CardboardProfile.cs
16.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using System;
using UnityEngine;
/// @cond
/// Measurements of a particular phone in a particular Cardboard device.
[System.Serializable]
public class CardboardProfile {
public CardboardProfile Clone() {
return new CardboardProfile {
screen = this.screen,
device = this.device
};
}
/// Information about the screen. All distances are in meters, measured as the phone is expected
/// to be placed in the Cardboard, i.e. landscape orientation.
[System.Serializable]
public struct Screen {
public float width; // The long edge of the phone.
public float height; // The short edge of the phone.
public float border; // Distance from bottom of the cardboard to the bottom edge of screen.
}
/// Information about the lens placement in the Cardboard. All distances are in meters.
[System.Serializable]
public struct Lenses {
public float separation; // Center to center.
public float offset; // Offset of lens center from top or bottom of cardboard.
public float screenDistance; // Distance from lens center to the phone screen.
public int alignment; // Determines whether lenses are placed relative to top, bottom or
// center. It is actually a signum (-1, 0, +1) relating the scale of
// the offset's coordinates to the device coordinates.
public const int AlignTop = -1; // Offset is measured down from top of device.
public const int AlignCenter = 0; // Center alignment ignores offset, hence scale is zero.
public const int AlignBottom = 1; // Offset is measured up from bottom of device.
}
/// Information about the viewing angles through the lenses. All angles in degrees, measured
/// away from the optical axis, i.e. angles are all positive. It is assumed that left and right
/// eye FOVs are mirror images, so that both have the same inner and outer angles. Angles do not
/// need to account for the limits due to screen size.
[System.Serializable]
public struct MaxFOV {
public float outer; // Towards the side of the screen.
public float inner; // Towards the center line of the screen.
public float upper; // Towards the top of the screen.
public float lower; // Towards the bottom of the screen.
}
/// Information on how the lens distorts light rays. Also used for the (approximate) inverse
/// distortion. Assumes a radially symmetric pincushion/barrel distortion model.
[System.Serializable]
public struct Distortion {
public float k1;
public float k2;
public float distort(float r) {
float r2 = r * r;
return ((k2 * r2 + k1) * r2 + 1) * r;
}
public float distortInv(float radius) {
// Secant method.
float r0 = 0;
float r1 = 1;
float dr0 = radius - distort(r0);
while (Mathf.Abs(r1 - r0) > 0.0001f) {
float dr1 = radius - distort(r1);
float r2 = r1 - dr1 * ((r1 - r0) / (dr1 - dr0));
r0 = r1;
r1 = r2;
dr0 = dr1;
}
return r1;
}
}
/// Information about a particular device, including specfications on its lenses, FOV,
/// and distortion and inverse distortion coefficients.
[System.Serializable]
public struct Device {
public Lenses lenses;
public MaxFOV maxFOV;
public Distortion distortion;
public Distortion inverse;
}
/// Screen parameters of a Cardboard device.
public Screen screen;
/// Device parameters of a Cardboard device.
public Device device;
/// The vertical offset of the lens centers from the screen center.
public float VerticalLensOffset {
get {
return (device.lenses.offset - screen.border - screen.height/2) * device.lenses.alignment;
}
}
/// Some known screen profiles.
public enum ScreenSizes {
Nexus5,
Nexus6,
GalaxyS6,
GalaxyNote4,
LGG3,
iPhone4,
iPhone5,
iPhone6,
iPhone6p,
};
/// Parameters for a Nexus 5 device.
public static readonly Screen Nexus5 = new Screen {
width = 0.110f,
height = 0.062f,
border = 0.004f
};
/// Parameters for a Nexus 6 device.
public static readonly Screen Nexus6 = new Screen {
width = 0.133f,
height = 0.074f,
border = 0.004f
};
/// Parameters for a Galaxy S6 device.
public static readonly Screen GalaxyS6 = new Screen {
width = 0.114f,
height = 0.0635f,
border = 0.0035f
};
/// Parameters for a Galaxy Note4 device.
public static readonly Screen GalaxyNote4 = new Screen {
width = 0.125f,
height = 0.0705f,
border = 0.0045f
};
/// Parameters for a LG G3 device.
public static readonly Screen LGG3 = new Screen {
width = 0.121f,
height = 0.068f,
border = 0.003f
};
/// Parameters for an iPhone 4 device.
public static readonly Screen iPhone4 = new Screen {
width = 0.075f,
height = 0.050f,
border = 0.0045f
};
/// Parameters for an iPhone 5 device.
public static readonly Screen iPhone5 = new Screen {
width = 0.089f,
height = 0.050f,
border = 0.0045f
};
/// Parameters for an iPhone 6 device.
public static readonly Screen iPhone6 = new Screen {
width = 0.104f,
height = 0.058f,
border = 0.005f
};
/// Parameters for an iPhone 6p device.
public static readonly Screen iPhone6p = new Screen {
width = 0.112f,
height = 0.068f,
border = 0.005f
};
/// Some known Cardboard device profiles.
public enum DeviceTypes {
CardboardJun2014,
CardboardMay2015,
GoggleTechC1Glass,
};
/// Parameters for a Cardboard v1.
public static readonly Device CardboardJun2014 = new Device {
lenses = {
separation = 0.060f,
offset = 0.035f,
screenDistance = 0.042f,
alignment = Lenses.AlignBottom,
},
maxFOV = {
outer = 40.0f,
inner = 40.0f,
upper = 40.0f,
lower = 40.0f
},
distortion = {
k1 = 0.441f,
k2 = 0.156f
},
inverse = ApproximateInverse(0.441f, 0.156f)
};
/// Parameters for a Cardboard v2.
public static readonly Device CardboardMay2015 = new Device {
lenses = {
separation = 0.064f,
offset = 0.035f,
screenDistance = 0.039f,
alignment = Lenses.AlignBottom,
},
maxFOV = {
outer = 60.0f,
inner = 60.0f,
upper = 60.0f,
lower = 60.0f
},
distortion = {
k1 = 0.34f,
k2 = 0.55f
},
inverse = ApproximateInverse(0.34f, 0.55f)
};
/// Parameters for a Go4D C1-Glass.
public static readonly Device GoggleTechC1Glass = new Device {
lenses = {
separation = 0.065f,
offset = 0.036f,
screenDistance = 0.058f,
alignment = Lenses.AlignBottom,
},
maxFOV = {
outer = 50.0f,
inner = 50.0f,
upper = 50.0f,
lower = 50.0f
},
distortion = {
k1 = 0.3f,
k2 = 0
},
inverse = ApproximateInverse(0.3f, 0)
};
/// Nexus 5 in a Cardboard v1.
public static readonly CardboardProfile Default = new CardboardProfile {
screen = Nexus5,
device = CardboardJun2014
};
/// Returns a CardboardProfile with the given parameters.
public static CardboardProfile GetKnownProfile(ScreenSizes screenSize, DeviceTypes deviceType) {
Screen screen;
switch (screenSize) {
case ScreenSizes.Nexus6:
screen = Nexus6;
break;
case ScreenSizes.GalaxyS6:
screen = GalaxyS6;
break;
case ScreenSizes.GalaxyNote4:
screen = GalaxyNote4;
break;
case ScreenSizes.LGG3:
screen = LGG3;
break;
case ScreenSizes.iPhone4:
screen = iPhone4;
break;
case ScreenSizes.iPhone5:
screen = iPhone5;
break;
case ScreenSizes.iPhone6:
screen = iPhone6;
break;
case ScreenSizes.iPhone6p:
screen = iPhone6p;
break;
default:
screen = Nexus5;
break;
}
Device device;
switch (deviceType) {
case DeviceTypes.CardboardMay2015:
device = CardboardMay2015;
break;
case DeviceTypes.GoggleTechC1Glass:
device = GoggleTechC1Glass;
break;
default:
device = CardboardJun2014;
break;
}
return new CardboardProfile { screen = screen, device = device };
}
/// Calculates the tan-angles from the maximum FOV for the left eye for the
/// current device and screen parameters.
public void GetLeftEyeVisibleTanAngles(float[] result) {
// Tan-angles from the max FOV.
float fovLeft = Mathf.Tan(-device.maxFOV.outer * Mathf.Deg2Rad);
float fovTop = Mathf.Tan(device.maxFOV.upper * Mathf.Deg2Rad);
float fovRight = Mathf.Tan(device.maxFOV.inner * Mathf.Deg2Rad);
float fovBottom = Mathf.Tan(-device.maxFOV.lower * Mathf.Deg2Rad);
// Viewport size.
float halfWidth = screen.width / 4;
float halfHeight = screen.height / 2;
// Viewport center, measured from left lens position.
float centerX = device.lenses.separation / 2 - halfWidth;
float centerY = -VerticalLensOffset;
float centerZ = device.lenses.screenDistance;
// Tan-angles of the viewport edges, as seen through the lens.
float screenLeft = device.distortion.distort((centerX - halfWidth) / centerZ);
float screenTop = device.distortion.distort((centerY + halfHeight) / centerZ);
float screenRight = device.distortion.distort((centerX + halfWidth) / centerZ);
float screenBottom = device.distortion.distort((centerY - halfHeight) / centerZ);
// Compare the two sets of tan-angles and take the value closer to zero on each side.
result[0] = Math.Max(fovLeft, screenLeft);
result[1] = Math.Min(fovTop, screenTop);
result[2] = Math.Min(fovRight, screenRight);
result[3] = Math.Max(fovBottom, screenBottom);
}
/// Calculates the tan-angles from the maximum FOV for the left eye for the
/// current device and screen parameters, assuming no lenses.
public void GetLeftEyeNoLensTanAngles(float[] result) {
// Tan-angles from the max FOV.
float fovLeft = device.distortion.distortInv(Mathf.Tan(-device.maxFOV.outer * Mathf.Deg2Rad));
float fovTop = device.distortion.distortInv(Mathf.Tan(device.maxFOV.upper * Mathf.Deg2Rad));
float fovRight = device.distortion.distortInv(Mathf.Tan(device.maxFOV.inner * Mathf.Deg2Rad));
float fovBottom = device.distortion.distortInv(Mathf.Tan(-device.maxFOV.lower * Mathf.Deg2Rad));
// Viewport size.
float halfWidth = screen.width / 4;
float halfHeight = screen.height / 2;
// Viewport center, measured from left lens position.
float centerX = device.lenses.separation / 2 - halfWidth;
float centerY = -VerticalLensOffset;
float centerZ = device.lenses.screenDistance;
// Tan-angles of the viewport edges, as seen through the lens.
float screenLeft = (centerX - halfWidth) / centerZ;
float screenTop = (centerY + halfHeight) / centerZ;
float screenRight = (centerX + halfWidth) / centerZ;
float screenBottom = (centerY - halfHeight) / centerZ;
// Compare the two sets of tan-angles and take the value closer to zero on each side.
result[0] = Math.Max(fovLeft, screenLeft);
result[1] = Math.Min(fovTop, screenTop);
result[2] = Math.Min(fovRight, screenRight);
result[3] = Math.Max(fovBottom, screenBottom);
}
/// Calculates the screen rectangle visible from the left eye for the
/// current device and screen parameters.
public Rect GetLeftEyeVisibleScreenRect(float[] undistortedFrustum) {
float dist = device.lenses.screenDistance;
float eyeX = (screen.width - device.lenses.separation) / 2;
float eyeY = VerticalLensOffset + screen.height / 2;
float left = (undistortedFrustum[0] * dist + eyeX) / screen.width;
float top = (undistortedFrustum[1] * dist + eyeY) / screen.height;
float right = (undistortedFrustum[2] * dist + eyeX) / screen.width;
float bottom = (undistortedFrustum[3] * dist + eyeY) / screen.height;
return new Rect(left, bottom, right - left, top - bottom);
}
public static float GetMaxRadius(float[] tanAngleRect) {
float x = Mathf.Max(Mathf.Abs(tanAngleRect[0]), Mathf.Abs(tanAngleRect[2]));
float y = Mathf.Max(Mathf.Abs(tanAngleRect[1]), Mathf.Abs(tanAngleRect[3]));
return Mathf.Sqrt(x * x + y * y);
}
// Solves a least-squares matrix equation. Given the equation A * x = y, calculate the
// least-square fit x = inverse(A * transpose(A)) * transpose(A) * y. The way this works
// is that, while A is typically not a square matrix (and hence not invertible), A * transpose(A)
// is always square. That is:
// A * x = y
// transpose(A) * (A * x) = transpose(A) * y <- multiply both sides by transpose(A)
// (transpose(A) * A) * x = transpose(A) * y <- associativity
// x = inverse(transpose(A) * A) * transpose(A) * y <- solve for x
// Matrix A's row count (first index) must match y's value count. A's column count (second index)
// determines the length of the result vector x.
private static double[] solveLeastSquares(double[,] matA, double[] vecY) {
int numSamples = matA.GetLength(0);
int numCoefficients = matA.GetLength(1);
if (numSamples != vecY.Length) {
Debug.LogError("Matrix / vector dimension mismatch");
return null;
}
if (numCoefficients != 2) {
Debug.LogError("Only 2 coefficients supported.");
return null;
}
// Calculate transpose(A) * A
double[,] matATA = new double[numCoefficients, numCoefficients];
for (int k = 0; k < numCoefficients; ++k) {
for (int j = 0; j < numCoefficients; ++j) {
double sum = 0.0;
for (int i = 0; i < numSamples; ++i) {
sum += matA[i, j] * matA[i, k];
}
matATA[j, k] = sum;
}
}
// Calculate the inverse of transpose(A) * A. Inverting isn't recommended for numerical
// stability, but should be ok for small and well-behaved data sets. Using manual matrix
// inversion here (hence the restriction of numCoefficients to 2 in this function).
double[,] matInvATA = new double[numCoefficients, numCoefficients];
double det = matATA[0, 0] * matATA[1, 1] - matATA[0, 1] * matATA[1, 0];
matInvATA[0, 0] = matATA[1, 1] / det;
matInvATA[1, 1] = matATA[0, 0] / det;
matInvATA[0, 1] = -matATA[1, 0] / det;
matInvATA[1, 0] = -matATA[0, 1] / det;
// Calculate transpose(A) * y
double[] vecATY = new double[numCoefficients];
for (int j = 0; j < numCoefficients; ++j) {
double sum = 0.0;
for (int i = 0; i < numSamples; ++i) {
sum += matA[i, j] * vecY[i];
}
vecATY[j] = sum;
}
// Now matrix multiply the previous values to get the result.
double[] vecX = new double[numCoefficients];
for (int j = 0; j < numCoefficients; ++j) {
double sum = 0.0;
for (int i = 0; i < numCoefficients; ++i) {
sum += matInvATA[i, j] * vecATY[i];
}
vecX[j] = sum;
}
return vecX;
}
/// Calculates an approximate inverse to the given radial distortion parameters.
public static Distortion ApproximateInverse(float k1, float k2, float maxRadius = 1,
int numSamples = 10) {
return ApproximateInverse(new Distortion { k1=k1, k2=k2 }, maxRadius, numSamples);
}
/// Calculates an approximate inverse to the given radial distortion parameters.
public static Distortion ApproximateInverse(Distortion distort, float maxRadius = 1,
int numSamples = 10) {
const int numCoefficients = 2;
// R + k1*R^3 + k2*R^5 = r, with R = rp = distort(r)
// Repeating for numSamples:
// [ R0^3, R0^5 ] * [ K1 ] = [ r0 - R0 ]
// [ R1^3, R1^5 ] [ K2 ] [ r1 - R1 ]
// [ R2^3, R2^5 ] [ r2 - R2 ]
// [ etc... ] [ etc... ]
// That is:
// matA * [K1, K2] = y
// Solve:
// [K1, K2] = inverse(transpose(matA) * matA) * transpose(matA) * y
double[,] matA = new double[numSamples, numCoefficients];
double[] vecY = new double[numSamples];
for (int i = 0; i < numSamples; ++i) {
float r = maxRadius * (i + 1) / (float) numSamples;
double rp = distort.distort(r);
double v = rp;
for (int j = 0; j < numCoefficients; ++j) {
v *= rp * rp;
matA[i, j] = v;
}
vecY[i] = r - rp;
}
double[] vecK = solveLeastSquares(matA, vecY);
return new Distortion {
k1 = (float)vecK[0],
k2 = (float)vecK[1]
};
}
}
/// @endcond