IntrinsicCall.cpp
56.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
//===-- IntrinsicCall.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Helper routines for constructing the FIR dialect of MLIR. As FIR is a
// dialect of MLIR, it makes extensive use of MLIR interfaces and MLIR's coding
// style (https://mlir.llvm.org/getting_started/DeveloperGuide/) is used in this
// module.
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/IntrinsicCall.h"
#include "RTBuilder.h"
#include "flang/Lower/CharacterExpr.h"
#include "flang/Lower/ComplexExpr.h"
#include "flang/Lower/ConvertType.h"
#include "flang/Lower/FIRBuilder.h"
#include "flang/Lower/Mangler.h"
#include "flang/Lower/Runtime.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <utility>
#define PGMATH_DECLARE
#include "../runtime/pgmath.h.inc"
/// This file implements lowering of Fortran intrinsic procedures.
/// Intrinsics are lowered to a mix of FIR and MLIR operations as
/// well as call to runtime functions or LLVM intrinsics.
/// Lowering of intrinsic procedure calls is based on a map that associates
/// Fortran intrinsic generic names to FIR generator functions.
/// All generator functions are member functions of the IntrinsicLibrary class
/// and have the same interface.
/// If no generator is given for an intrinsic name, a math runtime library
/// is searched for an implementation and, if a runtime function is found,
/// a call is generated for it. LLVM intrinsics are handled as a math
/// runtime library here.
/// Enums used to templatize and share lowering of MIN and MAX.
enum class Extremum { Min, Max };
// There are different ways to deal with NaNs in MIN and MAX.
// Known existing behaviors are listed below and can be selected for
// f18 MIN/MAX implementation.
enum class ExtremumBehavior {
// Note: the Signaling/quiet aspect of NaNs in the behaviors below are
// not described because there is no way to control/observe such aspect in
// MLIR/LLVM yet. The IEEE behaviors come with requirements regarding this
// aspect that are therefore currently not enforced. In the descriptions
// below, NaNs can be signaling or quite. Returned NaNs may be signaling
// if one of the input NaN was signaling but it cannot be guaranteed either.
// Existing compilers using an IEEE behavior (gfortran) also do not fulfill
// signaling/quiet requirements.
IeeeMinMaximumNumber,
// IEEE minimumNumber/maximumNumber behavior (754-2019, section 9.6):
// If one of the argument is and number and the other is NaN, return the
// number. If both arguements are NaN, return NaN.
// Compilers: gfortran.
IeeeMinMaximum,
// IEEE minimum/maximum behavior (754-2019, section 9.6):
// If one of the argument is NaN, return NaN.
MinMaxss,
// x86 minss/maxss behavior:
// If the second argument is a number and the other is NaN, return the number.
// In all other cases where at least one operand is NaN, return NaN.
// Compilers: xlf (only for MAX), ifort, pgfortran -nollvm, and nagfor.
PgfortranLlvm,
// "Opposite of" x86 minss/maxss behavior:
// If the first argument is a number and the other is NaN, return the
// number.
// In all other cases where at least one operand is NaN, return NaN.
// Compilers: xlf (only for MIN), and pgfortran (with llvm).
IeeeMinMaxNum
// IEEE minNum/maxNum behavior (754-2008, section 5.3.1):
// TODO: Not implemented.
// It is the only behavior where the signaling/quiet aspect of a NaN argument
// impacts if the result should be NaN or the argument that is a number.
// LLVM/MLIR do not provide ways to observe this aspect, so it is not
// possible to implement it without some target dependent runtime.
};
namespace {
/// StaticMultimapView is a constexpr friendly multimap
/// implementation over sorted constexpr arrays.
/// As the View name suggests, it does not duplicate the
/// sorted array but only brings range and search concepts
/// over it. It provides compile time search and can also
/// provide dynamic search (currently linear, can be improved to
/// log(n) due to the sorted array property).
// TODO: Find a better place for this if this is retained.
// This is currently here because this was designed to provide
// maps over runtime description without the burden of having to
// instantiate these maps dynamically and to keep them somewhere.
template <typename V>
class StaticMultimapView {
public:
using Key = typename V::Key;
struct Range {
using const_iterator = const V *;
constexpr const_iterator begin() const { return startPtr; }
constexpr const_iterator end() const { return endPtr; }
constexpr bool empty() const {
return startPtr == nullptr || endPtr == nullptr || endPtr <= startPtr;
}
constexpr std::size_t size() const {
return empty() ? 0 : static_cast<std::size_t>(endPtr - startPtr);
}
const V *startPtr{nullptr};
const V *endPtr{nullptr};
};
using const_iterator = typename Range::const_iterator;
template <std::size_t N>
constexpr StaticMultimapView(const V (&array)[N])
: range{&array[0], &array[0] + N} {}
template <typename Key>
constexpr bool verify() {
// TODO: sorted
// non empty increasing pointer direction
return !range.empty();
}
constexpr const_iterator begin() const { return range.begin(); }
constexpr const_iterator end() const { return range.end(); }
// Assume array is sorted.
// TODO make it a log(n) search based on sorted property
// std::equal_range will be constexpr in C++20 only.
constexpr Range getRange(const Key &key) const {
bool matched{false};
const V *start{nullptr}, *end{nullptr};
for (const auto &desc : range) {
if (desc.key == key) {
if (!matched) {
start = &desc;
matched = true;
}
} else if (matched) {
end = &desc;
matched = false;
}
}
if (matched) {
end = range.end();
}
return Range{start, end};
}
constexpr std::pair<const_iterator, const_iterator>
equal_range(const Key &key) const {
Range range{getRange(key)};
return {range.begin(), range.end()};
}
constexpr typename Range::const_iterator find(Key key) const {
const Range subRange{getRange(key)};
return subRange.size() == 1 ? subRange.begin() : end();
}
private:
Range range{nullptr, nullptr};
};
} // namespace
// TODO error handling -> return a code or directly emit messages ?
struct IntrinsicLibrary {
// Constructors.
explicit IntrinsicLibrary(Fortran::lower::FirOpBuilder &builder,
mlir::Location loc)
: builder{builder}, loc{loc} {}
IntrinsicLibrary() = delete;
IntrinsicLibrary(const IntrinsicLibrary &) = delete;
/// Generate FIR for call to Fortran intrinsic \p name with arguments \p arg
/// and expected result type \p resultType.
fir::ExtendedValue genIntrinsicCall(llvm::StringRef name,
mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> arg);
/// Search a runtime function that is associated to the generic intrinsic name
/// and whose signature matches the intrinsic arguments and result types.
/// If no such runtime function is found but a runtime function associated
/// with the Fortran generic exists and has the same number of arguments,
/// conversions will be inserted before and/or after the call. This is to
/// mainly to allow 16 bits float support even-though little or no math
/// runtime is currently available for it.
mlir::Value genRuntimeCall(llvm::StringRef name, mlir::Type,
llvm::ArrayRef<mlir::Value>);
using RuntimeCallGenerator =
std::function<mlir::Value(Fortran::lower::FirOpBuilder &, mlir::Location,
llvm::ArrayRef<mlir::Value>)>;
RuntimeCallGenerator
getRuntimeCallGenerator(llvm::StringRef name,
mlir::FunctionType soughtFuncType);
mlir::Value genAbs(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genAimag(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genAint(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genAnint(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genCeiling(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genConjg(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genDim(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genDprod(mlir::Type, llvm::ArrayRef<mlir::Value>);
template <Extremum, ExtremumBehavior>
mlir::Value genExtremum(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genFloor(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genIAnd(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genIchar(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genIEOr(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genIOr(mlir::Type, llvm::ArrayRef<mlir::Value>);
fir::ExtendedValue genLen(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
fir::ExtendedValue genLenTrim(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
mlir::Value genMerge(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genMod(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genNint(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genSign(mlir::Type, llvm::ArrayRef<mlir::Value>);
/// Implement all conversion functions like DBLE, the first argument is
/// the value to convert. There may be an additional KIND arguments that
/// is ignored because this is already reflected in the result type.
mlir::Value genConversion(mlir::Type, llvm::ArrayRef<mlir::Value>);
/// Define the different FIR generators that can be mapped to intrinsic to
/// generate the related code.
using ElementalGenerator = decltype(&IntrinsicLibrary::genAbs);
using ExtendedGenerator = decltype(&IntrinsicLibrary::genLenTrim);
using Generator = std::variant<ElementalGenerator, ExtendedGenerator>;
/// All generators can be outlined. This will build a function named
/// "fir."+ <generic name> + "." + <result type code> and generate the
/// intrinsic implementation inside instead of at the intrinsic call sites.
/// This can be used to keep the FIR more readable. Only one function will
/// be generated for all the similar calls in a program.
/// If the Generator is nullptr, the wrapper uses genRuntimeCall.
template <typename GeneratorType>
mlir::Value outlineInWrapper(GeneratorType, llvm::StringRef name,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args);
fir::ExtendedValue outlineInWrapper(ExtendedGenerator, llvm::StringRef name,
mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args);
template <typename GeneratorType>
mlir::FuncOp getWrapper(GeneratorType, llvm::StringRef name,
mlir::FunctionType, bool loadRefArguments = false);
/// Generate calls to ElementalGenerator, handling the elemental aspects
template <typename GeneratorType>
fir::ExtendedValue
genElementalCall(GeneratorType, llvm::StringRef name, mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args, bool outline);
/// Helper to invoke code generator for the intrinsics given arguments.
mlir::Value invokeGenerator(ElementalGenerator generator,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args);
mlir::Value invokeGenerator(RuntimeCallGenerator generator,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args);
mlir::Value invokeGenerator(ExtendedGenerator generator,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args);
/// Get pointer to unrestricted intrinsic. Generate the related unrestricted
/// intrinsic if it is not defined yet.
mlir::SymbolRefAttr
getUnrestrictedIntrinsicSymbolRefAttr(llvm::StringRef name,
mlir::FunctionType signature);
Fortran::lower::FirOpBuilder &builder;
mlir::Location loc;
};
/// Table that drives the fir generation depending on the intrinsic.
/// one to one mapping with Fortran arguments. If no mapping is
/// defined here for a generic intrinsic, genRuntimeCall will be called
/// to look for a match in the runtime a emit a call.
struct IntrinsicHandler {
const char *name;
IntrinsicLibrary::Generator generator;
bool isElemental = true;
/// Code heavy intrinsic can be outlined to make FIR
/// more readable.
bool outline = false;
};
using I = IntrinsicLibrary;
static constexpr IntrinsicHandler handlers[]{
{"abs", &I::genAbs},
{"achar", &I::genConversion},
{"aimag", &I::genAimag},
{"aint", &I::genAint},
{"anint", &I::genAnint},
{"ceiling", &I::genCeiling},
{"char", &I::genConversion},
{"conjg", &I::genConjg},
{"dim", &I::genDim},
{"dble", &I::genConversion},
{"dprod", &I::genDprod},
{"floor", &I::genFloor},
{"iand", &I::genIAnd},
{"ichar", &I::genIchar},
{"ieor", &I::genIEOr},
{"ior", &I::genIOr},
{"len", &I::genLen},
{"len_trim", &I::genLenTrim},
{"max", &I::genExtremum<Extremum::Max, ExtremumBehavior::MinMaxss>},
{"min", &I::genExtremum<Extremum::Min, ExtremumBehavior::MinMaxss>},
{"merge", &I::genMerge},
{"mod", &I::genMod},
{"nint", &I::genNint},
{"sign", &I::genSign},
};
/// To make fir output more readable for debug, one can outline all intrinsic
/// implementation in wrappers (overrides the IntrinsicHandler::outline flag).
static llvm::cl::opt<bool> outlineAllIntrinsics(
"outline-intrinsics",
llvm::cl::desc(
"Lower all intrinsic procedure implementation in their own functions"),
llvm::cl::init(false));
//===----------------------------------------------------------------------===//
// Math runtime description and matching utility
//===----------------------------------------------------------------------===//
/// Command line option to modify math runtime version used to implement
/// intrinsics.
enum MathRuntimeVersion {
fastVersion,
relaxedVersion,
preciseVersion,
llvmOnly
};
llvm::cl::opt<MathRuntimeVersion> mathRuntimeVersion(
"math-runtime", llvm::cl::desc("Select math runtime version:"),
llvm::cl::values(
clEnumValN(fastVersion, "fast", "use pgmath fast runtime"),
clEnumValN(relaxedVersion, "relaxed", "use pgmath relaxed runtime"),
clEnumValN(preciseVersion, "precise", "use pgmath precise runtime"),
clEnumValN(llvmOnly, "llvm",
"only use LLVM intrinsics (may be incomplete)")),
llvm::cl::init(fastVersion));
struct RuntimeFunction {
using Key = llvm::StringRef;
Key key;
llvm::StringRef symbol;
Fortran::lower::FuncTypeBuilderFunc typeGenerator;
};
#define RUNTIME_STATIC_DESCRIPTION(name, func) \
{#name, #func, \
Fortran::lower::RuntimeTableKey<decltype(func)>::getTypeModel()},
static constexpr RuntimeFunction pgmathFast[] = {
#define PGMATH_FAST
#define PGMATH_USE_ALL_TYPES(name, func) RUNTIME_STATIC_DESCRIPTION(name, func)
#include "../runtime/pgmath.h.inc"
};
static constexpr RuntimeFunction pgmathRelaxed[] = {
#define PGMATH_RELAXED
#define PGMATH_USE_ALL_TYPES(name, func) RUNTIME_STATIC_DESCRIPTION(name, func)
#include "../runtime/pgmath.h.inc"
};
static constexpr RuntimeFunction pgmathPrecise[] = {
#define PGMATH_PRECISE
#define PGMATH_USE_ALL_TYPES(name, func) RUNTIME_STATIC_DESCRIPTION(name, func)
#include "../runtime/pgmath.h.inc"
};
static mlir::FunctionType genF32F32FuncType(mlir::MLIRContext *context) {
auto t = mlir::FloatType::getF32(context);
return mlir::FunctionType::get({t}, {t}, context);
}
static mlir::FunctionType genF64F64FuncType(mlir::MLIRContext *context) {
auto t = mlir::FloatType::getF64(context);
return mlir::FunctionType::get({t}, {t}, context);
}
template <int Bits>
static mlir::FunctionType genIntF64FuncType(mlir::MLIRContext *context) {
auto t = mlir::FloatType::getF64(context);
auto r = mlir::IntegerType::get(Bits, context);
return mlir::FunctionType::get({t}, {r}, context);
}
template <int Bits>
static mlir::FunctionType genIntF32FuncType(mlir::MLIRContext *context) {
auto t = mlir::FloatType::getF32(context);
auto r = mlir::IntegerType::get(Bits, context);
return mlir::FunctionType::get({t}, {r}, context);
}
// TODO : Fill-up this table with more intrinsic.
// Note: These are also defined as operations in LLVM dialect. See if this
// can be use and has advantages.
static constexpr RuntimeFunction llvmIntrinsics[] = {
{"abs", "llvm.fabs.f32", genF32F32FuncType},
{"abs", "llvm.fabs.f64", genF64F64FuncType},
{"aint", "llvm.trunc.f32", genF32F32FuncType},
{"aint", "llvm.trunc.f64", genF64F64FuncType},
{"anint", "llvm.round.f32", genF32F32FuncType},
{"anint", "llvm.round.f64", genF64F64FuncType},
// ceil is used for CEILING but is different, it returns a real.
{"ceil", "llvm.ceil.f32", genF32F32FuncType},
{"ceil", "llvm.ceil.f64", genF64F64FuncType},
{"cos", "llvm.cos.f32", genF32F32FuncType},
{"cos", "llvm.cos.f64", genF64F64FuncType},
// llvm.floor is used for FLOOR, but returns real.
{"floor", "llvm.floor.f32", genF32F32FuncType},
{"floor", "llvm.floor.f64", genF64F64FuncType},
{"log", "llvm.log.f32", genF32F32FuncType},
{"log", "llvm.log.f64", genF64F64FuncType},
{"log10", "llvm.log10.f32", genF32F32FuncType},
{"log10", "llvm.log10.f64", genF64F64FuncType},
{"nint", "llvm.lround.i64.f64", genIntF64FuncType<64>},
{"nint", "llvm.lround.i64.f32", genIntF32FuncType<64>},
{"nint", "llvm.lround.i32.f64", genIntF64FuncType<32>},
{"nint", "llvm.lround.i32.f32", genIntF32FuncType<32>},
{"sin", "llvm.sin.f32", genF32F32FuncType},
{"sin", "llvm.sin.f64", genF64F64FuncType},
{"sqrt", "llvm.sqrt.f32", genF32F32FuncType},
{"sqrt", "llvm.sqrt.f64", genF64F64FuncType},
};
// This helper class computes a "distance" between two function types.
// The distance measures how many narrowing conversions of actual arguments
// and result of "from" must be made in order to use "to" instead of "from".
// For instance, the distance between ACOS(REAL(10)) and ACOS(REAL(8)) is
// greater than the one between ACOS(REAL(10)) and ACOS(REAL(16)). This means
// if no implementation of ACOS(REAL(10)) is available, it is better to use
// ACOS(REAL(16)) with casts rather than ACOS(REAL(8)).
// Note that this is not a symmetric distance and the order of "from" and "to"
// arguments matters, d(foo, bar) may not be the same as d(bar, foo) because it
// may be safe to replace foo by bar, but not the opposite.
class FunctionDistance {
public:
FunctionDistance() : infinite{true} {}
FunctionDistance(mlir::FunctionType from, mlir::FunctionType to) {
auto nInputs = from.getNumInputs();
auto nResults = from.getNumResults();
if (nResults != to.getNumResults() || nInputs != to.getNumInputs()) {
infinite = true;
} else {
for (decltype(nInputs) i{0}; i < nInputs && !infinite; ++i)
addArgumentDistance(from.getInput(i), to.getInput(i));
for (decltype(nResults) i{0}; i < nResults && !infinite; ++i)
addResultDistance(to.getResult(i), from.getResult(i));
}
}
/// Beware both d1.isSmallerThan(d2) *and* d2.isSmallerThan(d1) may be
/// false if both d1 and d2 are infinite. This implies that
/// d1.isSmallerThan(d2) is not equivalent to !d2.isSmallerThan(d1)
bool isSmallerThan(const FunctionDistance &d) const {
return !infinite &&
(d.infinite || std::lexicographical_compare(
conversions.begin(), conversions.end(),
d.conversions.begin(), d.conversions.end()));
}
bool isLosingPrecision() const {
return conversions[narrowingArg] != 0 || conversions[extendingResult] != 0;
}
bool isInfinite() const { return infinite; }
private:
enum class Conversion { Forbidden, None, Narrow, Extend };
void addArgumentDistance(mlir::Type from, mlir::Type to) {
switch (conversionBetweenTypes(from, to)) {
case Conversion::Forbidden:
infinite = true;
break;
case Conversion::None:
break;
case Conversion::Narrow:
conversions[narrowingArg]++;
break;
case Conversion::Extend:
conversions[nonNarrowingArg]++;
break;
}
}
void addResultDistance(mlir::Type from, mlir::Type to) {
switch (conversionBetweenTypes(from, to)) {
case Conversion::Forbidden:
infinite = true;
break;
case Conversion::None:
break;
case Conversion::Narrow:
conversions[nonExtendingResult]++;
break;
case Conversion::Extend:
conversions[extendingResult]++;
break;
}
}
// Floating point can be mlir::FloatType or fir::real
static unsigned getFloatingPointWidth(mlir::Type t) {
if (auto f{t.dyn_cast<mlir::FloatType>()})
return f.getWidth();
// FIXME: Get width another way for fir.real/complex
// - use fir/KindMapping.h and llvm::Type
// - or use evaluate/type.h
if (auto r{t.dyn_cast<fir::RealType>()})
return r.getFKind() * 4;
if (auto cplx{t.dyn_cast<fir::CplxType>()})
return cplx.getFKind() * 4;
llvm_unreachable("not a floating-point type");
}
static Conversion conversionBetweenTypes(mlir::Type from, mlir::Type to) {
if (from == to) {
return Conversion::None;
}
if (auto fromIntTy{from.dyn_cast<mlir::IntegerType>()}) {
if (auto toIntTy{to.dyn_cast<mlir::IntegerType>()}) {
return fromIntTy.getWidth() > toIntTy.getWidth() ? Conversion::Narrow
: Conversion::Extend;
}
}
if (fir::isa_real(from) && fir::isa_real(to)) {
return getFloatingPointWidth(from) > getFloatingPointWidth(to)
? Conversion::Narrow
: Conversion::Extend;
}
if (auto fromCplxTy{from.dyn_cast<fir::CplxType>()}) {
if (auto toCplxTy{to.dyn_cast<fir::CplxType>()}) {
return getFloatingPointWidth(fromCplxTy) >
getFloatingPointWidth(toCplxTy)
? Conversion::Narrow
: Conversion::Extend;
}
}
// Notes:
// - No conversion between character types, specialization of runtime
// functions should be made instead.
// - It is not clear there is a use case for automatic conversions
// around Logical and it may damage hidden information in the physical
// storage so do not do it.
return Conversion::Forbidden;
}
// Below are indexes to access data in conversions.
// The order in data does matter for lexicographical_compare
enum {
narrowingArg = 0, // usually bad
extendingResult, // usually bad
nonExtendingResult, // usually ok
nonNarrowingArg, // usually ok
dataSize
};
std::array<int, dataSize> conversions{/* zero init*/};
bool infinite{false}; // When forbidden conversion or wrong argument number
};
/// Build mlir::FuncOp from runtime symbol description and add
/// fir.runtime attribute.
static mlir::FuncOp getFuncOp(mlir::Location loc,
Fortran::lower::FirOpBuilder &builder,
const RuntimeFunction &runtime) {
auto function = builder.addNamedFunction(
loc, runtime.symbol, runtime.typeGenerator(builder.getContext()));
function.setAttr("fir.runtime", builder.getUnitAttr());
return function;
}
/// Select runtime function that has the smallest distance to the intrinsic
/// function type and that will not imply narrowing arguments or extending the
/// result.
/// If nothing is found, the mlir::FuncOp will contain a nullptr.
template <std::size_t N>
mlir::FuncOp searchFunctionInLibrary(mlir::Location loc,
Fortran::lower::FirOpBuilder &builder,
const RuntimeFunction (&lib)[N],
llvm::StringRef name,
mlir::FunctionType funcType,
const RuntimeFunction **bestNearMatch,
FunctionDistance &bestMatchDistance) {
auto map = StaticMultimapView(lib);
auto range = map.equal_range(name);
for (auto iter{range.first}; iter != range.second && iter; ++iter) {
const auto &impl = *iter;
auto implType = impl.typeGenerator(builder.getContext());
if (funcType == implType) {
return getFuncOp(loc, builder, impl); // exact match
} else {
FunctionDistance distance(funcType, implType);
if (distance.isSmallerThan(bestMatchDistance)) {
*bestNearMatch = &impl;
bestMatchDistance = std::move(distance);
}
}
}
return {};
}
/// Search runtime for the best runtime function given an intrinsic name
/// and interface. The interface may not be a perfect match in which case
/// the caller is responsible to insert argument and return value conversions.
/// If nothing is found, the mlir::FuncOp will contain a nullptr.
static mlir::FuncOp getRuntimeFunction(mlir::Location loc,
Fortran::lower::FirOpBuilder &builder,
llvm::StringRef name,
mlir::FunctionType funcType) {
const RuntimeFunction *bestNearMatch = nullptr;
FunctionDistance bestMatchDistance{};
mlir::FuncOp match;
if (mathRuntimeVersion == fastVersion) {
match = searchFunctionInLibrary(loc, builder, pgmathFast, name, funcType,
&bestNearMatch, bestMatchDistance);
} else if (mathRuntimeVersion == relaxedVersion) {
match = searchFunctionInLibrary(loc, builder, pgmathRelaxed, name, funcType,
&bestNearMatch, bestMatchDistance);
} else if (mathRuntimeVersion == preciseVersion) {
match = searchFunctionInLibrary(loc, builder, pgmathPrecise, name, funcType,
&bestNearMatch, bestMatchDistance);
} else {
assert(mathRuntimeVersion == llvmOnly && "unknown math runtime");
}
if (match)
return match;
// Go through llvm intrinsics if not exact match in libpgmath or if
// mathRuntimeVersion == llvmOnly
if (auto exactMatch =
searchFunctionInLibrary(loc, builder, llvmIntrinsics, name, funcType,
&bestNearMatch, bestMatchDistance))
return exactMatch;
if (bestNearMatch != nullptr) {
assert(!bestMatchDistance.isLosingPrecision() &&
"runtime selection loses precision");
return getFuncOp(loc, builder, *bestNearMatch);
}
return {};
}
/// Helpers to get function type from arguments and result type.
static mlir::FunctionType
getFunctionType(mlir::Type resultType, llvm::ArrayRef<mlir::Value> arguments,
Fortran::lower::FirOpBuilder &builder) {
llvm::SmallVector<mlir::Type, 2> argumentTypes;
for (auto &arg : arguments)
argumentTypes.push_back(arg.getType());
return mlir::FunctionType::get(argumentTypes, resultType,
builder.getModule().getContext());
}
/// fir::ExtendedValue to mlir::Value translation layer
fir::ExtendedValue toExtendedValue(mlir::Value val,
Fortran::lower::FirOpBuilder &builder,
mlir::Location loc) {
assert(val && "optional unhandled here");
auto type = val.getType();
auto base = val;
auto indexType = builder.getIndexType();
llvm::SmallVector<mlir::Value, 2> extents;
Fortran::lower::CharacterExprHelper charHelper{builder, loc};
if (charHelper.isCharacter(type))
return charHelper.toExtendedValue(val);
if (auto refType = type.dyn_cast<fir::ReferenceType>())
type = refType.getEleTy();
if (auto arrayType = type.dyn_cast<fir::SequenceType>()) {
type = arrayType.getEleTy();
for (auto extent : arrayType.getShape()) {
if (extent == fir::SequenceType::getUnknownExtent())
break;
extents.emplace_back(
builder.createIntegerConstant(loc, indexType, extent));
}
// Last extent might be missing in case of assumed-size. If more extents
// could not be deduced from type, that's an error (a fir.box should
// have been used in the interface).
if (extents.size() + 1 < arrayType.getShape().size())
mlir::emitError(loc, "cannot retrieve array extents from type");
} else if (type.isa<fir::BoxType>() || type.isa<fir::RecordType>()) {
mlir::emitError(loc, "descriptor or derived type not yet handled");
}
if (!extents.empty())
return fir::ArrayBoxValue{base, extents};
return base;
}
mlir::Value toValue(const fir::ExtendedValue &val,
Fortran::lower::FirOpBuilder &builder, mlir::Location loc) {
if (auto charBox = val.getCharBox()) {
auto buffer = charBox->getBuffer();
if (buffer.getType().isa<fir::BoxCharType>())
return buffer;
return Fortran::lower::CharacterExprHelper{builder, loc}.createEmboxChar(
buffer, charBox->getLen());
}
// FIXME: need to access other ExtendedValue variants and handle them
// properly.
return fir::getBase(val);
}
//===----------------------------------------------------------------------===//
// IntrinsicLibrary
//===----------------------------------------------------------------------===//
template <typename GeneratorType>
fir::ExtendedValue IntrinsicLibrary::genElementalCall(
GeneratorType generator, llvm::StringRef name, mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args, bool outline) {
llvm::SmallVector<mlir::Value, 2> scalarArgs;
for (const auto &arg : args) {
if (arg.getUnboxed() || arg.getCharBox()) {
scalarArgs.emplace_back(fir::getBase(arg));
} else {
// TODO: get the result shape and create the loop...
mlir::emitError(loc, "array or descriptor not yet handled in elemental "
"intrinsic lowering");
exit(1);
}
}
if (outline)
return outlineInWrapper(generator, name, resultType, scalarArgs);
return invokeGenerator(generator, resultType, scalarArgs);
}
/// Some ExtendedGenerator operating on characters are also elemental
/// (e.g LEN_TRIM).
template <>
fir::ExtendedValue
IntrinsicLibrary::genElementalCall<IntrinsicLibrary::ExtendedGenerator>(
ExtendedGenerator generator, llvm::StringRef name, mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args, bool outline) {
for (const auto &arg : args)
if (!arg.getUnboxed() && !arg.getCharBox()) {
// TODO: get the result shape and create the loop...
mlir::emitError(loc, "array or descriptor not yet handled in elemental "
"intrinsic lowering");
exit(1);
}
if (outline)
return outlineInWrapper(generator, name, resultType, args);
return std::invoke(generator, *this, resultType, args);
}
fir::ExtendedValue
IntrinsicLibrary::genIntrinsicCall(llvm::StringRef name, mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args) {
for (auto &handler : handlers)
if (name == handler.name) {
bool outline = handler.outline || outlineAllIntrinsics;
if (const auto *elementalGenerator =
std::get_if<ElementalGenerator>(&handler.generator))
return genElementalCall(*elementalGenerator, name, resultType, args,
outline);
const auto &generator = std::get<ExtendedGenerator>(handler.generator);
if (handler.isElemental)
return genElementalCall(generator, name, resultType, args, outline);
if (outline)
return outlineInWrapper(generator, name, resultType, args);
return std::invoke(generator, *this, resultType, args);
}
// Try the runtime if no special handler was defined for the
// intrinsic being called. Maths runtime only has numerical elemental.
// No optional arguments are expected at this point, the code will
// crash if it gets absent optional.
// FIXME: using toValue to get the type won't work with array arguments.
llvm::SmallVector<mlir::Value, 2> mlirArgs;
for (const auto &extendedVal : args) {
auto val = toValue(extendedVal, builder, loc);
if (!val) {
// If an absent optional gets there, most likely its handler has just
// not yet been defined.
mlir::emitError(loc,
"TODO: missing intrinsic lowering: " + llvm::Twine(name));
exit(1);
}
mlirArgs.emplace_back(val);
}
mlir::FunctionType soughtFuncType =
getFunctionType(resultType, mlirArgs, builder);
auto runtimeCallGenerator = getRuntimeCallGenerator(name, soughtFuncType);
return genElementalCall(runtimeCallGenerator, name, resultType, args,
/* outline */ true);
}
mlir::Value
IntrinsicLibrary::invokeGenerator(ElementalGenerator generator,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
return std::invoke(generator, *this, resultType, args);
}
mlir::Value
IntrinsicLibrary::invokeGenerator(RuntimeCallGenerator generator,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
return generator(builder, loc, args);
}
mlir::Value
IntrinsicLibrary::invokeGenerator(ExtendedGenerator generator,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
llvm::SmallVector<fir::ExtendedValue, 2> extendedArgs;
for (auto arg : args)
extendedArgs.emplace_back(toExtendedValue(arg, builder, loc));
auto extendedResult = std::invoke(generator, *this, resultType, extendedArgs);
return toValue(extendedResult, builder, loc);
}
template <typename GeneratorType>
mlir::FuncOp IntrinsicLibrary::getWrapper(GeneratorType generator,
llvm::StringRef name,
mlir::FunctionType funcType,
bool loadRefArguments) {
assert(funcType.getNumResults() == 1 &&
"expect one result for intrinsic functions");
auto resultType = funcType.getResult(0);
std::string wrapperName = fir::mangleIntrinsicProcedure(name, funcType);
auto function = builder.getNamedFunction(wrapperName);
if (!function) {
// First time this wrapper is needed, build it.
function = builder.createFunction(loc, wrapperName, funcType);
function.setAttr("fir.intrinsic", builder.getUnitAttr());
function.addEntryBlock();
// Create local context to emit code into the newly created function
// This new function is not linked to a source file location, only
// its calls will be.
auto localBuilder = std::make_unique<Fortran::lower::FirOpBuilder>(
function, builder.getKindMap());
localBuilder->setInsertionPointToStart(&function.front());
// Location of code inside wrapper of the wrapper is independent from
// the location of the intrinsic call.
auto localLoc = localBuilder->getUnknownLoc();
llvm::SmallVector<mlir::Value, 2> localArguments;
for (mlir::BlockArgument bArg : function.front().getArguments()) {
auto refType = bArg.getType().dyn_cast<fir::ReferenceType>();
if (loadRefArguments && refType) {
auto loaded = localBuilder->create<fir::LoadOp>(localLoc, bArg);
localArguments.push_back(loaded);
} else {
localArguments.push_back(bArg);
}
}
IntrinsicLibrary localLib{*localBuilder, localLoc};
auto result =
localLib.invokeGenerator(generator, resultType, localArguments);
localBuilder->create<mlir::ReturnOp>(localLoc, result);
} else {
// Wrapper was already built, ensure it has the sought type
assert(function.getType() == funcType &&
"conflict between intrinsic wrapper types");
}
return function;
}
/// Helpers to detect absent optional (not yet supported in outlining).
bool static hasAbsentOptional(llvm::ArrayRef<mlir::Value> args) {
for (const auto &arg : args)
if (!arg)
return true;
return false;
}
bool static hasAbsentOptional(llvm::ArrayRef<fir::ExtendedValue> args) {
for (const auto &arg : args)
if (!fir::getBase(arg))
return true;
return false;
}
template <typename GeneratorType>
mlir::Value
IntrinsicLibrary::outlineInWrapper(GeneratorType generator,
llvm::StringRef name, mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
if (hasAbsentOptional(args)) {
// TODO: absent optional in outlining is an issue: we cannot just ignore
// them. Needs a better interface here. The issue is that we cannot easily
// tell that a value is optional or not here if it is presents. And if it is
// absent, we cannot tell what it type should be.
mlir::emitError(loc, "todo: cannot outline call to intrinsic " +
llvm::Twine(name) +
" with absent optional argument");
exit(1);
}
auto funcType = getFunctionType(resultType, args, builder);
auto wrapper = getWrapper(generator, name, funcType);
return builder.create<mlir::CallOp>(loc, wrapper, args).getResult(0);
}
fir::ExtendedValue
IntrinsicLibrary::outlineInWrapper(ExtendedGenerator generator,
llvm::StringRef name, mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args) {
if (hasAbsentOptional(args)) {
// TODO
mlir::emitError(loc, "todo: cannot outline call to intrinsic " +
llvm::Twine(name) +
" with absent optional argument");
exit(1);
}
llvm::SmallVector<mlir::Value, 2> mlirArgs;
for (const auto &extendedVal : args)
mlirArgs.emplace_back(toValue(extendedVal, builder, loc));
auto funcType = getFunctionType(resultType, mlirArgs, builder);
auto wrapper = getWrapper(generator, name, funcType);
auto mlirResult =
builder.create<mlir::CallOp>(loc, wrapper, mlirArgs).getResult(0);
return toExtendedValue(mlirResult, builder, loc);
}
IntrinsicLibrary::RuntimeCallGenerator
IntrinsicLibrary::getRuntimeCallGenerator(llvm::StringRef name,
mlir::FunctionType soughtFuncType) {
auto funcOp = getRuntimeFunction(loc, builder, name, soughtFuncType);
if (!funcOp) {
mlir::emitError(loc,
"TODO: missing intrinsic lowering: " + llvm::Twine(name));
llvm::errs() << "requested type was: " << soughtFuncType << "\n";
exit(1);
}
mlir::FunctionType actualFuncType = funcOp.getType();
assert(actualFuncType.getNumResults() == soughtFuncType.getNumResults() &&
actualFuncType.getNumInputs() == soughtFuncType.getNumInputs() &&
actualFuncType.getNumResults() == 1 && "Bad intrinsic match");
return [funcOp, actualFuncType, soughtFuncType](
Fortran::lower::FirOpBuilder &builder, mlir::Location loc,
llvm::ArrayRef<mlir::Value> args) {
llvm::SmallVector<mlir::Value, 2> convertedArguments;
for (const auto &pair : llvm::zip(actualFuncType.getInputs(), args))
convertedArguments.push_back(
builder.createConvert(loc, std::get<0>(pair), std::get<1>(pair)));
auto call = builder.create<mlir::CallOp>(loc, funcOp, convertedArguments);
mlir::Type soughtType = soughtFuncType.getResult(0);
return builder.createConvert(loc, soughtType, call.getResult(0));
};
}
mlir::SymbolRefAttr IntrinsicLibrary::getUnrestrictedIntrinsicSymbolRefAttr(
llvm::StringRef name, mlir::FunctionType signature) {
// Unrestricted intrinsics signature follows implicit rules: argument
// are passed by references. But the runtime versions expect values.
// So instead of duplicating the runtime, just have the wrappers loading
// this before calling the code generators.
bool loadRefArguments = true;
mlir::FuncOp funcOp;
for (auto &handler : handlers)
if (name == handler.name)
funcOp = std::visit(
[&](auto generator) {
return getWrapper(generator, name, signature, loadRefArguments);
},
handler.generator);
if (!funcOp) {
llvm::SmallVector<mlir::Type, 2> argTypes;
for (auto type : signature.getInputs()) {
if (auto refType = type.dyn_cast<fir::ReferenceType>())
argTypes.push_back(refType.getEleTy());
else
argTypes.push_back(type);
}
auto soughtFuncType =
builder.getFunctionType(signature.getResults(), argTypes);
auto rtCallGenerator = getRuntimeCallGenerator(name, soughtFuncType);
funcOp = getWrapper(rtCallGenerator, name, signature, loadRefArguments);
}
return builder.getSymbolRefAttr(funcOp.getName());
}
//===----------------------------------------------------------------------===//
// Code generators for the intrinsic
//===----------------------------------------------------------------------===//
mlir::Value IntrinsicLibrary::genRuntimeCall(llvm::StringRef name,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
mlir::FunctionType soughtFuncType =
getFunctionType(resultType, args, builder);
return getRuntimeCallGenerator(name, soughtFuncType)(builder, loc, args);
}
mlir::Value IntrinsicLibrary::genConversion(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
// There can be an optional kind in second argument.
assert(args.size() >= 1);
return builder.convertWithSemantics(loc, resultType, args[0]);
}
// ABS
mlir::Value IntrinsicLibrary::genAbs(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 1);
auto arg = args[0];
auto type = arg.getType();
if (fir::isa_real(type)) {
// Runtime call to fp abs. An alternative would be to use mlir AbsFOp
// but it does not support all fir floating point types.
return genRuntimeCall("abs", resultType, args);
}
if (auto intType = type.dyn_cast<mlir::IntegerType>()) {
// At the time of this implementation there is no abs op in mlir.
// So, implement abs here without branching.
auto shift =
builder.createIntegerConstant(loc, intType, intType.getWidth() - 1);
auto mask = builder.create<mlir::SignedShiftRightOp>(loc, arg, shift);
auto xored = builder.create<mlir::XOrOp>(loc, arg, mask);
return builder.create<mlir::SubIOp>(loc, xored, mask);
}
if (fir::isa_complex(type)) {
// Use HYPOT to fulfill the no underflow/overflow requirement.
auto parts =
Fortran::lower::ComplexExprHelper{builder, loc}.extractParts(arg);
llvm::SmallVector<mlir::Value, 2> args = {parts.first, parts.second};
return genRuntimeCall("hypot", resultType, args);
}
llvm_unreachable("unexpected type in ABS argument");
}
// AIMAG
mlir::Value IntrinsicLibrary::genAimag(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 1);
return Fortran::lower::ComplexExprHelper{builder, loc}.extractComplexPart(
args[0], true /* isImagPart */);
}
// ANINT
mlir::Value IntrinsicLibrary::genAnint(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() >= 1);
// Skip optional kind argument to search the runtime; it is already reflected
// in result type.
return genRuntimeCall("anint", resultType, {args[0]});
}
// AINT
mlir::Value IntrinsicLibrary::genAint(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() >= 1);
// Skip optional kind argument to search the runtime; it is already reflected
// in result type.
return genRuntimeCall("aint", resultType, {args[0]});
}
// CEILING
mlir::Value IntrinsicLibrary::genCeiling(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
// Optional KIND argument.
assert(args.size() >= 1);
auto arg = args[0];
// Use ceil that is not an actual Fortran intrinsic but that is
// an llvm intrinsic that does the same, but return a floating
// point.
auto ceil = genRuntimeCall("ceil", arg.getType(), {arg});
return builder.createConvert(loc, resultType, ceil);
}
// CONJG
mlir::Value IntrinsicLibrary::genConjg(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 1);
if (resultType != args[0].getType())
llvm_unreachable("argument type mismatch");
mlir::Value cplx = args[0];
auto imag =
Fortran::lower::ComplexExprHelper{builder, loc}.extractComplexPart(
cplx, /*isImagPart=*/true);
auto negImag = builder.create<fir::NegfOp>(loc, imag);
return Fortran::lower::ComplexExprHelper{builder, loc}.insertComplexPart(
cplx, negImag, /*isImagPart=*/true);
}
// DIM
mlir::Value IntrinsicLibrary::genDim(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 2);
if (resultType.isa<mlir::IntegerType>()) {
auto zero = builder.createIntegerConstant(loc, resultType, 0);
auto diff = builder.create<mlir::SubIOp>(loc, args[0], args[1]);
auto cmp =
builder.create<mlir::CmpIOp>(loc, mlir::CmpIPredicate::sgt, diff, zero);
return builder.create<mlir::SelectOp>(loc, cmp, diff, zero);
}
assert(fir::isa_real(resultType) && "Only expects real and integer in DIM");
auto zero = builder.createRealZeroConstant(loc, resultType);
auto diff = builder.create<fir::SubfOp>(loc, args[0], args[1]);
auto cmp =
builder.create<fir::CmpfOp>(loc, mlir::CmpFPredicate::OGT, diff, zero);
return builder.create<mlir::SelectOp>(loc, cmp, diff, zero);
}
// DPROD
mlir::Value IntrinsicLibrary::genDprod(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 2);
assert(fir::isa_real(resultType) &&
"Result must be double precision in DPROD");
auto a = builder.createConvert(loc, resultType, args[0]);
auto b = builder.createConvert(loc, resultType, args[1]);
return builder.create<fir::MulfOp>(loc, a, b);
}
// FLOOR
mlir::Value IntrinsicLibrary::genFloor(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
// Optional KIND argument.
assert(args.size() >= 1);
auto arg = args[0];
// Use LLVM floor that returns real.
auto floor = genRuntimeCall("floor", arg.getType(), {arg});
return builder.createConvert(loc, resultType, floor);
}
// IAND
mlir::Value IntrinsicLibrary::genIAnd(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 2);
return builder.create<mlir::AndOp>(loc, args[0], args[1]);
}
// ICHAR
mlir::Value IntrinsicLibrary::genIchar(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
// There can be an optional kind in second argument.
assert(args.size() >= 1);
auto arg = args[0];
Fortran::lower::CharacterExprHelper helper{builder, loc};
auto dataAndLen = helper.createUnboxChar(arg);
auto charType = fir::CharacterType::get(
builder.getContext(), helper.getCharacterKind(arg.getType()));
auto refType = builder.getRefType(charType);
auto charAddr = builder.createConvert(loc, refType, dataAndLen.first);
auto charVal = builder.create<fir::LoadOp>(loc, charType, charAddr);
return builder.createConvert(loc, resultType, charVal);
}
// IEOR
mlir::Value IntrinsicLibrary::genIEOr(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 2);
return builder.create<mlir::XOrOp>(loc, args[0], args[1]);
}
// IOR
mlir::Value IntrinsicLibrary::genIOr(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 2);
return builder.create<mlir::OrOp>(loc, args[0], args[1]);
}
// LEN
// Note that this is only used for unrestricted intrinsic.
// Usage of LEN are otherwise rewritten as descriptor inquiries by the
// front-end.
fir::ExtendedValue
IntrinsicLibrary::genLen(mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args) {
// Optional KIND argument reflected in result type.
assert(args.size() >= 1);
mlir::Value len;
if (const auto *charBox = args[0].getCharBox()) {
len = charBox->getLen();
} else if (const auto *charBoxArray = args[0].getCharBox()) {
len = charBoxArray->getLen();
} else {
Fortran::lower::CharacterExprHelper helper{builder, loc};
len = helper.createUnboxChar(fir::getBase(args[0])).second;
}
return builder.createConvert(loc, resultType, len);
}
// LEN_TRIM
fir::ExtendedValue
IntrinsicLibrary::genLenTrim(mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args) {
// Optional KIND argument reflected in result type.
assert(args.size() >= 1);
Fortran::lower::CharacterExprHelper helper{builder, loc};
auto len = helper.createLenTrim(fir::getBase(args[0]));
return builder.createConvert(loc, resultType, len);
}
// MERGE
mlir::Value IntrinsicLibrary::genMerge(mlir::Type,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 3);
auto i1Type = mlir::IntegerType::get(1, builder.getContext());
auto mask = builder.createConvert(loc, i1Type, args[2]);
return builder.create<mlir::SelectOp>(loc, mask, args[0], args[1]);
}
// MOD
mlir::Value IntrinsicLibrary::genMod(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 2);
if (resultType.isa<mlir::IntegerType>())
return builder.create<mlir::SignedRemIOp>(loc, args[0], args[1]);
// Use runtime. Note that mlir::RemFOp implements floating point
// remainder, but it does not work with fir::Real type.
// TODO: consider using mlir::RemFOp when possible, that may help folding
// and optimizations.
return genRuntimeCall("mod", resultType, args);
}
// NINT
mlir::Value IntrinsicLibrary::genNint(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() >= 1);
// Skip optional kind argument to search the runtime; it is already reflected
// in result type.
return genRuntimeCall("nint", resultType, {args[0]});
}
// SIGN
mlir::Value IntrinsicLibrary::genSign(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 2);
auto abs = genAbs(resultType, {args[0]});
if (resultType.isa<mlir::IntegerType>()) {
auto zero = builder.createIntegerConstant(loc, resultType, 0);
auto neg = builder.create<mlir::SubIOp>(loc, zero, abs);
auto cmp = builder.create<mlir::CmpIOp>(loc, mlir::CmpIPredicate::slt,
args[1], zero);
return builder.create<mlir::SelectOp>(loc, cmp, neg, abs);
}
// TODO: Requirements when second argument is +0./0.
auto zeroAttr = builder.getZeroAttr(resultType);
auto zero = builder.create<mlir::ConstantOp>(loc, resultType, zeroAttr);
auto neg = builder.create<fir::NegfOp>(loc, abs);
auto cmp =
builder.create<fir::CmpfOp>(loc, mlir::CmpFPredicate::OLT, args[1], zero);
return builder.create<mlir::SelectOp>(loc, cmp, neg, abs);
}
// Compare two FIR values and return boolean result as i1.
template <Extremum extremum, ExtremumBehavior behavior>
static mlir::Value createExtremumCompare(mlir::Location loc,
Fortran::lower::FirOpBuilder &builder,
mlir::Value left, mlir::Value right) {
static constexpr auto integerPredicate = extremum == Extremum::Max
? mlir::CmpIPredicate::sgt
: mlir::CmpIPredicate::slt;
static constexpr auto orderedCmp = extremum == Extremum::Max
? mlir::CmpFPredicate::OGT
: mlir::CmpFPredicate::OLT;
auto type = left.getType();
mlir::Value result;
if (fir::isa_real(type)) {
// Note: the signaling/quit aspect of the result required by IEEE
// cannot currently be obtained with LLVM without ad-hoc runtime.
if constexpr (behavior == ExtremumBehavior::IeeeMinMaximumNumber) {
// Return the number if one of the inputs is NaN and the other is
// a number.
auto leftIsResult =
builder.create<fir::CmpfOp>(loc, orderedCmp, left, right);
auto rightIsNan = builder.create<fir::CmpfOp>(
loc, mlir::CmpFPredicate::UNE, right, right);
result = builder.create<mlir::OrOp>(loc, leftIsResult, rightIsNan);
} else if constexpr (behavior == ExtremumBehavior::IeeeMinMaximum) {
// Always return NaNs if one the input is NaNs
auto leftIsResult =
builder.create<fir::CmpfOp>(loc, orderedCmp, left, right);
auto leftIsNan = builder.create<fir::CmpfOp>(
loc, mlir::CmpFPredicate::UNE, left, left);
result = builder.create<mlir::OrOp>(loc, leftIsResult, leftIsNan);
} else if constexpr (behavior == ExtremumBehavior::MinMaxss) {
// If the left is a NaN, return the right whatever it is.
result = builder.create<fir::CmpfOp>(loc, orderedCmp, left, right);
} else if constexpr (behavior == ExtremumBehavior::PgfortranLlvm) {
// If one of the operand is a NaN, return left whatever it is.
static constexpr auto unorderedCmp = extremum == Extremum::Max
? mlir::CmpFPredicate::UGT
: mlir::CmpFPredicate::ULT;
result = builder.create<fir::CmpfOp>(loc, unorderedCmp, left, right);
} else {
// TODO: ieeeMinNum/ieeeMaxNum
static_assert(behavior == ExtremumBehavior::IeeeMinMaxNum,
"ieeeMinNum/ieeeMaxNum behavior not implemented");
}
} else if (fir::isa_integer(type)) {
result = builder.create<mlir::CmpIOp>(loc, integerPredicate, left, right);
} else if (type.isa<fir::CharacterType>()) {
// TODO: ! character min and max is tricky because the result
// length is the length of the longest argument!
// So we may need a temp.
}
assert(result);
return result;
}
// MIN and MAX
template <Extremum extremum, ExtremumBehavior behavior>
mlir::Value IntrinsicLibrary::genExtremum(mlir::Type,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() >= 1);
mlir::Value result = args[0];
for (auto arg : args.drop_front()) {
auto mask =
createExtremumCompare<extremum, behavior>(loc, builder, result, arg);
result = builder.create<mlir::SelectOp>(loc, mask, result, arg);
}
return result;
}
//===----------------------------------------------------------------------===//
// Public intrinsic call helpers
//===----------------------------------------------------------------------===//
fir::ExtendedValue
Fortran::lower::genIntrinsicCall(Fortran::lower::FirOpBuilder &builder,
mlir::Location loc, llvm::StringRef name,
mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args) {
return IntrinsicLibrary{builder, loc}.genIntrinsicCall(name, resultType,
args);
}
mlir::Value Fortran::lower::genMax(Fortran::lower::FirOpBuilder &builder,
mlir::Location loc,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() > 0 && "max requires at least one argument");
return IntrinsicLibrary{builder, loc}
.genExtremum<Extremum::Max, ExtremumBehavior::MinMaxss>(args[0].getType(),
args);
}
mlir::Value Fortran::lower::genMin(Fortran::lower::FirOpBuilder &builder,
mlir::Location loc,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() > 0 && "min requires at least one argument");
return IntrinsicLibrary{builder, loc}
.genExtremum<Extremum::Min, ExtremumBehavior::MinMaxss>(args[0].getType(),
args);
}
mlir::Value Fortran::lower::genPow(Fortran::lower::FirOpBuilder &builder,
mlir::Location loc, mlir::Type type,
mlir::Value x, mlir::Value y) {
return IntrinsicLibrary{builder, loc}.genRuntimeCall("pow", type, {x, y});
}
mlir::SymbolRefAttr Fortran::lower::getUnrestrictedIntrinsicSymbolRefAttr(
Fortran::lower::FirOpBuilder &builder, mlir::Location loc,
llvm::StringRef name, mlir::FunctionType signature) {
return IntrinsicLibrary{builder, loc}.getUnrestrictedIntrinsicSymbolRefAttr(
name, signature);
}