check-expression.cpp 18.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
//===-- lib/Evaluate/check-expression.cpp ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/intrinsics.h"
#include "flang/Evaluate/traverse.h"
#include "flang/Evaluate/type.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include <set>
#include <string>

namespace Fortran::evaluate {

// Constant expression predicate IsConstantExpr().
// This code determines whether an expression is a "constant expression"
// in the sense of section 10.1.12.  This is not the same thing as being
// able to fold it (yet) into a known constant value; specifically,
// the expression may reference derived type kind parameters whose values
// are not yet known.
class IsConstantExprHelper : public AllTraverse<IsConstantExprHelper, true> {
public:
  using Base = AllTraverse<IsConstantExprHelper, true>;
  IsConstantExprHelper() : Base{*this} {}
  using Base::operator();

  bool operator()(const TypeParamInquiry &inq) const {
    return IsKindTypeParameter(inq.parameter());
  }
  bool operator()(const semantics::Symbol &symbol) const {
    const auto &ultimate{symbol.GetUltimate()};
    return IsNamedConstant(ultimate) || IsImpliedDoIndex(ultimate) ||
        IsInitialProcedureTarget(ultimate);
  }
  bool operator()(const CoarrayRef &) const { return false; }
  bool operator()(const semantics::ParamValue &param) const {
    return param.isExplicit() && (*this)(param.GetExplicit());
  }
  template <typename T> bool operator()(const FunctionRef<T> &call) const {
    if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&call.proc().u)}) {
      // kind is always a constant, and we avoid cascading errors by calling
      // invalid calls to intrinsics constant
      return intrinsic->name == "kind" ||
          intrinsic->name == IntrinsicProcTable::InvalidName;
      // TODO: other inquiry intrinsics
    } else {
      return false;
    }
  }
  bool operator()(const StructureConstructor &constructor) const {
    for (const auto &[symRef, expr] : constructor) {
      if (!IsConstantStructureConstructorComponent(*symRef, expr.value())) {
        return false;
      }
    }
    return true;
  }
  bool operator()(const Component &component) const {
    return (*this)(component.base());
  }
  // Forbid integer division by zero in constants.
  template <int KIND>
  bool operator()(
      const Divide<Type<TypeCategory::Integer, KIND>> &division) const {
    using T = Type<TypeCategory::Integer, KIND>;
    if (const auto divisor{GetScalarConstantValue<T>(division.right())}) {
      return !divisor->IsZero() && (*this)(division.left());
    } else {
      return false;
    }
  }

  bool operator()(const Constant<SomeDerived> &) const { return true; }

private:
  bool IsConstantStructureConstructorComponent(
      const Symbol &component, const Expr<SomeType> &expr) const {
    if (IsAllocatable(component)) {
      return IsNullPointer(expr);
    } else if (IsPointer(component)) {
      return IsNullPointer(expr) || IsInitialDataTarget(expr) ||
          IsInitialProcedureTarget(expr);
    } else {
      return (*this)(expr);
    }
  }
};

template <typename A> bool IsConstantExpr(const A &x) {
  return IsConstantExprHelper{}(x);
}
template bool IsConstantExpr(const Expr<SomeType> &);
template bool IsConstantExpr(const Expr<SomeInteger> &);
template bool IsConstantExpr(const Expr<SubscriptInteger> &);
template bool IsConstantExpr(const StructureConstructor &);

// Object pointer initialization checking predicate IsInitialDataTarget().
// This code determines whether an expression is allowable as the static
// data address used to initialize a pointer with "=> x".  See C765.
class IsInitialDataTargetHelper
    : public AllTraverse<IsInitialDataTargetHelper, true> {
public:
  using Base = AllTraverse<IsInitialDataTargetHelper, true>;
  using Base::operator();
  explicit IsInitialDataTargetHelper(parser::ContextualMessages *m)
      : Base{*this}, messages_{m} {}

  bool emittedMessage() const { return emittedMessage_; }

  bool operator()(const BOZLiteralConstant &) const { return false; }
  bool operator()(const NullPointer &) const { return true; }
  template <typename T> bool operator()(const Constant<T> &) const {
    return false;
  }
  bool operator()(const semantics::Symbol &symbol) {
    const Symbol &ultimate{symbol.GetUltimate()};
    if (IsAllocatable(ultimate)) {
      if (messages_) {
        messages_->Say(
            "An initial data target may not be a reference to an ALLOCATABLE '%s'"_err_en_US,
            ultimate.name());
        emittedMessage_ = true;
      }
      return false;
    } else if (ultimate.Corank() > 0) {
      if (messages_) {
        messages_->Say(
            "An initial data target may not be a reference to a coarray '%s'"_err_en_US,
            ultimate.name());
        emittedMessage_ = true;
      }
      return false;
    } else if (!ultimate.attrs().test(semantics::Attr::TARGET)) {
      if (messages_) {
        messages_->Say(
            "An initial data target may not be a reference to an object '%s' that lacks the TARGET attribute"_err_en_US,
            ultimate.name());
        emittedMessage_ = true;
      }
      return false;
    } else if (!IsSaved(ultimate)) {
      if (messages_) {
        messages_->Say(
            "An initial data target may not be a reference to an object '%s' that lacks the SAVE attribute"_err_en_US,
            ultimate.name());
        emittedMessage_ = true;
      }
      return false;
    }
    return true;
  }
  bool operator()(const StaticDataObject &) const { return false; }
  bool operator()(const TypeParamInquiry &) const { return false; }
  bool operator()(const Triplet &x) const {
    return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) &&
        IsConstantExpr(x.stride());
  }
  bool operator()(const Subscript &x) const {
    return std::visit(common::visitors{
                          [&](const Triplet &t) { return (*this)(t); },
                          [&](const auto &y) {
                            return y.value().Rank() == 0 &&
                                IsConstantExpr(y.value());
                          },
                      },
        x.u);
  }
  bool operator()(const CoarrayRef &) const { return false; }
  bool operator()(const Substring &x) const {
    return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) &&
        (*this)(x.parent());
  }
  bool operator()(const DescriptorInquiry &) const { return false; }
  template <typename T> bool operator()(const ArrayConstructor<T> &) const {
    return false;
  }
  bool operator()(const StructureConstructor &) const { return false; }
  template <typename T> bool operator()(const FunctionRef<T> &) {
    return false;
  }
  template <typename D, typename R, typename... O>
  bool operator()(const Operation<D, R, O...> &) const {
    return false;
  }
  template <typename T> bool operator()(const Parentheses<T> &x) const {
    return (*this)(x.left());
  }
  bool operator()(const Relational<SomeType> &) const { return false; }

private:
  parser::ContextualMessages *messages_;
  bool emittedMessage_{false};
};

bool IsInitialDataTarget(
    const Expr<SomeType> &x, parser::ContextualMessages *messages) {
  IsInitialDataTargetHelper helper{messages};
  bool result{helper(x)};
  if (!result && messages && !helper.emittedMessage()) {
    messages->Say(
        "An initial data target must be a designator with constant subscripts"_err_en_US);
  }
  return result;
}

bool IsInitialProcedureTarget(const semantics::Symbol &symbol) {
  const auto &ultimate{symbol.GetUltimate()};
  return std::visit(
      common::visitors{
          [](const semantics::SubprogramDetails &) { return true; },
          [](const semantics::SubprogramNameDetails &) { return true; },
          [&](const semantics::ProcEntityDetails &proc) {
            return !semantics::IsPointer(ultimate) && !proc.isDummy();
          },
          [](const auto &) { return false; },
      },
      ultimate.details());
}

bool IsInitialProcedureTarget(const ProcedureDesignator &proc) {
  if (const auto *intrin{proc.GetSpecificIntrinsic()}) {
    return !intrin->isRestrictedSpecific;
  } else if (proc.GetComponent()) {
    return false;
  } else {
    return IsInitialProcedureTarget(DEREF(proc.GetSymbol()));
  }
}

bool IsInitialProcedureTarget(const Expr<SomeType> &expr) {
  if (const auto *proc{std::get_if<ProcedureDesignator>(&expr.u)}) {
    return IsInitialProcedureTarget(*proc);
  } else {
    return IsNullPointer(expr);
  }
}

// Specification expression validation (10.1.11(2), C1010)
class CheckSpecificationExprHelper
    : public AnyTraverse<CheckSpecificationExprHelper,
          std::optional<std::string>> {
public:
  using Result = std::optional<std::string>;
  using Base = AnyTraverse<CheckSpecificationExprHelper, Result>;
  explicit CheckSpecificationExprHelper(
      const semantics::Scope &s, const IntrinsicProcTable &table)
      : Base{*this}, scope_{s}, table_{table} {}
  using Base::operator();

  Result operator()(const ProcedureDesignator &) const {
    return "dummy procedure argument";
  }
  Result operator()(const CoarrayRef &) const { return "coindexed reference"; }

  Result operator()(const semantics::Symbol &symbol) const {
    if (semantics::IsNamedConstant(symbol)) {
      return std::nullopt;
    } else if (scope_.IsDerivedType() && IsVariableName(symbol)) { // C750, C754
      return "derived type component or type parameter value not allowed to "
             "reference variable '"s +
          symbol.name().ToString() + "'";
    } else if (IsDummy(symbol)) {
      if (symbol.attrs().test(semantics::Attr::OPTIONAL)) {
        return "reference to OPTIONAL dummy argument '"s +
            symbol.name().ToString() + "'";
      } else if (symbol.attrs().test(semantics::Attr::INTENT_OUT)) {
        return "reference to INTENT(OUT) dummy argument '"s +
            symbol.name().ToString() + "'";
      } else if (symbol.has<semantics::ObjectEntityDetails>()) {
        return std::nullopt;
      } else {
        return "dummy procedure argument";
      }
    } else if (symbol.has<semantics::UseDetails>() ||
        symbol.has<semantics::HostAssocDetails>() ||
        symbol.owner().kind() == semantics::Scope::Kind::Module) {
      return std::nullopt;
    } else if (const auto *object{
                   symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
      // TODO: what about EQUIVALENCE with data in COMMON?
      // TODO: does this work for blank COMMON?
      if (object->commonBlock()) {
        return std::nullopt;
      }
    }
    for (const semantics::Scope *s{&scope_}; !s->IsGlobal();) {
      s = &s->parent();
      if (s == &symbol.owner()) {
        return std::nullopt;
      }
    }
    return "reference to local entity '"s + symbol.name().ToString() + "'";
  }

  Result operator()(const Component &x) const {
    // Don't look at the component symbol.
    return (*this)(x.base());
  }
  Result operator()(const DescriptorInquiry &) const {
    // Subtle: Uses of SIZE(), LBOUND(), &c. that are valid in specification
    // expressions will have been converted to expressions over descriptor
    // inquiries by Fold().
    return std::nullopt;
  }

  Result operator()(const TypeParamInquiry &inq) const {
    if (scope_.IsDerivedType() && !IsConstantExpr(inq) &&
        inq.base() /* X%T, not local T */) { // C750, C754
      return "non-constant reference to a type parameter inquiry not "
             "allowed for derived type components or type parameter values";
    }
    return std::nullopt;
  }

  template <typename T> Result operator()(const FunctionRef<T> &x) const {
    if (const auto *symbol{x.proc().GetSymbol()}) {
      if (!semantics::IsPureProcedure(*symbol)) {
        return "reference to impure function '"s + symbol->name().ToString() +
            "'";
      }
      if (semantics::IsStmtFunction(*symbol)) {
        return "reference to statement function '"s +
            symbol->name().ToString() + "'";
      }
      if (scope_.IsDerivedType()) { // C750, C754
        return "reference to function '"s + symbol->name().ToString() +
            "' not allowed for derived type components or type parameter"
            " values";
      }
      // TODO: other checks for standard module procedures
    } else {
      const SpecificIntrinsic &intrin{DEREF(x.proc().GetSpecificIntrinsic())};
      if (scope_.IsDerivedType()) { // C750, C754
        if ((table_.IsIntrinsic(intrin.name) &&
                badIntrinsicsForComponents_.find(intrin.name) !=
                    badIntrinsicsForComponents_.end()) ||
            IsProhibitedFunction(intrin.name)) {
          return "reference to intrinsic '"s + intrin.name +
              "' not allowed for derived type components or type parameter"
              " values";
        }
        if (table_.GetIntrinsicClass(intrin.name) ==
                IntrinsicClass::inquiryFunction &&
            !IsConstantExpr(x)) {
          return "non-constant reference to inquiry intrinsic '"s +
              intrin.name +
              "' not allowed for derived type components or type"
              " parameter values";
        }
      } else if (intrin.name == "present") {
        return std::nullopt; // no need to check argument(s)
      }
      if (IsConstantExpr(x)) {
        // inquiry functions may not need to check argument(s)
        return std::nullopt;
      }
    }
    return (*this)(x.arguments());
  }

private:
  const semantics::Scope &scope_;
  const IntrinsicProcTable &table_;
  const std::set<std::string> badIntrinsicsForComponents_{
      "allocated", "associated", "extends_type_of", "present", "same_type_as"};
  static bool IsProhibitedFunction(std::string name) { return false; }
};

template <typename A>
void CheckSpecificationExpr(const A &x, parser::ContextualMessages &messages,
    const semantics::Scope &scope, const IntrinsicProcTable &table) {
  if (auto why{CheckSpecificationExprHelper{scope, table}(x)}) {
    messages.Say("Invalid specification expression: %s"_err_en_US, *why);
  }
}

template void CheckSpecificationExpr(const Expr<SomeType> &,
    parser::ContextualMessages &, const semantics::Scope &,
    const IntrinsicProcTable &);
template void CheckSpecificationExpr(const Expr<SomeInteger> &,
    parser::ContextualMessages &, const semantics::Scope &,
    const IntrinsicProcTable &);
template void CheckSpecificationExpr(const Expr<SubscriptInteger> &,
    parser::ContextualMessages &, const semantics::Scope &,
    const IntrinsicProcTable &);
template void CheckSpecificationExpr(const std::optional<Expr<SomeType>> &,
    parser::ContextualMessages &, const semantics::Scope &,
    const IntrinsicProcTable &);
template void CheckSpecificationExpr(const std::optional<Expr<SomeInteger>> &,
    parser::ContextualMessages &, const semantics::Scope &,
    const IntrinsicProcTable &);
template void CheckSpecificationExpr(
    const std::optional<Expr<SubscriptInteger>> &, parser::ContextualMessages &,
    const semantics::Scope &, const IntrinsicProcTable &);

// IsSimplyContiguous() -- 9.5.4
class IsSimplyContiguousHelper
    : public AnyTraverse<IsSimplyContiguousHelper, std::optional<bool>> {
public:
  using Result = std::optional<bool>; // tri-state
  using Base = AnyTraverse<IsSimplyContiguousHelper, Result>;
  explicit IsSimplyContiguousHelper(const IntrinsicProcTable &t)
      : Base{*this}, table_{t} {}
  using Base::operator();

  Result operator()(const semantics::Symbol &symbol) const {
    if (symbol.attrs().test(semantics::Attr::CONTIGUOUS) ||
        symbol.Rank() == 0) {
      return true;
    } else if (semantics::IsPointer(symbol)) {
      return false;
    } else if (const auto *details{
                   symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
      // N.B. ALLOCATABLEs are deferred shape, not assumed, and
      // are obviously contiguous.
      return !details->IsAssumedShape() && !details->IsAssumedRank();
    } else {
      return false;
    }
  }

  Result operator()(const ArrayRef &x) const {
    const auto &symbol{x.GetLastSymbol()};
    if (!(*this)(symbol)) {
      return false;
    } else if (auto rank{CheckSubscripts(x.subscript())}) {
      // a(:)%b(1,1) is not contiguous; a(1)%b(:,:) is
      return *rank > 0 || x.Rank() == 0;
    } else {
      return false;
    }
  }
  Result operator()(const CoarrayRef &x) const {
    return CheckSubscripts(x.subscript()).has_value();
  }
  Result operator()(const Component &x) const {
    return x.base().Rank() == 0 && (*this)(x.GetLastSymbol());
  }
  Result operator()(const ComplexPart &) const { return false; }
  Result operator()(const Substring &) const { return false; }

  template <typename T> Result operator()(const FunctionRef<T> &x) const {
    if (auto chars{
            characteristics::Procedure::Characterize(x.proc(), table_)}) {
      if (chars->functionResult) {
        const auto &result{*chars->functionResult};
        return !result.IsProcedurePointer() &&
            result.attrs.test(characteristics::FunctionResult::Attr::Pointer) &&
            result.attrs.test(
                characteristics::FunctionResult::Attr::Contiguous);
      }
    }
    return false;
  }

private:
  // If the subscripts can possibly be on a simply-contiguous array reference,
  // return the rank.
  static std::optional<int> CheckSubscripts(
      const std::vector<Subscript> &subscript) {
    bool anyTriplet{false};
    int rank{0};
    for (auto j{subscript.size()}; j-- > 0;) {
      if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) {
        if (!triplet->IsStrideOne()) {
          return std::nullopt;
        } else if (anyTriplet) {
          if (triplet->lower() || triplet->upper()) {
            // all triplets before the last one must be just ":"
            return std::nullopt;
          }
        } else {
          anyTriplet = true;
        }
        ++rank;
      } else if (anyTriplet || subscript[j].Rank() > 0) {
        return std::nullopt;
      }
    }
    return rank;
  }

  const IntrinsicProcTable &table_;
};

template <typename A>
bool IsSimplyContiguous(const A &x, const IntrinsicProcTable &table) {
  if (IsVariable(x)) {
    auto known{IsSimplyContiguousHelper{table}(x)};
    return known && *known;
  } else {
    return true; // not a variable
  }
}

template bool IsSimplyContiguous(
    const Expr<SomeType> &, const IntrinsicProcTable &);

} // namespace Fortran::evaluate