compute-offsets.cpp
14.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
//===-- lib/Semantics/compute-offsets.cpp -----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "compute-offsets.h"
#include "../../runtime/descriptor.h"
#include "flang/Evaluate/fold-designator.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/shape.h"
#include "flang/Evaluate/type.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"
#include <algorithm>
#include <vector>
namespace Fortran::semantics {
class ComputeOffsetsHelper {
public:
// TODO: configure based on target
static constexpr std::size_t maxAlignment{8};
ComputeOffsetsHelper(SemanticsContext &context) : context_{context} {}
void Compute() { Compute(context_.globalScope()); }
private:
struct SizeAndAlignment {
SizeAndAlignment() {}
SizeAndAlignment(std::size_t bytes) : size{bytes}, alignment{bytes} {}
SizeAndAlignment(std::size_t bytes, std::size_t align)
: size{bytes}, alignment{align} {}
std::size_t size{0};
std::size_t alignment{0};
};
struct SymbolAndOffset {
SymbolAndOffset(Symbol &s, std::size_t off, const EquivalenceObject &obj)
: symbol{&s}, offset{off}, object{&obj} {}
SymbolAndOffset(const SymbolAndOffset &) = default;
Symbol *symbol;
std::size_t offset;
const EquivalenceObject *object;
};
void Compute(Scope &);
void DoScope(Scope &);
void DoCommonBlock(Symbol &);
void DoEquivalenceBlockBase(Symbol &, SizeAndAlignment &);
void DoEquivalenceSet(const EquivalenceSet &);
SymbolAndOffset Resolve(const SymbolAndOffset &);
std::size_t ComputeOffset(const EquivalenceObject &);
void DoSymbol(Symbol &);
SizeAndAlignment GetSizeAndAlignment(const Symbol &);
SizeAndAlignment GetElementSize(const Symbol &);
std::size_t CountElements(const Symbol &);
static std::size_t Align(std::size_t, std::size_t);
static SizeAndAlignment GetIntrinsicSizeAndAlignment(TypeCategory, int);
SemanticsContext &context_;
evaluate::FoldingContext &foldingContext_{context_.foldingContext()};
std::size_t offset_{0};
std::size_t alignment_{0};
// symbol -> symbol+offset that determines its location, from EQUIVALENCE
std::map<MutableSymbolRef, SymbolAndOffset> dependents_;
// base symbol -> SizeAndAlignment for each distinct EQUIVALENCE block
std::map<MutableSymbolRef, SizeAndAlignment> equivalenceBlock_;
};
void ComputeOffsetsHelper::Compute(Scope &scope) {
for (Scope &child : scope.children()) {
Compute(child);
}
DoScope(scope);
dependents_.clear();
equivalenceBlock_.clear();
}
void ComputeOffsetsHelper::DoScope(Scope &scope) {
if (scope.symbol() && scope.IsParameterizedDerivedType()) {
return; // only process instantiations of parameterized derived types
}
// Build dependents_ from equivalences: symbol -> symbol+offset
for (const EquivalenceSet &set : scope.equivalenceSets()) {
DoEquivalenceSet(set);
}
offset_ = 0;
alignment_ = 0;
// Compute a base symbol and overall block size for each
// disjoint EQUIVALENCE storage sequence.
for (auto &[symbol, dep] : dependents_) {
dep = Resolve(dep);
CHECK(symbol->size() == 0);
auto symInfo{GetSizeAndAlignment(*symbol)};
symbol->set_size(symInfo.size);
Symbol &base{*dep.symbol};
auto iter{equivalenceBlock_.find(base)};
std::size_t minBlockSize{dep.offset + symInfo.size};
if (iter == equivalenceBlock_.end()) {
equivalenceBlock_.emplace(
base, SizeAndAlignment{minBlockSize, symInfo.alignment});
} else {
SizeAndAlignment &blockInfo{iter->second};
blockInfo.size = std::max(blockInfo.size, minBlockSize);
blockInfo.alignment = std::max(blockInfo.alignment, symInfo.alignment);
}
}
// Assign offsets for non-COMMON EQUIVALENCE blocks
for (auto &[symbol, blockInfo] : equivalenceBlock_) {
if (!InCommonBlock(*symbol)) {
DoSymbol(*symbol);
DoEquivalenceBlockBase(*symbol, blockInfo);
offset_ = std::max(offset_, symbol->offset() + blockInfo.size);
}
}
// Process remaining non-COMMON symbols; this is all of them if there
// was no use of EQUIVALENCE in the scope.
for (auto &symbol : scope.GetSymbols()) {
if (!InCommonBlock(*symbol) &&
dependents_.find(symbol) == dependents_.end() &&
equivalenceBlock_.find(symbol) == equivalenceBlock_.end()) {
DoSymbol(*symbol);
}
}
scope.set_size(offset_);
scope.set_alignment(alignment_);
// Assign offsets in COMMON blocks.
for (auto &pair : scope.commonBlocks()) {
DoCommonBlock(*pair.second);
}
for (auto &[symbol, dep] : dependents_) {
symbol->set_offset(dep.symbol->offset() + dep.offset);
if (const auto *block{FindCommonBlockContaining(*dep.symbol)}) {
symbol->get<ObjectEntityDetails>().set_commonBlock(*block);
}
}
}
auto ComputeOffsetsHelper::Resolve(const SymbolAndOffset &dep)
-> SymbolAndOffset {
auto it{dependents_.find(*dep.symbol)};
if (it == dependents_.end()) {
return dep;
} else {
SymbolAndOffset result{Resolve(it->second)};
result.offset += dep.offset;
result.object = dep.object;
return result;
}
}
void ComputeOffsetsHelper::DoCommonBlock(Symbol &commonBlock) {
auto &details{commonBlock.get<CommonBlockDetails>()};
offset_ = 0;
alignment_ = 0;
std::size_t minSize{0};
std::size_t minAlignment{0};
for (auto &object : details.objects()) {
Symbol &symbol{*object};
DoSymbol(symbol);
auto iter{dependents_.find(symbol)};
if (iter == dependents_.end()) {
// Get full extent of any EQUIVALENCE block into size of COMMON
auto eqIter{equivalenceBlock_.find(symbol)};
if (eqIter != equivalenceBlock_.end()) {
SizeAndAlignment &blockInfo{eqIter->second};
DoEquivalenceBlockBase(symbol, blockInfo);
minSize = std::max(
minSize, std::max(offset_, symbol.offset() + blockInfo.size));
minAlignment = std::max(minAlignment, blockInfo.alignment);
}
} else {
SymbolAndOffset &dep{iter->second};
Symbol &base{*dep.symbol};
auto errorSite{
commonBlock.name().empty() ? symbol.name() : commonBlock.name()};
if (const auto *baseBlock{FindCommonBlockContaining(base)}) {
if (baseBlock == &commonBlock) {
context_.Say(errorSite,
"'%s' is storage associated with '%s' by EQUIVALENCE elsewhere in COMMON block /%s/"_err_en_US,
symbol.name(), base.name(), commonBlock.name());
} else { // 8.10.3(1)
context_.Say(errorSite,
"'%s' in COMMON block /%s/ must not be storage associated with '%s' in COMMON block /%s/ by EQUIVALENCE"_err_en_US,
symbol.name(), commonBlock.name(), base.name(),
baseBlock->name());
}
} else if (dep.offset > symbol.offset()) { // 8.10.3(3)
context_.Say(errorSite,
"'%s' cannot backward-extend COMMON block /%s/ via EQUIVALENCE with '%s'"_err_en_US,
symbol.name(), commonBlock.name(), base.name());
} else {
base.get<ObjectEntityDetails>().set_commonBlock(commonBlock);
base.set_offset(symbol.offset() - dep.offset);
}
}
}
commonBlock.set_size(std::max(minSize, offset_));
details.set_alignment(std::max(minAlignment, alignment_));
}
void ComputeOffsetsHelper::DoEquivalenceBlockBase(
Symbol &symbol, SizeAndAlignment &blockInfo) {
if (symbol.size() > blockInfo.size) {
blockInfo.size = symbol.size();
}
}
void ComputeOffsetsHelper::DoEquivalenceSet(const EquivalenceSet &set) {
std::vector<SymbolAndOffset> symbolOffsets;
std::optional<std::size_t> representative;
for (const EquivalenceObject &object : set) {
std::size_t offset{ComputeOffset(object)};
SymbolAndOffset resolved{
Resolve(SymbolAndOffset{object.symbol, offset, object})};
symbolOffsets.push_back(resolved);
if (!representative ||
resolved.offset >= symbolOffsets[*representative].offset) {
// The equivalenced object with the largest offset from its resolved
// symbol will be the representative of this set, since the offsets
// of the other objects will be positive relative to it.
representative = symbolOffsets.size() - 1;
}
}
CHECK(representative);
const SymbolAndOffset &base{symbolOffsets[*representative]};
for (const auto &[symbol, offset, object] : symbolOffsets) {
if (symbol == base.symbol) {
if (offset != base.offset) {
auto x{evaluate::OffsetToDesignator(
context_.foldingContext(), *symbol, base.offset, 1)};
auto y{evaluate::OffsetToDesignator(
context_.foldingContext(), *symbol, offset, 1)};
if (x && y) {
context_
.Say(base.object->source,
"'%s' and '%s' cannot have the same first storage unit"_err_en_US,
x->AsFortran(), y->AsFortran())
.Attach(object->source, "Incompatible reference to '%s'"_en_US,
y->AsFortran());
} else { // error recovery
context_
.Say(base.object->source,
"'%s' (offset %zd bytes and %zd bytes) cannot have the same first storage unit"_err_en_US,
symbol->name(), base.offset, offset)
.Attach(object->source,
"Incompatible reference to '%s' offset %zd bytes"_en_US,
symbol->name(), offset);
}
}
} else {
dependents_.emplace(*symbol,
SymbolAndOffset{*base.symbol, base.offset - offset, *object});
}
}
}
// Offset of this equivalence object from the start of its variable.
std::size_t ComputeOffsetsHelper::ComputeOffset(
const EquivalenceObject &object) {
std::size_t offset{0};
if (!object.subscripts.empty()) {
const ArraySpec &shape{object.symbol.get<ObjectEntityDetails>().shape()};
auto lbound{[&](std::size_t i) {
return *ToInt64(shape[i].lbound().GetExplicit());
}};
auto ubound{[&](std::size_t i) {
return *ToInt64(shape[i].ubound().GetExplicit());
}};
for (std::size_t i{object.subscripts.size() - 1};;) {
offset += object.subscripts[i] - lbound(i);
if (i == 0) {
break;
}
--i;
offset *= ubound(i) - lbound(i) + 1;
}
}
auto result{offset * GetElementSize(object.symbol).size};
if (object.substringStart) {
int kind{context_.defaultKinds().GetDefaultKind(TypeCategory::Character)};
if (const DeclTypeSpec * type{object.symbol.GetType()}) {
if (const IntrinsicTypeSpec * intrinsic{type->AsIntrinsic()}) {
kind = ToInt64(intrinsic->kind()).value_or(kind);
}
}
result += kind * (*object.substringStart - 1);
}
return result;
}
void ComputeOffsetsHelper::DoSymbol(Symbol &symbol) {
if (!symbol.has<ObjectEntityDetails>() && !symbol.has<ProcEntityDetails>()) {
return;
}
SizeAndAlignment s{GetSizeAndAlignment(symbol)};
if (s.size == 0) {
return;
}
offset_ = Align(offset_, s.alignment);
symbol.set_size(s.size);
symbol.set_offset(offset_);
offset_ += s.size;
alignment_ = std::max(alignment_, s.alignment);
}
auto ComputeOffsetsHelper::GetSizeAndAlignment(const Symbol &symbol)
-> SizeAndAlignment {
SizeAndAlignment result{GetElementSize(symbol)};
std::size_t elements{CountElements(symbol)};
if (elements > 1) {
result.size = Align(result.size, result.alignment);
}
result.size *= elements;
return result;
}
auto ComputeOffsetsHelper::GetElementSize(const Symbol &symbol)
-> SizeAndAlignment {
const DeclTypeSpec *type{symbol.GetType()};
if (!evaluate::DynamicType::From(type).has_value()) {
return {};
}
// TODO: The size of procedure pointers is not yet known
// and is independent of rank (and probably also the number
// of length type parameters).
if (IsDescriptor(symbol) || IsProcedurePointer(symbol)) {
int lenParams{0};
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
lenParams = CountLenParameters(*derived);
}
std::size_t size{
runtime::Descriptor::SizeInBytes(symbol.Rank(), false, lenParams)};
return {size, maxAlignment};
}
if (IsProcedure(symbol)) {
return {};
}
SizeAndAlignment result;
if (const IntrinsicTypeSpec * intrinsic{type->AsIntrinsic()}) {
if (auto kind{ToInt64(intrinsic->kind())}) {
result = GetIntrinsicSizeAndAlignment(intrinsic->category(), *kind);
}
if (type->category() == DeclTypeSpec::Character) {
ParamValue length{type->characterTypeSpec().length()};
CHECK(length.isExplicit()); // else should be descriptor
if (MaybeIntExpr lengthExpr{length.GetExplicit()}) {
if (auto lengthInt{ToInt64(*lengthExpr)}) {
result.size *= *lengthInt;
}
}
}
} else if (const DerivedTypeSpec * derived{type->AsDerived()}) {
if (derived->scope()) {
result.size = derived->scope()->size();
result.alignment = derived->scope()->alignment();
}
} else {
DIE("not intrinsic or derived");
}
return result;
}
std::size_t ComputeOffsetsHelper::CountElements(const Symbol &symbol) {
if (auto shape{GetShape(foldingContext_, symbol)}) {
if (auto sizeExpr{evaluate::GetSize(std::move(*shape))}) {
if (auto size{ToInt64(Fold(foldingContext_, std::move(*sizeExpr)))}) {
return *size;
}
}
}
return 1;
}
// Align a size to its natural alignment, up to maxAlignment.
std::size_t ComputeOffsetsHelper::Align(std::size_t x, std::size_t alignment) {
if (alignment > maxAlignment) {
alignment = maxAlignment;
}
return (x + alignment - 1) & -alignment;
}
auto ComputeOffsetsHelper::GetIntrinsicSizeAndAlignment(
TypeCategory category, int kind) -> SizeAndAlignment {
if (category == TypeCategory::Character) {
return {static_cast<std::size_t>(kind)};
}
auto bytes{evaluate::ToInt64(
evaluate::DynamicType{category, kind}.MeasureSizeInBytes())};
CHECK(bytes && *bytes > 0);
std::size_t size{static_cast<std::size_t>(*bytes)};
if (category == TypeCategory::Complex) {
return {size, size >> 1};
} else {
return {size};
}
}
void ComputeOffsets(SemanticsContext &context) {
ComputeOffsetsHelper{context}.Compute();
}
} // namespace Fortran::semantics