognition")
###
    pbar_2_layout = QtWidgets.QHBoxLayout()
    pbar_2_layout.addWidget(aud2.pbar)
    pbar_2_layout.addStretch(1)

    RDL_label1 = QtWidgets.QLabel()
    RDL_label1.setText("Max Record Time: 30 sec")
    RDL_label2 = QtWidgets.QLabel()
    RDL_label2.setText("Press Start/Restart to begin recording")

    push_button3_2_layout = QtWidgets.QHBoxLayout()
    push_button3_2_layout.addWidget(aud2.push_button3)
###
    result_2_layout = QtWidgets.QHBoxLayout()
    result_2_layout.addWidget(sr.label_1_1)
    result_2_layout.addWidget(sr.label_1_2)
    result_2_layout.addStretch(1)

    RDL_layout = QtWidgets.QVBoxLayout()
    RDL_layout.addLayout(pbar_2_layout)
    RDL_layout.addWidget(RDL_label1)
    RDL_layout.addWidget(RDL_label2)
    RDL_layout.addWidget(empty_label)
    RDL_layout.addLayout(result_2_layout)
    RDL_layout.addStretch(1)

    push_button5_layout = QtWidgets.QHBoxLayout()
    push_button5_layout.addWidget(sr.push_button5)

    close_layout = QtWidgets.QHBoxLayout()
    close_layout.addWidget(push_button4)

    RDR_layout = QtWidgets.QVBoxLayout()
    RDR_layout.addLayout(push_button3_2_layout)
    RDR_layout.addWidget(empty_label)
    RDR_layout.addWidget(empty_label)
    RDR_layout.addWidget(empty_label)
    RDR_layout.addLayout(push_button5_layout)
    RDR_layout.addStretch(1)
    RDR_layout.addLayout(close_layout)

    RD_horizontal_layout = QtWidgets.QHBoxLayout()
    RD_horizontal_layout.addLayout(RDL_layout)
    RD_horizontal_layout.addLayout(RDR_layout)
    RD_groupBox.setLayout(RD_horizontal_layout)

    R_layout = QtWidgets.QVBoxLayout()
    R_layout.addWidget(RU_groupBox)
    R_layout.addWidget(RD_groupBox)

    layout = QtWidgets.QHBoxLayout()
    layout.addWidget(L_groupBox)
    layout.addLayout(R_layout)

    layout_widget = QtWidgets.QWidget()
    layout_widget.setLayout(layout)

    main_window = QtWidgets.QMainWindow()
    main_window.setGeometry(150, 150, 500, 500)  # test
    main_window.setCentralWidget(layout_widget)
    main_window.setWindowTitle('마스크 디텍션 및 화자 식별을 통한 입출입 시스템')  # main window 제목
    main_window.show()
    sys.exit(app.exec_())  # 프로그램 대기상태 유지, 무한루프