descriptor.h
12.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
//===-- runtime/descriptor.h ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_RUNTIME_DESCRIPTOR_H_
#define FORTRAN_RUNTIME_DESCRIPTOR_H_
// Defines data structures used during execution of a Fortran program
// to implement nontrivial dummy arguments, pointers, allocatables,
// function results, and the special behaviors of instances of derived types.
// This header file includes and extends the published language
// interoperability header that is required by the Fortran 2018 standard
// as a subset of definitions suitable for exposure to user C/C++ code.
// User C code is welcome to depend on that ISO_Fortran_binding.h file,
// but should never reference this internal header.
#include "derived-type.h"
#include "memory.h"
#include "type-code.h"
#include "flang/ISO_Fortran_binding.h"
#include <cassert>
#include <cinttypes>
#include <cstddef>
#include <cstdio>
#include <cstring>
namespace Fortran::runtime {
using SubscriptValue = ISO::CFI_index_t;
static constexpr int maxRank{CFI_MAX_RANK};
// A C++ view of the sole interoperable standard descriptor (ISO::CFI_cdesc_t)
// and its type and per-dimension information.
class Dimension {
public:
SubscriptValue LowerBound() const { return raw_.lower_bound; }
SubscriptValue Extent() const { return raw_.extent; }
SubscriptValue UpperBound() const { return LowerBound() + Extent() - 1; }
SubscriptValue ByteStride() const { return raw_.sm; }
private:
ISO::CFI_dim_t raw_;
};
// The storage for this object follows the last used dim[] entry in a
// Descriptor (CFI_cdesc_t) generic descriptor. Space matters here, since
// descriptors serve as POINTER and ALLOCATABLE components of derived type
// instances. The presence of this structure is implied by the flag
// CFI_cdesc_t.f18Addendum, and the number of elements in the len_[]
// array is determined by DerivedType::lenParameters().
class DescriptorAddendum {
public:
enum Flags {
StaticDescriptor = 0x001,
ImplicitAllocatable = 0x002, // compiler-created allocatable
DoNotFinalize = 0x004, // compiler temporary
Target = 0x008, // TARGET attribute
};
explicit DescriptorAddendum(
const DerivedType *dt = nullptr, std::uint64_t flags = 0)
: derivedType_{dt}, flags_{flags} {}
const DerivedType *derivedType() const { return derivedType_; }
DescriptorAddendum &set_derivedType(const DerivedType *dt) {
derivedType_ = dt;
return *this;
}
std::uint64_t &flags() { return flags_; }
const std::uint64_t &flags() const { return flags_; }
std::size_t LenParameters() const {
if (derivedType_) {
return derivedType_->lenParameters();
}
return 0;
}
TypeParameterValue LenParameterValue(int which) const { return len_[which]; }
static constexpr std::size_t SizeInBytes(int lenParameters) {
return sizeof(DescriptorAddendum) - sizeof(TypeParameterValue) +
lenParameters * sizeof(TypeParameterValue);
}
std::size_t SizeInBytes() const;
void SetLenParameterValue(int which, TypeParameterValue x) {
len_[which] = x;
}
void Dump(FILE * = stdout) const;
private:
const DerivedType *derivedType_{nullptr};
std::uint64_t flags_{0};
TypeParameterValue len_[1]; // must be the last component
// The LEN type parameter values can also include captured values of
// specification expressions that were used for bounds and for LEN type
// parameters of components. The values have been truncated to the LEN
// type parameter's type, if shorter than 64 bits, then sign-extended.
};
// A C++ view of a standard descriptor object.
class Descriptor {
public:
// Be advised: this class type is not suitable for use when allocating
// a descriptor -- it is a dynamic view of the common descriptor format.
// If used in a simple declaration of a local variable or dynamic allocation,
// the size is going to be correct only by accident, since the true size of
// a descriptor depends on the number of its dimensions and the presence and
// size of an addendum, which depends on the type of the data.
// Use the class template StaticDescriptor (below) to declare a descriptor
// whose type and rank are fixed and known at compilation time. Use the
// Create() static member functions otherwise to dynamically allocate a
// descriptor.
Descriptor() {
// Minimal initialization to prevent the destructor from running amuck
// later if the descriptor is never established.
raw_.base_addr = nullptr;
raw_.f18Addendum = false;
}
Descriptor(const Descriptor &);
~Descriptor();
static constexpr std::size_t BytesFor(TypeCategory category, int kind) {
return category == TypeCategory::Complex ? kind * 2 : kind;
}
void Establish(TypeCode t, std::size_t elementBytes, void *p = nullptr,
int rank = maxRank, const SubscriptValue *extent = nullptr,
ISO::CFI_attribute_t attribute = CFI_attribute_other,
bool addendum = false);
void Establish(TypeCategory, int kind, void *p = nullptr, int rank = maxRank,
const SubscriptValue *extent = nullptr,
ISO::CFI_attribute_t attribute = CFI_attribute_other,
bool addendum = false);
void Establish(int characterKind, std::size_t characters, void *p = nullptr,
int rank = maxRank, const SubscriptValue *extent = nullptr,
ISO::CFI_attribute_t attribute = CFI_attribute_other,
bool addendum = false);
void Establish(const DerivedType &dt, void *p = nullptr, int rank = maxRank,
const SubscriptValue *extent = nullptr,
ISO::CFI_attribute_t attribute = CFI_attribute_other);
static OwningPtr<Descriptor> Create(TypeCode t, std::size_t elementBytes,
void *p = nullptr, int rank = maxRank,
const SubscriptValue *extent = nullptr,
ISO::CFI_attribute_t attribute = CFI_attribute_other,
int derivedTypeLenParameters = 0);
static OwningPtr<Descriptor> Create(TypeCategory, int kind, void *p = nullptr,
int rank = maxRank, const SubscriptValue *extent = nullptr,
ISO::CFI_attribute_t attribute = CFI_attribute_other);
static OwningPtr<Descriptor> Create(int characterKind,
SubscriptValue characters, void *p = nullptr, int rank = maxRank,
const SubscriptValue *extent = nullptr,
ISO::CFI_attribute_t attribute = CFI_attribute_other);
static OwningPtr<Descriptor> Create(const DerivedType &dt, void *p = nullptr,
int rank = maxRank, const SubscriptValue *extent = nullptr,
ISO::CFI_attribute_t attribute = CFI_attribute_other);
ISO::CFI_cdesc_t &raw() { return raw_; }
const ISO::CFI_cdesc_t &raw() const { return raw_; }
std::size_t ElementBytes() const { return raw_.elem_len; }
int rank() const { return raw_.rank; }
TypeCode type() const { return TypeCode{raw_.type}; }
Descriptor &set_base_addr(void *p) {
raw_.base_addr = p;
return *this;
}
bool IsPointer() const { return raw_.attribute == CFI_attribute_pointer; }
bool IsAllocatable() const {
return raw_.attribute == CFI_attribute_allocatable;
}
bool IsAllocated() const { return raw_.base_addr != nullptr; }
Dimension &GetDimension(int dim) {
return *reinterpret_cast<Dimension *>(&raw_.dim[dim]);
}
const Dimension &GetDimension(int dim) const {
return *reinterpret_cast<const Dimension *>(&raw_.dim[dim]);
}
std::size_t SubscriptByteOffset(
int dim, SubscriptValue subscriptValue) const {
const Dimension &dimension{GetDimension(dim)};
return (subscriptValue - dimension.LowerBound()) * dimension.ByteStride();
}
std::size_t SubscriptsToByteOffset(const SubscriptValue subscript[]) const {
std::size_t offset{0};
for (int j{0}; j < raw_.rank; ++j) {
offset += SubscriptByteOffset(j, subscript[j]);
}
return offset;
}
template <typename A = char> A *OffsetElement(std::size_t offset = 0) const {
return reinterpret_cast<A *>(
reinterpret_cast<char *>(raw_.base_addr) + offset);
}
template <typename A> A *Element(const SubscriptValue subscript[]) const {
return OffsetElement<A>(SubscriptsToByteOffset(subscript));
}
template <typename A> A *ZeroBasedIndexedElement(std::size_t n) const {
SubscriptValue at[maxRank];
if (SubscriptsForZeroBasedElementNumber(at, n)) {
return Element<A>(at);
}
return nullptr;
}
void GetLowerBounds(SubscriptValue subscript[]) const {
for (int j{0}; j < raw_.rank; ++j) {
subscript[j] = GetDimension(j).LowerBound();
}
}
// When the passed subscript vector contains the last (or first)
// subscripts of the array, these wrap the subscripts around to
// their first (or last) values and return false.
bool IncrementSubscripts(
SubscriptValue[], const int *permutation = nullptr) const;
bool DecrementSubscripts(
SubscriptValue[], const int *permutation = nullptr) const;
// False when out of range.
bool SubscriptsForZeroBasedElementNumber(SubscriptValue *,
std::size_t elementNumber, const int *permutation = nullptr) const;
std::size_t ZeroBasedElementNumber(
const SubscriptValue *, const int *permutation = nullptr) const;
DescriptorAddendum *Addendum() {
if (raw_.f18Addendum != 0) {
return reinterpret_cast<DescriptorAddendum *>(&GetDimension(rank()));
} else {
return nullptr;
}
}
const DescriptorAddendum *Addendum() const {
if (raw_.f18Addendum != 0) {
return reinterpret_cast<const DescriptorAddendum *>(
&GetDimension(rank()));
} else {
return nullptr;
}
}
// Returns size in bytes of the descriptor (not the data)
static constexpr std::size_t SizeInBytes(
int rank, bool addendum = false, int lengthTypeParameters = 0) {
std::size_t bytes{sizeof(Descriptor) - sizeof(Dimension)};
bytes += rank * sizeof(Dimension);
if (addendum || lengthTypeParameters > 0) {
bytes += DescriptorAddendum::SizeInBytes(lengthTypeParameters);
}
return bytes;
}
std::size_t SizeInBytes() const;
std::size_t Elements() const;
// TODO: SOURCE= and MOLD=
int Allocate(const SubscriptValue lb[], const SubscriptValue ub[]);
int Deallocate(bool finalize = true);
void Destroy(char *data, bool finalize = true) const;
bool IsContiguous(int leadingDimensions = maxRank) const {
auto bytes{static_cast<SubscriptValue>(ElementBytes())};
for (int j{0}; j < leadingDimensions && j < raw_.rank; ++j) {
const Dimension &dim{GetDimension(j)};
if (bytes != dim.ByteStride()) {
return false;
}
bytes *= dim.Extent();
}
return true;
}
void Check() const;
// TODO: creation of array sections
void Dump(FILE * = stdout) const;
private:
ISO::CFI_cdesc_t raw_;
};
static_assert(sizeof(Descriptor) == sizeof(ISO::CFI_cdesc_t));
// Properly configured instances of StaticDescriptor will occupy the
// exact amount of storage required for the descriptor, its dimensional
// information, and possible addendum. To build such a static descriptor,
// declare an instance of StaticDescriptor<>, extract a reference to its
// descriptor via the descriptor() accessor, and then built a Descriptor
// therein via descriptor.Establish(), e.g.:
// StaticDescriptor<R,A,LP> statDesc;
// Descriptor &descriptor{statDesc.descriptor()};
// descriptor.Establish( ... );
template <int MAX_RANK = maxRank, bool ADDENDUM = false, int MAX_LEN_PARMS = 0>
class alignas(Descriptor) StaticDescriptor {
public:
static constexpr int maxRank{MAX_RANK};
static constexpr int maxLengthTypeParameters{MAX_LEN_PARMS};
static constexpr bool hasAddendum{ADDENDUM || MAX_LEN_PARMS > 0};
static constexpr std::size_t byteSize{
Descriptor::SizeInBytes(maxRank, hasAddendum, maxLengthTypeParameters)};
StaticDescriptor() { new (storage_) Descriptor{}; }
~StaticDescriptor() { descriptor().~Descriptor(); }
Descriptor &descriptor() { return *reinterpret_cast<Descriptor *>(storage_); }
const Descriptor &descriptor() const {
return *reinterpret_cast<const Descriptor *>(storage_);
}
void Check() {
assert(descriptor().rank() <= maxRank);
assert(descriptor().SizeInBytes() <= byteSize);
if (DescriptorAddendum * addendum{descriptor().Addendum()}) {
assert(hasAddendum);
if (const DerivedType * dt{addendum->derivedType()}) {
assert(dt->lenParameters() <= maxLengthTypeParameters);
} else {
assert(maxLengthTypeParameters == 0);
}
} else {
assert(!hasAddendum);
assert(maxLengthTypeParameters == 0);
}
descriptor().Check();
}
private:
char storage_[byteSize];
};
} // namespace Fortran::runtime
#endif // FORTRAN_RUNTIME_DESCRIPTOR_H_