main-area.py
4.09 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
"""Detects text in the file."""
from google.cloud import vision
import io
import os
import cv2
import numpy as np
smokingZone = 0
def stackImages(scale,imgArray): #calculate convolution
rows = len(imgArray)
cols = len(imgArray[0])
rowsAvailable = isinstance(imgArray[0], list)
width = imgArray[0][0].shape[1]
height = imgArray[0][0].shape[0]
if rowsAvailable:
for x in range ( 0, rows):
for y in range(0, cols):
if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]:
imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
else:
imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)
if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR)
imageBlank = np.zeros((height, width, 3), np.uint8)
hor = [imageBlank]*rows
hor_con = [imageBlank]*rows
for x in range(0, rows):
hor[x] = np.hstack(imgArray[x])
ver = np.vstack(hor)
else:
for x in range(0, rows):
if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
else:
imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)
if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
hor= np.hstack(imgArray)
ver = hor
return ver
def getContours(img):
contours,hierarchy = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
for cnt in contours:
area = cv2.contourArea(cnt)
print(area)
if area>500:
cv2.drawContours(imgContour, cnt, -1, (255, 0, 0), 3)
peri = cv2.arcLength(cnt,True)
#print(peri)
approx = cv2.approxPolyDP(cnt,0.02*peri,True)
print(len(approx))
objCor = len(approx)
x, y, w, h = cv2.boundingRect(approx)
if objCor ==3: objectType ="Tri"
elif objCor == 4:
aspRatio = w/float(h)
if aspRatio >0.98 and aspRatio <1.03: objectType= "Square"
else:objectType="Rectangle"
elif objCor>4: objectType= "Sign"
else:objectType="None"
cv2.rectangle(imgContour,(x,y),(x+w,y+h),(0,255,0),2)
cv2.putText(imgContour,objectType,
(x+(w//2)-10,y+(h//2)-10),cv2.FONT_HERSHEY_COMPLEX,0.7,
(0,0,0),2)
if objectType == "Sign":
smokingZone = 1
os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="C:/Users/User/Downloads/SmokeDetection-ab1773dcbc6a.json"
client = vision.ImageAnnotatorClient()
path = 'TestPhoto/test08.jpg'
with io.open(path, 'rb') as image_file:
content = image_file.read()
image = vision.Image(content=content)
price_candidate = []
card_number_candidate = []
date_candidate = []
response = client.text_detection(image=image)
texts = response.text_annotations
print('Texts:')
for text in texts:
content = text.description
content = content.replace(',','')
print('\n"{}"'.format(content))
if content == 'SMOKING' or content == "NO":
smokingZone = 1
print("This is No Smoking Zone")
if response.error.message:
raise Exception(
'{}\nFor more info on error messages, check: '
'https://cloud.google.com/apis/design/errors'.format(
response.error.message))
img = cv2.imread(path)
imgContour = img.copy()
imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur = cv2.GaussianBlur(imgGray,(7,7),1) # Gaussian smoothing filter for noise(고주파) reduce
imgCanny = cv2.Canny(imgBlur,50,50)
getContours(imgCanny)
if smokingZone == 1:
imgBlank = cv2.imread('TestPhoto/detected.png')
else:
imgBlank = np.zeros_like(img)
imgStack = stackImages(0.6,([img,imgGray,imgBlur],
[imgCanny,imgContour,imgBlank]))
cv2.imshow("Stack", imgStack)
cv2.waitKey(0)