tools.cpp 40 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
//===-- lib/Evaluate/tools.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "flang/Evaluate/tools.h"
#include "flang/Common/idioms.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/traverse.h"
#include "flang/Parser/message.h"
#include "flang/Semantics/tools.h"
#include <algorithm>
#include <variant>

using namespace Fortran::parser::literals;

namespace Fortran::evaluate {

Expr<SomeType> Parenthesize(Expr<SomeType> &&expr) {
  return std::visit(
      [&](auto &&x) {
        using T = std::decay_t<decltype(x)>;
        if constexpr (common::HasMember<T, TypelessExpression> ||
            std::is_same_v<T, Expr<SomeDerived>>) {
          return expr; // no parentheses around typeless or derived type
        } else {
          return std::visit(
              [](auto &&y) {
                using T = ResultType<decltype(y)>;
                return AsGenericExpr(Parentheses<T>{std::move(y)});
              },
              std::move(x.u));
        }
      },
      std::move(expr.u));
}

std::optional<DataRef> ExtractSubstringBase(const Substring &substring) {
  return std::visit(
      common::visitors{
          [&](const DataRef &x) -> std::optional<DataRef> { return x; },
          [&](const StaticDataObject::Pointer &) -> std::optional<DataRef> {
            return std::nullopt;
          },
      },
      substring.parent());
}

// IsVariable()

auto IsVariableHelper::operator()(const Symbol &symbol) const -> Result {
  return !symbol.attrs().test(semantics::Attr::PARAMETER);
}
auto IsVariableHelper::operator()(const Component &x) const -> Result {
  return (*this)(x.base());
}
auto IsVariableHelper::operator()(const ArrayRef &x) const -> Result {
  return (*this)(x.base());
}
auto IsVariableHelper::operator()(const Substring &x) const -> Result {
  return (*this)(x.GetBaseObject());
}
auto IsVariableHelper::operator()(const ProcedureDesignator &x) const
    -> Result {
  const Symbol *symbol{x.GetSymbol()};
  return symbol && symbol->attrs().test(semantics::Attr::POINTER);
}

// Conversions of complex component expressions to REAL.
ConvertRealOperandsResult ConvertRealOperands(
    parser::ContextualMessages &messages, Expr<SomeType> &&x,
    Expr<SomeType> &&y, int defaultRealKind) {
  return std::visit(
      common::visitors{
          [&](Expr<SomeInteger> &&ix,
              Expr<SomeInteger> &&iy) -> ConvertRealOperandsResult {
            // Can happen in a CMPLX() constructor.  Per F'2018,
            // both integer operands are converted to default REAL.
            return {AsSameKindExprs<TypeCategory::Real>(
                ConvertToKind<TypeCategory::Real>(
                    defaultRealKind, std::move(ix)),
                ConvertToKind<TypeCategory::Real>(
                    defaultRealKind, std::move(iy)))};
          },
          [&](Expr<SomeInteger> &&ix,
              Expr<SomeReal> &&ry) -> ConvertRealOperandsResult {
            return {AsSameKindExprs<TypeCategory::Real>(
                ConvertTo(ry, std::move(ix)), std::move(ry))};
          },
          [&](Expr<SomeReal> &&rx,
              Expr<SomeInteger> &&iy) -> ConvertRealOperandsResult {
            return {AsSameKindExprs<TypeCategory::Real>(
                std::move(rx), ConvertTo(rx, std::move(iy)))};
          },
          [&](Expr<SomeReal> &&rx,
              Expr<SomeReal> &&ry) -> ConvertRealOperandsResult {
            return {AsSameKindExprs<TypeCategory::Real>(
                std::move(rx), std::move(ry))};
          },
          [&](Expr<SomeInteger> &&ix,
              BOZLiteralConstant &&by) -> ConvertRealOperandsResult {
            return {AsSameKindExprs<TypeCategory::Real>(
                ConvertToKind<TypeCategory::Real>(
                    defaultRealKind, std::move(ix)),
                ConvertToKind<TypeCategory::Real>(
                    defaultRealKind, std::move(by)))};
          },
          [&](BOZLiteralConstant &&bx,
              Expr<SomeInteger> &&iy) -> ConvertRealOperandsResult {
            return {AsSameKindExprs<TypeCategory::Real>(
                ConvertToKind<TypeCategory::Real>(
                    defaultRealKind, std::move(bx)),
                ConvertToKind<TypeCategory::Real>(
                    defaultRealKind, std::move(iy)))};
          },
          [&](Expr<SomeReal> &&rx,
              BOZLiteralConstant &&by) -> ConvertRealOperandsResult {
            return {AsSameKindExprs<TypeCategory::Real>(
                std::move(rx), ConvertTo(rx, std::move(by)))};
          },
          [&](BOZLiteralConstant &&bx,
              Expr<SomeReal> &&ry) -> ConvertRealOperandsResult {
            return {AsSameKindExprs<TypeCategory::Real>(
                ConvertTo(ry, std::move(bx)), std::move(ry))};
          },
          [&](auto &&, auto &&) -> ConvertRealOperandsResult { // C718
            messages.Say("operands must be INTEGER or REAL"_err_en_US);
            return std::nullopt;
          },
      },
      std::move(x.u), std::move(y.u));
}

// Helpers for NumericOperation and its subroutines below.
static std::optional<Expr<SomeType>> NoExpr() { return std::nullopt; }

template <TypeCategory CAT>
std::optional<Expr<SomeType>> Package(Expr<SomeKind<CAT>> &&catExpr) {
  return {AsGenericExpr(std::move(catExpr))};
}
template <TypeCategory CAT>
std::optional<Expr<SomeType>> Package(
    std::optional<Expr<SomeKind<CAT>>> &&catExpr) {
  if (catExpr) {
    return {AsGenericExpr(std::move(*catExpr))};
  }
  return NoExpr();
}

// Mixed REAL+INTEGER operations.  REAL**INTEGER is a special case that
// does not require conversion of the exponent expression.
template <template <typename> class OPR>
std::optional<Expr<SomeType>> MixedRealLeft(
    Expr<SomeReal> &&rx, Expr<SomeInteger> &&iy) {
  return Package(std::visit(
      [&](auto &&rxk) -> Expr<SomeReal> {
        using resultType = ResultType<decltype(rxk)>;
        if constexpr (std::is_same_v<OPR<resultType>, Power<resultType>>) {
          return AsCategoryExpr(
              RealToIntPower<resultType>{std::move(rxk), std::move(iy)});
        }
        // G++ 8.1.0 emits bogus warnings about missing return statements if
        // this statement is wrapped in an "else", as it should be.
        return AsCategoryExpr(OPR<resultType>{
            std::move(rxk), ConvertToType<resultType>(std::move(iy))});
      },
      std::move(rx.u)));
}

std::optional<Expr<SomeComplex>> ConstructComplex(
    parser::ContextualMessages &messages, Expr<SomeType> &&real,
    Expr<SomeType> &&imaginary, int defaultRealKind) {
  if (auto converted{ConvertRealOperands(
          messages, std::move(real), std::move(imaginary), defaultRealKind)}) {
    return {std::visit(
        [](auto &&pair) {
          return MakeComplex(std::move(pair[0]), std::move(pair[1]));
        },
        std::move(*converted))};
  }
  return std::nullopt;
}

std::optional<Expr<SomeComplex>> ConstructComplex(
    parser::ContextualMessages &messages, std::optional<Expr<SomeType>> &&real,
    std::optional<Expr<SomeType>> &&imaginary, int defaultRealKind) {
  if (auto parts{common::AllPresent(std::move(real), std::move(imaginary))}) {
    return ConstructComplex(messages, std::get<0>(std::move(*parts)),
        std::get<1>(std::move(*parts)), defaultRealKind);
  }
  return std::nullopt;
}

Expr<SomeReal> GetComplexPart(const Expr<SomeComplex> &z, bool isImaginary) {
  return std::visit(
      [&](const auto &zk) {
        static constexpr int kind{ResultType<decltype(zk)>::kind};
        return AsCategoryExpr(ComplexComponent<kind>{isImaginary, zk});
      },
      z.u);
}

// Convert REAL to COMPLEX of the same kind. Preserving the real operand kind
// and then applying complex operand promotion rules allows the result to have
// the highest precision of REAL and COMPLEX operands as required by Fortran
// 2018 10.9.1.3.
Expr<SomeComplex> PromoteRealToComplex(Expr<SomeReal> &&someX) {
  return std::visit(
      [](auto &&x) {
        using RT = ResultType<decltype(x)>;
        return AsCategoryExpr(ComplexConstructor<RT::kind>{
            std::move(x), AsExpr(Constant<RT>{Scalar<RT>{}})});
      },
      std::move(someX.u));
}

// Handle mixed COMPLEX+REAL (or INTEGER) operations in a better way
// than just converting the second operand to COMPLEX and performing the
// corresponding COMPLEX+COMPLEX operation.
template <template <typename> class OPR, TypeCategory RCAT>
std::optional<Expr<SomeType>> MixedComplexLeft(
    parser::ContextualMessages &messages, Expr<SomeComplex> &&zx,
    Expr<SomeKind<RCAT>> &&iry, int defaultRealKind) {
  Expr<SomeReal> zr{GetComplexPart(zx, false)};
  Expr<SomeReal> zi{GetComplexPart(zx, true)};
  if constexpr (std::is_same_v<OPR<LargestReal>, Add<LargestReal>> ||
      std::is_same_v<OPR<LargestReal>, Subtract<LargestReal>>) {
    // (a,b) + x -> (a+x, b)
    // (a,b) - x -> (a-x, b)
    if (std::optional<Expr<SomeType>> rr{
            NumericOperation<OPR>(messages, AsGenericExpr(std::move(zr)),
                AsGenericExpr(std::move(iry)), defaultRealKind)}) {
      return Package(ConstructComplex(messages, std::move(*rr),
          AsGenericExpr(std::move(zi)), defaultRealKind));
    }
  } else if constexpr (std::is_same_v<OPR<LargestReal>,
                           Multiply<LargestReal>> ||
      std::is_same_v<OPR<LargestReal>, Divide<LargestReal>>) {
    // (a,b) * x -> (a*x, b*x)
    // (a,b) / x -> (a/x, b/x)
    auto copy{iry};
    auto rr{NumericOperation<OPR>(messages, AsGenericExpr(std::move(zr)),
        AsGenericExpr(std::move(iry)), defaultRealKind)};
    auto ri{NumericOperation<OPR>(messages, AsGenericExpr(std::move(zi)),
        AsGenericExpr(std::move(copy)), defaultRealKind)};
    if (auto parts{common::AllPresent(std::move(rr), std::move(ri))}) {
      return Package(ConstructComplex(messages, std::get<0>(std::move(*parts)),
          std::get<1>(std::move(*parts)), defaultRealKind));
    }
  } else if constexpr (RCAT == TypeCategory::Integer &&
      std::is_same_v<OPR<LargestReal>, Power<LargestReal>>) {
    // COMPLEX**INTEGER is a special case that doesn't convert the exponent.
    static_assert(RCAT == TypeCategory::Integer);
    return Package(std::visit(
        [&](auto &&zxk) {
          using Ty = ResultType<decltype(zxk)>;
          return AsCategoryExpr(
              AsExpr(RealToIntPower<Ty>{std::move(zxk), std::move(iry)}));
        },
        std::move(zx.u)));
  } else if (defaultRealKind != 666) { // dodge unused parameter warning
    // (a,b) ** x -> (a,b) ** (x,0)
    if constexpr (RCAT == TypeCategory::Integer) {
      Expr<SomeComplex> zy{ConvertTo(zx, std::move(iry))};
      return Package(PromoteAndCombine<OPR>(std::move(zx), std::move(zy)));
    } else {
      Expr<SomeComplex> zy{PromoteRealToComplex(std::move(iry))};
      return Package(PromoteAndCombine<OPR>(std::move(zx), std::move(zy)));
    }
  }
  return NoExpr();
}

// Mixed COMPLEX operations with the COMPLEX operand on the right.
//  x + (a,b) -> (x+a, b)
//  x - (a,b) -> (x-a, -b)
//  x * (a,b) -> (x*a, x*b)
//  x / (a,b) -> (x,0) / (a,b)   (and **)
template <template <typename> class OPR, TypeCategory LCAT>
std::optional<Expr<SomeType>> MixedComplexRight(
    parser::ContextualMessages &messages, Expr<SomeKind<LCAT>> &&irx,
    Expr<SomeComplex> &&zy, int defaultRealKind) {
  if constexpr (std::is_same_v<OPR<LargestReal>, Add<LargestReal>> ||
      std::is_same_v<OPR<LargestReal>, Multiply<LargestReal>>) {
    // x + (a,b) -> (a,b) + x -> (a+x, b)
    // x * (a,b) -> (a,b) * x -> (a*x, b*x)
    return MixedComplexLeft<OPR, LCAT>(
        messages, std::move(zy), std::move(irx), defaultRealKind);
  } else if constexpr (std::is_same_v<OPR<LargestReal>,
                           Subtract<LargestReal>>) {
    // x - (a,b) -> (x-a, -b)
    Expr<SomeReal> zr{GetComplexPart(zy, false)};
    Expr<SomeReal> zi{GetComplexPart(zy, true)};
    if (std::optional<Expr<SomeType>> rr{
            NumericOperation<Subtract>(messages, AsGenericExpr(std::move(irx)),
                AsGenericExpr(std::move(zr)), defaultRealKind)}) {
      return Package(ConstructComplex(messages, std::move(*rr),
          AsGenericExpr(-std::move(zi)), defaultRealKind));
    }
  } else if (defaultRealKind != 666) { // dodge unused parameter warning
    // x / (a,b) -> (x,0) / (a,b)
    if constexpr (LCAT == TypeCategory::Integer) {
      Expr<SomeComplex> zx{ConvertTo(zy, std::move(irx))};
      return Package(PromoteAndCombine<OPR>(std::move(zx), std::move(zy)));
    } else {
      Expr<SomeComplex> zx{PromoteRealToComplex(std::move(irx))};
      return Package(PromoteAndCombine<OPR>(std::move(zx), std::move(zy)));
    }
  }
  return NoExpr();
}

// N.B. When a "typeless" BOZ literal constant appears as one (not both!) of
// the operands to a dyadic operation where one is permitted, it assumes the
// type and kind of the other operand.
template <template <typename> class OPR>
std::optional<Expr<SomeType>> NumericOperation(
    parser::ContextualMessages &messages, Expr<SomeType> &&x,
    Expr<SomeType> &&y, int defaultRealKind) {
  return std::visit(
      common::visitors{
          [](Expr<SomeInteger> &&ix, Expr<SomeInteger> &&iy) {
            return Package(PromoteAndCombine<OPR, TypeCategory::Integer>(
                std::move(ix), std::move(iy)));
          },
          [](Expr<SomeReal> &&rx, Expr<SomeReal> &&ry) {
            return Package(PromoteAndCombine<OPR, TypeCategory::Real>(
                std::move(rx), std::move(ry)));
          },
          // Mixed REAL/INTEGER operations
          [](Expr<SomeReal> &&rx, Expr<SomeInteger> &&iy) {
            return MixedRealLeft<OPR>(std::move(rx), std::move(iy));
          },
          [](Expr<SomeInteger> &&ix, Expr<SomeReal> &&ry) {
            return Package(std::visit(
                [&](auto &&ryk) -> Expr<SomeReal> {
                  using resultType = ResultType<decltype(ryk)>;
                  return AsCategoryExpr(
                      OPR<resultType>{ConvertToType<resultType>(std::move(ix)),
                          std::move(ryk)});
                },
                std::move(ry.u)));
          },
          // Homogeneous and mixed COMPLEX operations
          [](Expr<SomeComplex> &&zx, Expr<SomeComplex> &&zy) {
            return Package(PromoteAndCombine<OPR, TypeCategory::Complex>(
                std::move(zx), std::move(zy)));
          },
          [&](Expr<SomeComplex> &&zx, Expr<SomeInteger> &&iy) {
            return MixedComplexLeft<OPR>(
                messages, std::move(zx), std::move(iy), defaultRealKind);
          },
          [&](Expr<SomeComplex> &&zx, Expr<SomeReal> &&ry) {
            return MixedComplexLeft<OPR>(
                messages, std::move(zx), std::move(ry), defaultRealKind);
          },
          [&](Expr<SomeInteger> &&ix, Expr<SomeComplex> &&zy) {
            return MixedComplexRight<OPR>(
                messages, std::move(ix), std::move(zy), defaultRealKind);
          },
          [&](Expr<SomeReal> &&rx, Expr<SomeComplex> &&zy) {
            return MixedComplexRight<OPR>(
                messages, std::move(rx), std::move(zy), defaultRealKind);
          },
          // Operations with one typeless operand
          [&](BOZLiteralConstant &&bx, Expr<SomeInteger> &&iy) {
            return NumericOperation<OPR>(messages,
                AsGenericExpr(ConvertTo(iy, std::move(bx))), std::move(y),
                defaultRealKind);
          },
          [&](BOZLiteralConstant &&bx, Expr<SomeReal> &&ry) {
            return NumericOperation<OPR>(messages,
                AsGenericExpr(ConvertTo(ry, std::move(bx))), std::move(y),
                defaultRealKind);
          },
          [&](Expr<SomeInteger> &&ix, BOZLiteralConstant &&by) {
            return NumericOperation<OPR>(messages, std::move(x),
                AsGenericExpr(ConvertTo(ix, std::move(by))), defaultRealKind);
          },
          [&](Expr<SomeReal> &&rx, BOZLiteralConstant &&by) {
            return NumericOperation<OPR>(messages, std::move(x),
                AsGenericExpr(ConvertTo(rx, std::move(by))), defaultRealKind);
          },
          // Default case
          [&](auto &&, auto &&) {
            // TODO: defined operator
            messages.Say("non-numeric operands to numeric operation"_err_en_US);
            return NoExpr();
          },
      },
      std::move(x.u), std::move(y.u));
}

template std::optional<Expr<SomeType>> NumericOperation<Power>(
    parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
    int defaultRealKind);
template std::optional<Expr<SomeType>> NumericOperation<Multiply>(
    parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
    int defaultRealKind);
template std::optional<Expr<SomeType>> NumericOperation<Divide>(
    parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
    int defaultRealKind);
template std::optional<Expr<SomeType>> NumericOperation<Add>(
    parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
    int defaultRealKind);
template std::optional<Expr<SomeType>> NumericOperation<Subtract>(
    parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
    int defaultRealKind);

std::optional<Expr<SomeType>> Negation(
    parser::ContextualMessages &messages, Expr<SomeType> &&x) {
  return std::visit(
      common::visitors{
          [&](BOZLiteralConstant &&) {
            messages.Say("BOZ literal cannot be negated"_err_en_US);
            return NoExpr();
          },
          [&](NullPointer &&) {
            messages.Say("NULL() cannot be negated"_err_en_US);
            return NoExpr();
          },
          [&](ProcedureDesignator &&) {
            messages.Say("Subroutine cannot be negated"_err_en_US);
            return NoExpr();
          },
          [&](ProcedureRef &&) {
            messages.Say("Pointer to subroutine cannot be negated"_err_en_US);
            return NoExpr();
          },
          [&](Expr<SomeInteger> &&x) { return Package(-std::move(x)); },
          [&](Expr<SomeReal> &&x) { return Package(-std::move(x)); },
          [&](Expr<SomeComplex> &&x) { return Package(-std::move(x)); },
          [&](Expr<SomeCharacter> &&) {
            // TODO: defined operator
            messages.Say("CHARACTER cannot be negated"_err_en_US);
            return NoExpr();
          },
          [&](Expr<SomeLogical> &&) {
            // TODO: defined operator
            messages.Say("LOGICAL cannot be negated"_err_en_US);
            return NoExpr();
          },
          [&](Expr<SomeDerived> &&) {
            // TODO: defined operator
            messages.Say("Operand cannot be negated"_err_en_US);
            return NoExpr();
          },
      },
      std::move(x.u));
}

Expr<SomeLogical> LogicalNegation(Expr<SomeLogical> &&x) {
  return std::visit(
      [](auto &&xk) { return AsCategoryExpr(LogicalNegation(std::move(xk))); },
      std::move(x.u));
}

template <typename T>
Expr<LogicalResult> PackageRelation(
    RelationalOperator opr, Expr<T> &&x, Expr<T> &&y) {
  static_assert(IsSpecificIntrinsicType<T>);
  return Expr<LogicalResult>{
      Relational<SomeType>{Relational<T>{opr, std::move(x), std::move(y)}}};
}

template <TypeCategory CAT>
Expr<LogicalResult> PromoteAndRelate(
    RelationalOperator opr, Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
  return std::visit(
      [=](auto &&xy) {
        return PackageRelation(opr, std::move(xy[0]), std::move(xy[1]));
      },
      AsSameKindExprs(std::move(x), std::move(y)));
}

std::optional<Expr<LogicalResult>> Relate(parser::ContextualMessages &messages,
    RelationalOperator opr, Expr<SomeType> &&x, Expr<SomeType> &&y) {
  return std::visit(
      common::visitors{
          [=](Expr<SomeInteger> &&ix,
              Expr<SomeInteger> &&iy) -> std::optional<Expr<LogicalResult>> {
            return PromoteAndRelate(opr, std::move(ix), std::move(iy));
          },
          [=](Expr<SomeReal> &&rx,
              Expr<SomeReal> &&ry) -> std::optional<Expr<LogicalResult>> {
            return PromoteAndRelate(opr, std::move(rx), std::move(ry));
          },
          [&](Expr<SomeReal> &&rx, Expr<SomeInteger> &&iy) {
            return Relate(messages, opr, std::move(x),
                AsGenericExpr(ConvertTo(rx, std::move(iy))));
          },
          [&](Expr<SomeInteger> &&ix, Expr<SomeReal> &&ry) {
            return Relate(messages, opr,
                AsGenericExpr(ConvertTo(ry, std::move(ix))), std::move(y));
          },
          [&](Expr<SomeComplex> &&zx,
              Expr<SomeComplex> &&zy) -> std::optional<Expr<LogicalResult>> {
            if (opr != RelationalOperator::EQ &&
                opr != RelationalOperator::NE) {
              messages.Say(
                  "COMPLEX data may be compared only for equality"_err_en_US);
            } else {
              auto rr{Relate(messages, opr,
                  AsGenericExpr(GetComplexPart(zx, false)),
                  AsGenericExpr(GetComplexPart(zy, false)))};
              auto ri{
                  Relate(messages, opr, AsGenericExpr(GetComplexPart(zx, true)),
                      AsGenericExpr(GetComplexPart(zy, true)))};
              if (auto parts{
                      common::AllPresent(std::move(rr), std::move(ri))}) {
                // (a,b)==(c,d) -> (a==c) .AND. (b==d)
                // (a,b)/=(c,d) -> (a/=c) .OR. (b/=d)
                LogicalOperator combine{opr == RelationalOperator::EQ
                        ? LogicalOperator::And
                        : LogicalOperator::Or};
                return Expr<LogicalResult>{
                    LogicalOperation<LogicalResult::kind>{combine,
                        std::get<0>(std::move(*parts)),
                        std::get<1>(std::move(*parts))}};
              }
            }
            return std::nullopt;
          },
          [&](Expr<SomeComplex> &&zx, Expr<SomeInteger> &&iy) {
            return Relate(messages, opr, std::move(x),
                AsGenericExpr(ConvertTo(zx, std::move(iy))));
          },
          [&](Expr<SomeComplex> &&zx, Expr<SomeReal> &&ry) {
            return Relate(messages, opr, std::move(x),
                AsGenericExpr(ConvertTo(zx, std::move(ry))));
          },
          [&](Expr<SomeInteger> &&ix, Expr<SomeComplex> &&zy) {
            return Relate(messages, opr,
                AsGenericExpr(ConvertTo(zy, std::move(ix))), std::move(y));
          },
          [&](Expr<SomeReal> &&rx, Expr<SomeComplex> &&zy) {
            return Relate(messages, opr,
                AsGenericExpr(ConvertTo(zy, std::move(rx))), std::move(y));
          },
          [&](Expr<SomeCharacter> &&cx, Expr<SomeCharacter> &&cy) {
            return std::visit(
                [&](auto &&cxk,
                    auto &&cyk) -> std::optional<Expr<LogicalResult>> {
                  using Ty = ResultType<decltype(cxk)>;
                  if constexpr (std::is_same_v<Ty, ResultType<decltype(cyk)>>) {
                    return PackageRelation(opr, std::move(cxk), std::move(cyk));
                  } else {
                    messages.Say(
                        "CHARACTER operands do not have same KIND"_err_en_US);
                    return std::nullopt;
                  }
                },
                std::move(cx.u), std::move(cy.u));
          },
          // Default case
          [&](auto &&, auto &&) {
            DIE("invalid types for relational operator");
            return std::optional<Expr<LogicalResult>>{};
          },
      },
      std::move(x.u), std::move(y.u));
}

Expr<SomeLogical> BinaryLogicalOperation(
    LogicalOperator opr, Expr<SomeLogical> &&x, Expr<SomeLogical> &&y) {
  CHECK(opr != LogicalOperator::Not);
  return std::visit(
      [=](auto &&xy) {
        using Ty = ResultType<decltype(xy[0])>;
        return Expr<SomeLogical>{BinaryLogicalOperation<Ty::kind>(
            opr, std::move(xy[0]), std::move(xy[1]))};
      },
      AsSameKindExprs(std::move(x), std::move(y)));
}

template <TypeCategory TO>
std::optional<Expr<SomeType>> ConvertToNumeric(int kind, Expr<SomeType> &&x) {
  static_assert(common::IsNumericTypeCategory(TO));
  return std::visit(
      [=](auto &&cx) -> std::optional<Expr<SomeType>> {
        using cxType = std::decay_t<decltype(cx)>;
        if constexpr (!common::HasMember<cxType, TypelessExpression>) {
          if constexpr (IsNumericTypeCategory(ResultType<cxType>::category)) {
            return Expr<SomeType>{ConvertToKind<TO>(kind, std::move(cx))};
          }
        }
        return std::nullopt;
      },
      std::move(x.u));
}

std::optional<Expr<SomeType>> ConvertToType(
    const DynamicType &type, Expr<SomeType> &&x) {
  switch (type.category()) {
  case TypeCategory::Integer:
    if (auto *boz{std::get_if<BOZLiteralConstant>(&x.u)}) {
      // Extension to C7109: allow BOZ literals to appear in integer contexts
      // when the type is unambiguous.
      return Expr<SomeType>{
          ConvertToKind<TypeCategory::Integer>(type.kind(), std::move(*boz))};
    }
    return ConvertToNumeric<TypeCategory::Integer>(type.kind(), std::move(x));
  case TypeCategory::Real:
    if (auto *boz{std::get_if<BOZLiteralConstant>(&x.u)}) {
      return Expr<SomeType>{
          ConvertToKind<TypeCategory::Real>(type.kind(), std::move(*boz))};
    }
    return ConvertToNumeric<TypeCategory::Real>(type.kind(), std::move(x));
  case TypeCategory::Complex:
    return ConvertToNumeric<TypeCategory::Complex>(type.kind(), std::move(x));
  case TypeCategory::Character:
    if (auto *cx{UnwrapExpr<Expr<SomeCharacter>>(x)}) {
      auto converted{
          ConvertToKind<TypeCategory::Character>(type.kind(), std::move(*cx))};
      if (type.charLength()) {
        if (const auto &len{type.charLength()->GetExplicit()}) {
          Expr<SomeInteger> lenParam{*len};
          Expr<SubscriptInteger> length{Convert<SubscriptInteger>{lenParam}};
          converted = std::visit(
              [&](auto &&x) {
                using Ty = std::decay_t<decltype(x)>;
                using CharacterType = typename Ty::Result;
                return Expr<SomeCharacter>{
                    Expr<CharacterType>{SetLength<CharacterType::kind>{
                        std::move(x), std::move(length)}}};
              },
              std::move(converted.u));
        }
      }
      return Expr<SomeType>{std::move(converted)};
    }
    break;
  case TypeCategory::Logical:
    if (auto *cx{UnwrapExpr<Expr<SomeLogical>>(x)}) {
      return Expr<SomeType>{
          ConvertToKind<TypeCategory::Logical>(type.kind(), std::move(*cx))};
    }
    break;
  case TypeCategory::Derived:
    if (auto fromType{x.GetType()}) {
      if (type == *fromType) {
        return std::move(x);
      }
    }
    break;
  }
  return std::nullopt;
}

std::optional<Expr<SomeType>> ConvertToType(
    const DynamicType &to, std::optional<Expr<SomeType>> &&x) {
  if (x) {
    return ConvertToType(to, std::move(*x));
  } else {
    return std::nullopt;
  }
}

std::optional<Expr<SomeType>> ConvertToType(
    const Symbol &symbol, Expr<SomeType> &&x) {
  if (auto symType{DynamicType::From(symbol)}) {
    return ConvertToType(*symType, std::move(x));
  }
  return std::nullopt;
}

std::optional<Expr<SomeType>> ConvertToType(
    const Symbol &to, std::optional<Expr<SomeType>> &&x) {
  if (x) {
    return ConvertToType(to, std::move(*x));
  } else {
    return std::nullopt;
  }
}

bool IsAssumedRank(const Symbol &symbol0) {
  const Symbol &symbol{ResolveAssociations(symbol0)};
  if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
    return details->IsAssumedRank();
  } else {
    return false;
  }
}

bool IsAssumedRank(const ActualArgument &arg) {
  if (const auto *expr{arg.UnwrapExpr()}) {
    return IsAssumedRank(*expr);
  } else {
    const Symbol *assumedTypeDummy{arg.GetAssumedTypeDummy()};
    CHECK(assumedTypeDummy);
    return IsAssumedRank(*assumedTypeDummy);
  }
}

bool IsProcedure(const Expr<SomeType> &expr) {
  return std::holds_alternative<ProcedureDesignator>(expr.u);
}
bool IsFunction(const Expr<SomeType> &expr) {
  const auto *designator{std::get_if<ProcedureDesignator>(&expr.u)};
  return designator && designator->GetType().has_value();
}

bool IsProcedurePointer(const Expr<SomeType> &expr) {
  return std::visit(common::visitors{
                        [](const NullPointer &) { return true; },
                        [](const ProcedureDesignator &) { return true; },
                        [](const ProcedureRef &) { return true; },
                        [](const auto &) { return false; },
                    },
      expr.u);
}

// IsNullPointer()
struct IsNullPointerHelper : public AllTraverse<IsNullPointerHelper, false> {
  using Base = AllTraverse<IsNullPointerHelper, false>;
  IsNullPointerHelper() : Base(*this) {}
  using Base::operator();
  bool operator()(const ProcedureRef &call) const {
    auto *intrinsic{call.proc().GetSpecificIntrinsic()};
    return intrinsic &&
        intrinsic->characteristics.value().attrs.test(
            characteristics::Procedure::Attr::NullPointer);
  }
  bool operator()(const NullPointer &) const { return true; }
};
bool IsNullPointer(const Expr<SomeType> &expr) {
  return IsNullPointerHelper{}(expr);
}

// GetSymbolVector()
auto GetSymbolVectorHelper::operator()(const Symbol &x) const -> Result {
  if (const auto *details{x.detailsIf<semantics::AssocEntityDetails>()}) {
    return (*this)(details->expr());
  } else {
    return {x.GetUltimate()};
  }
}
auto GetSymbolVectorHelper::operator()(const Component &x) const -> Result {
  Result result{(*this)(x.base())};
  result.emplace_back(x.GetLastSymbol());
  return result;
}
auto GetSymbolVectorHelper::operator()(const ArrayRef &x) const -> Result {
  return GetSymbolVector(x.base());
}
auto GetSymbolVectorHelper::operator()(const CoarrayRef &x) const -> Result {
  return x.base();
}

const Symbol *GetLastTarget(const SymbolVector &symbols) {
  auto end{std::crend(symbols)};
  // N.B. Neither clang nor g++ recognizes "symbols.crbegin()" here.
  auto iter{std::find_if(std::crbegin(symbols), end, [](const Symbol &x) {
    return x.attrs().HasAny(
        {semantics::Attr::POINTER, semantics::Attr::TARGET});
  })};
  return iter == end ? nullptr : &**iter;
}

const Symbol &ResolveAssociations(const Symbol &symbol) {
  if (const auto *details{symbol.detailsIf<semantics::AssocEntityDetails>()}) {
    if (const Symbol * nested{UnwrapWholeSymbolDataRef(details->expr())}) {
      return ResolveAssociations(*nested);
    }
  }
  return symbol.GetUltimate();
}

struct CollectSymbolsHelper
    : public SetTraverse<CollectSymbolsHelper, semantics::SymbolSet> {
  using Base = SetTraverse<CollectSymbolsHelper, semantics::SymbolSet>;
  CollectSymbolsHelper() : Base{*this} {}
  using Base::operator();
  semantics::SymbolSet operator()(const Symbol &symbol) const {
    return {symbol};
  }
};
template <typename A> semantics::SymbolSet CollectSymbols(const A &x) {
  return CollectSymbolsHelper{}(x);
}
template semantics::SymbolSet CollectSymbols(const Expr<SomeType> &);
template semantics::SymbolSet CollectSymbols(const Expr<SomeInteger> &);
template semantics::SymbolSet CollectSymbols(const Expr<SubscriptInteger> &);

// HasVectorSubscript()
struct HasVectorSubscriptHelper : public AnyTraverse<HasVectorSubscriptHelper> {
  using Base = AnyTraverse<HasVectorSubscriptHelper>;
  HasVectorSubscriptHelper() : Base{*this} {}
  using Base::operator();
  bool operator()(const Subscript &ss) const {
    return !std::holds_alternative<Triplet>(ss.u) && ss.Rank() > 0;
  }
  bool operator()(const ProcedureRef &) const {
    return false; // don't descend into function call arguments
  }
};

bool HasVectorSubscript(const Expr<SomeType> &expr) {
  return HasVectorSubscriptHelper{}(expr);
}

parser::Message *AttachDeclaration(
    parser::Message &message, const Symbol &symbol) {
  const Symbol *unhosted{&symbol};
  while (
      const auto *assoc{unhosted->detailsIf<semantics::HostAssocDetails>()}) {
    unhosted = &assoc->symbol();
  }
  if (const auto *binding{
          unhosted->detailsIf<semantics::ProcBindingDetails>()}) {
    if (binding->symbol().name() != symbol.name()) {
      message.Attach(binding->symbol().name(),
          "Procedure '%s' of type '%s' is bound to '%s'"_en_US, symbol.name(),
          symbol.owner().GetName().value(), binding->symbol().name());
      return &message;
    }
    unhosted = &binding->symbol();
  }
  if (const auto *use{symbol.detailsIf<semantics::UseDetails>()}) {
    message.Attach(use->location(),
        "'%s' is USE-associated with '%s' in module '%s'"_en_US, symbol.name(),
        unhosted->name(), GetUsedModule(*use).name());
  } else {
    message.Attach(
        unhosted->name(), "Declaration of '%s'"_en_US, unhosted->name());
  }
  return &message;
}

parser::Message *AttachDeclaration(
    parser::Message *message, const Symbol &symbol) {
  if (message) {
    AttachDeclaration(*message, symbol);
  }
  return message;
}

class FindImpureCallHelper
    : public AnyTraverse<FindImpureCallHelper, std::optional<std::string>> {
  using Result = std::optional<std::string>;
  using Base = AnyTraverse<FindImpureCallHelper, Result>;

public:
  explicit FindImpureCallHelper(const IntrinsicProcTable &intrinsics)
      : Base{*this}, intrinsics_{intrinsics} {}
  using Base::operator();
  Result operator()(const ProcedureRef &call) const {
    if (auto chars{characteristics::Procedure::Characterize(
            call.proc(), intrinsics_)}) {
      if (chars->attrs.test(characteristics::Procedure::Attr::Pure)) {
        return (*this)(call.arguments());
      }
    }
    return call.proc().GetName();
  }

private:
  const IntrinsicProcTable &intrinsics_;
};

std::optional<std::string> FindImpureCall(
    const IntrinsicProcTable &intrinsics, const Expr<SomeType> &expr) {
  return FindImpureCallHelper{intrinsics}(expr);
}
std::optional<std::string> FindImpureCall(
    const IntrinsicProcTable &intrinsics, const ProcedureRef &proc) {
  return FindImpureCallHelper{intrinsics}(proc);
}

} // namespace Fortran::evaluate

namespace Fortran::semantics {

// When a construct association maps to a variable, and that variable
// is not an array with a vector-valued subscript, return the base
// Symbol of that variable, else nullptr.  Descends into other construct
// associations when one associations maps to another.
static const Symbol *GetAssociatedVariable(
    const semantics::AssocEntityDetails &details) {
  if (const auto &expr{details.expr()}) {
    if (IsVariable(*expr) && !HasVectorSubscript(*expr)) {
      if (const Symbol * varSymbol{GetFirstSymbol(*expr)}) {
        return GetAssociationRoot(*varSymbol);
      }
    }
  }
  return nullptr;
}

const Symbol *GetAssociationRoot(const Symbol &symbol) {
  const Symbol &ultimate{symbol.GetUltimate()};
  const auto *details{ultimate.detailsIf<semantics::AssocEntityDetails>()};
  return details ? GetAssociatedVariable(*details) : &ultimate;
}

bool IsVariableName(const Symbol &symbol) {
  const Symbol *root{GetAssociationRoot(symbol)};
  return root && root->has<ObjectEntityDetails>() && !IsNamedConstant(*root);
}

bool IsPureProcedure(const Symbol &symbol) {
  if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) {
    if (const Symbol * procInterface{procDetails->interface().symbol()}) {
      // procedure component with a pure interface
      return IsPureProcedure(*procInterface);
    }
  } else if (const auto *details{symbol.detailsIf<ProcBindingDetails>()}) {
    return IsPureProcedure(details->symbol());
  } else if (!IsProcedure(symbol)) {
    return false;
  }
  if (IsStmtFunction(symbol)) {
    // Section 15.7(1) states that a statement function is PURE if it does not
    // reference an IMPURE procedure or a VOLATILE variable
    if (const auto &expr{symbol.get<SubprogramDetails>().stmtFunction()}) {
      for (const SymbolRef &ref : evaluate::CollectSymbols(*expr)) {
        if (IsFunction(*ref) && !IsPureProcedure(*ref)) {
          return false;
        }
        const Symbol *root{GetAssociationRoot(*ref)};
        if (root && root->attrs().test(Attr::VOLATILE)) {
          return false;
        }
      }
    }
    return true; // statement function was not found to be impure
  }
  return symbol.attrs().test(Attr::PURE) ||
      (symbol.attrs().test(Attr::ELEMENTAL) &&
          !symbol.attrs().test(Attr::IMPURE));
}

bool IsPureProcedure(const Scope &scope) {
  const Symbol *symbol{scope.GetSymbol()};
  return symbol && IsPureProcedure(*symbol);
}

bool IsFunction(const Symbol &symbol) {
  return std::visit(
      common::visitors{
          [](const SubprogramDetails &x) { return x.isFunction(); },
          [&](const SubprogramNameDetails &) {
            return symbol.test(Symbol::Flag::Function);
          },
          [](const ProcEntityDetails &x) {
            const auto &ifc{x.interface()};
            return ifc.type() || (ifc.symbol() && IsFunction(*ifc.symbol()));
          },
          [](const ProcBindingDetails &x) { return IsFunction(x.symbol()); },
          [](const UseDetails &x) { return IsFunction(x.symbol()); },
          [](const auto &) { return false; },
      },
      symbol.details());
}

bool IsProcedure(const Symbol &symbol) {
  return std::visit(
      common::visitors{
          [](const SubprogramDetails &) { return true; },
          [](const SubprogramNameDetails &) { return true; },
          [](const ProcEntityDetails &) { return true; },
          [](const GenericDetails &) { return true; },
          [](const ProcBindingDetails &) { return true; },
          [](const UseDetails &x) { return IsProcedure(x.symbol()); },
          [](const auto &) { return false; },
      },
      symbol.details());
}

const Symbol *FindCommonBlockContaining(const Symbol &object) {
  const auto *details{object.detailsIf<ObjectEntityDetails>()};
  return details ? details->commonBlock() : nullptr;
}

bool IsProcedurePointer(const Symbol &symbol) {
  return symbol.has<ProcEntityDetails>() && IsPointer(symbol);
}

bool IsSaved(const Symbol &original) {
  if (const Symbol * root{GetAssociationRoot(original)}) {
    const Symbol &symbol{*root};
    const Scope *scope{&symbol.owner()};
    auto scopeKind{scope->kind()};
    if (scopeKind == Scope::Kind::Module) {
      return true; // BLOCK DATA entities must all be in COMMON, handled below
    } else if (symbol.attrs().test(Attr::SAVE)) {
      return true;
    } else if (scopeKind == Scope::Kind::DerivedType) {
      return false; // this is a component
    } else if (IsNamedConstant(symbol)) {
      return false;
    } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()};
               object && object->init()) {
      return true;
    } else if (IsProcedurePointer(symbol) &&
        symbol.get<ProcEntityDetails>().init()) {
      return true;
    } else if (const Symbol * block{FindCommonBlockContaining(symbol)};
               block && block->attrs().test(Attr::SAVE)) {
      return true;
    } else if (IsDummy(symbol) || IsFunctionResult(symbol)) {
      return false;
    } else if (scope->hasSAVE() ) {
      return true;
    }
  }
  return false;
}

bool IsDummy(const Symbol &symbol) {
  return std::visit(
      common::visitors{[](const EntityDetails &x) { return x.isDummy(); },
          [](const ObjectEntityDetails &x) { return x.isDummy(); },
          [](const ProcEntityDetails &x) { return x.isDummy(); },
          [](const HostAssocDetails &x) { return IsDummy(x.symbol()); },
          [](const auto &) { return false; }},
      symbol.details());
}

bool IsFunctionResult(const Symbol &symbol) {
  return (symbol.has<ObjectEntityDetails>() &&
             symbol.get<ObjectEntityDetails>().isFuncResult()) ||
      (symbol.has<ProcEntityDetails>() &&
          symbol.get<ProcEntityDetails>().isFuncResult());
}

int CountLenParameters(const DerivedTypeSpec &type) {
  return std::count_if(type.parameters().begin(), type.parameters().end(),
      [](const auto &pair) { return pair.second.isLen(); });
}

int CountNonConstantLenParameters(const DerivedTypeSpec &type) {
  return std::count_if(
      type.parameters().begin(), type.parameters().end(), [](const auto &pair) {
        if (!pair.second.isLen()) {
          return false;
        } else if (const auto &expr{pair.second.GetExplicit()}) {
          return !IsConstantExpr(*expr);
        } else {
          return true;
        }
      });
}

const Symbol &GetUsedModule(const UseDetails &details) {
  return DEREF(details.symbol().owner().symbol());
}

} // namespace Fortran::semantics