CodeGenPrepare.cpp 298 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988
//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass munges the code in the input function to better prepare it for
// SelectionDAG-based code generation. This works around limitations in it's
// basic-block-at-a-time approach. It should eventually be removed.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <memory>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "codegenprepare"

STATISTIC(NumBlocksElim, "Number of blocks eliminated");
STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
                      "sunken Cmps");
STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
                       "of sunken Casts");
STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
                          "computations were sunk");
STATISTIC(NumMemoryInstsPhiCreated,
          "Number of phis created when address "
          "computations were sunk to memory instructions");
STATISTIC(NumMemoryInstsSelectCreated,
          "Number of select created when address "
          "computations were sunk to memory instructions");
STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
STATISTIC(NumAndsAdded,
          "Number of and mask instructions added to form ext loads");
STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");

static cl::opt<bool> DisableBranchOpts(
  "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
  cl::desc("Disable branch optimizations in CodeGenPrepare"));

static cl::opt<bool>
    DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
                  cl::desc("Disable GC optimizations in CodeGenPrepare"));

static cl::opt<bool> DisableSelectToBranch(
  "disable-cgp-select2branch", cl::Hidden, cl::init(false),
  cl::desc("Disable select to branch conversion."));

static cl::opt<bool> AddrSinkUsingGEPs(
  "addr-sink-using-gep", cl::Hidden, cl::init(true),
  cl::desc("Address sinking in CGP using GEPs."));

static cl::opt<bool> EnableAndCmpSinking(
   "enable-andcmp-sinking", cl::Hidden, cl::init(true),
   cl::desc("Enable sinkinig and/cmp into branches."));

static cl::opt<bool> DisableStoreExtract(
    "disable-cgp-store-extract", cl::Hidden, cl::init(false),
    cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));

static cl::opt<bool> StressStoreExtract(
    "stress-cgp-store-extract", cl::Hidden, cl::init(false),
    cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));

static cl::opt<bool> DisableExtLdPromotion(
    "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
    cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
             "CodeGenPrepare"));

static cl::opt<bool> StressExtLdPromotion(
    "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
    cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
             "optimization in CodeGenPrepare"));

static cl::opt<bool> DisablePreheaderProtect(
    "disable-preheader-prot", cl::Hidden, cl::init(false),
    cl::desc("Disable protection against removing loop preheaders"));

static cl::opt<bool> ProfileGuidedSectionPrefix(
    "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
    cl::desc("Use profile info to add section prefix for hot/cold functions"));

static cl::opt<bool> ProfileUnknownInSpecialSection(
    "profile-unknown-in-special-section", cl::Hidden, cl::init(false),
    cl::ZeroOrMore,
    cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
             "profile, we cannot tell the function is cold for sure because "
             "it may be a function newly added without ever being sampled. "
             "With the flag enabled, compiler can put such profile unknown "
             "functions into a special section, so runtime system can choose "
             "to handle it in a different way than .text section, to save "
             "RAM for example. "));

static cl::opt<unsigned> FreqRatioToSkipMerge(
    "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
    cl::desc("Skip merging empty blocks if (frequency of empty block) / "
             "(frequency of destination block) is greater than this ratio"));

static cl::opt<bool> ForceSplitStore(
    "force-split-store", cl::Hidden, cl::init(false),
    cl::desc("Force store splitting no matter what the target query says."));

static cl::opt<bool>
EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
    cl::desc("Enable merging of redundant sexts when one is dominating"
    " the other."), cl::init(true));

static cl::opt<bool> DisableComplexAddrModes(
    "disable-complex-addr-modes", cl::Hidden, cl::init(false),
    cl::desc("Disables combining addressing modes with different parts "
             "in optimizeMemoryInst."));

static cl::opt<bool>
AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
                cl::desc("Allow creation of Phis in Address sinking."));

static cl::opt<bool>
AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
                   cl::desc("Allow creation of selects in Address sinking."));

static cl::opt<bool> AddrSinkCombineBaseReg(
    "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
    cl::desc("Allow combining of BaseReg field in Address sinking."));

static cl::opt<bool> AddrSinkCombineBaseGV(
    "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
    cl::desc("Allow combining of BaseGV field in Address sinking."));

static cl::opt<bool> AddrSinkCombineBaseOffs(
    "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
    cl::desc("Allow combining of BaseOffs field in Address sinking."));

static cl::opt<bool> AddrSinkCombineScaledReg(
    "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
    cl::desc("Allow combining of ScaledReg field in Address sinking."));

static cl::opt<bool>
    EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
                         cl::init(true),
                         cl::desc("Enable splitting large offset of GEP."));

static cl::opt<bool> EnableICMP_EQToICMP_ST(
    "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
    cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));

static cl::opt<bool>
    VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
                     cl::desc("Enable BFI update verification for "
                              "CodeGenPrepare."));

static cl::opt<bool> OptimizePhiTypes(
    "cgp-optimize-phi-types", cl::Hidden, cl::init(false),
    cl::desc("Enable converting phi types in CodeGenPrepare"));

namespace {

enum ExtType {
  ZeroExtension,   // Zero extension has been seen.
  SignExtension,   // Sign extension has been seen.
  BothExtension    // This extension type is used if we saw sext after
                   // ZeroExtension had been set, or if we saw zext after
                   // SignExtension had been set. It makes the type
                   // information of a promoted instruction invalid.
};

using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
using SExts = SmallVector<Instruction *, 16>;
using ValueToSExts = DenseMap<Value *, SExts>;

class TypePromotionTransaction;

  class CodeGenPrepare : public FunctionPass {
    const TargetMachine *TM = nullptr;
    const TargetSubtargetInfo *SubtargetInfo;
    const TargetLowering *TLI = nullptr;
    const TargetRegisterInfo *TRI;
    const TargetTransformInfo *TTI = nullptr;
    const TargetLibraryInfo *TLInfo;
    const LoopInfo *LI;
    std::unique_ptr<BlockFrequencyInfo> BFI;
    std::unique_ptr<BranchProbabilityInfo> BPI;
    ProfileSummaryInfo *PSI;

    /// As we scan instructions optimizing them, this is the next instruction
    /// to optimize. Transforms that can invalidate this should update it.
    BasicBlock::iterator CurInstIterator;

    /// Keeps track of non-local addresses that have been sunk into a block.
    /// This allows us to avoid inserting duplicate code for blocks with
    /// multiple load/stores of the same address. The usage of WeakTrackingVH
    /// enables SunkAddrs to be treated as a cache whose entries can be
    /// invalidated if a sunken address computation has been erased.
    ValueMap<Value*, WeakTrackingVH> SunkAddrs;

    /// Keeps track of all instructions inserted for the current function.
    SetOfInstrs InsertedInsts;

    /// Keeps track of the type of the related instruction before their
    /// promotion for the current function.
    InstrToOrigTy PromotedInsts;

    /// Keep track of instructions removed during promotion.
    SetOfInstrs RemovedInsts;

    /// Keep track of sext chains based on their initial value.
    DenseMap<Value *, Instruction *> SeenChainsForSExt;

    /// Keep track of GEPs accessing the same data structures such as structs or
    /// arrays that are candidates to be split later because of their large
    /// size.
    MapVector<
        AssertingVH<Value>,
        SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
        LargeOffsetGEPMap;

    /// Keep track of new GEP base after splitting the GEPs having large offset.
    SmallSet<AssertingVH<Value>, 2> NewGEPBases;

    /// Map serial numbers to Large offset GEPs.
    DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;

    /// Keep track of SExt promoted.
    ValueToSExts ValToSExtendedUses;

    /// True if the function has the OptSize attribute.
    bool OptSize;

    /// DataLayout for the Function being processed.
    const DataLayout *DL = nullptr;

    /// Building the dominator tree can be expensive, so we only build it
    /// lazily and update it when required.
    std::unique_ptr<DominatorTree> DT;

  public:
    static char ID; // Pass identification, replacement for typeid

    CodeGenPrepare() : FunctionPass(ID) {
      initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override;

    StringRef getPassName() const override { return "CodeGen Prepare"; }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      // FIXME: When we can selectively preserve passes, preserve the domtree.
      AU.addRequired<ProfileSummaryInfoWrapperPass>();
      AU.addRequired<TargetLibraryInfoWrapperPass>();
      AU.addRequired<TargetPassConfig>();
      AU.addRequired<TargetTransformInfoWrapperPass>();
      AU.addRequired<LoopInfoWrapperPass>();
    }

  private:
    template <typename F>
    void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
      // Substituting can cause recursive simplifications, which can invalidate
      // our iterator.  Use a WeakTrackingVH to hold onto it in case this
      // happens.
      Value *CurValue = &*CurInstIterator;
      WeakTrackingVH IterHandle(CurValue);

      f();

      // If the iterator instruction was recursively deleted, start over at the
      // start of the block.
      if (IterHandle != CurValue) {
        CurInstIterator = BB->begin();
        SunkAddrs.clear();
      }
    }

    // Get the DominatorTree, building if necessary.
    DominatorTree &getDT(Function &F) {
      if (!DT)
        DT = std::make_unique<DominatorTree>(F);
      return *DT;
    }

    void removeAllAssertingVHReferences(Value *V);
    bool eliminateFallThrough(Function &F);
    bool eliminateMostlyEmptyBlocks(Function &F);
    BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
    bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
    void eliminateMostlyEmptyBlock(BasicBlock *BB);
    bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
                                       bool isPreheader);
    bool makeBitReverse(Instruction &I);
    bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
    bool optimizeInst(Instruction *I, bool &ModifiedDT);
    bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
                            Type *AccessTy, unsigned AddrSpace);
    bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
    bool optimizeInlineAsmInst(CallInst *CS);
    bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
    bool optimizeExt(Instruction *&I);
    bool optimizeExtUses(Instruction *I);
    bool optimizeLoadExt(LoadInst *Load);
    bool optimizeShiftInst(BinaryOperator *BO);
    bool optimizeFunnelShift(IntrinsicInst *Fsh);
    bool optimizeSelectInst(SelectInst *SI);
    bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
    bool optimizeSwitchInst(SwitchInst *SI);
    bool optimizeExtractElementInst(Instruction *Inst);
    bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
    bool fixupDbgValue(Instruction *I);
    bool placeDbgValues(Function &F);
    bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
                      LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
    bool tryToPromoteExts(TypePromotionTransaction &TPT,
                          const SmallVectorImpl<Instruction *> &Exts,
                          SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
                          unsigned CreatedInstsCost = 0);
    bool mergeSExts(Function &F);
    bool splitLargeGEPOffsets();
    bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
                         SmallPtrSetImpl<Instruction *> &DeletedInstrs);
    bool optimizePhiTypes(Function &F);
    bool performAddressTypePromotion(
        Instruction *&Inst,
        bool AllowPromotionWithoutCommonHeader,
        bool HasPromoted, TypePromotionTransaction &TPT,
        SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
    bool splitBranchCondition(Function &F, bool &ModifiedDT);
    bool simplifyOffsetableRelocate(GCStatepointInst &I);

    bool tryToSinkFreeOperands(Instruction *I);
    bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0,
                                     Value *Arg1, CmpInst *Cmp,
                                     Intrinsic::ID IID);
    bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
    bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
    bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
    void verifyBFIUpdates(Function &F);
  };

} // end anonymous namespace

char CodeGenPrepare::ID = 0;

INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
                      "Optimize for code generation", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
                    "Optimize for code generation", false, false)

FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }

bool CodeGenPrepare::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  DL = &F.getParent()->getDataLayout();

  bool EverMadeChange = false;
  // Clear per function information.
  InsertedInsts.clear();
  PromotedInsts.clear();

  TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
  SubtargetInfo = TM->getSubtargetImpl(F);
  TLI = SubtargetInfo->getTargetLowering();
  TRI = SubtargetInfo->getRegisterInfo();
  TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  BPI.reset(new BranchProbabilityInfo(F, *LI));
  BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
  PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  OptSize = F.hasOptSize();
  if (ProfileGuidedSectionPrefix) {
    if (PSI->isFunctionHotInCallGraph(&F, *BFI))
      F.setSectionPrefix(".hot");
    else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
      F.setSectionPrefix(".unlikely");
    else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
             PSI->isFunctionHotnessUnknown(F))
      F.setSectionPrefix(".unknown");
  }

  /// This optimization identifies DIV instructions that can be
  /// profitably bypassed and carried out with a shorter, faster divide.
  if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
    const DenseMap<unsigned int, unsigned int> &BypassWidths =
        TLI->getBypassSlowDivWidths();
    BasicBlock* BB = &*F.begin();
    while (BB != nullptr) {
      // bypassSlowDivision may create new BBs, but we don't want to reapply the
      // optimization to those blocks.
      BasicBlock* Next = BB->getNextNode();
      // F.hasOptSize is already checked in the outer if statement.
      if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
        EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
      BB = Next;
    }
  }

  // Eliminate blocks that contain only PHI nodes and an
  // unconditional branch.
  EverMadeChange |= eliminateMostlyEmptyBlocks(F);

  bool ModifiedDT = false;
  if (!DisableBranchOpts)
    EverMadeChange |= splitBranchCondition(F, ModifiedDT);

  // Split some critical edges where one of the sources is an indirect branch,
  // to help generate sane code for PHIs involving such edges.
  EverMadeChange |= SplitIndirectBrCriticalEdges(F);

  bool MadeChange = true;
  while (MadeChange) {
    MadeChange = false;
    DT.reset();
    for (Function::iterator I = F.begin(); I != F.end(); ) {
      BasicBlock *BB = &*I++;
      bool ModifiedDTOnIteration = false;
      MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);

      // Restart BB iteration if the dominator tree of the Function was changed
      if (ModifiedDTOnIteration)
        break;
    }
    if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
      MadeChange |= mergeSExts(F);
    if (!LargeOffsetGEPMap.empty())
      MadeChange |= splitLargeGEPOffsets();
    MadeChange |= optimizePhiTypes(F);

    if (MadeChange)
      eliminateFallThrough(F);

    // Really free removed instructions during promotion.
    for (Instruction *I : RemovedInsts)
      I->deleteValue();

    EverMadeChange |= MadeChange;
    SeenChainsForSExt.clear();
    ValToSExtendedUses.clear();
    RemovedInsts.clear();
    LargeOffsetGEPMap.clear();
    LargeOffsetGEPID.clear();
  }

  SunkAddrs.clear();

  if (!DisableBranchOpts) {
    MadeChange = false;
    // Use a set vector to get deterministic iteration order. The order the
    // blocks are removed may affect whether or not PHI nodes in successors
    // are removed.
    SmallSetVector<BasicBlock*, 8> WorkList;
    for (BasicBlock &BB : F) {
      SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
      MadeChange |= ConstantFoldTerminator(&BB, true);
      if (!MadeChange) continue;

      for (SmallVectorImpl<BasicBlock*>::iterator
             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
        if (pred_begin(*II) == pred_end(*II))
          WorkList.insert(*II);
    }

    // Delete the dead blocks and any of their dead successors.
    MadeChange |= !WorkList.empty();
    while (!WorkList.empty()) {
      BasicBlock *BB = WorkList.pop_back_val();
      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));

      DeleteDeadBlock(BB);

      for (SmallVectorImpl<BasicBlock*>::iterator
             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
        if (pred_begin(*II) == pred_end(*II))
          WorkList.insert(*II);
    }

    // Merge pairs of basic blocks with unconditional branches, connected by
    // a single edge.
    if (EverMadeChange || MadeChange)
      MadeChange |= eliminateFallThrough(F);

    EverMadeChange |= MadeChange;
  }

  if (!DisableGCOpts) {
    SmallVector<GCStatepointInst *, 2> Statepoints;
    for (BasicBlock &BB : F)
      for (Instruction &I : BB)
        if (auto *SP = dyn_cast<GCStatepointInst>(&I))
          Statepoints.push_back(SP);
    for (auto &I : Statepoints)
      EverMadeChange |= simplifyOffsetableRelocate(*I);
  }

  // Do this last to clean up use-before-def scenarios introduced by other
  // preparatory transforms.
  EverMadeChange |= placeDbgValues(F);

#ifndef NDEBUG
  if (VerifyBFIUpdates)
    verifyBFIUpdates(F);
#endif

  return EverMadeChange;
}

/// An instruction is about to be deleted, so remove all references to it in our
/// GEP-tracking data strcutures.
void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
  LargeOffsetGEPMap.erase(V);
  NewGEPBases.erase(V);

  auto GEP = dyn_cast<GetElementPtrInst>(V);
  if (!GEP)
    return;

  LargeOffsetGEPID.erase(GEP);

  auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
  if (VecI == LargeOffsetGEPMap.end())
    return;

  auto &GEPVector = VecI->second;
  const auto &I = std::find_if(GEPVector.begin(), GEPVector.end(),
                               [=](auto &Elt) { return Elt.first == GEP; });
  if (I == GEPVector.end())
    return;

  GEPVector.erase(I);
  if (GEPVector.empty())
    LargeOffsetGEPMap.erase(VecI);
}

// Verify BFI has been updated correctly by recomputing BFI and comparing them.
void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
  DominatorTree NewDT(F);
  LoopInfo NewLI(NewDT);
  BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
  BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
  NewBFI.verifyMatch(*BFI);
}

/// Merge basic blocks which are connected by a single edge, where one of the
/// basic blocks has a single successor pointing to the other basic block,
/// which has a single predecessor.
bool CodeGenPrepare::eliminateFallThrough(Function &F) {
  bool Changed = false;
  // Scan all of the blocks in the function, except for the entry block.
  // Use a temporary array to avoid iterator being invalidated when
  // deleting blocks.
  SmallVector<WeakTrackingVH, 16> Blocks;
  for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
    Blocks.push_back(&Block);

  for (auto &Block : Blocks) {
    auto *BB = cast_or_null<BasicBlock>(Block);
    if (!BB)
      continue;
    // If the destination block has a single pred, then this is a trivial
    // edge, just collapse it.
    BasicBlock *SinglePred = BB->getSinglePredecessor();

    // Don't merge if BB's address is taken.
    if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;

    BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
    if (Term && !Term->isConditional()) {
      Changed = true;
      LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");

      // Merge BB into SinglePred and delete it.
      MergeBlockIntoPredecessor(BB);
    }
  }
  return Changed;
}

/// Find a destination block from BB if BB is mergeable empty block.
BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
  // If this block doesn't end with an uncond branch, ignore it.
  BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isUnconditional())
    return nullptr;

  // If the instruction before the branch (skipping debug info) isn't a phi
  // node, then other stuff is happening here.
  BasicBlock::iterator BBI = BI->getIterator();
  if (BBI != BB->begin()) {
    --BBI;
    while (isa<DbgInfoIntrinsic>(BBI)) {
      if (BBI == BB->begin())
        break;
      --BBI;
    }
    if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
      return nullptr;
  }

  // Do not break infinite loops.
  BasicBlock *DestBB = BI->getSuccessor(0);
  if (DestBB == BB)
    return nullptr;

  if (!canMergeBlocks(BB, DestBB))
    DestBB = nullptr;

  return DestBB;
}

/// Eliminate blocks that contain only PHI nodes, debug info directives, and an
/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
/// edges in ways that are non-optimal for isel. Start by eliminating these
/// blocks so we can split them the way we want them.
bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
  SmallPtrSet<BasicBlock *, 16> Preheaders;
  SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
  while (!LoopList.empty()) {
    Loop *L = LoopList.pop_back_val();
    LoopList.insert(LoopList.end(), L->begin(), L->end());
    if (BasicBlock *Preheader = L->getLoopPreheader())
      Preheaders.insert(Preheader);
  }

  bool MadeChange = false;
  // Copy blocks into a temporary array to avoid iterator invalidation issues
  // as we remove them.
  // Note that this intentionally skips the entry block.
  SmallVector<WeakTrackingVH, 16> Blocks;
  for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
    Blocks.push_back(&Block);

  for (auto &Block : Blocks) {
    BasicBlock *BB = cast_or_null<BasicBlock>(Block);
    if (!BB)
      continue;
    BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
    if (!DestBB ||
        !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
      continue;

    eliminateMostlyEmptyBlock(BB);
    MadeChange = true;
  }
  return MadeChange;
}

bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
                                                   BasicBlock *DestBB,
                                                   bool isPreheader) {
  // Do not delete loop preheaders if doing so would create a critical edge.
  // Loop preheaders can be good locations to spill registers. If the
  // preheader is deleted and we create a critical edge, registers may be
  // spilled in the loop body instead.
  if (!DisablePreheaderProtect && isPreheader &&
      !(BB->getSinglePredecessor() &&
        BB->getSinglePredecessor()->getSingleSuccessor()))
    return false;

  // Skip merging if the block's successor is also a successor to any callbr
  // that leads to this block.
  // FIXME: Is this really needed? Is this a correctness issue?
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
      for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
        if (DestBB == CBI->getSuccessor(i))
          return false;
  }

  // Try to skip merging if the unique predecessor of BB is terminated by a
  // switch or indirect branch instruction, and BB is used as an incoming block
  // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
  // add COPY instructions in the predecessor of BB instead of BB (if it is not
  // merged). Note that the critical edge created by merging such blocks wont be
  // split in MachineSink because the jump table is not analyzable. By keeping
  // such empty block (BB), ISel will place COPY instructions in BB, not in the
  // predecessor of BB.
  BasicBlock *Pred = BB->getUniquePredecessor();
  if (!Pred ||
      !(isa<SwitchInst>(Pred->getTerminator()) ||
        isa<IndirectBrInst>(Pred->getTerminator())))
    return true;

  if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
    return true;

  // We use a simple cost heuristic which determine skipping merging is
  // profitable if the cost of skipping merging is less than the cost of
  // merging : Cost(skipping merging) < Cost(merging BB), where the
  // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
  // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
  // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
  //   Freq(Pred) / Freq(BB) > 2.
  // Note that if there are multiple empty blocks sharing the same incoming
  // value for the PHIs in the DestBB, we consider them together. In such
  // case, Cost(merging BB) will be the sum of their frequencies.

  if (!isa<PHINode>(DestBB->begin()))
    return true;

  SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;

  // Find all other incoming blocks from which incoming values of all PHIs in
  // DestBB are the same as the ones from BB.
  for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
       ++PI) {
    BasicBlock *DestBBPred = *PI;
    if (DestBBPred == BB)
      continue;

    if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
          return DestPN.getIncomingValueForBlock(BB) ==
                 DestPN.getIncomingValueForBlock(DestBBPred);
        }))
      SameIncomingValueBBs.insert(DestBBPred);
  }

  // See if all BB's incoming values are same as the value from Pred. In this
  // case, no reason to skip merging because COPYs are expected to be place in
  // Pred already.
  if (SameIncomingValueBBs.count(Pred))
    return true;

  BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
  BlockFrequency BBFreq = BFI->getBlockFreq(BB);

  for (auto *SameValueBB : SameIncomingValueBBs)
    if (SameValueBB->getUniquePredecessor() == Pred &&
        DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
      BBFreq += BFI->getBlockFreq(SameValueBB);

  return PredFreq.getFrequency() <=
         BBFreq.getFrequency() * FreqRatioToSkipMerge;
}

/// Return true if we can merge BB into DestBB if there is a single
/// unconditional branch between them, and BB contains no other non-phi
/// instructions.
bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
                                    const BasicBlock *DestBB) const {
  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
  // the successor.  If there are more complex condition (e.g. preheaders),
  // don't mess around with them.
  for (const PHINode &PN : BB->phis()) {
    for (const User *U : PN.users()) {
      const Instruction *UI = cast<Instruction>(U);
      if (UI->getParent() != DestBB || !isa<PHINode>(UI))
        return false;
      // If User is inside DestBB block and it is a PHINode then check
      // incoming value. If incoming value is not from BB then this is
      // a complex condition (e.g. preheaders) we want to avoid here.
      if (UI->getParent() == DestBB) {
        if (const PHINode *UPN = dyn_cast<PHINode>(UI))
          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
            if (Insn && Insn->getParent() == BB &&
                Insn->getParent() != UPN->getIncomingBlock(I))
              return false;
          }
      }
    }
  }

  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
  // and DestBB may have conflicting incoming values for the block.  If so, we
  // can't merge the block.
  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
  if (!DestBBPN) return true;  // no conflict.

  // Collect the preds of BB.
  SmallPtrSet<const BasicBlock*, 16> BBPreds;
  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
    // It is faster to get preds from a PHI than with pred_iterator.
    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
      BBPreds.insert(BBPN->getIncomingBlock(i));
  } else {
    BBPreds.insert(pred_begin(BB), pred_end(BB));
  }

  // Walk the preds of DestBB.
  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
    if (BBPreds.count(Pred)) {   // Common predecessor?
      for (const PHINode &PN : DestBB->phis()) {
        const Value *V1 = PN.getIncomingValueForBlock(Pred);
        const Value *V2 = PN.getIncomingValueForBlock(BB);

        // If V2 is a phi node in BB, look up what the mapped value will be.
        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
          if (V2PN->getParent() == BB)
            V2 = V2PN->getIncomingValueForBlock(Pred);

        // If there is a conflict, bail out.
        if (V1 != V2) return false;
      }
    }
  }

  return true;
}

/// Eliminate a basic block that has only phi's and an unconditional branch in
/// it.
void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
  BasicBlock *DestBB = BI->getSuccessor(0);

  LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
                    << *BB << *DestBB);

  // If the destination block has a single pred, then this is a trivial edge,
  // just collapse it.
  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
    if (SinglePred != DestBB) {
      assert(SinglePred == BB &&
             "Single predecessor not the same as predecessor");
      // Merge DestBB into SinglePred/BB and delete it.
      MergeBlockIntoPredecessor(DestBB);
      // Note: BB(=SinglePred) will not be deleted on this path.
      // DestBB(=its single successor) is the one that was deleted.
      LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
      return;
    }
  }

  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
  // to handle the new incoming edges it is about to have.
  for (PHINode &PN : DestBB->phis()) {
    // Remove the incoming value for BB, and remember it.
    Value *InVal = PN.removeIncomingValue(BB, false);

    // Two options: either the InVal is a phi node defined in BB or it is some
    // value that dominates BB.
    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
    if (InValPhi && InValPhi->getParent() == BB) {
      // Add all of the input values of the input PHI as inputs of this phi.
      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
        PN.addIncoming(InValPhi->getIncomingValue(i),
                       InValPhi->getIncomingBlock(i));
    } else {
      // Otherwise, add one instance of the dominating value for each edge that
      // we will be adding.
      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
          PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
      } else {
        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
          PN.addIncoming(InVal, *PI);
      }
    }
  }

  // The PHIs are now updated, change everything that refers to BB to use
  // DestBB and remove BB.
  BB->replaceAllUsesWith(DestBB);
  BB->eraseFromParent();
  ++NumBlocksElim;

  LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
}

// Computes a map of base pointer relocation instructions to corresponding
// derived pointer relocation instructions given a vector of all relocate calls
static void computeBaseDerivedRelocateMap(
    const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
    DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
        &RelocateInstMap) {
  // Collect information in two maps: one primarily for locating the base object
  // while filling the second map; the second map is the final structure holding
  // a mapping between Base and corresponding Derived relocate calls
  DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
  for (auto *ThisRelocate : AllRelocateCalls) {
    auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
                            ThisRelocate->getDerivedPtrIndex());
    RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
  }
  for (auto &Item : RelocateIdxMap) {
    std::pair<unsigned, unsigned> Key = Item.first;
    if (Key.first == Key.second)
      // Base relocation: nothing to insert
      continue;

    GCRelocateInst *I = Item.second;
    auto BaseKey = std::make_pair(Key.first, Key.first);

    // We're iterating over RelocateIdxMap so we cannot modify it.
    auto MaybeBase = RelocateIdxMap.find(BaseKey);
    if (MaybeBase == RelocateIdxMap.end())
      // TODO: We might want to insert a new base object relocate and gep off
      // that, if there are enough derived object relocates.
      continue;

    RelocateInstMap[MaybeBase->second].push_back(I);
  }
}

// Accepts a GEP and extracts the operands into a vector provided they're all
// small integer constants
static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
                                          SmallVectorImpl<Value *> &OffsetV) {
  for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
    // Only accept small constant integer operands
    auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
    if (!Op || Op->getZExtValue() > 20)
      return false;
  }

  for (unsigned i = 1; i < GEP->getNumOperands(); i++)
    OffsetV.push_back(GEP->getOperand(i));
  return true;
}

// Takes a RelocatedBase (base pointer relocation instruction) and Targets to
// replace, computes a replacement, and affects it.
static bool
simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
                          const SmallVectorImpl<GCRelocateInst *> &Targets) {
  bool MadeChange = false;
  // We must ensure the relocation of derived pointer is defined after
  // relocation of base pointer. If we find a relocation corresponding to base
  // defined earlier than relocation of base then we move relocation of base
  // right before found relocation. We consider only relocation in the same
  // basic block as relocation of base. Relocations from other basic block will
  // be skipped by optimization and we do not care about them.
  for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
       &*R != RelocatedBase; ++R)
    if (auto *RI = dyn_cast<GCRelocateInst>(R))
      if (RI->getStatepoint() == RelocatedBase->getStatepoint())
        if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
          RelocatedBase->moveBefore(RI);
          break;
        }

  for (GCRelocateInst *ToReplace : Targets) {
    assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
           "Not relocating a derived object of the original base object");
    if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
      // A duplicate relocate call. TODO: coalesce duplicates.
      continue;
    }

    if (RelocatedBase->getParent() != ToReplace->getParent()) {
      // Base and derived relocates are in different basic blocks.
      // In this case transform is only valid when base dominates derived
      // relocate. However it would be too expensive to check dominance
      // for each such relocate, so we skip the whole transformation.
      continue;
    }

    Value *Base = ToReplace->getBasePtr();
    auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
    if (!Derived || Derived->getPointerOperand() != Base)
      continue;

    SmallVector<Value *, 2> OffsetV;
    if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
      continue;

    // Create a Builder and replace the target callsite with a gep
    assert(RelocatedBase->getNextNode() &&
           "Should always have one since it's not a terminator");

    // Insert after RelocatedBase
    IRBuilder<> Builder(RelocatedBase->getNextNode());
    Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());

    // If gc_relocate does not match the actual type, cast it to the right type.
    // In theory, there must be a bitcast after gc_relocate if the type does not
    // match, and we should reuse it to get the derived pointer. But it could be
    // cases like this:
    // bb1:
    //  ...
    //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
    //  br label %merge
    //
    // bb2:
    //  ...
    //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
    //  br label %merge
    //
    // merge:
    //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
    //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
    //
    // In this case, we can not find the bitcast any more. So we insert a new bitcast
    // no matter there is already one or not. In this way, we can handle all cases, and
    // the extra bitcast should be optimized away in later passes.
    Value *ActualRelocatedBase = RelocatedBase;
    if (RelocatedBase->getType() != Base->getType()) {
      ActualRelocatedBase =
          Builder.CreateBitCast(RelocatedBase, Base->getType());
    }
    Value *Replacement = Builder.CreateGEP(
        Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
    Replacement->takeName(ToReplace);
    // If the newly generated derived pointer's type does not match the original derived
    // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
    Value *ActualReplacement = Replacement;
    if (Replacement->getType() != ToReplace->getType()) {
      ActualReplacement =
          Builder.CreateBitCast(Replacement, ToReplace->getType());
    }
    ToReplace->replaceAllUsesWith(ActualReplacement);
    ToReplace->eraseFromParent();

    MadeChange = true;
  }
  return MadeChange;
}

// Turns this:
//
// %base = ...
// %ptr = gep %base + 15
// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
// %base' = relocate(%tok, i32 4, i32 4)
// %ptr' = relocate(%tok, i32 4, i32 5)
// %val = load %ptr'
//
// into this:
//
// %base = ...
// %ptr = gep %base + 15
// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
// %base' = gc.relocate(%tok, i32 4, i32 4)
// %ptr' = gep %base' + 15
// %val = load %ptr'
bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
  bool MadeChange = false;
  SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
  for (auto *U : I.users())
    if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
      // Collect all the relocate calls associated with a statepoint
      AllRelocateCalls.push_back(Relocate);

  // We need at least one base pointer relocation + one derived pointer
  // relocation to mangle
  if (AllRelocateCalls.size() < 2)
    return false;

  // RelocateInstMap is a mapping from the base relocate instruction to the
  // corresponding derived relocate instructions
  DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
  computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
  if (RelocateInstMap.empty())
    return false;

  for (auto &Item : RelocateInstMap)
    // Item.first is the RelocatedBase to offset against
    // Item.second is the vector of Targets to replace
    MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
  return MadeChange;
}

/// Sink the specified cast instruction into its user blocks.
static bool SinkCast(CastInst *CI) {
  BasicBlock *DefBB = CI->getParent();

  /// InsertedCasts - Only insert a cast in each block once.
  DenseMap<BasicBlock*, CastInst*> InsertedCasts;

  bool MadeChange = false;
  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
       UI != E; ) {
    Use &TheUse = UI.getUse();
    Instruction *User = cast<Instruction>(*UI);

    // Figure out which BB this cast is used in.  For PHI's this is the
    // appropriate predecessor block.
    BasicBlock *UserBB = User->getParent();
    if (PHINode *PN = dyn_cast<PHINode>(User)) {
      UserBB = PN->getIncomingBlock(TheUse);
    }

    // Preincrement use iterator so we don't invalidate it.
    ++UI;

    // The first insertion point of a block containing an EH pad is after the
    // pad.  If the pad is the user, we cannot sink the cast past the pad.
    if (User->isEHPad())
      continue;

    // If the block selected to receive the cast is an EH pad that does not
    // allow non-PHI instructions before the terminator, we can't sink the
    // cast.
    if (UserBB->getTerminator()->isEHPad())
      continue;

    // If this user is in the same block as the cast, don't change the cast.
    if (UserBB == DefBB) continue;

    // If we have already inserted a cast into this block, use it.
    CastInst *&InsertedCast = InsertedCasts[UserBB];

    if (!InsertedCast) {
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
      assert(InsertPt != UserBB->end());
      InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
                                      CI->getType(), "", &*InsertPt);
      InsertedCast->setDebugLoc(CI->getDebugLoc());
    }

    // Replace a use of the cast with a use of the new cast.
    TheUse = InsertedCast;
    MadeChange = true;
    ++NumCastUses;
  }

  // If we removed all uses, nuke the cast.
  if (CI->use_empty()) {
    salvageDebugInfo(*CI);
    CI->eraseFromParent();
    MadeChange = true;
  }

  return MadeChange;
}

/// If the specified cast instruction is a noop copy (e.g. it's casting from
/// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
/// reduce the number of virtual registers that must be created and coalesced.
///
/// Return true if any changes are made.
static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
                                       const DataLayout &DL) {
  // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
  // than sinking only nop casts, but is helpful on some platforms.
  if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
    if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
                                 ASC->getDestAddressSpace()))
      return false;
  }

  // If this is a noop copy,
  EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
  EVT DstVT = TLI.getValueType(DL, CI->getType());

  // This is an fp<->int conversion?
  if (SrcVT.isInteger() != DstVT.isInteger())
    return false;

  // If this is an extension, it will be a zero or sign extension, which
  // isn't a noop.
  if (SrcVT.bitsLT(DstVT)) return false;

  // If these values will be promoted, find out what they will be promoted
  // to.  This helps us consider truncates on PPC as noop copies when they
  // are.
  if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
      TargetLowering::TypePromoteInteger)
    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
  if (TLI.getTypeAction(CI->getContext(), DstVT) ==
      TargetLowering::TypePromoteInteger)
    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);

  // If, after promotion, these are the same types, this is a noop copy.
  if (SrcVT != DstVT)
    return false;

  return SinkCast(CI);
}

bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
                                                 Value *Arg0, Value *Arg1,
                                                 CmpInst *Cmp,
                                                 Intrinsic::ID IID) {
  if (BO->getParent() != Cmp->getParent()) {
    // We used to use a dominator tree here to allow multi-block optimization.
    // But that was problematic because:
    // 1. It could cause a perf regression by hoisting the math op into the
    //    critical path.
    // 2. It could cause a perf regression by creating a value that was live
    //    across multiple blocks and increasing register pressure.
    // 3. Use of a dominator tree could cause large compile-time regression.
    //    This is because we recompute the DT on every change in the main CGP
    //    run-loop. The recomputing is probably unnecessary in many cases, so if
    //    that was fixed, using a DT here would be ok.
    return false;
  }

  // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
  if (BO->getOpcode() == Instruction::Add &&
      IID == Intrinsic::usub_with_overflow) {
    assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
    Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
  }

  // Insert at the first instruction of the pair.
  Instruction *InsertPt = nullptr;
  for (Instruction &Iter : *Cmp->getParent()) {
    // If BO is an XOR, it is not guaranteed that it comes after both inputs to
    // the overflow intrinsic are defined.
    if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
      InsertPt = &Iter;
      break;
    }
  }
  assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");

  IRBuilder<> Builder(InsertPt);
  Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
  if (BO->getOpcode() != Instruction::Xor) {
    Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
    BO->replaceAllUsesWith(Math);
  } else
    assert(BO->hasOneUse() &&
           "Patterns with XOr should use the BO only in the compare");
  Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
  Cmp->replaceAllUsesWith(OV);
  Cmp->eraseFromParent();
  BO->eraseFromParent();
  return true;
}

/// Match special-case patterns that check for unsigned add overflow.
static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
                                                   BinaryOperator *&Add) {
  // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
  // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
  Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);

  // We are not expecting non-canonical/degenerate code. Just bail out.
  if (isa<Constant>(A))
    return false;

  ICmpInst::Predicate Pred = Cmp->getPredicate();
  if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
    B = ConstantInt::get(B->getType(), 1);
  else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
    B = ConstantInt::get(B->getType(), -1);
  else
    return false;

  // Check the users of the variable operand of the compare looking for an add
  // with the adjusted constant.
  for (User *U : A->users()) {
    if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
      Add = cast<BinaryOperator>(U);
      return true;
    }
  }
  return false;
}

/// Try to combine the compare into a call to the llvm.uadd.with.overflow
/// intrinsic. Return true if any changes were made.
bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
                                               bool &ModifiedDT) {
  Value *A, *B;
  BinaryOperator *Add;
  if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
    if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
      return false;
    // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
    A = Add->getOperand(0);
    B = Add->getOperand(1);
  }

  if (!TLI->shouldFormOverflowOp(ISD::UADDO,
                                 TLI->getValueType(*DL, Add->getType()),
                                 Add->hasNUsesOrMore(2)))
    return false;

  // We don't want to move around uses of condition values this late, so we
  // check if it is legal to create the call to the intrinsic in the basic
  // block containing the icmp.
  if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
    return false;

  if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
                                   Intrinsic::uadd_with_overflow))
    return false;

  // Reset callers - do not crash by iterating over a dead instruction.
  ModifiedDT = true;
  return true;
}

bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
                                               bool &ModifiedDT) {
  // We are not expecting non-canonical/degenerate code. Just bail out.
  Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
  if (isa<Constant>(A) && isa<Constant>(B))
    return false;

  // Convert (A u> B) to (A u< B) to simplify pattern matching.
  ICmpInst::Predicate Pred = Cmp->getPredicate();
  if (Pred == ICmpInst::ICMP_UGT) {
    std::swap(A, B);
    Pred = ICmpInst::ICMP_ULT;
  }
  // Convert special-case: (A == 0) is the same as (A u< 1).
  if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
    B = ConstantInt::get(B->getType(), 1);
    Pred = ICmpInst::ICMP_ULT;
  }
  // Convert special-case: (A != 0) is the same as (0 u< A).
  if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
    std::swap(A, B);
    Pred = ICmpInst::ICMP_ULT;
  }
  if (Pred != ICmpInst::ICMP_ULT)
    return false;

  // Walk the users of a variable operand of a compare looking for a subtract or
  // add with that same operand. Also match the 2nd operand of the compare to
  // the add/sub, but that may be a negated constant operand of an add.
  Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
  BinaryOperator *Sub = nullptr;
  for (User *U : CmpVariableOperand->users()) {
    // A - B, A u< B --> usubo(A, B)
    if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
      Sub = cast<BinaryOperator>(U);
      break;
    }

    // A + (-C), A u< C (canonicalized form of (sub A, C))
    const APInt *CmpC, *AddC;
    if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
        match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
      Sub = cast<BinaryOperator>(U);
      break;
    }
  }
  if (!Sub)
    return false;

  if (!TLI->shouldFormOverflowOp(ISD::USUBO,
                                 TLI->getValueType(*DL, Sub->getType()),
                                 Sub->hasNUsesOrMore(2)))
    return false;

  if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
                                   Cmp, Intrinsic::usub_with_overflow))
    return false;

  // Reset callers - do not crash by iterating over a dead instruction.
  ModifiedDT = true;
  return true;
}

/// Sink the given CmpInst into user blocks to reduce the number of virtual
/// registers that must be created and coalesced. This is a clear win except on
/// targets with multiple condition code registers (PowerPC), where it might
/// lose; some adjustment may be wanted there.
///
/// Return true if any changes are made.
static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
  if (TLI.hasMultipleConditionRegisters())
    return false;

  // Avoid sinking soft-FP comparisons, since this can move them into a loop.
  if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
    return false;

  // Only insert a cmp in each block once.
  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;

  bool MadeChange = false;
  for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
       UI != E; ) {
    Use &TheUse = UI.getUse();
    Instruction *User = cast<Instruction>(*UI);

    // Preincrement use iterator so we don't invalidate it.
    ++UI;

    // Don't bother for PHI nodes.
    if (isa<PHINode>(User))
      continue;

    // Figure out which BB this cmp is used in.
    BasicBlock *UserBB = User->getParent();
    BasicBlock *DefBB = Cmp->getParent();

    // If this user is in the same block as the cmp, don't change the cmp.
    if (UserBB == DefBB) continue;

    // If we have already inserted a cmp into this block, use it.
    CmpInst *&InsertedCmp = InsertedCmps[UserBB];

    if (!InsertedCmp) {
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
      assert(InsertPt != UserBB->end());
      InsertedCmp =
          CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
                          Cmp->getOperand(0), Cmp->getOperand(1), "",
                          &*InsertPt);
      // Propagate the debug info.
      InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
    }

    // Replace a use of the cmp with a use of the new cmp.
    TheUse = InsertedCmp;
    MadeChange = true;
    ++NumCmpUses;
  }

  // If we removed all uses, nuke the cmp.
  if (Cmp->use_empty()) {
    Cmp->eraseFromParent();
    MadeChange = true;
  }

  return MadeChange;
}

/// For pattern like:
///
///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
///   ...
/// DomBB:
///   ...
///   br DomCond, TrueBB, CmpBB
/// CmpBB: (with DomBB being the single predecessor)
///   ...
///   Cmp = icmp eq CmpOp0, CmpOp1
///   ...
///
/// It would use two comparison on targets that lowering of icmp sgt/slt is
/// different from lowering of icmp eq (PowerPC). This function try to convert
/// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
/// After that, DomCond and Cmp can use the same comparison so reduce one
/// comparison.
///
/// Return true if any changes are made.
static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
                                       const TargetLowering &TLI) {
  if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
    return false;

  ICmpInst::Predicate Pred = Cmp->getPredicate();
  if (Pred != ICmpInst::ICMP_EQ)
    return false;

  // If icmp eq has users other than BranchInst and SelectInst, converting it to
  // icmp slt/sgt would introduce more redundant LLVM IR.
  for (User *U : Cmp->users()) {
    if (isa<BranchInst>(U))
      continue;
    if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
      continue;
    return false;
  }

  // This is a cheap/incomplete check for dominance - just match a single
  // predecessor with a conditional branch.
  BasicBlock *CmpBB = Cmp->getParent();
  BasicBlock *DomBB = CmpBB->getSinglePredecessor();
  if (!DomBB)
    return false;

  // We want to ensure that the only way control gets to the comparison of
  // interest is that a less/greater than comparison on the same operands is
  // false.
  Value *DomCond;
  BasicBlock *TrueBB, *FalseBB;
  if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
    return false;
  if (CmpBB != FalseBB)
    return false;

  Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
  ICmpInst::Predicate DomPred;
  if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
    return false;
  if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
    return false;

  // Convert the equality comparison to the opposite of the dominating
  // comparison and swap the direction for all branch/select users.
  // We have conceptually converted:
  // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
  // to
  // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
  // And similarly for branches.
  for (User *U : Cmp->users()) {
    if (auto *BI = dyn_cast<BranchInst>(U)) {
      assert(BI->isConditional() && "Must be conditional");
      BI->swapSuccessors();
      continue;
    }
    if (auto *SI = dyn_cast<SelectInst>(U)) {
      // Swap operands
      SI->swapValues();
      SI->swapProfMetadata();
      continue;
    }
    llvm_unreachable("Must be a branch or a select");
  }
  Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
  return true;
}

bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
  if (sinkCmpExpression(Cmp, *TLI))
    return true;

  if (combineToUAddWithOverflow(Cmp, ModifiedDT))
    return true;

  if (combineToUSubWithOverflow(Cmp, ModifiedDT))
    return true;

  if (foldICmpWithDominatingICmp(Cmp, *TLI))
    return true;

  return false;
}

/// Duplicate and sink the given 'and' instruction into user blocks where it is
/// used in a compare to allow isel to generate better code for targets where
/// this operation can be combined.
///
/// Return true if any changes are made.
static bool sinkAndCmp0Expression(Instruction *AndI,
                                  const TargetLowering &TLI,
                                  SetOfInstrs &InsertedInsts) {
  // Double-check that we're not trying to optimize an instruction that was
  // already optimized by some other part of this pass.
  assert(!InsertedInsts.count(AndI) &&
         "Attempting to optimize already optimized and instruction");
  (void) InsertedInsts;

  // Nothing to do for single use in same basic block.
  if (AndI->hasOneUse() &&
      AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
    return false;

  // Try to avoid cases where sinking/duplicating is likely to increase register
  // pressure.
  if (!isa<ConstantInt>(AndI->getOperand(0)) &&
      !isa<ConstantInt>(AndI->getOperand(1)) &&
      AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
    return false;

  for (auto *U : AndI->users()) {
    Instruction *User = cast<Instruction>(U);

    // Only sink 'and' feeding icmp with 0.
    if (!isa<ICmpInst>(User))
      return false;

    auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
    if (!CmpC || !CmpC->isZero())
      return false;
  }

  if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
    return false;

  LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
  LLVM_DEBUG(AndI->getParent()->dump());

  // Push the 'and' into the same block as the icmp 0.  There should only be
  // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
  // others, so we don't need to keep track of which BBs we insert into.
  for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
       UI != E; ) {
    Use &TheUse = UI.getUse();
    Instruction *User = cast<Instruction>(*UI);

    // Preincrement use iterator so we don't invalidate it.
    ++UI;

    LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");

    // Keep the 'and' in the same place if the use is already in the same block.
    Instruction *InsertPt =
        User->getParent() == AndI->getParent() ? AndI : User;
    Instruction *InsertedAnd =
        BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
                               AndI->getOperand(1), "", InsertPt);
    // Propagate the debug info.
    InsertedAnd->setDebugLoc(AndI->getDebugLoc());

    // Replace a use of the 'and' with a use of the new 'and'.
    TheUse = InsertedAnd;
    ++NumAndUses;
    LLVM_DEBUG(User->getParent()->dump());
  }

  // We removed all uses, nuke the and.
  AndI->eraseFromParent();
  return true;
}

/// Check if the candidates could be combined with a shift instruction, which
/// includes:
/// 1. Truncate instruction
/// 2. And instruction and the imm is a mask of the low bits:
/// imm & (imm+1) == 0
static bool isExtractBitsCandidateUse(Instruction *User) {
  if (!isa<TruncInst>(User)) {
    if (User->getOpcode() != Instruction::And ||
        !isa<ConstantInt>(User->getOperand(1)))
      return false;

    const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();

    if ((Cimm & (Cimm + 1)).getBoolValue())
      return false;
  }
  return true;
}

/// Sink both shift and truncate instruction to the use of truncate's BB.
static bool
SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
                     DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
                     const TargetLowering &TLI, const DataLayout &DL) {
  BasicBlock *UserBB = User->getParent();
  DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
  auto *TruncI = cast<TruncInst>(User);
  bool MadeChange = false;

  for (Value::user_iterator TruncUI = TruncI->user_begin(),
                            TruncE = TruncI->user_end();
       TruncUI != TruncE;) {

    Use &TruncTheUse = TruncUI.getUse();
    Instruction *TruncUser = cast<Instruction>(*TruncUI);
    // Preincrement use iterator so we don't invalidate it.

    ++TruncUI;

    int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
    if (!ISDOpcode)
      continue;

    // If the use is actually a legal node, there will not be an
    // implicit truncate.
    // FIXME: always querying the result type is just an
    // approximation; some nodes' legality is determined by the
    // operand or other means. There's no good way to find out though.
    if (TLI.isOperationLegalOrCustom(
            ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
      continue;

    // Don't bother for PHI nodes.
    if (isa<PHINode>(TruncUser))
      continue;

    BasicBlock *TruncUserBB = TruncUser->getParent();

    if (UserBB == TruncUserBB)
      continue;

    BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
    CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];

    if (!InsertedShift && !InsertedTrunc) {
      BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
      assert(InsertPt != TruncUserBB->end());
      // Sink the shift
      if (ShiftI->getOpcode() == Instruction::AShr)
        InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
                                                   "", &*InsertPt);
      else
        InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
                                                   "", &*InsertPt);
      InsertedShift->setDebugLoc(ShiftI->getDebugLoc());

      // Sink the trunc
      BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
      TruncInsertPt++;
      assert(TruncInsertPt != TruncUserBB->end());

      InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
                                       TruncI->getType(), "", &*TruncInsertPt);
      InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());

      MadeChange = true;

      TruncTheUse = InsertedTrunc;
    }
  }
  return MadeChange;
}

/// Sink the shift *right* instruction into user blocks if the uses could
/// potentially be combined with this shift instruction and generate BitExtract
/// instruction. It will only be applied if the architecture supports BitExtract
/// instruction. Here is an example:
/// BB1:
///   %x.extract.shift = lshr i64 %arg1, 32
/// BB2:
///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
/// ==>
///
/// BB2:
///   %x.extract.shift.1 = lshr i64 %arg1, 32
///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
///
/// CodeGen will recognize the pattern in BB2 and generate BitExtract
/// instruction.
/// Return true if any changes are made.
static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
                                const TargetLowering &TLI,
                                const DataLayout &DL) {
  BasicBlock *DefBB = ShiftI->getParent();

  /// Only insert instructions in each block once.
  DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;

  bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));

  bool MadeChange = false;
  for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
       UI != E;) {
    Use &TheUse = UI.getUse();
    Instruction *User = cast<Instruction>(*UI);
    // Preincrement use iterator so we don't invalidate it.
    ++UI;

    // Don't bother for PHI nodes.
    if (isa<PHINode>(User))
      continue;

    if (!isExtractBitsCandidateUse(User))
      continue;

    BasicBlock *UserBB = User->getParent();

    if (UserBB == DefBB) {
      // If the shift and truncate instruction are in the same BB. The use of
      // the truncate(TruncUse) may still introduce another truncate if not
      // legal. In this case, we would like to sink both shift and truncate
      // instruction to the BB of TruncUse.
      // for example:
      // BB1:
      // i64 shift.result = lshr i64 opnd, imm
      // trunc.result = trunc shift.result to i16
      //
      // BB2:
      //   ----> We will have an implicit truncate here if the architecture does
      //   not have i16 compare.
      // cmp i16 trunc.result, opnd2
      //
      if (isa<TruncInst>(User) && shiftIsLegal
          // If the type of the truncate is legal, no truncate will be
          // introduced in other basic blocks.
          &&
          (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
        MadeChange =
            SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);

      continue;
    }
    // If we have already inserted a shift into this block, use it.
    BinaryOperator *&InsertedShift = InsertedShifts[UserBB];

    if (!InsertedShift) {
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
      assert(InsertPt != UserBB->end());

      if (ShiftI->getOpcode() == Instruction::AShr)
        InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
                                                   "", &*InsertPt);
      else
        InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
                                                   "", &*InsertPt);
      InsertedShift->setDebugLoc(ShiftI->getDebugLoc());

      MadeChange = true;
    }

    // Replace a use of the shift with a use of the new shift.
    TheUse = InsertedShift;
  }

  // If we removed all uses, or there are none, nuke the shift.
  if (ShiftI->use_empty()) {
    salvageDebugInfo(*ShiftI);
    ShiftI->eraseFromParent();
    MadeChange = true;
  }

  return MadeChange;
}

/// If counting leading or trailing zeros is an expensive operation and a zero
/// input is defined, add a check for zero to avoid calling the intrinsic.
///
/// We want to transform:
///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
///
/// into:
///   entry:
///     %cmpz = icmp eq i64 %A, 0
///     br i1 %cmpz, label %cond.end, label %cond.false
///   cond.false:
///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
///     br label %cond.end
///   cond.end:
///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
///
/// If the transform is performed, return true and set ModifiedDT to true.
static bool despeculateCountZeros(IntrinsicInst *CountZeros,
                                  const TargetLowering *TLI,
                                  const DataLayout *DL,
                                  bool &ModifiedDT) {
  // If a zero input is undefined, it doesn't make sense to despeculate that.
  if (match(CountZeros->getOperand(1), m_One()))
    return false;

  // If it's cheap to speculate, there's nothing to do.
  auto IntrinsicID = CountZeros->getIntrinsicID();
  if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
      (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
    return false;

  // Only handle legal scalar cases. Anything else requires too much work.
  Type *Ty = CountZeros->getType();
  unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
  if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
    return false;

  // The intrinsic will be sunk behind a compare against zero and branch.
  BasicBlock *StartBlock = CountZeros->getParent();
  BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");

  // Create another block after the count zero intrinsic. A PHI will be added
  // in this block to select the result of the intrinsic or the bit-width
  // constant if the input to the intrinsic is zero.
  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
  BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");

  // Set up a builder to create a compare, conditional branch, and PHI.
  IRBuilder<> Builder(CountZeros->getContext());
  Builder.SetInsertPoint(StartBlock->getTerminator());
  Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());

  // Replace the unconditional branch that was created by the first split with
  // a compare against zero and a conditional branch.
  Value *Zero = Constant::getNullValue(Ty);
  Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
  Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
  StartBlock->getTerminator()->eraseFromParent();

  // Create a PHI in the end block to select either the output of the intrinsic
  // or the bit width of the operand.
  Builder.SetInsertPoint(&EndBlock->front());
  PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
  CountZeros->replaceAllUsesWith(PN);
  Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
  PN->addIncoming(BitWidth, StartBlock);
  PN->addIncoming(CountZeros, CallBlock);

  // We are explicitly handling the zero case, so we can set the intrinsic's
  // undefined zero argument to 'true'. This will also prevent reprocessing the
  // intrinsic; we only despeculate when a zero input is defined.
  CountZeros->setArgOperand(1, Builder.getTrue());
  ModifiedDT = true;
  return true;
}

bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
  BasicBlock *BB = CI->getParent();

  // Lower inline assembly if we can.
  // If we found an inline asm expession, and if the target knows how to
  // lower it to normal LLVM code, do so now.
  if (CI->isInlineAsm()) {
    if (TLI->ExpandInlineAsm(CI)) {
      // Avoid invalidating the iterator.
      CurInstIterator = BB->begin();
      // Avoid processing instructions out of order, which could cause
      // reuse before a value is defined.
      SunkAddrs.clear();
      return true;
    }
    // Sink address computing for memory operands into the block.
    if (optimizeInlineAsmInst(CI))
      return true;
  }

  // Align the pointer arguments to this call if the target thinks it's a good
  // idea
  unsigned MinSize, PrefAlign;
  if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
    for (auto &Arg : CI->arg_operands()) {
      // We want to align both objects whose address is used directly and
      // objects whose address is used in casts and GEPs, though it only makes
      // sense for GEPs if the offset is a multiple of the desired alignment and
      // if size - offset meets the size threshold.
      if (!Arg->getType()->isPointerTy())
        continue;
      APInt Offset(DL->getIndexSizeInBits(
                       cast<PointerType>(Arg->getType())->getAddressSpace()),
                   0);
      Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
      uint64_t Offset2 = Offset.getLimitedValue();
      if ((Offset2 & (PrefAlign-1)) != 0)
        continue;
      AllocaInst *AI;
      if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
          DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
        AI->setAlignment(Align(PrefAlign));
      // Global variables can only be aligned if they are defined in this
      // object (i.e. they are uniquely initialized in this object), and
      // over-aligning global variables that have an explicit section is
      // forbidden.
      GlobalVariable *GV;
      if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
          GV->getPointerAlignment(*DL) < PrefAlign &&
          DL->getTypeAllocSize(GV->getValueType()) >=
              MinSize + Offset2)
        GV->setAlignment(MaybeAlign(PrefAlign));
    }
    // If this is a memcpy (or similar) then we may be able to improve the
    // alignment
    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
      Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
      MaybeAlign MIDestAlign = MI->getDestAlign();
      if (!MIDestAlign || DestAlign > *MIDestAlign)
        MI->setDestAlignment(DestAlign);
      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
        MaybeAlign MTISrcAlign = MTI->getSourceAlign();
        Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
        if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
          MTI->setSourceAlignment(SrcAlign);
      }
    }
  }

  // If we have a cold call site, try to sink addressing computation into the
  // cold block.  This interacts with our handling for loads and stores to
  // ensure that we can fold all uses of a potential addressing computation
  // into their uses.  TODO: generalize this to work over profiling data
  if (CI->hasFnAttr(Attribute::Cold) &&
      !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
    for (auto &Arg : CI->arg_operands()) {
      if (!Arg->getType()->isPointerTy())
        continue;
      unsigned AS = Arg->getType()->getPointerAddressSpace();
      return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
    }

  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
  if (II) {
    switch (II->getIntrinsicID()) {
    default: break;
    case Intrinsic::assume: {
      Value *Operand = II->getOperand(0);
      II->eraseFromParent();
      // Prune the operand, it's most likely dead.
      resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
        RecursivelyDeleteTriviallyDeadInstructions(
            Operand, TLInfo, nullptr,
            [&](Value *V) { removeAllAssertingVHReferences(V); });
      });
      return true;
    }

    case Intrinsic::experimental_widenable_condition: {
      // Give up on future widening oppurtunties so that we can fold away dead
      // paths and merge blocks before going into block-local instruction
      // selection.
      if (II->use_empty()) {
        II->eraseFromParent();
        return true;
      }
      Constant *RetVal = ConstantInt::getTrue(II->getContext());
      resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
        replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
      });
      return true;
    }
    case Intrinsic::objectsize:
      llvm_unreachable("llvm.objectsize.* should have been lowered already");
    case Intrinsic::is_constant:
      llvm_unreachable("llvm.is.constant.* should have been lowered already");
    case Intrinsic::aarch64_stlxr:
    case Intrinsic::aarch64_stxr: {
      ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
      if (!ExtVal || !ExtVal->hasOneUse() ||
          ExtVal->getParent() == CI->getParent())
        return false;
      // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
      ExtVal->moveBefore(CI);
      // Mark this instruction as "inserted by CGP", so that other
      // optimizations don't touch it.
      InsertedInsts.insert(ExtVal);
      return true;
    }

    case Intrinsic::launder_invariant_group:
    case Intrinsic::strip_invariant_group: {
      Value *ArgVal = II->getArgOperand(0);
      auto it = LargeOffsetGEPMap.find(II);
      if (it != LargeOffsetGEPMap.end()) {
          // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
          // Make sure not to have to deal with iterator invalidation
          // after possibly adding ArgVal to LargeOffsetGEPMap.
          auto GEPs = std::move(it->second);
          LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
          LargeOffsetGEPMap.erase(II);
      }

      II->replaceAllUsesWith(ArgVal);
      II->eraseFromParent();
      return true;
    }
    case Intrinsic::cttz:
    case Intrinsic::ctlz:
      // If counting zeros is expensive, try to avoid it.
      return despeculateCountZeros(II, TLI, DL, ModifiedDT);
    case Intrinsic::fshl:
    case Intrinsic::fshr:
      return optimizeFunnelShift(II);
    case Intrinsic::dbg_value:
      return fixupDbgValue(II);
    case Intrinsic::vscale: {
      // If datalayout has no special restrictions on vector data layout,
      // replace `llvm.vscale` by an equivalent constant expression
      // to benefit from cheap constant propagation.
      Type *ScalableVectorTy =
          VectorType::get(Type::getInt8Ty(II->getContext()), 1, true);
      if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) {
        auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo());
        auto *One = ConstantInt::getSigned(II->getType(), 1);
        auto *CGep =
            ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One);
        II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType()));
        II->eraseFromParent();
        return true;
      }
      break;
    }
    case Intrinsic::masked_gather:
      return optimizeGatherScatterInst(II, II->getArgOperand(0));
    case Intrinsic::masked_scatter:
      return optimizeGatherScatterInst(II, II->getArgOperand(1));
    }

    SmallVector<Value *, 2> PtrOps;
    Type *AccessTy;
    if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
      while (!PtrOps.empty()) {
        Value *PtrVal = PtrOps.pop_back_val();
        unsigned AS = PtrVal->getType()->getPointerAddressSpace();
        if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
          return true;
      }
  }

  // From here on out we're working with named functions.
  if (!CI->getCalledFunction()) return false;

  // Lower all default uses of _chk calls.  This is very similar
  // to what InstCombineCalls does, but here we are only lowering calls
  // to fortified library functions (e.g. __memcpy_chk) that have the default
  // "don't know" as the objectsize.  Anything else should be left alone.
  FortifiedLibCallSimplifier Simplifier(TLInfo, true);
  IRBuilder<> Builder(CI);
  if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
    CI->replaceAllUsesWith(V);
    CI->eraseFromParent();
    return true;
  }

  return false;
}

/// Look for opportunities to duplicate return instructions to the predecessor
/// to enable tail call optimizations. The case it is currently looking for is:
/// @code
/// bb0:
///   %tmp0 = tail call i32 @f0()
///   br label %return
/// bb1:
///   %tmp1 = tail call i32 @f1()
///   br label %return
/// bb2:
///   %tmp2 = tail call i32 @f2()
///   br label %return
/// return:
///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
///   ret i32 %retval
/// @endcode
///
/// =>
///
/// @code
/// bb0:
///   %tmp0 = tail call i32 @f0()
///   ret i32 %tmp0
/// bb1:
///   %tmp1 = tail call i32 @f1()
///   ret i32 %tmp1
/// bb2:
///   %tmp2 = tail call i32 @f2()
///   ret i32 %tmp2
/// @endcode
bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
  ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
  if (!RetI)
    return false;

  PHINode *PN = nullptr;
  ExtractValueInst *EVI = nullptr;
  BitCastInst *BCI = nullptr;
  Value *V = RetI->getReturnValue();
  if (V) {
    BCI = dyn_cast<BitCastInst>(V);
    if (BCI)
      V = BCI->getOperand(0);

    EVI = dyn_cast<ExtractValueInst>(V);
    if (EVI) {
      V = EVI->getOperand(0);
      if (!std::all_of(EVI->idx_begin(), EVI->idx_end(),
                       [](unsigned idx) { return idx == 0; }))
        return false;
    }

    PN = dyn_cast<PHINode>(V);
    if (!PN)
      return false;
  }

  if (PN && PN->getParent() != BB)
    return false;

  // Make sure there are no instructions between the PHI and return, or that the
  // return is the first instruction in the block.
  if (PN) {
    BasicBlock::iterator BI = BB->begin();
    // Skip over debug and the bitcast.
    do {
      ++BI;
    } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI);
    if (&*BI != RetI)
      return false;
  } else {
    BasicBlock::iterator BI = BB->begin();
    while (isa<DbgInfoIntrinsic>(BI)) ++BI;
    if (&*BI != RetI)
      return false;
  }

  /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
  /// call.
  const Function *F = BB->getParent();
  SmallVector<BasicBlock*, 4> TailCallBBs;
  if (PN) {
    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
      // Look through bitcasts.
      Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
      CallInst *CI = dyn_cast<CallInst>(IncomingVal);
      BasicBlock *PredBB = PN->getIncomingBlock(I);
      // Make sure the phi value is indeed produced by the tail call.
      if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
          TLI->mayBeEmittedAsTailCall(CI) &&
          attributesPermitTailCall(F, CI, RetI, *TLI))
        TailCallBBs.push_back(PredBB);
    }
  } else {
    SmallPtrSet<BasicBlock*, 4> VisitedBBs;
    for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
      if (!VisitedBBs.insert(*PI).second)
        continue;

      BasicBlock::InstListType &InstList = (*PI)->getInstList();
      BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
      BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
      do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
      if (RI == RE)
        continue;

      CallInst *CI = dyn_cast<CallInst>(&*RI);
      if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
          attributesPermitTailCall(F, CI, RetI, *TLI))
        TailCallBBs.push_back(*PI);
    }
  }

  bool Changed = false;
  for (auto const &TailCallBB : TailCallBBs) {
    // Make sure the call instruction is followed by an unconditional branch to
    // the return block.
    BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
    if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
      continue;

    // Duplicate the return into TailCallBB.
    (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
    assert(!VerifyBFIUpdates ||
           BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
    BFI->setBlockFreq(
        BB,
        (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency());
    ModifiedDT = Changed = true;
    ++NumRetsDup;
  }

  // If we eliminated all predecessors of the block, delete the block now.
  if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
    BB->eraseFromParent();

  return Changed;
}

//===----------------------------------------------------------------------===//
// Memory Optimization
//===----------------------------------------------------------------------===//

namespace {

/// This is an extended version of TargetLowering::AddrMode
/// which holds actual Value*'s for register values.
struct ExtAddrMode : public TargetLowering::AddrMode {
  Value *BaseReg = nullptr;
  Value *ScaledReg = nullptr;
  Value *OriginalValue = nullptr;
  bool InBounds = true;

  enum FieldName {
    NoField        = 0x00,
    BaseRegField   = 0x01,
    BaseGVField    = 0x02,
    BaseOffsField  = 0x04,
    ScaledRegField = 0x08,
    ScaleField     = 0x10,
    MultipleFields = 0xff
  };


  ExtAddrMode() = default;

  void print(raw_ostream &OS) const;
  void dump() const;

  FieldName compare(const ExtAddrMode &other) {
    // First check that the types are the same on each field, as differing types
    // is something we can't cope with later on.
    if (BaseReg && other.BaseReg &&
        BaseReg->getType() != other.BaseReg->getType())
      return MultipleFields;
    if (BaseGV && other.BaseGV &&
        BaseGV->getType() != other.BaseGV->getType())
      return MultipleFields;
    if (ScaledReg && other.ScaledReg &&
        ScaledReg->getType() != other.ScaledReg->getType())
      return MultipleFields;

    // Conservatively reject 'inbounds' mismatches.
    if (InBounds != other.InBounds)
      return MultipleFields;

    // Check each field to see if it differs.
    unsigned Result = NoField;
    if (BaseReg != other.BaseReg)
      Result |= BaseRegField;
    if (BaseGV != other.BaseGV)
      Result |= BaseGVField;
    if (BaseOffs != other.BaseOffs)
      Result |= BaseOffsField;
    if (ScaledReg != other.ScaledReg)
      Result |= ScaledRegField;
    // Don't count 0 as being a different scale, because that actually means
    // unscaled (which will already be counted by having no ScaledReg).
    if (Scale && other.Scale && Scale != other.Scale)
      Result |= ScaleField;

    if (countPopulation(Result) > 1)
      return MultipleFields;
    else
      return static_cast<FieldName>(Result);
  }

  // An AddrMode is trivial if it involves no calculation i.e. it is just a base
  // with no offset.
  bool isTrivial() {
    // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
    // trivial if at most one of these terms is nonzero, except that BaseGV and
    // BaseReg both being zero actually means a null pointer value, which we
    // consider to be 'non-zero' here.
    return !BaseOffs && !Scale && !(BaseGV && BaseReg);
  }

  Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
    switch (Field) {
    default:
      return nullptr;
    case BaseRegField:
      return BaseReg;
    case BaseGVField:
      return BaseGV;
    case ScaledRegField:
      return ScaledReg;
    case BaseOffsField:
      return ConstantInt::get(IntPtrTy, BaseOffs);
    }
  }

  void SetCombinedField(FieldName Field, Value *V,
                        const SmallVectorImpl<ExtAddrMode> &AddrModes) {
    switch (Field) {
    default:
      llvm_unreachable("Unhandled fields are expected to be rejected earlier");
      break;
    case ExtAddrMode::BaseRegField:
      BaseReg = V;
      break;
    case ExtAddrMode::BaseGVField:
      // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
      // in the BaseReg field.
      assert(BaseReg == nullptr);
      BaseReg = V;
      BaseGV = nullptr;
      break;
    case ExtAddrMode::ScaledRegField:
      ScaledReg = V;
      // If we have a mix of scaled and unscaled addrmodes then we want scale
      // to be the scale and not zero.
      if (!Scale)
        for (const ExtAddrMode &AM : AddrModes)
          if (AM.Scale) {
            Scale = AM.Scale;
            break;
          }
      break;
    case ExtAddrMode::BaseOffsField:
      // The offset is no longer a constant, so it goes in ScaledReg with a
      // scale of 1.
      assert(ScaledReg == nullptr);
      ScaledReg = V;
      Scale = 1;
      BaseOffs = 0;
      break;
    }
  }
};

} // end anonymous namespace

#ifndef NDEBUG
static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
  AM.print(OS);
  return OS;
}
#endif

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void ExtAddrMode::print(raw_ostream &OS) const {
  bool NeedPlus = false;
  OS << "[";
  if (InBounds)
    OS << "inbounds ";
  if (BaseGV) {
    OS << (NeedPlus ? " + " : "")
       << "GV:";
    BaseGV->printAsOperand(OS, /*PrintType=*/false);
    NeedPlus = true;
  }

  if (BaseOffs) {
    OS << (NeedPlus ? " + " : "")
       << BaseOffs;
    NeedPlus = true;
  }

  if (BaseReg) {
    OS << (NeedPlus ? " + " : "")
       << "Base:";
    BaseReg->printAsOperand(OS, /*PrintType=*/false);
    NeedPlus = true;
  }
  if (Scale) {
    OS << (NeedPlus ? " + " : "")
       << Scale << "*";
    ScaledReg->printAsOperand(OS, /*PrintType=*/false);
  }

  OS << ']';
}

LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
  print(dbgs());
  dbgs() << '\n';
}
#endif

namespace {

/// This class provides transaction based operation on the IR.
/// Every change made through this class is recorded in the internal state and
/// can be undone (rollback) until commit is called.
/// CGP does not check if instructions could be speculatively executed when
/// moved. Preserving the original location would pessimize the debugging
/// experience, as well as negatively impact the quality of sample PGO.
class TypePromotionTransaction {
  /// This represents the common interface of the individual transaction.
  /// Each class implements the logic for doing one specific modification on
  /// the IR via the TypePromotionTransaction.
  class TypePromotionAction {
  protected:
    /// The Instruction modified.
    Instruction *Inst;

  public:
    /// Constructor of the action.
    /// The constructor performs the related action on the IR.
    TypePromotionAction(Instruction *Inst) : Inst(Inst) {}

    virtual ~TypePromotionAction() = default;

    /// Undo the modification done by this action.
    /// When this method is called, the IR must be in the same state as it was
    /// before this action was applied.
    /// \pre Undoing the action works if and only if the IR is in the exact same
    /// state as it was directly after this action was applied.
    virtual void undo() = 0;

    /// Advocate every change made by this action.
    /// When the results on the IR of the action are to be kept, it is important
    /// to call this function, otherwise hidden information may be kept forever.
    virtual void commit() {
      // Nothing to be done, this action is not doing anything.
    }
  };

  /// Utility to remember the position of an instruction.
  class InsertionHandler {
    /// Position of an instruction.
    /// Either an instruction:
    /// - Is the first in a basic block: BB is used.
    /// - Has a previous instruction: PrevInst is used.
    union {
      Instruction *PrevInst;
      BasicBlock *BB;
    } Point;

    /// Remember whether or not the instruction had a previous instruction.
    bool HasPrevInstruction;

  public:
    /// Record the position of \p Inst.
    InsertionHandler(Instruction *Inst) {
      BasicBlock::iterator It = Inst->getIterator();
      HasPrevInstruction = (It != (Inst->getParent()->begin()));
      if (HasPrevInstruction)
        Point.PrevInst = &*--It;
      else
        Point.BB = Inst->getParent();
    }

    /// Insert \p Inst at the recorded position.
    void insert(Instruction *Inst) {
      if (HasPrevInstruction) {
        if (Inst->getParent())
          Inst->removeFromParent();
        Inst->insertAfter(Point.PrevInst);
      } else {
        Instruction *Position = &*Point.BB->getFirstInsertionPt();
        if (Inst->getParent())
          Inst->moveBefore(Position);
        else
          Inst->insertBefore(Position);
      }
    }
  };

  /// Move an instruction before another.
  class InstructionMoveBefore : public TypePromotionAction {
    /// Original position of the instruction.
    InsertionHandler Position;

  public:
    /// Move \p Inst before \p Before.
    InstructionMoveBefore(Instruction *Inst, Instruction *Before)
        : TypePromotionAction(Inst), Position(Inst) {
      LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
                        << "\n");
      Inst->moveBefore(Before);
    }

    /// Move the instruction back to its original position.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
      Position.insert(Inst);
    }
  };

  /// Set the operand of an instruction with a new value.
  class OperandSetter : public TypePromotionAction {
    /// Original operand of the instruction.
    Value *Origin;

    /// Index of the modified instruction.
    unsigned Idx;

  public:
    /// Set \p Idx operand of \p Inst with \p NewVal.
    OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
        : TypePromotionAction(Inst), Idx(Idx) {
      LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
                        << "for:" << *Inst << "\n"
                        << "with:" << *NewVal << "\n");
      Origin = Inst->getOperand(Idx);
      Inst->setOperand(Idx, NewVal);
    }

    /// Restore the original value of the instruction.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
                        << "for: " << *Inst << "\n"
                        << "with: " << *Origin << "\n");
      Inst->setOperand(Idx, Origin);
    }
  };

  /// Hide the operands of an instruction.
  /// Do as if this instruction was not using any of its operands.
  class OperandsHider : public TypePromotionAction {
    /// The list of original operands.
    SmallVector<Value *, 4> OriginalValues;

  public:
    /// Remove \p Inst from the uses of the operands of \p Inst.
    OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
      LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
      unsigned NumOpnds = Inst->getNumOperands();
      OriginalValues.reserve(NumOpnds);
      for (unsigned It = 0; It < NumOpnds; ++It) {
        // Save the current operand.
        Value *Val = Inst->getOperand(It);
        OriginalValues.push_back(Val);
        // Set a dummy one.
        // We could use OperandSetter here, but that would imply an overhead
        // that we are not willing to pay.
        Inst->setOperand(It, UndefValue::get(Val->getType()));
      }
    }

    /// Restore the original list of uses.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
      for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
        Inst->setOperand(It, OriginalValues[It]);
    }
  };

  /// Build a truncate instruction.
  class TruncBuilder : public TypePromotionAction {
    Value *Val;

  public:
    /// Build a truncate instruction of \p Opnd producing a \p Ty
    /// result.
    /// trunc Opnd to Ty.
    TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
      IRBuilder<> Builder(Opnd);
      Builder.SetCurrentDebugLocation(DebugLoc());
      Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
      LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
    }

    /// Get the built value.
    Value *getBuiltValue() { return Val; }

    /// Remove the built instruction.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
      if (Instruction *IVal = dyn_cast<Instruction>(Val))
        IVal->eraseFromParent();
    }
  };

  /// Build a sign extension instruction.
  class SExtBuilder : public TypePromotionAction {
    Value *Val;

  public:
    /// Build a sign extension instruction of \p Opnd producing a \p Ty
    /// result.
    /// sext Opnd to Ty.
    SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
        : TypePromotionAction(InsertPt) {
      IRBuilder<> Builder(InsertPt);
      Val = Builder.CreateSExt(Opnd, Ty, "promoted");
      LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
    }

    /// Get the built value.
    Value *getBuiltValue() { return Val; }

    /// Remove the built instruction.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
      if (Instruction *IVal = dyn_cast<Instruction>(Val))
        IVal->eraseFromParent();
    }
  };

  /// Build a zero extension instruction.
  class ZExtBuilder : public TypePromotionAction {
    Value *Val;

  public:
    /// Build a zero extension instruction of \p Opnd producing a \p Ty
    /// result.
    /// zext Opnd to Ty.
    ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
        : TypePromotionAction(InsertPt) {
      IRBuilder<> Builder(InsertPt);
      Builder.SetCurrentDebugLocation(DebugLoc());
      Val = Builder.CreateZExt(Opnd, Ty, "promoted");
      LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
    }

    /// Get the built value.
    Value *getBuiltValue() { return Val; }

    /// Remove the built instruction.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
      if (Instruction *IVal = dyn_cast<Instruction>(Val))
        IVal->eraseFromParent();
    }
  };

  /// Mutate an instruction to another type.
  class TypeMutator : public TypePromotionAction {
    /// Record the original type.
    Type *OrigTy;

  public:
    /// Mutate the type of \p Inst into \p NewTy.
    TypeMutator(Instruction *Inst, Type *NewTy)
        : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
      LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
                        << "\n");
      Inst->mutateType(NewTy);
    }

    /// Mutate the instruction back to its original type.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
                        << "\n");
      Inst->mutateType(OrigTy);
    }
  };

  /// Replace the uses of an instruction by another instruction.
  class UsesReplacer : public TypePromotionAction {
    /// Helper structure to keep track of the replaced uses.
    struct InstructionAndIdx {
      /// The instruction using the instruction.
      Instruction *Inst;

      /// The index where this instruction is used for Inst.
      unsigned Idx;

      InstructionAndIdx(Instruction *Inst, unsigned Idx)
          : Inst(Inst), Idx(Idx) {}
    };

    /// Keep track of the original uses (pair Instruction, Index).
    SmallVector<InstructionAndIdx, 4> OriginalUses;
    /// Keep track of the debug users.
    SmallVector<DbgValueInst *, 1> DbgValues;

    using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;

  public:
    /// Replace all the use of \p Inst by \p New.
    UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
      LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
                        << "\n");
      // Record the original uses.
      for (Use &U : Inst->uses()) {
        Instruction *UserI = cast<Instruction>(U.getUser());
        OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
      }
      // Record the debug uses separately. They are not in the instruction's
      // use list, but they are replaced by RAUW.
      findDbgValues(DbgValues, Inst);

      // Now, we can replace the uses.
      Inst->replaceAllUsesWith(New);
    }

    /// Reassign the original uses of Inst to Inst.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
      for (use_iterator UseIt = OriginalUses.begin(),
                        EndIt = OriginalUses.end();
           UseIt != EndIt; ++UseIt) {
        UseIt->Inst->setOperand(UseIt->Idx, Inst);
      }
      // RAUW has replaced all original uses with references to the new value,
      // including the debug uses. Since we are undoing the replacements,
      // the original debug uses must also be reinstated to maintain the
      // correctness and utility of debug value instructions.
      for (auto *DVI: DbgValues) {
        LLVMContext &Ctx = Inst->getType()->getContext();
        auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
        DVI->setOperand(0, MV);
      }
    }
  };

  /// Remove an instruction from the IR.
  class InstructionRemover : public TypePromotionAction {
    /// Original position of the instruction.
    InsertionHandler Inserter;

    /// Helper structure to hide all the link to the instruction. In other
    /// words, this helps to do as if the instruction was removed.
    OperandsHider Hider;

    /// Keep track of the uses replaced, if any.
    UsesReplacer *Replacer = nullptr;

    /// Keep track of instructions removed.
    SetOfInstrs &RemovedInsts;

  public:
    /// Remove all reference of \p Inst and optionally replace all its
    /// uses with New.
    /// \p RemovedInsts Keep track of the instructions removed by this Action.
    /// \pre If !Inst->use_empty(), then New != nullptr
    InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
                       Value *New = nullptr)
        : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
          RemovedInsts(RemovedInsts) {
      if (New)
        Replacer = new UsesReplacer(Inst, New);
      LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
      RemovedInsts.insert(Inst);
      /// The instructions removed here will be freed after completing
      /// optimizeBlock() for all blocks as we need to keep track of the
      /// removed instructions during promotion.
      Inst->removeFromParent();
    }

    ~InstructionRemover() override { delete Replacer; }

    /// Resurrect the instruction and reassign it to the proper uses if
    /// new value was provided when build this action.
    void undo() override {
      LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
      Inserter.insert(Inst);
      if (Replacer)
        Replacer->undo();
      Hider.undo();
      RemovedInsts.erase(Inst);
    }
  };

public:
  /// Restoration point.
  /// The restoration point is a pointer to an action instead of an iterator
  /// because the iterator may be invalidated but not the pointer.
  using ConstRestorationPt = const TypePromotionAction *;

  TypePromotionTransaction(SetOfInstrs &RemovedInsts)
      : RemovedInsts(RemovedInsts) {}

  /// Advocate every changes made in that transaction. Return true if any change
  /// happen.
  bool commit();

  /// Undo all the changes made after the given point.
  void rollback(ConstRestorationPt Point);

  /// Get the current restoration point.
  ConstRestorationPt getRestorationPoint() const;

  /// \name API for IR modification with state keeping to support rollback.
  /// @{
  /// Same as Instruction::setOperand.
  void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);

  /// Same as Instruction::eraseFromParent.
  void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);

  /// Same as Value::replaceAllUsesWith.
  void replaceAllUsesWith(Instruction *Inst, Value *New);

  /// Same as Value::mutateType.
  void mutateType(Instruction *Inst, Type *NewTy);

  /// Same as IRBuilder::createTrunc.
  Value *createTrunc(Instruction *Opnd, Type *Ty);

  /// Same as IRBuilder::createSExt.
  Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);

  /// Same as IRBuilder::createZExt.
  Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);

  /// Same as Instruction::moveBefore.
  void moveBefore(Instruction *Inst, Instruction *Before);
  /// @}

private:
  /// The ordered list of actions made so far.
  SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;

  using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;

  SetOfInstrs &RemovedInsts;
};

} // end anonymous namespace

void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
                                          Value *NewVal) {
  Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
      Inst, Idx, NewVal));
}

void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
                                                Value *NewVal) {
  Actions.push_back(
      std::make_unique<TypePromotionTransaction::InstructionRemover>(
          Inst, RemovedInsts, NewVal));
}

void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
                                                  Value *New) {
  Actions.push_back(
      std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
}

void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
  Actions.push_back(
      std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
}

Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
                                             Type *Ty) {
  std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
  Value *Val = Ptr->getBuiltValue();
  Actions.push_back(std::move(Ptr));
  return Val;
}

Value *TypePromotionTransaction::createSExt(Instruction *Inst,
                                            Value *Opnd, Type *Ty) {
  std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
  Value *Val = Ptr->getBuiltValue();
  Actions.push_back(std::move(Ptr));
  return Val;
}

Value *TypePromotionTransaction::createZExt(Instruction *Inst,
                                            Value *Opnd, Type *Ty) {
  std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
  Value *Val = Ptr->getBuiltValue();
  Actions.push_back(std::move(Ptr));
  return Val;
}

void TypePromotionTransaction::moveBefore(Instruction *Inst,
                                          Instruction *Before) {
  Actions.push_back(
      std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
          Inst, Before));
}

TypePromotionTransaction::ConstRestorationPt
TypePromotionTransaction::getRestorationPoint() const {
  return !Actions.empty() ? Actions.back().get() : nullptr;
}

bool TypePromotionTransaction::commit() {
  for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
       ++It)
    (*It)->commit();
  bool Modified = !Actions.empty();
  Actions.clear();
  return Modified;
}

void TypePromotionTransaction::rollback(
    TypePromotionTransaction::ConstRestorationPt Point) {
  while (!Actions.empty() && Point != Actions.back().get()) {
    std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
    Curr->undo();
  }
}

namespace {

/// A helper class for matching addressing modes.
///
/// This encapsulates the logic for matching the target-legal addressing modes.
class AddressingModeMatcher {
  SmallVectorImpl<Instruction*> &AddrModeInsts;
  const TargetLowering &TLI;
  const TargetRegisterInfo &TRI;
  const DataLayout &DL;

  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
  /// the memory instruction that we're computing this address for.
  Type *AccessTy;
  unsigned AddrSpace;
  Instruction *MemoryInst;

  /// This is the addressing mode that we're building up. This is
  /// part of the return value of this addressing mode matching stuff.
  ExtAddrMode &AddrMode;

  /// The instructions inserted by other CodeGenPrepare optimizations.
  const SetOfInstrs &InsertedInsts;

  /// A map from the instructions to their type before promotion.
  InstrToOrigTy &PromotedInsts;

  /// The ongoing transaction where every action should be registered.
  TypePromotionTransaction &TPT;

  // A GEP which has too large offset to be folded into the addressing mode.
  std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;

  /// This is set to true when we should not do profitability checks.
  /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
  bool IgnoreProfitability;

  /// True if we are optimizing for size.
  bool OptSize;

  ProfileSummaryInfo *PSI;
  BlockFrequencyInfo *BFI;

  AddressingModeMatcher(
      SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
      const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
      ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
      InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
      std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
      bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
      : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
        DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
        MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
        PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP),
        OptSize(OptSize), PSI(PSI), BFI(BFI) {
    IgnoreProfitability = false;
  }

public:
  /// Find the maximal addressing mode that a load/store of V can fold,
  /// give an access type of AccessTy.  This returns a list of involved
  /// instructions in AddrModeInsts.
  /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
  /// optimizations.
  /// \p PromotedInsts maps the instructions to their type before promotion.
  /// \p The ongoing transaction where every action should be registered.
  static ExtAddrMode
  Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
        SmallVectorImpl<Instruction *> &AddrModeInsts,
        const TargetLowering &TLI, const TargetRegisterInfo &TRI,
        const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
        TypePromotionTransaction &TPT,
        std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
        bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
    ExtAddrMode Result;

    bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
                                         MemoryInst, Result, InsertedInsts,
                                         PromotedInsts, TPT, LargeOffsetGEP,
                                         OptSize, PSI, BFI)
                       .matchAddr(V, 0);
    (void)Success; assert(Success && "Couldn't select *anything*?");
    return Result;
  }

private:
  bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
  bool matchAddr(Value *Addr, unsigned Depth);
  bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
                          bool *MovedAway = nullptr);
  bool isProfitableToFoldIntoAddressingMode(Instruction *I,
                                            ExtAddrMode &AMBefore,
                                            ExtAddrMode &AMAfter);
  bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
  bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
                             Value *PromotedOperand) const;
};

class PhiNodeSet;

/// An iterator for PhiNodeSet.
class PhiNodeSetIterator {
  PhiNodeSet * const Set;
  size_t CurrentIndex = 0;

public:
  /// The constructor. Start should point to either a valid element, or be equal
  /// to the size of the underlying SmallVector of the PhiNodeSet.
  PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
  PHINode * operator*() const;
  PhiNodeSetIterator& operator++();
  bool operator==(const PhiNodeSetIterator &RHS) const;
  bool operator!=(const PhiNodeSetIterator &RHS) const;
};

/// Keeps a set of PHINodes.
///
/// This is a minimal set implementation for a specific use case:
/// It is very fast when there are very few elements, but also provides good
/// performance when there are many. It is similar to SmallPtrSet, but also
/// provides iteration by insertion order, which is deterministic and stable
/// across runs. It is also similar to SmallSetVector, but provides removing
/// elements in O(1) time. This is achieved by not actually removing the element
/// from the underlying vector, so comes at the cost of using more memory, but
/// that is fine, since PhiNodeSets are used as short lived objects.
class PhiNodeSet {
  friend class PhiNodeSetIterator;

  using MapType = SmallDenseMap<PHINode *, size_t, 32>;
  using iterator =  PhiNodeSetIterator;

  /// Keeps the elements in the order of their insertion in the underlying
  /// vector. To achieve constant time removal, it never deletes any element.
  SmallVector<PHINode *, 32> NodeList;

  /// Keeps the elements in the underlying set implementation. This (and not the
  /// NodeList defined above) is the source of truth on whether an element
  /// is actually in the collection.
  MapType NodeMap;

  /// Points to the first valid (not deleted) element when the set is not empty
  /// and the value is not zero. Equals to the size of the underlying vector
  /// when the set is empty. When the value is 0, as in the beginning, the
  /// first element may or may not be valid.
  size_t FirstValidElement = 0;

public:
  /// Inserts a new element to the collection.
  /// \returns true if the element is actually added, i.e. was not in the
  /// collection before the operation.
  bool insert(PHINode *Ptr) {
    if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
      NodeList.push_back(Ptr);
      return true;
    }
    return false;
  }

  /// Removes the element from the collection.
  /// \returns whether the element is actually removed, i.e. was in the
  /// collection before the operation.
  bool erase(PHINode *Ptr) {
    auto it = NodeMap.find(Ptr);
    if (it != NodeMap.end()) {
      NodeMap.erase(Ptr);
      SkipRemovedElements(FirstValidElement);
      return true;
    }
    return false;
  }

  /// Removes all elements and clears the collection.
  void clear() {
    NodeMap.clear();
    NodeList.clear();
    FirstValidElement = 0;
  }

  /// \returns an iterator that will iterate the elements in the order of
  /// insertion.
  iterator begin() {
    if (FirstValidElement == 0)
      SkipRemovedElements(FirstValidElement);
    return PhiNodeSetIterator(this, FirstValidElement);
  }

  /// \returns an iterator that points to the end of the collection.
  iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }

  /// Returns the number of elements in the collection.
  size_t size() const {
    return NodeMap.size();
  }

  /// \returns 1 if the given element is in the collection, and 0 if otherwise.
  size_t count(PHINode *Ptr) const {
    return NodeMap.count(Ptr);
  }

private:
  /// Updates the CurrentIndex so that it will point to a valid element.
  ///
  /// If the element of NodeList at CurrentIndex is valid, it does not
  /// change it. If there are no more valid elements, it updates CurrentIndex
  /// to point to the end of the NodeList.
  void SkipRemovedElements(size_t &CurrentIndex) {
    while (CurrentIndex < NodeList.size()) {
      auto it = NodeMap.find(NodeList[CurrentIndex]);
      // If the element has been deleted and added again later, NodeMap will
      // point to a different index, so CurrentIndex will still be invalid.
      if (it != NodeMap.end() && it->second == CurrentIndex)
        break;
      ++CurrentIndex;
    }
  }
};

PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
    : Set(Set), CurrentIndex(Start) {}

PHINode * PhiNodeSetIterator::operator*() const {
  assert(CurrentIndex < Set->NodeList.size() &&
         "PhiNodeSet access out of range");
  return Set->NodeList[CurrentIndex];
}

PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
  assert(CurrentIndex < Set->NodeList.size() &&
         "PhiNodeSet access out of range");
  ++CurrentIndex;
  Set->SkipRemovedElements(CurrentIndex);
  return *this;
}

bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
  return CurrentIndex == RHS.CurrentIndex;
}

bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
  return !((*this) == RHS);
}

/// Keep track of simplification of Phi nodes.
/// Accept the set of all phi nodes and erase phi node from this set
/// if it is simplified.
class SimplificationTracker {
  DenseMap<Value *, Value *> Storage;
  const SimplifyQuery &SQ;
  // Tracks newly created Phi nodes. The elements are iterated by insertion
  // order.
  PhiNodeSet AllPhiNodes;
  // Tracks newly created Select nodes.
  SmallPtrSet<SelectInst *, 32> AllSelectNodes;

public:
  SimplificationTracker(const SimplifyQuery &sq)
      : SQ(sq) {}

  Value *Get(Value *V) {
    do {
      auto SV = Storage.find(V);
      if (SV == Storage.end())
        return V;
      V = SV->second;
    } while (true);
  }

  Value *Simplify(Value *Val) {
    SmallVector<Value *, 32> WorkList;
    SmallPtrSet<Value *, 32> Visited;
    WorkList.push_back(Val);
    while (!WorkList.empty()) {
      auto *P = WorkList.pop_back_val();
      if (!Visited.insert(P).second)
        continue;
      if (auto *PI = dyn_cast<Instruction>(P))
        if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
          for (auto *U : PI->users())
            WorkList.push_back(cast<Value>(U));
          Put(PI, V);
          PI->replaceAllUsesWith(V);
          if (auto *PHI = dyn_cast<PHINode>(PI))
            AllPhiNodes.erase(PHI);
          if (auto *Select = dyn_cast<SelectInst>(PI))
            AllSelectNodes.erase(Select);
          PI->eraseFromParent();
        }
    }
    return Get(Val);
  }

  void Put(Value *From, Value *To) {
    Storage.insert({ From, To });
  }

  void ReplacePhi(PHINode *From, PHINode *To) {
    Value* OldReplacement = Get(From);
    while (OldReplacement != From) {
      From = To;
      To = dyn_cast<PHINode>(OldReplacement);
      OldReplacement = Get(From);
    }
    assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
    Put(From, To);
    From->replaceAllUsesWith(To);
    AllPhiNodes.erase(From);
    From->eraseFromParent();
  }

  PhiNodeSet& newPhiNodes() { return AllPhiNodes; }

  void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }

  void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }

  unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }

  unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }

  void destroyNewNodes(Type *CommonType) {
    // For safe erasing, replace the uses with dummy value first.
    auto *Dummy = UndefValue::get(CommonType);
    for (auto *I : AllPhiNodes) {
      I->replaceAllUsesWith(Dummy);
      I->eraseFromParent();
    }
    AllPhiNodes.clear();
    for (auto *I : AllSelectNodes) {
      I->replaceAllUsesWith(Dummy);
      I->eraseFromParent();
    }
    AllSelectNodes.clear();
  }
};

/// A helper class for combining addressing modes.
class AddressingModeCombiner {
  typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
  typedef std::pair<PHINode *, PHINode *> PHIPair;

private:
  /// The addressing modes we've collected.
  SmallVector<ExtAddrMode, 16> AddrModes;

  /// The field in which the AddrModes differ, when we have more than one.
  ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;

  /// Are the AddrModes that we have all just equal to their original values?
  bool AllAddrModesTrivial = true;

  /// Common Type for all different fields in addressing modes.
  Type *CommonType;

  /// SimplifyQuery for simplifyInstruction utility.
  const SimplifyQuery &SQ;

  /// Original Address.
  Value *Original;

public:
  AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
      : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}

  /// Get the combined AddrMode
  const ExtAddrMode &getAddrMode() const {
    return AddrModes[0];
  }

  /// Add a new AddrMode if it's compatible with the AddrModes we already
  /// have.
  /// \return True iff we succeeded in doing so.
  bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
    // Take note of if we have any non-trivial AddrModes, as we need to detect
    // when all AddrModes are trivial as then we would introduce a phi or select
    // which just duplicates what's already there.
    AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();

    // If this is the first addrmode then everything is fine.
    if (AddrModes.empty()) {
      AddrModes.emplace_back(NewAddrMode);
      return true;
    }

    // Figure out how different this is from the other address modes, which we
    // can do just by comparing against the first one given that we only care
    // about the cumulative difference.
    ExtAddrMode::FieldName ThisDifferentField =
      AddrModes[0].compare(NewAddrMode);
    if (DifferentField == ExtAddrMode::NoField)
      DifferentField = ThisDifferentField;
    else if (DifferentField != ThisDifferentField)
      DifferentField = ExtAddrMode::MultipleFields;

    // If NewAddrMode differs in more than one dimension we cannot handle it.
    bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;

    // If Scale Field is different then we reject.
    CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;

    // We also must reject the case when base offset is different and
    // scale reg is not null, we cannot handle this case due to merge of
    // different offsets will be used as ScaleReg.
    CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
                              !NewAddrMode.ScaledReg);

    // We also must reject the case when GV is different and BaseReg installed
    // due to we want to use base reg as a merge of GV values.
    CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
                              !NewAddrMode.HasBaseReg);

    // Even if NewAddMode is the same we still need to collect it due to
    // original value is different. And later we will need all original values
    // as anchors during finding the common Phi node.
    if (CanHandle)
      AddrModes.emplace_back(NewAddrMode);
    else
      AddrModes.clear();

    return CanHandle;
  }

  /// Combine the addressing modes we've collected into a single
  /// addressing mode.
  /// \return True iff we successfully combined them or we only had one so
  /// didn't need to combine them anyway.
  bool combineAddrModes() {
    // If we have no AddrModes then they can't be combined.
    if (AddrModes.size() == 0)
      return false;

    // A single AddrMode can trivially be combined.
    if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
      return true;

    // If the AddrModes we collected are all just equal to the value they are
    // derived from then combining them wouldn't do anything useful.
    if (AllAddrModesTrivial)
      return false;

    if (!addrModeCombiningAllowed())
      return false;

    // Build a map between <original value, basic block where we saw it> to
    // value of base register.
    // Bail out if there is no common type.
    FoldAddrToValueMapping Map;
    if (!initializeMap(Map))
      return false;

    Value *CommonValue = findCommon(Map);
    if (CommonValue)
      AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
    return CommonValue != nullptr;
  }

private:
  /// Initialize Map with anchor values. For address seen
  /// we set the value of different field saw in this address.
  /// At the same time we find a common type for different field we will
  /// use to create new Phi/Select nodes. Keep it in CommonType field.
  /// Return false if there is no common type found.
  bool initializeMap(FoldAddrToValueMapping &Map) {
    // Keep track of keys where the value is null. We will need to replace it
    // with constant null when we know the common type.
    SmallVector<Value *, 2> NullValue;
    Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
    for (auto &AM : AddrModes) {
      Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
      if (DV) {
        auto *Type = DV->getType();
        if (CommonType && CommonType != Type)
          return false;
        CommonType = Type;
        Map[AM.OriginalValue] = DV;
      } else {
        NullValue.push_back(AM.OriginalValue);
      }
    }
    assert(CommonType && "At least one non-null value must be!");
    for (auto *V : NullValue)
      Map[V] = Constant::getNullValue(CommonType);
    return true;
  }

  /// We have mapping between value A and other value B where B was a field in
  /// addressing mode represented by A. Also we have an original value C
  /// representing an address we start with. Traversing from C through phi and
  /// selects we ended up with A's in a map. This utility function tries to find
  /// a value V which is a field in addressing mode C and traversing through phi
  /// nodes and selects we will end up in corresponded values B in a map.
  /// The utility will create a new Phi/Selects if needed.
  // The simple example looks as follows:
  // BB1:
  //   p1 = b1 + 40
  //   br cond BB2, BB3
  // BB2:
  //   p2 = b2 + 40
  //   br BB3
  // BB3:
  //   p = phi [p1, BB1], [p2, BB2]
  //   v = load p
  // Map is
  //   p1 -> b1
  //   p2 -> b2
  // Request is
  //   p -> ?
  // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
  Value *findCommon(FoldAddrToValueMapping &Map) {
    // Tracks the simplification of newly created phi nodes. The reason we use
    // this mapping is because we will add new created Phi nodes in AddrToBase.
    // Simplification of Phi nodes is recursive, so some Phi node may
    // be simplified after we added it to AddrToBase. In reality this
    // simplification is possible only if original phi/selects were not
    // simplified yet.
    // Using this mapping we can find the current value in AddrToBase.
    SimplificationTracker ST(SQ);

    // First step, DFS to create PHI nodes for all intermediate blocks.
    // Also fill traverse order for the second step.
    SmallVector<Value *, 32> TraverseOrder;
    InsertPlaceholders(Map, TraverseOrder, ST);

    // Second Step, fill new nodes by merged values and simplify if possible.
    FillPlaceholders(Map, TraverseOrder, ST);

    if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
      ST.destroyNewNodes(CommonType);
      return nullptr;
    }

    // Now we'd like to match New Phi nodes to existed ones.
    unsigned PhiNotMatchedCount = 0;
    if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
      ST.destroyNewNodes(CommonType);
      return nullptr;
    }

    auto *Result = ST.Get(Map.find(Original)->second);
    if (Result) {
      NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
      NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
    }
    return Result;
  }

  /// Try to match PHI node to Candidate.
  /// Matcher tracks the matched Phi nodes.
  bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
                    SmallSetVector<PHIPair, 8> &Matcher,
                    PhiNodeSet &PhiNodesToMatch) {
    SmallVector<PHIPair, 8> WorkList;
    Matcher.insert({ PHI, Candidate });
    SmallSet<PHINode *, 8> MatchedPHIs;
    MatchedPHIs.insert(PHI);
    WorkList.push_back({ PHI, Candidate });
    SmallSet<PHIPair, 8> Visited;
    while (!WorkList.empty()) {
      auto Item = WorkList.pop_back_val();
      if (!Visited.insert(Item).second)
        continue;
      // We iterate over all incoming values to Phi to compare them.
      // If values are different and both of them Phi and the first one is a
      // Phi we added (subject to match) and both of them is in the same basic
      // block then we can match our pair if values match. So we state that
      // these values match and add it to work list to verify that.
      for (auto B : Item.first->blocks()) {
        Value *FirstValue = Item.first->getIncomingValueForBlock(B);
        Value *SecondValue = Item.second->getIncomingValueForBlock(B);
        if (FirstValue == SecondValue)
          continue;

        PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
        PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);

        // One of them is not Phi or
        // The first one is not Phi node from the set we'd like to match or
        // Phi nodes from different basic blocks then
        // we will not be able to match.
        if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
            FirstPhi->getParent() != SecondPhi->getParent())
          return false;

        // If we already matched them then continue.
        if (Matcher.count({ FirstPhi, SecondPhi }))
          continue;
        // So the values are different and does not match. So we need them to
        // match. (But we register no more than one match per PHI node, so that
        // we won't later try to replace them twice.)
        if (MatchedPHIs.insert(FirstPhi).second)
          Matcher.insert({ FirstPhi, SecondPhi });
        // But me must check it.
        WorkList.push_back({ FirstPhi, SecondPhi });
      }
    }
    return true;
  }

  /// For the given set of PHI nodes (in the SimplificationTracker) try
  /// to find their equivalents.
  /// Returns false if this matching fails and creation of new Phi is disabled.
  bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
                   unsigned &PhiNotMatchedCount) {
    // Matched and PhiNodesToMatch iterate their elements in a deterministic
    // order, so the replacements (ReplacePhi) are also done in a deterministic
    // order.
    SmallSetVector<PHIPair, 8> Matched;
    SmallPtrSet<PHINode *, 8> WillNotMatch;
    PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
    while (PhiNodesToMatch.size()) {
      PHINode *PHI = *PhiNodesToMatch.begin();

      // Add us, if no Phi nodes in the basic block we do not match.
      WillNotMatch.clear();
      WillNotMatch.insert(PHI);

      // Traverse all Phis until we found equivalent or fail to do that.
      bool IsMatched = false;
      for (auto &P : PHI->getParent()->phis()) {
        if (&P == PHI)
          continue;
        if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
          break;
        // If it does not match, collect all Phi nodes from matcher.
        // if we end up with no match, them all these Phi nodes will not match
        // later.
        for (auto M : Matched)
          WillNotMatch.insert(M.first);
        Matched.clear();
      }
      if (IsMatched) {
        // Replace all matched values and erase them.
        for (auto MV : Matched)
          ST.ReplacePhi(MV.first, MV.second);
        Matched.clear();
        continue;
      }
      // If we are not allowed to create new nodes then bail out.
      if (!AllowNewPhiNodes)
        return false;
      // Just remove all seen values in matcher. They will not match anything.
      PhiNotMatchedCount += WillNotMatch.size();
      for (auto *P : WillNotMatch)
        PhiNodesToMatch.erase(P);
    }
    return true;
  }
  /// Fill the placeholders with values from predecessors and simplify them.
  void FillPlaceholders(FoldAddrToValueMapping &Map,
                        SmallVectorImpl<Value *> &TraverseOrder,
                        SimplificationTracker &ST) {
    while (!TraverseOrder.empty()) {
      Value *Current = TraverseOrder.pop_back_val();
      assert(Map.find(Current) != Map.end() && "No node to fill!!!");
      Value *V = Map[Current];

      if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
        // CurrentValue also must be Select.
        auto *CurrentSelect = cast<SelectInst>(Current);
        auto *TrueValue = CurrentSelect->getTrueValue();
        assert(Map.find(TrueValue) != Map.end() && "No True Value!");
        Select->setTrueValue(ST.Get(Map[TrueValue]));
        auto *FalseValue = CurrentSelect->getFalseValue();
        assert(Map.find(FalseValue) != Map.end() && "No False Value!");
        Select->setFalseValue(ST.Get(Map[FalseValue]));
      } else {
        // Must be a Phi node then.
        auto *PHI = cast<PHINode>(V);
        // Fill the Phi node with values from predecessors.
        for (auto *B : predecessors(PHI->getParent())) {
          Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
          assert(Map.find(PV) != Map.end() && "No predecessor Value!");
          PHI->addIncoming(ST.Get(Map[PV]), B);
        }
      }
      Map[Current] = ST.Simplify(V);
    }
  }

  /// Starting from original value recursively iterates over def-use chain up to
  /// known ending values represented in a map. For each traversed phi/select
  /// inserts a placeholder Phi or Select.
  /// Reports all new created Phi/Select nodes by adding them to set.
  /// Also reports and order in what values have been traversed.
  void InsertPlaceholders(FoldAddrToValueMapping &Map,
                          SmallVectorImpl<Value *> &TraverseOrder,
                          SimplificationTracker &ST) {
    SmallVector<Value *, 32> Worklist;
    assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
           "Address must be a Phi or Select node");
    auto *Dummy = UndefValue::get(CommonType);
    Worklist.push_back(Original);
    while (!Worklist.empty()) {
      Value *Current = Worklist.pop_back_val();
      // if it is already visited or it is an ending value then skip it.
      if (Map.find(Current) != Map.end())
        continue;
      TraverseOrder.push_back(Current);

      // CurrentValue must be a Phi node or select. All others must be covered
      // by anchors.
      if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
        // Is it OK to get metadata from OrigSelect?!
        // Create a Select placeholder with dummy value.
        SelectInst *Select = SelectInst::Create(
            CurrentSelect->getCondition(), Dummy, Dummy,
            CurrentSelect->getName(), CurrentSelect, CurrentSelect);
        Map[Current] = Select;
        ST.insertNewSelect(Select);
        // We are interested in True and False values.
        Worklist.push_back(CurrentSelect->getTrueValue());
        Worklist.push_back(CurrentSelect->getFalseValue());
      } else {
        // It must be a Phi node then.
        PHINode *CurrentPhi = cast<PHINode>(Current);
        unsigned PredCount = CurrentPhi->getNumIncomingValues();
        PHINode *PHI =
            PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
        Map[Current] = PHI;
        ST.insertNewPhi(PHI);
        for (Value *P : CurrentPhi->incoming_values())
          Worklist.push_back(P);
      }
    }
  }

  bool addrModeCombiningAllowed() {
    if (DisableComplexAddrModes)
      return false;
    switch (DifferentField) {
    default:
      return false;
    case ExtAddrMode::BaseRegField:
      return AddrSinkCombineBaseReg;
    case ExtAddrMode::BaseGVField:
      return AddrSinkCombineBaseGV;
    case ExtAddrMode::BaseOffsField:
      return AddrSinkCombineBaseOffs;
    case ExtAddrMode::ScaledRegField:
      return AddrSinkCombineScaledReg;
    }
  }
};
} // end anonymous namespace

/// Try adding ScaleReg*Scale to the current addressing mode.
/// Return true and update AddrMode if this addr mode is legal for the target,
/// false if not.
bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
                                             unsigned Depth) {
  // If Scale is 1, then this is the same as adding ScaleReg to the addressing
  // mode.  Just process that directly.
  if (Scale == 1)
    return matchAddr(ScaleReg, Depth);

  // If the scale is 0, it takes nothing to add this.
  if (Scale == 0)
    return true;

  // If we already have a scale of this value, we can add to it, otherwise, we
  // need an available scale field.
  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
    return false;

  ExtAddrMode TestAddrMode = AddrMode;

  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
  // [A+B + A*7] -> [B+A*8].
  TestAddrMode.Scale += Scale;
  TestAddrMode.ScaledReg = ScaleReg;

  // If the new address isn't legal, bail out.
  if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
    return false;

  // It was legal, so commit it.
  AddrMode = TestAddrMode;

  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
  // X*Scale + C*Scale to addr mode.
  ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
  if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
      match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
      CI->getValue().isSignedIntN(64)) {
    TestAddrMode.InBounds = false;
    TestAddrMode.ScaledReg = AddLHS;
    TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;

    // If this addressing mode is legal, commit it and remember that we folded
    // this instruction.
    if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
      AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
      AddrMode = TestAddrMode;
      return true;
    }
  }

  // Otherwise, not (x+c)*scale, just return what we have.
  return true;
}

/// This is a little filter, which returns true if an addressing computation
/// involving I might be folded into a load/store accessing it.
/// This doesn't need to be perfect, but needs to accept at least
/// the set of instructions that MatchOperationAddr can.
static bool MightBeFoldableInst(Instruction *I) {
  switch (I->getOpcode()) {
  case Instruction::BitCast:
  case Instruction::AddrSpaceCast:
    // Don't touch identity bitcasts.
    if (I->getType() == I->getOperand(0)->getType())
      return false;
    return I->getType()->isIntOrPtrTy();
  case Instruction::PtrToInt:
    // PtrToInt is always a noop, as we know that the int type is pointer sized.
    return true;
  case Instruction::IntToPtr:
    // We know the input is intptr_t, so this is foldable.
    return true;
  case Instruction::Add:
    return true;
  case Instruction::Mul:
  case Instruction::Shl:
    // Can only handle X*C and X << C.
    return isa<ConstantInt>(I->getOperand(1));
  case Instruction::GetElementPtr:
    return true;
  default:
    return false;
  }
}

/// Check whether or not \p Val is a legal instruction for \p TLI.
/// \note \p Val is assumed to be the product of some type promotion.
/// Therefore if \p Val has an undefined state in \p TLI, this is assumed
/// to be legal, as the non-promoted value would have had the same state.
static bool isPromotedInstructionLegal(const TargetLowering &TLI,
                                       const DataLayout &DL, Value *Val) {
  Instruction *PromotedInst = dyn_cast<Instruction>(Val);
  if (!PromotedInst)
    return false;
  int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
  // If the ISDOpcode is undefined, it was undefined before the promotion.
  if (!ISDOpcode)
    return true;
  // Otherwise, check if the promoted instruction is legal or not.
  return TLI.isOperationLegalOrCustom(
      ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
}

namespace {

/// Hepler class to perform type promotion.
class TypePromotionHelper {
  /// Utility function to add a promoted instruction \p ExtOpnd to
  /// \p PromotedInsts and record the type of extension we have seen.
  static void addPromotedInst(InstrToOrigTy &PromotedInsts,
                              Instruction *ExtOpnd,
                              bool IsSExt) {
    ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
    InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
    if (It != PromotedInsts.end()) {
      // If the new extension is same as original, the information in
      // PromotedInsts[ExtOpnd] is still correct.
      if (It->second.getInt() == ExtTy)
        return;

      // Now the new extension is different from old extension, we make
      // the type information invalid by setting extension type to
      // BothExtension.
      ExtTy = BothExtension;
    }
    PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
  }

  /// Utility function to query the original type of instruction \p Opnd
  /// with a matched extension type. If the extension doesn't match, we
  /// cannot use the information we had on the original type.
  /// BothExtension doesn't match any extension type.
  static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
                                 Instruction *Opnd,
                                 bool IsSExt) {
    ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
    InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
    if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
      return It->second.getPointer();
    return nullptr;
  }

  /// Utility function to check whether or not a sign or zero extension
  /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
  /// either using the operands of \p Inst or promoting \p Inst.
  /// The type of the extension is defined by \p IsSExt.
  /// In other words, check if:
  /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
  /// #1 Promotion applies:
  /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
  /// #2 Operand reuses:
  /// ext opnd1 to ConsideredExtType.
  /// \p PromotedInsts maps the instructions to their type before promotion.
  static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
                            const InstrToOrigTy &PromotedInsts, bool IsSExt);

  /// Utility function to determine if \p OpIdx should be promoted when
  /// promoting \p Inst.
  static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
    return !(isa<SelectInst>(Inst) && OpIdx == 0);
  }

  /// Utility function to promote the operand of \p Ext when this
  /// operand is a promotable trunc or sext or zext.
  /// \p PromotedInsts maps the instructions to their type before promotion.
  /// \p CreatedInstsCost[out] contains the cost of all instructions
  /// created to promote the operand of Ext.
  /// Newly added extensions are inserted in \p Exts.
  /// Newly added truncates are inserted in \p Truncs.
  /// Should never be called directly.
  /// \return The promoted value which is used instead of Ext.
  static Value *promoteOperandForTruncAndAnyExt(
      Instruction *Ext, TypePromotionTransaction &TPT,
      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
      SmallVectorImpl<Instruction *> *Exts,
      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);

  /// Utility function to promote the operand of \p Ext when this
  /// operand is promotable and is not a supported trunc or sext.
  /// \p PromotedInsts maps the instructions to their type before promotion.
  /// \p CreatedInstsCost[out] contains the cost of all the instructions
  /// created to promote the operand of Ext.
  /// Newly added extensions are inserted in \p Exts.
  /// Newly added truncates are inserted in \p Truncs.
  /// Should never be called directly.
  /// \return The promoted value which is used instead of Ext.
  static Value *promoteOperandForOther(Instruction *Ext,
                                       TypePromotionTransaction &TPT,
                                       InstrToOrigTy &PromotedInsts,
                                       unsigned &CreatedInstsCost,
                                       SmallVectorImpl<Instruction *> *Exts,
                                       SmallVectorImpl<Instruction *> *Truncs,
                                       const TargetLowering &TLI, bool IsSExt);

  /// \see promoteOperandForOther.
  static Value *signExtendOperandForOther(
      Instruction *Ext, TypePromotionTransaction &TPT,
      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
      SmallVectorImpl<Instruction *> *Exts,
      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
    return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
                                  Exts, Truncs, TLI, true);
  }

  /// \see promoteOperandForOther.
  static Value *zeroExtendOperandForOther(
      Instruction *Ext, TypePromotionTransaction &TPT,
      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
      SmallVectorImpl<Instruction *> *Exts,
      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
    return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
                                  Exts, Truncs, TLI, false);
  }

public:
  /// Type for the utility function that promotes the operand of Ext.
  using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
                            InstrToOrigTy &PromotedInsts,
                            unsigned &CreatedInstsCost,
                            SmallVectorImpl<Instruction *> *Exts,
                            SmallVectorImpl<Instruction *> *Truncs,
                            const TargetLowering &TLI);

  /// Given a sign/zero extend instruction \p Ext, return the appropriate
  /// action to promote the operand of \p Ext instead of using Ext.
  /// \return NULL if no promotable action is possible with the current
  /// sign extension.
  /// \p InsertedInsts keeps track of all the instructions inserted by the
  /// other CodeGenPrepare optimizations. This information is important
  /// because we do not want to promote these instructions as CodeGenPrepare
  /// will reinsert them later. Thus creating an infinite loop: create/remove.
  /// \p PromotedInsts maps the instructions to their type before promotion.
  static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
                          const TargetLowering &TLI,
                          const InstrToOrigTy &PromotedInsts);
};

} // end anonymous namespace

bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
                                        Type *ConsideredExtType,
                                        const InstrToOrigTy &PromotedInsts,
                                        bool IsSExt) {
  // The promotion helper does not know how to deal with vector types yet.
  // To be able to fix that, we would need to fix the places where we
  // statically extend, e.g., constants and such.
  if (Inst->getType()->isVectorTy())
    return false;

  // We can always get through zext.
  if (isa<ZExtInst>(Inst))
    return true;

  // sext(sext) is ok too.
  if (IsSExt && isa<SExtInst>(Inst))
    return true;

  // We can get through binary operator, if it is legal. In other words, the
  // binary operator must have a nuw or nsw flag.
  const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
  if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) &&
      ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
       (IsSExt && BinOp->hasNoSignedWrap())))
    return true;

  // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
  if ((Inst->getOpcode() == Instruction::And ||
       Inst->getOpcode() == Instruction::Or))
    return true;

  // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
  if (Inst->getOpcode() == Instruction::Xor) {
    const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
    // Make sure it is not a NOT.
    if (Cst && !Cst->getValue().isAllOnesValue())
      return true;
  }

  // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
  // It may change a poisoned value into a regular value, like
  //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
  //          poisoned value                    regular value
  // It should be OK since undef covers valid value.
  if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
    return true;

  // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
  // It may change a poisoned value into a regular value, like
  //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
  //          poisoned value                    regular value
  // It should be OK since undef covers valid value.
  if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
    const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
    if (ExtInst->hasOneUse()) {
      const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
      if (AndInst && AndInst->getOpcode() == Instruction::And) {
        const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
        if (Cst &&
            Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
          return true;
      }
    }
  }

  // Check if we can do the following simplification.
  // ext(trunc(opnd)) --> ext(opnd)
  if (!isa<TruncInst>(Inst))
    return false;

  Value *OpndVal = Inst->getOperand(0);
  // Check if we can use this operand in the extension.
  // If the type is larger than the result type of the extension, we cannot.
  if (!OpndVal->getType()->isIntegerTy() ||
      OpndVal->getType()->getIntegerBitWidth() >
          ConsideredExtType->getIntegerBitWidth())
    return false;

  // If the operand of the truncate is not an instruction, we will not have
  // any information on the dropped bits.
  // (Actually we could for constant but it is not worth the extra logic).
  Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
  if (!Opnd)
    return false;

  // Check if the source of the type is narrow enough.
  // I.e., check that trunc just drops extended bits of the same kind of
  // the extension.
  // #1 get the type of the operand and check the kind of the extended bits.
  const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
  if (OpndType)
    ;
  else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
    OpndType = Opnd->getOperand(0)->getType();
  else
    return false;

  // #2 check that the truncate just drops extended bits.
  return Inst->getType()->getIntegerBitWidth() >=
         OpndType->getIntegerBitWidth();
}

TypePromotionHelper::Action TypePromotionHelper::getAction(
    Instruction *Ext, const SetOfInstrs &InsertedInsts,
    const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
  assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
         "Unexpected instruction type");
  Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
  Type *ExtTy = Ext->getType();
  bool IsSExt = isa<SExtInst>(Ext);
  // If the operand of the extension is not an instruction, we cannot
  // get through.
  // If it, check we can get through.
  if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
    return nullptr;

  // Do not promote if the operand has been added by codegenprepare.
  // Otherwise, it means we are undoing an optimization that is likely to be
  // redone, thus causing potential infinite loop.
  if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
    return nullptr;

  // SExt or Trunc instructions.
  // Return the related handler.
  if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
      isa<ZExtInst>(ExtOpnd))
    return promoteOperandForTruncAndAnyExt;

  // Regular instruction.
  // Abort early if we will have to insert non-free instructions.
  if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
    return nullptr;
  return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
}

Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
    Instruction *SExt, TypePromotionTransaction &TPT,
    InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
    SmallVectorImpl<Instruction *> *Exts,
    SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
  // By construction, the operand of SExt is an instruction. Otherwise we cannot
  // get through it and this method should not be called.
  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
  Value *ExtVal = SExt;
  bool HasMergedNonFreeExt = false;
  if (isa<ZExtInst>(SExtOpnd)) {
    // Replace s|zext(zext(opnd))
    // => zext(opnd).
    HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
    Value *ZExt =
        TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
    TPT.replaceAllUsesWith(SExt, ZExt);
    TPT.eraseInstruction(SExt);
    ExtVal = ZExt;
  } else {
    // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
    // => z|sext(opnd).
    TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
  }
  CreatedInstsCost = 0;

  // Remove dead code.
  if (SExtOpnd->use_empty())
    TPT.eraseInstruction(SExtOpnd);

  // Check if the extension is still needed.
  Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
  if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
    if (ExtInst) {
      if (Exts)
        Exts->push_back(ExtInst);
      CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
    }
    return ExtVal;
  }

  // At this point we have: ext ty opnd to ty.
  // Reassign the uses of ExtInst to the opnd and remove ExtInst.
  Value *NextVal = ExtInst->getOperand(0);
  TPT.eraseInstruction(ExtInst, NextVal);
  return NextVal;
}

Value *TypePromotionHelper::promoteOperandForOther(
    Instruction *Ext, TypePromotionTransaction &TPT,
    InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
    SmallVectorImpl<Instruction *> *Exts,
    SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
    bool IsSExt) {
  // By construction, the operand of Ext is an instruction. Otherwise we cannot
  // get through it and this method should not be called.
  Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
  CreatedInstsCost = 0;
  if (!ExtOpnd->hasOneUse()) {
    // ExtOpnd will be promoted.
    // All its uses, but Ext, will need to use a truncated value of the
    // promoted version.
    // Create the truncate now.
    Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
    if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
      // Insert it just after the definition.
      ITrunc->moveAfter(ExtOpnd);
      if (Truncs)
        Truncs->push_back(ITrunc);
    }

    TPT.replaceAllUsesWith(ExtOpnd, Trunc);
    // Restore the operand of Ext (which has been replaced by the previous call
    // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
    TPT.setOperand(Ext, 0, ExtOpnd);
  }

  // Get through the Instruction:
  // 1. Update its type.
  // 2. Replace the uses of Ext by Inst.
  // 3. Extend each operand that needs to be extended.

  // Remember the original type of the instruction before promotion.
  // This is useful to know that the high bits are sign extended bits.
  addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
  // Step #1.
  TPT.mutateType(ExtOpnd, Ext->getType());
  // Step #2.
  TPT.replaceAllUsesWith(Ext, ExtOpnd);
  // Step #3.
  Instruction *ExtForOpnd = Ext;

  LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
  for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
       ++OpIdx) {
    LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
    if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
        !shouldExtOperand(ExtOpnd, OpIdx)) {
      LLVM_DEBUG(dbgs() << "No need to propagate\n");
      continue;
    }
    // Check if we can statically extend the operand.
    Value *Opnd = ExtOpnd->getOperand(OpIdx);
    if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
      LLVM_DEBUG(dbgs() << "Statically extend\n");
      unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
      APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
                            : Cst->getValue().zext(BitWidth);
      TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
      continue;
    }
    // UndefValue are typed, so we have to statically sign extend them.
    if (isa<UndefValue>(Opnd)) {
      LLVM_DEBUG(dbgs() << "Statically extend\n");
      TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
      continue;
    }

    // Otherwise we have to explicitly sign extend the operand.
    // Check if Ext was reused to extend an operand.
    if (!ExtForOpnd) {
      // If yes, create a new one.
      LLVM_DEBUG(dbgs() << "More operands to ext\n");
      Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
        : TPT.createZExt(Ext, Opnd, Ext->getType());
      if (!isa<Instruction>(ValForExtOpnd)) {
        TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
        continue;
      }
      ExtForOpnd = cast<Instruction>(ValForExtOpnd);
    }
    if (Exts)
      Exts->push_back(ExtForOpnd);
    TPT.setOperand(ExtForOpnd, 0, Opnd);

    // Move the sign extension before the insertion point.
    TPT.moveBefore(ExtForOpnd, ExtOpnd);
    TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
    CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
    // If more sext are required, new instructions will have to be created.
    ExtForOpnd = nullptr;
  }
  if (ExtForOpnd == Ext) {
    LLVM_DEBUG(dbgs() << "Extension is useless now\n");
    TPT.eraseInstruction(Ext);
  }
  return ExtOpnd;
}

/// Check whether or not promoting an instruction to a wider type is profitable.
/// \p NewCost gives the cost of extension instructions created by the
/// promotion.
/// \p OldCost gives the cost of extension instructions before the promotion
/// plus the number of instructions that have been
/// matched in the addressing mode the promotion.
/// \p PromotedOperand is the value that has been promoted.
/// \return True if the promotion is profitable, false otherwise.
bool AddressingModeMatcher::isPromotionProfitable(
    unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
  LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
                    << '\n');
  // The cost of the new extensions is greater than the cost of the
  // old extension plus what we folded.
  // This is not profitable.
  if (NewCost > OldCost)
    return false;
  if (NewCost < OldCost)
    return true;
  // The promotion is neutral but it may help folding the sign extension in
  // loads for instance.
  // Check that we did not create an illegal instruction.
  return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
}

/// Given an instruction or constant expr, see if we can fold the operation
/// into the addressing mode. If so, update the addressing mode and return
/// true, otherwise return false without modifying AddrMode.
/// If \p MovedAway is not NULL, it contains the information of whether or
/// not AddrInst has to be folded into the addressing mode on success.
/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
/// because it has been moved away.
/// Thus AddrInst must not be added in the matched instructions.
/// This state can happen when AddrInst is a sext, since it may be moved away.
/// Therefore, AddrInst may not be valid when MovedAway is true and it must
/// not be referenced anymore.
bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
                                               unsigned Depth,
                                               bool *MovedAway) {
  // Avoid exponential behavior on extremely deep expression trees.
  if (Depth >= 5) return false;

  // By default, all matched instructions stay in place.
  if (MovedAway)
    *MovedAway = false;

  switch (Opcode) {
  case Instruction::PtrToInt:
    // PtrToInt is always a noop, as we know that the int type is pointer sized.
    return matchAddr(AddrInst->getOperand(0), Depth);
  case Instruction::IntToPtr: {
    auto AS = AddrInst->getType()->getPointerAddressSpace();
    auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
    // This inttoptr is a no-op if the integer type is pointer sized.
    if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
      return matchAddr(AddrInst->getOperand(0), Depth);
    return false;
  }
  case Instruction::BitCast:
    // BitCast is always a noop, and we can handle it as long as it is
    // int->int or pointer->pointer (we don't want int<->fp or something).
    if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
        // Don't touch identity bitcasts.  These were probably put here by LSR,
        // and we don't want to mess around with them.  Assume it knows what it
        // is doing.
        AddrInst->getOperand(0)->getType() != AddrInst->getType())
      return matchAddr(AddrInst->getOperand(0), Depth);
    return false;
  case Instruction::AddrSpaceCast: {
    unsigned SrcAS
      = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
    unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
    if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
      return matchAddr(AddrInst->getOperand(0), Depth);
    return false;
  }
  case Instruction::Add: {
    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
    ExtAddrMode BackupAddrMode = AddrMode;
    unsigned OldSize = AddrModeInsts.size();
    // Start a transaction at this point.
    // The LHS may match but not the RHS.
    // Therefore, we need a higher level restoration point to undo partially
    // matched operation.
    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
        TPT.getRestorationPoint();

    AddrMode.InBounds = false;
    if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
        matchAddr(AddrInst->getOperand(0), Depth+1))
      return true;

    // Restore the old addr mode info.
    AddrMode = BackupAddrMode;
    AddrModeInsts.resize(OldSize);
    TPT.rollback(LastKnownGood);

    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
    if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
        matchAddr(AddrInst->getOperand(1), Depth+1))
      return true;

    // Otherwise we definitely can't merge the ADD in.
    AddrMode = BackupAddrMode;
    AddrModeInsts.resize(OldSize);
    TPT.rollback(LastKnownGood);
    break;
  }
  //case Instruction::Or:
  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
  //break;
  case Instruction::Mul:
  case Instruction::Shl: {
    // Can only handle X*C and X << C.
    AddrMode.InBounds = false;
    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
    if (!RHS || RHS->getBitWidth() > 64)
      return false;
    int64_t Scale = RHS->getSExtValue();
    if (Opcode == Instruction::Shl)
      Scale = 1LL << Scale;

    return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
  }
  case Instruction::GetElementPtr: {
    // Scan the GEP.  We check it if it contains constant offsets and at most
    // one variable offset.
    int VariableOperand = -1;
    unsigned VariableScale = 0;

    int64_t ConstantOffset = 0;
    gep_type_iterator GTI = gep_type_begin(AddrInst);
    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
      if (StructType *STy = GTI.getStructTypeOrNull()) {
        const StructLayout *SL = DL.getStructLayout(STy);
        unsigned Idx =
          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
        ConstantOffset += SL->getElementOffset(Idx);
      } else {
        TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType());
        if (TS.isNonZero()) {
          // The optimisations below currently only work for fixed offsets.
          if (TS.isScalable())
            return false;
          int64_t TypeSize = TS.getFixedSize();
          if (ConstantInt *CI =
                  dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
            const APInt &CVal = CI->getValue();
            if (CVal.getMinSignedBits() <= 64) {
              ConstantOffset += CVal.getSExtValue() * TypeSize;
              continue;
            }
          }
          // We only allow one variable index at the moment.
          if (VariableOperand != -1)
            return false;

          // Remember the variable index.
          VariableOperand = i;
          VariableScale = TypeSize;
        }
      }
    }

    // A common case is for the GEP to only do a constant offset.  In this case,
    // just add it to the disp field and check validity.
    if (VariableOperand == -1) {
      AddrMode.BaseOffs += ConstantOffset;
      if (ConstantOffset == 0 ||
          TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
        // Check to see if we can fold the base pointer in too.
        if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
          if (!cast<GEPOperator>(AddrInst)->isInBounds())
            AddrMode.InBounds = false;
          return true;
        }
      } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
                 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
                 ConstantOffset > 0) {
        // Record GEPs with non-zero offsets as candidates for splitting in the
        // event that the offset cannot fit into the r+i addressing mode.
        // Simple and common case that only one GEP is used in calculating the
        // address for the memory access.
        Value *Base = AddrInst->getOperand(0);
        auto *BaseI = dyn_cast<Instruction>(Base);
        auto *GEP = cast<GetElementPtrInst>(AddrInst);
        if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
            (BaseI && !isa<CastInst>(BaseI) &&
             !isa<GetElementPtrInst>(BaseI))) {
          // Make sure the parent block allows inserting non-PHI instructions
          // before the terminator.
          BasicBlock *Parent =
              BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
          if (!Parent->getTerminator()->isEHPad())
            LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
        }
      }
      AddrMode.BaseOffs -= ConstantOffset;
      return false;
    }

    // Save the valid addressing mode in case we can't match.
    ExtAddrMode BackupAddrMode = AddrMode;
    unsigned OldSize = AddrModeInsts.size();

    // See if the scale and offset amount is valid for this target.
    AddrMode.BaseOffs += ConstantOffset;
    if (!cast<GEPOperator>(AddrInst)->isInBounds())
      AddrMode.InBounds = false;

    // Match the base operand of the GEP.
    if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
      // If it couldn't be matched, just stuff the value in a register.
      if (AddrMode.HasBaseReg) {
        AddrMode = BackupAddrMode;
        AddrModeInsts.resize(OldSize);
        return false;
      }
      AddrMode.HasBaseReg = true;
      AddrMode.BaseReg = AddrInst->getOperand(0);
    }

    // Match the remaining variable portion of the GEP.
    if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
                          Depth)) {
      // If it couldn't be matched, try stuffing the base into a register
      // instead of matching it, and retrying the match of the scale.
      AddrMode = BackupAddrMode;
      AddrModeInsts.resize(OldSize);
      if (AddrMode.HasBaseReg)
        return false;
      AddrMode.HasBaseReg = true;
      AddrMode.BaseReg = AddrInst->getOperand(0);
      AddrMode.BaseOffs += ConstantOffset;
      if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
                            VariableScale, Depth)) {
        // If even that didn't work, bail.
        AddrMode = BackupAddrMode;
        AddrModeInsts.resize(OldSize);
        return false;
      }
    }

    return true;
  }
  case Instruction::SExt:
  case Instruction::ZExt: {
    Instruction *Ext = dyn_cast<Instruction>(AddrInst);
    if (!Ext)
      return false;

    // Try to move this ext out of the way of the addressing mode.
    // Ask for a method for doing so.
    TypePromotionHelper::Action TPH =
        TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
    if (!TPH)
      return false;

    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
        TPT.getRestorationPoint();
    unsigned CreatedInstsCost = 0;
    unsigned ExtCost = !TLI.isExtFree(Ext);
    Value *PromotedOperand =
        TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
    // SExt has been moved away.
    // Thus either it will be rematched later in the recursive calls or it is
    // gone. Anyway, we must not fold it into the addressing mode at this point.
    // E.g.,
    // op = add opnd, 1
    // idx = ext op
    // addr = gep base, idx
    // is now:
    // promotedOpnd = ext opnd            <- no match here
    // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
    // addr = gep base, op                <- match
    if (MovedAway)
      *MovedAway = true;

    assert(PromotedOperand &&
           "TypePromotionHelper should have filtered out those cases");

    ExtAddrMode BackupAddrMode = AddrMode;
    unsigned OldSize = AddrModeInsts.size();

    if (!matchAddr(PromotedOperand, Depth) ||
        // The total of the new cost is equal to the cost of the created
        // instructions.
        // The total of the old cost is equal to the cost of the extension plus
        // what we have saved in the addressing mode.
        !isPromotionProfitable(CreatedInstsCost,
                               ExtCost + (AddrModeInsts.size() - OldSize),
                               PromotedOperand)) {
      AddrMode = BackupAddrMode;
      AddrModeInsts.resize(OldSize);
      LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
      TPT.rollback(LastKnownGood);
      return false;
    }
    return true;
  }
  }
  return false;
}

/// If we can, try to add the value of 'Addr' into the current addressing mode.
/// If Addr can't be added to AddrMode this returns false and leaves AddrMode
/// unmodified. This assumes that Addr is either a pointer type or intptr_t
/// for the target.
///
bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
  // Start a transaction at this point that we will rollback if the matching
  // fails.
  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
      TPT.getRestorationPoint();
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
    if (CI->getValue().isSignedIntN(64)) {
      // Fold in immediates if legal for the target.
      AddrMode.BaseOffs += CI->getSExtValue();
      if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
        return true;
      AddrMode.BaseOffs -= CI->getSExtValue();
    }
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
    // If this is a global variable, try to fold it into the addressing mode.
    if (!AddrMode.BaseGV) {
      AddrMode.BaseGV = GV;
      if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
        return true;
      AddrMode.BaseGV = nullptr;
    }
  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
    ExtAddrMode BackupAddrMode = AddrMode;
    unsigned OldSize = AddrModeInsts.size();

    // Check to see if it is possible to fold this operation.
    bool MovedAway = false;
    if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
      // This instruction may have been moved away. If so, there is nothing
      // to check here.
      if (MovedAway)
        return true;
      // Okay, it's possible to fold this.  Check to see if it is actually
      // *profitable* to do so.  We use a simple cost model to avoid increasing
      // register pressure too much.
      if (I->hasOneUse() ||
          isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
        AddrModeInsts.push_back(I);
        return true;
      }

      // It isn't profitable to do this, roll back.
      //cerr << "NOT FOLDING: " << *I;
      AddrMode = BackupAddrMode;
      AddrModeInsts.resize(OldSize);
      TPT.rollback(LastKnownGood);
    }
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
    if (matchOperationAddr(CE, CE->getOpcode(), Depth))
      return true;
    TPT.rollback(LastKnownGood);
  } else if (isa<ConstantPointerNull>(Addr)) {
    // Null pointer gets folded without affecting the addressing mode.
    return true;
  }

  // Worse case, the target should support [reg] addressing modes. :)
  if (!AddrMode.HasBaseReg) {
    AddrMode.HasBaseReg = true;
    AddrMode.BaseReg = Addr;
    // Still check for legality in case the target supports [imm] but not [i+r].
    if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
      return true;
    AddrMode.HasBaseReg = false;
    AddrMode.BaseReg = nullptr;
  }

  // If the base register is already taken, see if we can do [r+r].
  if (AddrMode.Scale == 0) {
    AddrMode.Scale = 1;
    AddrMode.ScaledReg = Addr;
    if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
      return true;
    AddrMode.Scale = 0;
    AddrMode.ScaledReg = nullptr;
  }
  // Couldn't match.
  TPT.rollback(LastKnownGood);
  return false;
}

/// Check to see if all uses of OpVal by the specified inline asm call are due
/// to memory operands. If so, return true, otherwise return false.
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
                                    const TargetLowering &TLI,
                                    const TargetRegisterInfo &TRI) {
  const Function *F = CI->getFunction();
  TargetLowering::AsmOperandInfoVector TargetConstraints =
      TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI);

  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];

    // Compute the constraint code and ConstraintType to use.
    TLI.ComputeConstraintToUse(OpInfo, SDValue());

    // If this asm operand is our Value*, and if it isn't an indirect memory
    // operand, we can't fold it!
    if (OpInfo.CallOperandVal == OpVal &&
        (OpInfo.ConstraintType != TargetLowering::C_Memory ||
         !OpInfo.isIndirect))
      return false;
  }

  return true;
}

// Max number of memory uses to look at before aborting the search to conserve
// compile time.
static constexpr int MaxMemoryUsesToScan = 20;

/// Recursively walk all the uses of I until we find a memory use.
/// If we find an obviously non-foldable instruction, return true.
/// Add the ultimately found memory instructions to MemoryUses.
static bool FindAllMemoryUses(
    Instruction *I,
    SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
    SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
    const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
    BlockFrequencyInfo *BFI, int SeenInsts = 0) {
  // If we already considered this instruction, we're done.
  if (!ConsideredInsts.insert(I).second)
    return false;

  // If this is an obviously unfoldable instruction, bail out.
  if (!MightBeFoldableInst(I))
    return true;

  // Loop over all the uses, recursively processing them.
  for (Use &U : I->uses()) {
    // Conservatively return true if we're seeing a large number or a deep chain
    // of users. This avoids excessive compilation times in pathological cases.
    if (SeenInsts++ >= MaxMemoryUsesToScan)
      return true;

    Instruction *UserI = cast<Instruction>(U.getUser());
    if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
      MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
      continue;
    }

    if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
      unsigned opNo = U.getOperandNo();
      if (opNo != StoreInst::getPointerOperandIndex())
        return true; // Storing addr, not into addr.
      MemoryUses.push_back(std::make_pair(SI, opNo));
      continue;
    }

    if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
      unsigned opNo = U.getOperandNo();
      if (opNo != AtomicRMWInst::getPointerOperandIndex())
        return true; // Storing addr, not into addr.
      MemoryUses.push_back(std::make_pair(RMW, opNo));
      continue;
    }

    if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
      unsigned opNo = U.getOperandNo();
      if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
        return true; // Storing addr, not into addr.
      MemoryUses.push_back(std::make_pair(CmpX, opNo));
      continue;
    }

    if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
      if (CI->hasFnAttr(Attribute::Cold)) {
        // If this is a cold call, we can sink the addressing calculation into
        // the cold path.  See optimizeCallInst
        bool OptForSize = OptSize ||
          llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
        if (!OptForSize)
          continue;
      }

      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
      if (!IA) return true;

      // If this is a memory operand, we're cool, otherwise bail out.
      if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
        return true;
      continue;
    }

    if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
                          PSI, BFI, SeenInsts))
      return true;
  }

  return false;
}

/// Return true if Val is already known to be live at the use site that we're
/// folding it into. If so, there is no cost to include it in the addressing
/// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
/// instruction already.
bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
                                                   Value *KnownLive2) {
  // If Val is either of the known-live values, we know it is live!
  if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
    return true;

  // All values other than instructions and arguments (e.g. constants) are live.
  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;

  // If Val is a constant sized alloca in the entry block, it is live, this is
  // true because it is just a reference to the stack/frame pointer, which is
  // live for the whole function.
  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
    if (AI->isStaticAlloca())
      return true;

  // Check to see if this value is already used in the memory instruction's
  // block.  If so, it's already live into the block at the very least, so we
  // can reasonably fold it.
  return Val->isUsedInBasicBlock(MemoryInst->getParent());
}

/// It is possible for the addressing mode of the machine to fold the specified
/// instruction into a load or store that ultimately uses it.
/// However, the specified instruction has multiple uses.
/// Given this, it may actually increase register pressure to fold it
/// into the load. For example, consider this code:
///
///     X = ...
///     Y = X+1
///     use(Y)   -> nonload/store
///     Z = Y+1
///     load Z
///
/// In this case, Y has multiple uses, and can be folded into the load of Z
/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
/// number of computations either.
///
/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
/// X was live across 'load Z' for other reasons, we actually *would* want to
/// fold the addressing mode in the Z case.  This would make Y die earlier.
bool AddressingModeMatcher::
isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
                                     ExtAddrMode &AMAfter) {
  if (IgnoreProfitability) return true;

  // AMBefore is the addressing mode before this instruction was folded into it,
  // and AMAfter is the addressing mode after the instruction was folded.  Get
  // the set of registers referenced by AMAfter and subtract out those
  // referenced by AMBefore: this is the set of values which folding in this
  // address extends the lifetime of.
  //
  // Note that there are only two potential values being referenced here,
  // BaseReg and ScaleReg (global addresses are always available, as are any
  // folded immediates).
  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;

  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
  // lifetime wasn't extended by adding this instruction.
  if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
    BaseReg = nullptr;
  if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
    ScaledReg = nullptr;

  // If folding this instruction (and it's subexprs) didn't extend any live
  // ranges, we're ok with it.
  if (!BaseReg && !ScaledReg)
    return true;

  // If all uses of this instruction can have the address mode sunk into them,
  // we can remove the addressing mode and effectively trade one live register
  // for another (at worst.)  In this context, folding an addressing mode into
  // the use is just a particularly nice way of sinking it.
  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
  SmallPtrSet<Instruction*, 16> ConsideredInsts;
  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
                        PSI, BFI))
    return false;  // Has a non-memory, non-foldable use!

  // Now that we know that all uses of this instruction are part of a chain of
  // computation involving only operations that could theoretically be folded
  // into a memory use, loop over each of these memory operation uses and see
  // if they could  *actually* fold the instruction.  The assumption is that
  // addressing modes are cheap and that duplicating the computation involved
  // many times is worthwhile, even on a fastpath. For sinking candidates
  // (i.e. cold call sites), this serves as a way to prevent excessive code
  // growth since most architectures have some reasonable small and fast way to
  // compute an effective address.  (i.e LEA on x86)
  SmallVector<Instruction*, 32> MatchedAddrModeInsts;
  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
    Instruction *User = MemoryUses[i].first;
    unsigned OpNo = MemoryUses[i].second;

    // Get the access type of this use.  If the use isn't a pointer, we don't
    // know what it accesses.
    Value *Address = User->getOperand(OpNo);
    PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
    if (!AddrTy)
      return false;
    Type *AddressAccessTy = AddrTy->getElementType();
    unsigned AS = AddrTy->getAddressSpace();

    // Do a match against the root of this address, ignoring profitability. This
    // will tell us if the addressing mode for the memory operation will
    // *actually* cover the shared instruction.
    ExtAddrMode Result;
    std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
                                                                      0);
    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
        TPT.getRestorationPoint();
    AddressingModeMatcher Matcher(
        MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
        InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI);
    Matcher.IgnoreProfitability = true;
    bool Success = Matcher.matchAddr(Address, 0);
    (void)Success; assert(Success && "Couldn't select *anything*?");

    // The match was to check the profitability, the changes made are not
    // part of the original matcher. Therefore, they should be dropped
    // otherwise the original matcher will not present the right state.
    TPT.rollback(LastKnownGood);

    // If the match didn't cover I, then it won't be shared by it.
    if (!is_contained(MatchedAddrModeInsts, I))
      return false;

    MatchedAddrModeInsts.clear();
  }

  return true;
}

/// Return true if the specified values are defined in a
/// different basic block than BB.
static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
  if (Instruction *I = dyn_cast<Instruction>(V))
    return I->getParent() != BB;
  return false;
}

/// Sink addressing mode computation immediate before MemoryInst if doing so
/// can be done without increasing register pressure.  The need for the
/// register pressure constraint means this can end up being an all or nothing
/// decision for all uses of the same addressing computation.
///
/// Load and Store Instructions often have addressing modes that can do
/// significant amounts of computation. As such, instruction selection will try
/// to get the load or store to do as much computation as possible for the
/// program. The problem is that isel can only see within a single block. As
/// such, we sink as much legal addressing mode work into the block as possible.
///
/// This method is used to optimize both load/store and inline asms with memory
/// operands.  It's also used to sink addressing computations feeding into cold
/// call sites into their (cold) basic block.
///
/// The motivation for handling sinking into cold blocks is that doing so can
/// both enable other address mode sinking (by satisfying the register pressure
/// constraint above), and reduce register pressure globally (by removing the
/// addressing mode computation from the fast path entirely.).
bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
                                        Type *AccessTy, unsigned AddrSpace) {
  Value *Repl = Addr;

  // Try to collapse single-value PHI nodes.  This is necessary to undo
  // unprofitable PRE transformations.
  SmallVector<Value*, 8> worklist;
  SmallPtrSet<Value*, 16> Visited;
  worklist.push_back(Addr);

  // Use a worklist to iteratively look through PHI and select nodes, and
  // ensure that the addressing mode obtained from the non-PHI/select roots of
  // the graph are compatible.
  bool PhiOrSelectSeen = false;
  SmallVector<Instruction*, 16> AddrModeInsts;
  const SimplifyQuery SQ(*DL, TLInfo);
  AddressingModeCombiner AddrModes(SQ, Addr);
  TypePromotionTransaction TPT(RemovedInsts);
  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
      TPT.getRestorationPoint();
  while (!worklist.empty()) {
    Value *V = worklist.back();
    worklist.pop_back();

    // We allow traversing cyclic Phi nodes.
    // In case of success after this loop we ensure that traversing through
    // Phi nodes ends up with all cases to compute address of the form
    //    BaseGV + Base + Scale * Index + Offset
    // where Scale and Offset are constans and BaseGV, Base and Index
    // are exactly the same Values in all cases.
    // It means that BaseGV, Scale and Offset dominate our memory instruction
    // and have the same value as they had in address computation represented
    // as Phi. So we can safely sink address computation to memory instruction.
    if (!Visited.insert(V).second)
      continue;

    // For a PHI node, push all of its incoming values.
    if (PHINode *P = dyn_cast<PHINode>(V)) {
      for (Value *IncValue : P->incoming_values())
        worklist.push_back(IncValue);
      PhiOrSelectSeen = true;
      continue;
    }
    // Similar for select.
    if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
      worklist.push_back(SI->getFalseValue());
      worklist.push_back(SI->getTrueValue());
      PhiOrSelectSeen = true;
      continue;
    }

    // For non-PHIs, determine the addressing mode being computed.  Note that
    // the result may differ depending on what other uses our candidate
    // addressing instructions might have.
    AddrModeInsts.clear();
    std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
                                                                      0);
    ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
        V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
        InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
        BFI.get());

    GetElementPtrInst *GEP = LargeOffsetGEP.first;
    if (GEP && !NewGEPBases.count(GEP)) {
      // If splitting the underlying data structure can reduce the offset of a
      // GEP, collect the GEP.  Skip the GEPs that are the new bases of
      // previously split data structures.
      LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
      if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
        LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
    }

    NewAddrMode.OriginalValue = V;
    if (!AddrModes.addNewAddrMode(NewAddrMode))
      break;
  }

  // Try to combine the AddrModes we've collected. If we couldn't collect any,
  // or we have multiple but either couldn't combine them or combining them
  // wouldn't do anything useful, bail out now.
  if (!AddrModes.combineAddrModes()) {
    TPT.rollback(LastKnownGood);
    return false;
  }
  bool Modified = TPT.commit();

  // Get the combined AddrMode (or the only AddrMode, if we only had one).
  ExtAddrMode AddrMode = AddrModes.getAddrMode();

  // If all the instructions matched are already in this BB, don't do anything.
  // If we saw a Phi node then it is not local definitely, and if we saw a select
  // then we want to push the address calculation past it even if it's already
  // in this BB.
  if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
        return IsNonLocalValue(V, MemoryInst->getParent());
                  })) {
    LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
                      << "\n");
    return Modified;
  }

  // Insert this computation right after this user.  Since our caller is
  // scanning from the top of the BB to the bottom, reuse of the expr are
  // guaranteed to happen later.
  IRBuilder<> Builder(MemoryInst);

  // Now that we determined the addressing expression we want to use and know
  // that we have to sink it into this block.  Check to see if we have already
  // done this for some other load/store instr in this block.  If so, reuse
  // the computation.  Before attempting reuse, check if the address is valid
  // as it may have been erased.

  WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];

  Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
  if (SunkAddr) {
    LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
                      << " for " << *MemoryInst << "\n");
    if (SunkAddr->getType() != Addr->getType())
      SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
  } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
                                   SubtargetInfo->addrSinkUsingGEPs())) {
    // By default, we use the GEP-based method when AA is used later. This
    // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
    LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
                      << " for " << *MemoryInst << "\n");
    Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
    Value *ResultPtr = nullptr, *ResultIndex = nullptr;

    // First, find the pointer.
    if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
      ResultPtr = AddrMode.BaseReg;
      AddrMode.BaseReg = nullptr;
    }

    if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
      // We can't add more than one pointer together, nor can we scale a
      // pointer (both of which seem meaningless).
      if (ResultPtr || AddrMode.Scale != 1)
        return Modified;

      ResultPtr = AddrMode.ScaledReg;
      AddrMode.Scale = 0;
    }

    // It is only safe to sign extend the BaseReg if we know that the math
    // required to create it did not overflow before we extend it. Since
    // the original IR value was tossed in favor of a constant back when
    // the AddrMode was created we need to bail out gracefully if widths
    // do not match instead of extending it.
    //
    // (See below for code to add the scale.)
    if (AddrMode.Scale) {
      Type *ScaledRegTy = AddrMode.ScaledReg->getType();
      if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
          cast<IntegerType>(ScaledRegTy)->getBitWidth())
        return Modified;
    }

    if (AddrMode.BaseGV) {
      if (ResultPtr)
        return Modified;

      ResultPtr = AddrMode.BaseGV;
    }

    // If the real base value actually came from an inttoptr, then the matcher
    // will look through it and provide only the integer value. In that case,
    // use it here.
    if (!DL->isNonIntegralPointerType(Addr->getType())) {
      if (!ResultPtr && AddrMode.BaseReg) {
        ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
                                           "sunkaddr");
        AddrMode.BaseReg = nullptr;
      } else if (!ResultPtr && AddrMode.Scale == 1) {
        ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
                                           "sunkaddr");
        AddrMode.Scale = 0;
      }
    }

    if (!ResultPtr &&
        !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
      SunkAddr = Constant::getNullValue(Addr->getType());
    } else if (!ResultPtr) {
      return Modified;
    } else {
      Type *I8PtrTy =
          Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
      Type *I8Ty = Builder.getInt8Ty();

      // Start with the base register. Do this first so that subsequent address
      // matching finds it last, which will prevent it from trying to match it
      // as the scaled value in case it happens to be a mul. That would be
      // problematic if we've sunk a different mul for the scale, because then
      // we'd end up sinking both muls.
      if (AddrMode.BaseReg) {
        Value *V = AddrMode.BaseReg;
        if (V->getType() != IntPtrTy)
          V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");

        ResultIndex = V;
      }

      // Add the scale value.
      if (AddrMode.Scale) {
        Value *V = AddrMode.ScaledReg;
        if (V->getType() == IntPtrTy) {
          // done.
        } else {
          assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
                 cast<IntegerType>(V->getType())->getBitWidth() &&
                 "We can't transform if ScaledReg is too narrow");
          V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
        }

        if (AddrMode.Scale != 1)
          V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
                                "sunkaddr");
        if (ResultIndex)
          ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
        else
          ResultIndex = V;
      }

      // Add in the Base Offset if present.
      if (AddrMode.BaseOffs) {
        Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
        if (ResultIndex) {
          // We need to add this separately from the scale above to help with
          // SDAG consecutive load/store merging.
          if (ResultPtr->getType() != I8PtrTy)
            ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
          ResultPtr =
              AddrMode.InBounds
                  ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
                                              "sunkaddr")
                  : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
        }

        ResultIndex = V;
      }

      if (!ResultIndex) {
        SunkAddr = ResultPtr;
      } else {
        if (ResultPtr->getType() != I8PtrTy)
          ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
        SunkAddr =
            AddrMode.InBounds
                ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
                                            "sunkaddr")
                : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
      }

      if (SunkAddr->getType() != Addr->getType())
        SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
    }
  } else {
    // We'd require a ptrtoint/inttoptr down the line, which we can't do for
    // non-integral pointers, so in that case bail out now.
    Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
    Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
    PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
    PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
    if (DL->isNonIntegralPointerType(Addr->getType()) ||
        (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
        (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
        (AddrMode.BaseGV &&
         DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
      return Modified;

    LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
                      << " for " << *MemoryInst << "\n");
    Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
    Value *Result = nullptr;

    // Start with the base register. Do this first so that subsequent address
    // matching finds it last, which will prevent it from trying to match it
    // as the scaled value in case it happens to be a mul. That would be
    // problematic if we've sunk a different mul for the scale, because then
    // we'd end up sinking both muls.
    if (AddrMode.BaseReg) {
      Value *V = AddrMode.BaseReg;
      if (V->getType()->isPointerTy())
        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
      if (V->getType() != IntPtrTy)
        V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
      Result = V;
    }

    // Add the scale value.
    if (AddrMode.Scale) {
      Value *V = AddrMode.ScaledReg;
      if (V->getType() == IntPtrTy) {
        // done.
      } else if (V->getType()->isPointerTy()) {
        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
                 cast<IntegerType>(V->getType())->getBitWidth()) {
        V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
      } else {
        // It is only safe to sign extend the BaseReg if we know that the math
        // required to create it did not overflow before we extend it. Since
        // the original IR value was tossed in favor of a constant back when
        // the AddrMode was created we need to bail out gracefully if widths
        // do not match instead of extending it.
        Instruction *I = dyn_cast_or_null<Instruction>(Result);
        if (I && (Result != AddrMode.BaseReg))
          I->eraseFromParent();
        return Modified;
      }
      if (AddrMode.Scale != 1)
        V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
                              "sunkaddr");
      if (Result)
        Result = Builder.CreateAdd(Result, V, "sunkaddr");
      else
        Result = V;
    }

    // Add in the BaseGV if present.
    if (AddrMode.BaseGV) {
      Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
      if (Result)
        Result = Builder.CreateAdd(Result, V, "sunkaddr");
      else
        Result = V;
    }

    // Add in the Base Offset if present.
    if (AddrMode.BaseOffs) {
      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
      if (Result)
        Result = Builder.CreateAdd(Result, V, "sunkaddr");
      else
        Result = V;
    }

    if (!Result)
      SunkAddr = Constant::getNullValue(Addr->getType());
    else
      SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
  }

  MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
  // Store the newly computed address into the cache. In the case we reused a
  // value, this should be idempotent.
  SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);

  // If we have no uses, recursively delete the value and all dead instructions
  // using it.
  if (Repl->use_empty()) {
    resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
      RecursivelyDeleteTriviallyDeadInstructions(
          Repl, TLInfo, nullptr,
          [&](Value *V) { removeAllAssertingVHReferences(V); });
    });
  }
  ++NumMemoryInsts;
  return true;
}

/// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
/// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
/// only handle a 2 operand GEP in the same basic block or a splat constant
/// vector. The 2 operands to the GEP must have a scalar pointer and a vector
/// index.
///
/// If the existing GEP has a vector base pointer that is splat, we can look
/// through the splat to find the scalar pointer. If we can't find a scalar
/// pointer there's nothing we can do.
///
/// If we have a GEP with more than 2 indices where the middle indices are all
/// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
///
/// If the final index isn't a vector or is a splat, we can emit a scalar GEP
/// followed by a GEP with an all zeroes vector index. This will enable
/// SelectionDAGBuilder to use a the scalar GEP as the uniform base and have a
/// zero index.
bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
                                               Value *Ptr) {
  // FIXME: Support scalable vectors.
  if (isa<ScalableVectorType>(Ptr->getType()))
    return false;

  Value *NewAddr;

  if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
    // Don't optimize GEPs that don't have indices.
    if (!GEP->hasIndices())
      return false;

    // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
    // FIXME: We should support this by sinking the GEP.
    if (MemoryInst->getParent() != GEP->getParent())
      return false;

    SmallVector<Value *, 2> Ops(GEP->op_begin(), GEP->op_end());

    bool RewriteGEP = false;

    if (Ops[0]->getType()->isVectorTy()) {
      Ops[0] = getSplatValue(Ops[0]);
      if (!Ops[0])
        return false;
      RewriteGEP = true;
    }

    unsigned FinalIndex = Ops.size() - 1;

    // Ensure all but the last index is 0.
    // FIXME: This isn't strictly required. All that's required is that they are
    // all scalars or splats.
    for (unsigned i = 1; i < FinalIndex; ++i) {
      auto *C = dyn_cast<Constant>(Ops[i]);
      if (!C)
        return false;
      if (isa<VectorType>(C->getType()))
        C = C->getSplatValue();
      auto *CI = dyn_cast_or_null<ConstantInt>(C);
      if (!CI || !CI->isZero())
        return false;
      // Scalarize the index if needed.
      Ops[i] = CI;
    }

    // Try to scalarize the final index.
    if (Ops[FinalIndex]->getType()->isVectorTy()) {
      if (Value *V = getSplatValue(Ops[FinalIndex])) {
        auto *C = dyn_cast<ConstantInt>(V);
        // Don't scalarize all zeros vector.
        if (!C || !C->isZero()) {
          Ops[FinalIndex] = V;
          RewriteGEP = true;
        }
      }
    }

    // If we made any changes or the we have extra operands, we need to generate
    // new instructions.
    if (!RewriteGEP && Ops.size() == 2)
      return false;

    unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();

    IRBuilder<> Builder(MemoryInst);

    Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());

    // If the final index isn't a vector, emit a scalar GEP containing all ops
    // and a vector GEP with all zeroes final index.
    if (!Ops[FinalIndex]->getType()->isVectorTy()) {
      NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front());
      auto *IndexTy = FixedVectorType::get(ScalarIndexTy, NumElts);
      NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy));
    } else {
      Value *Base = Ops[0];
      Value *Index = Ops[FinalIndex];

      // Create a scalar GEP if there are more than 2 operands.
      if (Ops.size() != 2) {
        // Replace the last index with 0.
        Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy);
        Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front());
      }

      // Now create the GEP with scalar pointer and vector index.
      NewAddr = Builder.CreateGEP(Base, Index);
    }
  } else if (!isa<Constant>(Ptr)) {
    // Not a GEP, maybe its a splat and we can create a GEP to enable
    // SelectionDAGBuilder to use it as a uniform base.
    Value *V = getSplatValue(Ptr);
    if (!V)
      return false;

    unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();

    IRBuilder<> Builder(MemoryInst);

    // Emit a vector GEP with a scalar pointer and all 0s vector index.
    Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
    auto *IndexTy = FixedVectorType::get(ScalarIndexTy, NumElts);
    NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy));
  } else {
    // Constant, SelectionDAGBuilder knows to check if its a splat.
    return false;
  }

  MemoryInst->replaceUsesOfWith(Ptr, NewAddr);

  // If we have no uses, recursively delete the value and all dead instructions
  // using it.
  if (Ptr->use_empty())
    RecursivelyDeleteTriviallyDeadInstructions(
        Ptr, TLInfo, nullptr,
        [&](Value *V) { removeAllAssertingVHReferences(V); });

  return true;
}

/// If there are any memory operands, use OptimizeMemoryInst to sink their
/// address computing into the block when possible / profitable.
bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
  bool MadeChange = false;

  const TargetRegisterInfo *TRI =
      TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
  TargetLowering::AsmOperandInfoVector TargetConstraints =
      TLI->ParseConstraints(*DL, TRI, *CS);
  unsigned ArgNo = 0;
  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];

    // Compute the constraint code and ConstraintType to use.
    TLI->ComputeConstraintToUse(OpInfo, SDValue());

    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
        OpInfo.isIndirect) {
      Value *OpVal = CS->getArgOperand(ArgNo++);
      MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
    } else if (OpInfo.Type == InlineAsm::isInput)
      ArgNo++;
  }

  return MadeChange;
}

/// Check if all the uses of \p Val are equivalent (or free) zero or
/// sign extensions.
static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
  assert(!Val->use_empty() && "Input must have at least one use");
  const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
  bool IsSExt = isa<SExtInst>(FirstUser);
  Type *ExtTy = FirstUser->getType();
  for (const User *U : Val->users()) {
    const Instruction *UI = cast<Instruction>(U);
    if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
      return false;
    Type *CurTy = UI->getType();
    // Same input and output types: Same instruction after CSE.
    if (CurTy == ExtTy)
      continue;

    // If IsSExt is true, we are in this situation:
    // a = Val
    // b = sext ty1 a to ty2
    // c = sext ty1 a to ty3
    // Assuming ty2 is shorter than ty3, this could be turned into:
    // a = Val
    // b = sext ty1 a to ty2
    // c = sext ty2 b to ty3
    // However, the last sext is not free.
    if (IsSExt)
      return false;

    // This is a ZExt, maybe this is free to extend from one type to another.
    // In that case, we would not account for a different use.
    Type *NarrowTy;
    Type *LargeTy;
    if (ExtTy->getScalarType()->getIntegerBitWidth() >
        CurTy->getScalarType()->getIntegerBitWidth()) {
      NarrowTy = CurTy;
      LargeTy = ExtTy;
    } else {
      NarrowTy = ExtTy;
      LargeTy = CurTy;
    }

    if (!TLI.isZExtFree(NarrowTy, LargeTy))
      return false;
  }
  // All uses are the same or can be derived from one another for free.
  return true;
}

/// Try to speculatively promote extensions in \p Exts and continue
/// promoting through newly promoted operands recursively as far as doing so is
/// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
/// When some promotion happened, \p TPT contains the proper state to revert
/// them.
///
/// \return true if some promotion happened, false otherwise.
bool CodeGenPrepare::tryToPromoteExts(
    TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
    SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
    unsigned CreatedInstsCost) {
  bool Promoted = false;

  // Iterate over all the extensions to try to promote them.
  for (auto *I : Exts) {
    // Early check if we directly have ext(load).
    if (isa<LoadInst>(I->getOperand(0))) {
      ProfitablyMovedExts.push_back(I);
      continue;
    }

    // Check whether or not we want to do any promotion.  The reason we have
    // this check inside the for loop is to catch the case where an extension
    // is directly fed by a load because in such case the extension can be moved
    // up without any promotion on its operands.
    if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
      return false;

    // Get the action to perform the promotion.
    TypePromotionHelper::Action TPH =
        TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
    // Check if we can promote.
    if (!TPH) {
      // Save the current extension as we cannot move up through its operand.
      ProfitablyMovedExts.push_back(I);
      continue;
    }

    // Save the current state.
    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
        TPT.getRestorationPoint();
    SmallVector<Instruction *, 4> NewExts;
    unsigned NewCreatedInstsCost = 0;
    unsigned ExtCost = !TLI->isExtFree(I);
    // Promote.
    Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
                             &NewExts, nullptr, *TLI);
    assert(PromotedVal &&
           "TypePromotionHelper should have filtered out those cases");

    // We would be able to merge only one extension in a load.
    // Therefore, if we have more than 1 new extension we heuristically
    // cut this search path, because it means we degrade the code quality.
    // With exactly 2, the transformation is neutral, because we will merge
    // one extension but leave one. However, we optimistically keep going,
    // because the new extension may be removed too.
    long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
    // FIXME: It would be possible to propagate a negative value instead of
    // conservatively ceiling it to 0.
    TotalCreatedInstsCost =
        std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
    if (!StressExtLdPromotion &&
        (TotalCreatedInstsCost > 1 ||
         !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
      // This promotion is not profitable, rollback to the previous state, and
      // save the current extension in ProfitablyMovedExts as the latest
      // speculative promotion turned out to be unprofitable.
      TPT.rollback(LastKnownGood);
      ProfitablyMovedExts.push_back(I);
      continue;
    }
    // Continue promoting NewExts as far as doing so is profitable.
    SmallVector<Instruction *, 2> NewlyMovedExts;
    (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
    bool NewPromoted = false;
    for (auto *ExtInst : NewlyMovedExts) {
      Instruction *MovedExt = cast<Instruction>(ExtInst);
      Value *ExtOperand = MovedExt->getOperand(0);
      // If we have reached to a load, we need this extra profitability check
      // as it could potentially be merged into an ext(load).
      if (isa<LoadInst>(ExtOperand) &&
          !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
            (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
        continue;

      ProfitablyMovedExts.push_back(MovedExt);
      NewPromoted = true;
    }

    // If none of speculative promotions for NewExts is profitable, rollback
    // and save the current extension (I) as the last profitable extension.
    if (!NewPromoted) {
      TPT.rollback(LastKnownGood);
      ProfitablyMovedExts.push_back(I);
      continue;
    }
    // The promotion is profitable.
    Promoted = true;
  }
  return Promoted;
}

/// Merging redundant sexts when one is dominating the other.
bool CodeGenPrepare::mergeSExts(Function &F) {
  bool Changed = false;
  for (auto &Entry : ValToSExtendedUses) {
    SExts &Insts = Entry.second;
    SExts CurPts;
    for (Instruction *Inst : Insts) {
      if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
          Inst->getOperand(0) != Entry.first)
        continue;
      bool inserted = false;
      for (auto &Pt : CurPts) {
        if (getDT(F).dominates(Inst, Pt)) {
          Pt->replaceAllUsesWith(Inst);
          RemovedInsts.insert(Pt);
          Pt->removeFromParent();
          Pt = Inst;
          inserted = true;
          Changed = true;
          break;
        }
        if (!getDT(F).dominates(Pt, Inst))
          // Give up if we need to merge in a common dominator as the
          // experiments show it is not profitable.
          continue;
        Inst->replaceAllUsesWith(Pt);
        RemovedInsts.insert(Inst);
        Inst->removeFromParent();
        inserted = true;
        Changed = true;
        break;
      }
      if (!inserted)
        CurPts.push_back(Inst);
    }
  }
  return Changed;
}

// Splitting large data structures so that the GEPs accessing them can have
// smaller offsets so that they can be sunk to the same blocks as their users.
// For example, a large struct starting from %base is split into two parts
// where the second part starts from %new_base.
//
// Before:
// BB0:
//   %base     =
//
// BB1:
//   %gep0     = gep %base, off0
//   %gep1     = gep %base, off1
//   %gep2     = gep %base, off2
//
// BB2:
//   %load1    = load %gep0
//   %load2    = load %gep1
//   %load3    = load %gep2
//
// After:
// BB0:
//   %base     =
//   %new_base = gep %base, off0
//
// BB1:
//   %new_gep0 = %new_base
//   %new_gep1 = gep %new_base, off1 - off0
//   %new_gep2 = gep %new_base, off2 - off0
//
// BB2:
//   %load1    = load i32, i32* %new_gep0
//   %load2    = load i32, i32* %new_gep1
//   %load3    = load i32, i32* %new_gep2
//
// %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
// their offsets are smaller enough to fit into the addressing mode.
bool CodeGenPrepare::splitLargeGEPOffsets() {
  bool Changed = false;
  for (auto &Entry : LargeOffsetGEPMap) {
    Value *OldBase = Entry.first;
    SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
        &LargeOffsetGEPs = Entry.second;
    auto compareGEPOffset =
        [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
            const std::pair<GetElementPtrInst *, int64_t> &RHS) {
          if (LHS.first == RHS.first)
            return false;
          if (LHS.second != RHS.second)
            return LHS.second < RHS.second;
          return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
        };
    // Sorting all the GEPs of the same data structures based on the offsets.
    llvm::sort(LargeOffsetGEPs, compareGEPOffset);
    LargeOffsetGEPs.erase(
        std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
        LargeOffsetGEPs.end());
    // Skip if all the GEPs have the same offsets.
    if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
      continue;
    GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
    int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
    Value *NewBaseGEP = nullptr;

    auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
    while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
      GetElementPtrInst *GEP = LargeOffsetGEP->first;
      int64_t Offset = LargeOffsetGEP->second;
      if (Offset != BaseOffset) {
        TargetLowering::AddrMode AddrMode;
        AddrMode.BaseOffs = Offset - BaseOffset;
        // The result type of the GEP might not be the type of the memory
        // access.
        if (!TLI->isLegalAddressingMode(*DL, AddrMode,
                                        GEP->getResultElementType(),
                                        GEP->getAddressSpace())) {
          // We need to create a new base if the offset to the current base is
          // too large to fit into the addressing mode. So, a very large struct
          // may be split into several parts.
          BaseGEP = GEP;
          BaseOffset = Offset;
          NewBaseGEP = nullptr;
        }
      }

      // Generate a new GEP to replace the current one.
      LLVMContext &Ctx = GEP->getContext();
      Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
      Type *I8PtrTy =
          Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
      Type *I8Ty = Type::getInt8Ty(Ctx);

      if (!NewBaseGEP) {
        // Create a new base if we don't have one yet.  Find the insertion
        // pointer for the new base first.
        BasicBlock::iterator NewBaseInsertPt;
        BasicBlock *NewBaseInsertBB;
        if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
          // If the base of the struct is an instruction, the new base will be
          // inserted close to it.
          NewBaseInsertBB = BaseI->getParent();
          if (isa<PHINode>(BaseI))
            NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
          else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
            NewBaseInsertBB =
                SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
            NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
          } else
            NewBaseInsertPt = std::next(BaseI->getIterator());
        } else {
          // If the current base is an argument or global value, the new base
          // will be inserted to the entry block.
          NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
          NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
        }
        IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
        // Create a new base.
        Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
        NewBaseGEP = OldBase;
        if (NewBaseGEP->getType() != I8PtrTy)
          NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
        NewBaseGEP =
            NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
        NewGEPBases.insert(NewBaseGEP);
      }

      IRBuilder<> Builder(GEP);
      Value *NewGEP = NewBaseGEP;
      if (Offset == BaseOffset) {
        if (GEP->getType() != I8PtrTy)
          NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
      } else {
        // Calculate the new offset for the new GEP.
        Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
        NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);

        if (GEP->getType() != I8PtrTy)
          NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
      }
      GEP->replaceAllUsesWith(NewGEP);
      LargeOffsetGEPID.erase(GEP);
      LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
      GEP->eraseFromParent();
      Changed = true;
    }
  }
  return Changed;
}

bool CodeGenPrepare::optimizePhiType(
    PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
    SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
  // We are looking for a collection on interconnected phi nodes that together
  // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
  // are of the same type. Convert the whole set of nodes to the type of the
  // bitcast.
  Type *PhiTy = I->getType();
  Type *ConvertTy = nullptr;
  if (Visited.count(I) ||
      (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
    return false;

  SmallVector<Instruction *, 4> Worklist;
  Worklist.push_back(cast<Instruction>(I));
  SmallPtrSet<PHINode *, 4> PhiNodes;
  PhiNodes.insert(I);
  Visited.insert(I);
  SmallPtrSet<Instruction *, 4> Defs;
  SmallPtrSet<Instruction *, 4> Uses;
  // This works by adding extra bitcasts between load/stores and removing
  // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
  // we can get in the situation where we remove a bitcast in one iteration
  // just to add it again in the next. We need to ensure that at least one
  // bitcast we remove are anchored to something that will not change back.
  bool AnyAnchored = false;

  while (!Worklist.empty()) {
    Instruction *II = Worklist.pop_back_val();

    if (auto *Phi = dyn_cast<PHINode>(II)) {
      // Handle Defs, which might also be PHI's
      for (Value *V : Phi->incoming_values()) {
        if (auto *OpPhi = dyn_cast<PHINode>(V)) {
          if (!PhiNodes.count(OpPhi)) {
            if (Visited.count(OpPhi))
              return false;
            PhiNodes.insert(OpPhi);
            Visited.insert(OpPhi);
            Worklist.push_back(OpPhi);
          }
        } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
          if (!OpLoad->isSimple())
            return false;
          if (!Defs.count(OpLoad)) {
            Defs.insert(OpLoad);
            Worklist.push_back(OpLoad);
          }
        } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
          if (!Defs.count(OpEx)) {
            Defs.insert(OpEx);
            Worklist.push_back(OpEx);
          }
        } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
          if (!ConvertTy)
            ConvertTy = OpBC->getOperand(0)->getType();
          if (OpBC->getOperand(0)->getType() != ConvertTy)
            return false;
          if (!Defs.count(OpBC)) {
            Defs.insert(OpBC);
            Worklist.push_back(OpBC);
            AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
                           !isa<ExtractElementInst>(OpBC->getOperand(0));
          }
        } else if (!isa<UndefValue>(V)) {
          return false;
        }
      }
    }

    // Handle uses which might also be phi's
    for (User *V : II->users()) {
      if (auto *OpPhi = dyn_cast<PHINode>(V)) {
        if (!PhiNodes.count(OpPhi)) {
          if (Visited.count(OpPhi))
            return false;
          PhiNodes.insert(OpPhi);
          Visited.insert(OpPhi);
          Worklist.push_back(OpPhi);
        }
      } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
        if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
          return false;
        Uses.insert(OpStore);
      } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
        if (!ConvertTy)
          ConvertTy = OpBC->getType();
        if (OpBC->getType() != ConvertTy)
          return false;
        Uses.insert(OpBC);
        AnyAnchored |=
            any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
      } else {
        return false;
      }
    }
  }

  if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
    return false;

  LLVM_DEBUG(dbgs() << "Converting " << *I << "\n  and connected nodes to "
                    << *ConvertTy << "\n");

  // Create all the new phi nodes of the new type, and bitcast any loads to the
  // correct type.
  ValueToValueMap ValMap;
  ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy);
  for (Instruction *D : Defs) {
    if (isa<BitCastInst>(D)) {
      ValMap[D] = D->getOperand(0);
      DeletedInstrs.insert(D);
    } else {
      ValMap[D] =
          new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode());
    }
  }
  for (PHINode *Phi : PhiNodes)
    ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
                                  Phi->getName() + ".tc", Phi);
  // Pipe together all the PhiNodes.
  for (PHINode *Phi : PhiNodes) {
    PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
    for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
      NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
                          Phi->getIncomingBlock(i));
    Visited.insert(NewPhi);
  }
  // And finally pipe up the stores and bitcasts
  for (Instruction *U : Uses) {
    if (isa<BitCastInst>(U)) {
      DeletedInstrs.insert(U);
      U->replaceAllUsesWith(ValMap[U->getOperand(0)]);
    } else {
      U->setOperand(0,
                    new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U));
    }
  }

  // Save the removed phis to be deleted later.
  for (PHINode *Phi : PhiNodes)
    DeletedInstrs.insert(Phi);
  return true;
}

bool CodeGenPrepare::optimizePhiTypes(Function &F) {
  if (!OptimizePhiTypes)
    return false;

  bool Changed = false;
  SmallPtrSet<PHINode *, 4> Visited;
  SmallPtrSet<Instruction *, 4> DeletedInstrs;

  // Attempt to optimize all the phis in the functions to the correct type.
  for (auto &BB : F)
    for (auto &Phi : BB.phis())
      Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);

  // Remove any old phi's that have been converted.
  for (auto *I : DeletedInstrs) {
    I->replaceAllUsesWith(UndefValue::get(I->getType()));
    I->eraseFromParent();
  }

  return Changed;
}

/// Return true, if an ext(load) can be formed from an extension in
/// \p MovedExts.
bool CodeGenPrepare::canFormExtLd(
    const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
    Instruction *&Inst, bool HasPromoted) {
  for (auto *MovedExtInst : MovedExts) {
    if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
      LI = cast<LoadInst>(MovedExtInst->getOperand(0));
      Inst = MovedExtInst;
      break;
    }
  }
  if (!LI)
    return false;

  // If they're already in the same block, there's nothing to do.
  // Make the cheap checks first if we did not promote.
  // If we promoted, we need to check if it is indeed profitable.
  if (!HasPromoted && LI->getParent() == Inst->getParent())
    return false;

  return TLI->isExtLoad(LI, Inst, *DL);
}

/// Move a zext or sext fed by a load into the same basic block as the load,
/// unless conditions are unfavorable. This allows SelectionDAG to fold the
/// extend into the load.
///
/// E.g.,
/// \code
/// %ld = load i32* %addr
/// %add = add nuw i32 %ld, 4
/// %zext = zext i32 %add to i64
// \endcode
/// =>
/// \code
/// %ld = load i32* %addr
/// %zext = zext i32 %ld to i64
/// %add = add nuw i64 %zext, 4
/// \encode
/// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
/// allow us to match zext(load i32*) to i64.
///
/// Also, try to promote the computations used to obtain a sign extended
/// value used into memory accesses.
/// E.g.,
/// \code
/// a = add nsw i32 b, 3
/// d = sext i32 a to i64
/// e = getelementptr ..., i64 d
/// \endcode
/// =>
/// \code
/// f = sext i32 b to i64
/// a = add nsw i64 f, 3
/// e = getelementptr ..., i64 a
/// \endcode
///
/// \p Inst[in/out] the extension may be modified during the process if some
/// promotions apply.
bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
  bool AllowPromotionWithoutCommonHeader = false;
  /// See if it is an interesting sext operations for the address type
  /// promotion before trying to promote it, e.g., the ones with the right
  /// type and used in memory accesses.
  bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
      *Inst, AllowPromotionWithoutCommonHeader);
  TypePromotionTransaction TPT(RemovedInsts);
  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
      TPT.getRestorationPoint();
  SmallVector<Instruction *, 1> Exts;
  SmallVector<Instruction *, 2> SpeculativelyMovedExts;
  Exts.push_back(Inst);

  bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);

  // Look for a load being extended.
  LoadInst *LI = nullptr;
  Instruction *ExtFedByLoad;

  // Try to promote a chain of computation if it allows to form an extended
  // load.
  if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
    assert(LI && ExtFedByLoad && "Expect a valid load and extension");
    TPT.commit();
    // Move the extend into the same block as the load.
    ExtFedByLoad->moveAfter(LI);
    ++NumExtsMoved;
    Inst = ExtFedByLoad;
    return true;
  }

  // Continue promoting SExts if known as considerable depending on targets.
  if (ATPConsiderable &&
      performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
                                  HasPromoted, TPT, SpeculativelyMovedExts))
    return true;

  TPT.rollback(LastKnownGood);
  return false;
}

// Perform address type promotion if doing so is profitable.
// If AllowPromotionWithoutCommonHeader == false, we should find other sext
// instructions that sign extended the same initial value. However, if
// AllowPromotionWithoutCommonHeader == true, we expect promoting the
// extension is just profitable.
bool CodeGenPrepare::performAddressTypePromotion(
    Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
    bool HasPromoted, TypePromotionTransaction &TPT,
    SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
  bool Promoted = false;
  SmallPtrSet<Instruction *, 1> UnhandledExts;
  bool AllSeenFirst = true;
  for (auto *I : SpeculativelyMovedExts) {
    Value *HeadOfChain = I->getOperand(0);
    DenseMap<Value *, Instruction *>::iterator AlreadySeen =
        SeenChainsForSExt.find(HeadOfChain);
    // If there is an unhandled SExt which has the same header, try to promote
    // it as well.
    if (AlreadySeen != SeenChainsForSExt.end()) {
      if (AlreadySeen->second != nullptr)
        UnhandledExts.insert(AlreadySeen->second);
      AllSeenFirst = false;
    }
  }

  if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
                        SpeculativelyMovedExts.size() == 1)) {
    TPT.commit();
    if (HasPromoted)
      Promoted = true;
    for (auto *I : SpeculativelyMovedExts) {
      Value *HeadOfChain = I->getOperand(0);
      SeenChainsForSExt[HeadOfChain] = nullptr;
      ValToSExtendedUses[HeadOfChain].push_back(I);
    }
    // Update Inst as promotion happen.
    Inst = SpeculativelyMovedExts.pop_back_val();
  } else {
    // This is the first chain visited from the header, keep the current chain
    // as unhandled. Defer to promote this until we encounter another SExt
    // chain derived from the same header.
    for (auto *I : SpeculativelyMovedExts) {
      Value *HeadOfChain = I->getOperand(0);
      SeenChainsForSExt[HeadOfChain] = Inst;
    }
    return false;
  }

  if (!AllSeenFirst && !UnhandledExts.empty())
    for (auto *VisitedSExt : UnhandledExts) {
      if (RemovedInsts.count(VisitedSExt))
        continue;
      TypePromotionTransaction TPT(RemovedInsts);
      SmallVector<Instruction *, 1> Exts;
      SmallVector<Instruction *, 2> Chains;
      Exts.push_back(VisitedSExt);
      bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
      TPT.commit();
      if (HasPromoted)
        Promoted = true;
      for (auto *I : Chains) {
        Value *HeadOfChain = I->getOperand(0);
        // Mark this as handled.
        SeenChainsForSExt[HeadOfChain] = nullptr;
        ValToSExtendedUses[HeadOfChain].push_back(I);
      }
    }
  return Promoted;
}

bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
  BasicBlock *DefBB = I->getParent();

  // If the result of a {s|z}ext and its source are both live out, rewrite all
  // other uses of the source with result of extension.
  Value *Src = I->getOperand(0);
  if (Src->hasOneUse())
    return false;

  // Only do this xform if truncating is free.
  if (!TLI->isTruncateFree(I->getType(), Src->getType()))
    return false;

  // Only safe to perform the optimization if the source is also defined in
  // this block.
  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
    return false;

  bool DefIsLiveOut = false;
  for (User *U : I->users()) {
    Instruction *UI = cast<Instruction>(U);

    // Figure out which BB this ext is used in.
    BasicBlock *UserBB = UI->getParent();
    if (UserBB == DefBB) continue;
    DefIsLiveOut = true;
    break;
  }
  if (!DefIsLiveOut)
    return false;

  // Make sure none of the uses are PHI nodes.
  for (User *U : Src->users()) {
    Instruction *UI = cast<Instruction>(U);
    BasicBlock *UserBB = UI->getParent();
    if (UserBB == DefBB) continue;
    // Be conservative. We don't want this xform to end up introducing
    // reloads just before load / store instructions.
    if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
      return false;
  }

  // InsertedTruncs - Only insert one trunc in each block once.
  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;

  bool MadeChange = false;
  for (Use &U : Src->uses()) {
    Instruction *User = cast<Instruction>(U.getUser());

    // Figure out which BB this ext is used in.
    BasicBlock *UserBB = User->getParent();
    if (UserBB == DefBB) continue;

    // Both src and def are live in this block. Rewrite the use.
    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];

    if (!InsertedTrunc) {
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
      assert(InsertPt != UserBB->end());
      InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
      InsertedInsts.insert(InsertedTrunc);
    }

    // Replace a use of the {s|z}ext source with a use of the result.
    U = InsertedTrunc;
    ++NumExtUses;
    MadeChange = true;
  }

  return MadeChange;
}

// Find loads whose uses only use some of the loaded value's bits.  Add an "and"
// just after the load if the target can fold this into one extload instruction,
// with the hope of eliminating some of the other later "and" instructions using
// the loaded value.  "and"s that are made trivially redundant by the insertion
// of the new "and" are removed by this function, while others (e.g. those whose
// path from the load goes through a phi) are left for isel to potentially
// remove.
//
// For example:
//
// b0:
//   x = load i32
//   ...
// b1:
//   y = and x, 0xff
//   z = use y
//
// becomes:
//
// b0:
//   x = load i32
//   x' = and x, 0xff
//   ...
// b1:
//   z = use x'
//
// whereas:
//
// b0:
//   x1 = load i32
//   ...
// b1:
//   x2 = load i32
//   ...
// b2:
//   x = phi x1, x2
//   y = and x, 0xff
//
// becomes (after a call to optimizeLoadExt for each load):
//
// b0:
//   x1 = load i32
//   x1' = and x1, 0xff
//   ...
// b1:
//   x2 = load i32
//   x2' = and x2, 0xff
//   ...
// b2:
//   x = phi x1', x2'
//   y = and x, 0xff
bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
  if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
    return false;

  // Skip loads we've already transformed.
  if (Load->hasOneUse() &&
      InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
    return false;

  // Look at all uses of Load, looking through phis, to determine how many bits
  // of the loaded value are needed.
  SmallVector<Instruction *, 8> WorkList;
  SmallPtrSet<Instruction *, 16> Visited;
  SmallVector<Instruction *, 8> AndsToMaybeRemove;
  for (auto *U : Load->users())
    WorkList.push_back(cast<Instruction>(U));

  EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
  unsigned BitWidth = LoadResultVT.getSizeInBits();
  APInt DemandBits(BitWidth, 0);
  APInt WidestAndBits(BitWidth, 0);

  while (!WorkList.empty()) {
    Instruction *I = WorkList.back();
    WorkList.pop_back();

    // Break use-def graph loops.
    if (!Visited.insert(I).second)
      continue;

    // For a PHI node, push all of its users.
    if (auto *Phi = dyn_cast<PHINode>(I)) {
      for (auto *U : Phi->users())
        WorkList.push_back(cast<Instruction>(U));
      continue;
    }

    switch (I->getOpcode()) {
    case Instruction::And: {
      auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
      if (!AndC)
        return false;
      APInt AndBits = AndC->getValue();
      DemandBits |= AndBits;
      // Keep track of the widest and mask we see.
      if (AndBits.ugt(WidestAndBits))
        WidestAndBits = AndBits;
      if (AndBits == WidestAndBits && I->getOperand(0) == Load)
        AndsToMaybeRemove.push_back(I);
      break;
    }

    case Instruction::Shl: {
      auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
      if (!ShlC)
        return false;
      uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
      DemandBits.setLowBits(BitWidth - ShiftAmt);
      break;
    }

    case Instruction::Trunc: {
      EVT TruncVT = TLI->getValueType(*DL, I->getType());
      unsigned TruncBitWidth = TruncVT.getSizeInBits();
      DemandBits.setLowBits(TruncBitWidth);
      break;
    }

    default:
      return false;
    }
  }

  uint32_t ActiveBits = DemandBits.getActiveBits();
  // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
  // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
  // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
  // (and (load x) 1) is not matched as a single instruction, rather as a LDR
  // followed by an AND.
  // TODO: Look into removing this restriction by fixing backends to either
  // return false for isLoadExtLegal for i1 or have them select this pattern to
  // a single instruction.
  //
  // Also avoid hoisting if we didn't see any ands with the exact DemandBits
  // mask, since these are the only ands that will be removed by isel.
  if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
      WidestAndBits != DemandBits)
    return false;

  LLVMContext &Ctx = Load->getType()->getContext();
  Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
  EVT TruncVT = TLI->getValueType(*DL, TruncTy);

  // Reject cases that won't be matched as extloads.
  if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
      !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
    return false;

  IRBuilder<> Builder(Load->getNextNode());
  auto *NewAnd = cast<Instruction>(
      Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
  // Mark this instruction as "inserted by CGP", so that other
  // optimizations don't touch it.
  InsertedInsts.insert(NewAnd);

  // Replace all uses of load with new and (except for the use of load in the
  // new and itself).
  Load->replaceAllUsesWith(NewAnd);
  NewAnd->setOperand(0, Load);

  // Remove any and instructions that are now redundant.
  for (auto *And : AndsToMaybeRemove)
    // Check that the and mask is the same as the one we decided to put on the
    // new and.
    if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
      And->replaceAllUsesWith(NewAnd);
      if (&*CurInstIterator == And)
        CurInstIterator = std::next(And->getIterator());
      And->eraseFromParent();
      ++NumAndUses;
    }

  ++NumAndsAdded;
  return true;
}

/// Check if V (an operand of a select instruction) is an expensive instruction
/// that is only used once.
static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
  auto *I = dyn_cast<Instruction>(V);
  // If it's safe to speculatively execute, then it should not have side
  // effects; therefore, it's safe to sink and possibly *not* execute.
  return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
         TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >=
         TargetTransformInfo::TCC_Expensive;
}

/// Returns true if a SelectInst should be turned into an explicit branch.
static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
                                                const TargetLowering *TLI,
                                                SelectInst *SI) {
  // If even a predictable select is cheap, then a branch can't be cheaper.
  if (!TLI->isPredictableSelectExpensive())
    return false;

  // FIXME: This should use the same heuristics as IfConversion to determine
  // whether a select is better represented as a branch.

  // If metadata tells us that the select condition is obviously predictable,
  // then we want to replace the select with a branch.
  uint64_t TrueWeight, FalseWeight;
  if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
    uint64_t Max = std::max(TrueWeight, FalseWeight);
    uint64_t Sum = TrueWeight + FalseWeight;
    if (Sum != 0) {
      auto Probability = BranchProbability::getBranchProbability(Max, Sum);
      if (Probability > TLI->getPredictableBranchThreshold())
        return true;
    }
  }

  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());

  // If a branch is predictable, an out-of-order CPU can avoid blocking on its
  // comparison condition. If the compare has more than one use, there's
  // probably another cmov or setcc around, so it's not worth emitting a branch.
  if (!Cmp || !Cmp->hasOneUse())
    return false;

  // If either operand of the select is expensive and only needed on one side
  // of the select, we should form a branch.
  if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
      sinkSelectOperand(TTI, SI->getFalseValue()))
    return true;

  return false;
}

/// If \p isTrue is true, return the true value of \p SI, otherwise return
/// false value of \p SI. If the true/false value of \p SI is defined by any
/// select instructions in \p Selects, look through the defining select
/// instruction until the true/false value is not defined in \p Selects.
static Value *getTrueOrFalseValue(
    SelectInst *SI, bool isTrue,
    const SmallPtrSet<const Instruction *, 2> &Selects) {
  Value *V = nullptr;

  for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
       DefSI = dyn_cast<SelectInst>(V)) {
    assert(DefSI->getCondition() == SI->getCondition() &&
           "The condition of DefSI does not match with SI");
    V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
  }

  assert(V && "Failed to get select true/false value");
  return V;
}

bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
  assert(Shift->isShift() && "Expected a shift");

  // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
  // general vector shifts, and (3) the shift amount is a select-of-splatted
  // values, hoist the shifts before the select:
  //   shift Op0, (select Cond, TVal, FVal) -->
  //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
  //
  // This is inverting a generic IR transform when we know that the cost of a
  // general vector shift is more than the cost of 2 shift-by-scalars.
  // We can't do this effectively in SDAG because we may not be able to
  // determine if the select operands are splats from within a basic block.
  Type *Ty = Shift->getType();
  if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
    return false;
  Value *Cond, *TVal, *FVal;
  if (!match(Shift->getOperand(1),
             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
    return false;
  if (!isSplatValue(TVal) || !isSplatValue(FVal))
    return false;

  IRBuilder<> Builder(Shift);
  BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
  Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
  Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
  Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
  Shift->replaceAllUsesWith(NewSel);
  Shift->eraseFromParent();
  return true;
}

bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
  Intrinsic::ID Opcode = Fsh->getIntrinsicID();
  assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
         "Expected a funnel shift");

  // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
  // than general vector shifts, and (3) the shift amount is select-of-splatted
  // values, hoist the funnel shifts before the select:
  //   fsh Op0, Op1, (select Cond, TVal, FVal) -->
  //   select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
  //
  // This is inverting a generic IR transform when we know that the cost of a
  // general vector shift is more than the cost of 2 shift-by-scalars.
  // We can't do this effectively in SDAG because we may not be able to
  // determine if the select operands are splats from within a basic block.
  Type *Ty = Fsh->getType();
  if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
    return false;
  Value *Cond, *TVal, *FVal;
  if (!match(Fsh->getOperand(2),
             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
    return false;
  if (!isSplatValue(TVal) || !isSplatValue(FVal))
    return false;

  IRBuilder<> Builder(Fsh);
  Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
  Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal });
  Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal });
  Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
  Fsh->replaceAllUsesWith(NewSel);
  Fsh->eraseFromParent();
  return true;
}

/// If we have a SelectInst that will likely profit from branch prediction,
/// turn it into a branch.
bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
  if (DisableSelectToBranch)
    return false;

  // Find all consecutive select instructions that share the same condition.
  SmallVector<SelectInst *, 2> ASI;
  ASI.push_back(SI);
  for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
       It != SI->getParent()->end(); ++It) {
    SelectInst *I = dyn_cast<SelectInst>(&*It);
    if (I && SI->getCondition() == I->getCondition()) {
      ASI.push_back(I);
    } else {
      break;
    }
  }

  SelectInst *LastSI = ASI.back();
  // Increment the current iterator to skip all the rest of select instructions
  // because they will be either "not lowered" or "all lowered" to branch.
  CurInstIterator = std::next(LastSI->getIterator());

  bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);

  // Can we convert the 'select' to CF ?
  if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
    return false;

  TargetLowering::SelectSupportKind SelectKind;
  if (VectorCond)
    SelectKind = TargetLowering::VectorMaskSelect;
  else if (SI->getType()->isVectorTy())
    SelectKind = TargetLowering::ScalarCondVectorVal;
  else
    SelectKind = TargetLowering::ScalarValSelect;

  if (TLI->isSelectSupported(SelectKind) &&
      (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
    return false;

  // The DominatorTree needs to be rebuilt by any consumers after this
  // transformation. We simply reset here rather than setting the ModifiedDT
  // flag to avoid restarting the function walk in runOnFunction for each
  // select optimized.
  DT.reset();

  // Transform a sequence like this:
  //    start:
  //       %cmp = cmp uge i32 %a, %b
  //       %sel = select i1 %cmp, i32 %c, i32 %d
  //
  // Into:
  //    start:
  //       %cmp = cmp uge i32 %a, %b
  //       %cmp.frozen = freeze %cmp
  //       br i1 %cmp.frozen, label %select.true, label %select.false
  //    select.true:
  //       br label %select.end
  //    select.false:
  //       br label %select.end
  //    select.end:
  //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
  //
  // %cmp should be frozen, otherwise it may introduce undefined behavior.
  // In addition, we may sink instructions that produce %c or %d from
  // the entry block into the destination(s) of the new branch.
  // If the true or false blocks do not contain a sunken instruction, that
  // block and its branch may be optimized away. In that case, one side of the
  // first branch will point directly to select.end, and the corresponding PHI
  // predecessor block will be the start block.

  // First, we split the block containing the select into 2 blocks.
  BasicBlock *StartBlock = SI->getParent();
  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
  BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
  BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());

  // Delete the unconditional branch that was just created by the split.
  StartBlock->getTerminator()->eraseFromParent();

  // These are the new basic blocks for the conditional branch.
  // At least one will become an actual new basic block.
  BasicBlock *TrueBlock = nullptr;
  BasicBlock *FalseBlock = nullptr;
  BranchInst *TrueBranch = nullptr;
  BranchInst *FalseBranch = nullptr;

  // Sink expensive instructions into the conditional blocks to avoid executing
  // them speculatively.
  for (SelectInst *SI : ASI) {
    if (sinkSelectOperand(TTI, SI->getTrueValue())) {
      if (TrueBlock == nullptr) {
        TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
                                       EndBlock->getParent(), EndBlock);
        TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
        TrueBranch->setDebugLoc(SI->getDebugLoc());
      }
      auto *TrueInst = cast<Instruction>(SI->getTrueValue());
      TrueInst->moveBefore(TrueBranch);
    }
    if (sinkSelectOperand(TTI, SI->getFalseValue())) {
      if (FalseBlock == nullptr) {
        FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
                                        EndBlock->getParent(), EndBlock);
        FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
        FalseBranch->setDebugLoc(SI->getDebugLoc());
      }
      auto *FalseInst = cast<Instruction>(SI->getFalseValue());
      FalseInst->moveBefore(FalseBranch);
    }
  }

  // If there was nothing to sink, then arbitrarily choose the 'false' side
  // for a new input value to the PHI.
  if (TrueBlock == FalseBlock) {
    assert(TrueBlock == nullptr &&
           "Unexpected basic block transform while optimizing select");

    FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
                                    EndBlock->getParent(), EndBlock);
    auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
    FalseBranch->setDebugLoc(SI->getDebugLoc());
  }

  // Insert the real conditional branch based on the original condition.
  // If we did not create a new block for one of the 'true' or 'false' paths
  // of the condition, it means that side of the branch goes to the end block
  // directly and the path originates from the start block from the point of
  // view of the new PHI.
  BasicBlock *TT, *FT;
  if (TrueBlock == nullptr) {
    TT = EndBlock;
    FT = FalseBlock;
    TrueBlock = StartBlock;
  } else if (FalseBlock == nullptr) {
    TT = TrueBlock;
    FT = EndBlock;
    FalseBlock = StartBlock;
  } else {
    TT = TrueBlock;
    FT = FalseBlock;
  }
  IRBuilder<> IB(SI);
  auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
  IB.CreateCondBr(CondFr, TT, FT, SI);

  SmallPtrSet<const Instruction *, 2> INS;
  INS.insert(ASI.begin(), ASI.end());
  // Use reverse iterator because later select may use the value of the
  // earlier select, and we need to propagate value through earlier select
  // to get the PHI operand.
  for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
    SelectInst *SI = *It;
    // The select itself is replaced with a PHI Node.
    PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
    PN->takeName(SI);
    PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
    PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
    PN->setDebugLoc(SI->getDebugLoc());

    SI->replaceAllUsesWith(PN);
    SI->eraseFromParent();
    INS.erase(SI);
    ++NumSelectsExpanded;
  }

  // Instruct OptimizeBlock to skip to the next block.
  CurInstIterator = StartBlock->end();
  return true;
}

/// Some targets only accept certain types for splat inputs. For example a VDUP
/// in MVE takes a GPR (integer) register, and the instruction that incorporate
/// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
  if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
                            m_Undef(), m_ZeroMask())))
    return false;
  Type *NewType = TLI->shouldConvertSplatType(SVI);
  if (!NewType)
    return false;

  auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
  assert(!NewType->isVectorTy() && "Expected a scalar type!");
  assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
         "Expected a type of the same size!");
  auto *NewVecType =
      FixedVectorType::get(NewType, SVIVecType->getNumElements());

  // Create a bitcast (shuffle (insert (bitcast(..))))
  IRBuilder<> Builder(SVI->getContext());
  Builder.SetInsertPoint(SVI);
  Value *BC1 = Builder.CreateBitCast(
      cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
  Value *Insert = Builder.CreateInsertElement(UndefValue::get(NewVecType), BC1,
                                              (uint64_t)0);
  Value *Shuffle = Builder.CreateShuffleVector(
      Insert, UndefValue::get(NewVecType), SVI->getShuffleMask());
  Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);

  SVI->replaceAllUsesWith(BC2);
  RecursivelyDeleteTriviallyDeadInstructions(
      SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });

  // Also hoist the bitcast up to its operand if it they are not in the same
  // block.
  if (auto *BCI = dyn_cast<Instruction>(BC1))
    if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
      if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
          !Op->isTerminator() && !Op->isEHPad())
        BCI->moveAfter(Op);

  return true;
}

bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
  // If the operands of I can be folded into a target instruction together with
  // I, duplicate and sink them.
  SmallVector<Use *, 4> OpsToSink;
  if (!TLI->shouldSinkOperands(I, OpsToSink))
    return false;

  // OpsToSink can contain multiple uses in a use chain (e.g.
  // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
  // uses must come first, so we process the ops in reverse order so as to not
  // create invalid IR.
  BasicBlock *TargetBB = I->getParent();
  bool Changed = false;
  SmallVector<Use *, 4> ToReplace;
  for (Use *U : reverse(OpsToSink)) {
    auto *UI = cast<Instruction>(U->get());
    if (UI->getParent() == TargetBB || isa<PHINode>(UI))
      continue;
    ToReplace.push_back(U);
  }

  SetVector<Instruction *> MaybeDead;
  DenseMap<Instruction *, Instruction *> NewInstructions;
  Instruction *InsertPoint = I;
  for (Use *U : ToReplace) {
    auto *UI = cast<Instruction>(U->get());
    Instruction *NI = UI->clone();
    NewInstructions[UI] = NI;
    MaybeDead.insert(UI);
    LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
    NI->insertBefore(InsertPoint);
    InsertPoint = NI;
    InsertedInsts.insert(NI);

    // Update the use for the new instruction, making sure that we update the
    // sunk instruction uses, if it is part of a chain that has already been
    // sunk.
    Instruction *OldI = cast<Instruction>(U->getUser());
    if (NewInstructions.count(OldI))
      NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
    else
      U->set(NI);
    Changed = true;
  }

  // Remove instructions that are dead after sinking.
  for (auto *I : MaybeDead) {
    if (!I->hasNUsesOrMore(1)) {
      LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
      I->eraseFromParent();
    }
  }

  return Changed;
}

bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
  Value *Cond = SI->getCondition();
  Type *OldType = Cond->getType();
  LLVMContext &Context = Cond->getContext();
  MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
  unsigned RegWidth = RegType.getSizeInBits();

  if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
    return false;

  // If the register width is greater than the type width, expand the condition
  // of the switch instruction and each case constant to the width of the
  // register. By widening the type of the switch condition, subsequent
  // comparisons (for case comparisons) will not need to be extended to the
  // preferred register width, so we will potentially eliminate N-1 extends,
  // where N is the number of cases in the switch.
  auto *NewType = Type::getIntNTy(Context, RegWidth);

  // Zero-extend the switch condition and case constants unless the switch
  // condition is a function argument that is already being sign-extended.
  // In that case, we can avoid an unnecessary mask/extension by sign-extending
  // everything instead.
  Instruction::CastOps ExtType = Instruction::ZExt;
  if (auto *Arg = dyn_cast<Argument>(Cond))
    if (Arg->hasSExtAttr())
      ExtType = Instruction::SExt;

  auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
  ExtInst->insertBefore(SI);
  ExtInst->setDebugLoc(SI->getDebugLoc());
  SI->setCondition(ExtInst);
  for (auto Case : SI->cases()) {
    APInt NarrowConst = Case.getCaseValue()->getValue();
    APInt WideConst = (ExtType == Instruction::ZExt) ?
                      NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
    Case.setValue(ConstantInt::get(Context, WideConst));
  }

  return true;
}


namespace {

/// Helper class to promote a scalar operation to a vector one.
/// This class is used to move downward extractelement transition.
/// E.g.,
/// a = vector_op <2 x i32>
/// b = extractelement <2 x i32> a, i32 0
/// c = scalar_op b
/// store c
///
/// =>
/// a = vector_op <2 x i32>
/// c = vector_op a (equivalent to scalar_op on the related lane)
/// * d = extractelement <2 x i32> c, i32 0
/// * store d
/// Assuming both extractelement and store can be combine, we get rid of the
/// transition.
class VectorPromoteHelper {
  /// DataLayout associated with the current module.
  const DataLayout &DL;

  /// Used to perform some checks on the legality of vector operations.
  const TargetLowering &TLI;

  /// Used to estimated the cost of the promoted chain.
  const TargetTransformInfo &TTI;

  /// The transition being moved downwards.
  Instruction *Transition;

  /// The sequence of instructions to be promoted.
  SmallVector<Instruction *, 4> InstsToBePromoted;

  /// Cost of combining a store and an extract.
  unsigned StoreExtractCombineCost;

  /// Instruction that will be combined with the transition.
  Instruction *CombineInst = nullptr;

  /// The instruction that represents the current end of the transition.
  /// Since we are faking the promotion until we reach the end of the chain
  /// of computation, we need a way to get the current end of the transition.
  Instruction *getEndOfTransition() const {
    if (InstsToBePromoted.empty())
      return Transition;
    return InstsToBePromoted.back();
  }

  /// Return the index of the original value in the transition.
  /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
  /// c, is at index 0.
  unsigned getTransitionOriginalValueIdx() const {
    assert(isa<ExtractElementInst>(Transition) &&
           "Other kind of transitions are not supported yet");
    return 0;
  }

  /// Return the index of the index in the transition.
  /// E.g., for "extractelement <2 x i32> c, i32 0" the index
  /// is at index 1.
  unsigned getTransitionIdx() const {
    assert(isa<ExtractElementInst>(Transition) &&
           "Other kind of transitions are not supported yet");
    return 1;
  }

  /// Get the type of the transition.
  /// This is the type of the original value.
  /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
  /// transition is <2 x i32>.
  Type *getTransitionType() const {
    return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
  }

  /// Promote \p ToBePromoted by moving \p Def downward through.
  /// I.e., we have the following sequence:
  /// Def = Transition <ty1> a to <ty2>
  /// b = ToBePromoted <ty2> Def, ...
  /// =>
  /// b = ToBePromoted <ty1> a, ...
  /// Def = Transition <ty1> ToBePromoted to <ty2>
  void promoteImpl(Instruction *ToBePromoted);

  /// Check whether or not it is profitable to promote all the
  /// instructions enqueued to be promoted.
  bool isProfitableToPromote() {
    Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
    unsigned Index = isa<ConstantInt>(ValIdx)
                         ? cast<ConstantInt>(ValIdx)->getZExtValue()
                         : -1;
    Type *PromotedType = getTransitionType();

    StoreInst *ST = cast<StoreInst>(CombineInst);
    unsigned AS = ST->getPointerAddressSpace();
    unsigned Align = ST->getAlignment();
    // Check if this store is supported.
    if (!TLI.allowsMisalignedMemoryAccesses(
            TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
            Align)) {
      // If this is not supported, there is no way we can combine
      // the extract with the store.
      return false;
    }

    // The scalar chain of computation has to pay for the transition
    // scalar to vector.
    // The vector chain has to account for the combining cost.
    uint64_t ScalarCost =
        TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
    uint64_t VectorCost = StoreExtractCombineCost;
    enum TargetTransformInfo::TargetCostKind CostKind =
      TargetTransformInfo::TCK_RecipThroughput;
    for (const auto &Inst : InstsToBePromoted) {
      // Compute the cost.
      // By construction, all instructions being promoted are arithmetic ones.
      // Moreover, one argument is a constant that can be viewed as a splat
      // constant.
      Value *Arg0 = Inst->getOperand(0);
      bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
                            isa<ConstantFP>(Arg0);
      TargetTransformInfo::OperandValueKind Arg0OVK =
          IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
                         : TargetTransformInfo::OK_AnyValue;
      TargetTransformInfo::OperandValueKind Arg1OVK =
          !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
                          : TargetTransformInfo::OK_AnyValue;
      ScalarCost += TTI.getArithmeticInstrCost(
          Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK);
      VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
                                               CostKind,
                                               Arg0OVK, Arg1OVK);
    }
    LLVM_DEBUG(
        dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
               << ScalarCost << "\nVector: " << VectorCost << '\n');
    return ScalarCost > VectorCost;
  }

  /// Generate a constant vector with \p Val with the same
  /// number of elements as the transition.
  /// \p UseSplat defines whether or not \p Val should be replicated
  /// across the whole vector.
  /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
  /// otherwise we generate a vector with as many undef as possible:
  /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
  /// used at the index of the extract.
  Value *getConstantVector(Constant *Val, bool UseSplat) const {
    unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
    if (!UseSplat) {
      // If we cannot determine where the constant must be, we have to
      // use a splat constant.
      Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
      if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
        ExtractIdx = CstVal->getSExtValue();
      else
        UseSplat = true;
    }

    ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
    if (UseSplat)
      return ConstantVector::getSplat(EC, Val);

    if (!EC.isScalable()) {
      SmallVector<Constant *, 4> ConstVec;
      UndefValue *UndefVal = UndefValue::get(Val->getType());
      for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
        if (Idx == ExtractIdx)
          ConstVec.push_back(Val);
        else
          ConstVec.push_back(UndefVal);
      }
      return ConstantVector::get(ConstVec);
    } else
      llvm_unreachable(
          "Generate scalable vector for non-splat is unimplemented");
  }

  /// Check if promoting to a vector type an operand at \p OperandIdx
  /// in \p Use can trigger undefined behavior.
  static bool canCauseUndefinedBehavior(const Instruction *Use,
                                        unsigned OperandIdx) {
    // This is not safe to introduce undef when the operand is on
    // the right hand side of a division-like instruction.
    if (OperandIdx != 1)
      return false;
    switch (Use->getOpcode()) {
    default:
      return false;
    case Instruction::SDiv:
    case Instruction::UDiv:
    case Instruction::SRem:
    case Instruction::URem:
      return true;
    case Instruction::FDiv:
    case Instruction::FRem:
      return !Use->hasNoNaNs();
    }
    llvm_unreachable(nullptr);
  }

public:
  VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
                      const TargetTransformInfo &TTI, Instruction *Transition,
                      unsigned CombineCost)
      : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
        StoreExtractCombineCost(CombineCost) {
    assert(Transition && "Do not know how to promote null");
  }

  /// Check if we can promote \p ToBePromoted to \p Type.
  bool canPromote(const Instruction *ToBePromoted) const {
    // We could support CastInst too.
    return isa<BinaryOperator>(ToBePromoted);
  }

  /// Check if it is profitable to promote \p ToBePromoted
  /// by moving downward the transition through.
  bool shouldPromote(const Instruction *ToBePromoted) const {
    // Promote only if all the operands can be statically expanded.
    // Indeed, we do not want to introduce any new kind of transitions.
    for (const Use &U : ToBePromoted->operands()) {
      const Value *Val = U.get();
      if (Val == getEndOfTransition()) {
        // If the use is a division and the transition is on the rhs,
        // we cannot promote the operation, otherwise we may create a
        // division by zero.
        if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
          return false;
        continue;
      }
      if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
          !isa<ConstantFP>(Val))
        return false;
    }
    // Check that the resulting operation is legal.
    int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
    if (!ISDOpcode)
      return false;
    return StressStoreExtract ||
           TLI.isOperationLegalOrCustom(
               ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
  }

  /// Check whether or not \p Use can be combined
  /// with the transition.
  /// I.e., is it possible to do Use(Transition) => AnotherUse?
  bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }

  /// Record \p ToBePromoted as part of the chain to be promoted.
  void enqueueForPromotion(Instruction *ToBePromoted) {
    InstsToBePromoted.push_back(ToBePromoted);
  }

  /// Set the instruction that will be combined with the transition.
  void recordCombineInstruction(Instruction *ToBeCombined) {
    assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
    CombineInst = ToBeCombined;
  }

  /// Promote all the instructions enqueued for promotion if it is
  /// is profitable.
  /// \return True if the promotion happened, false otherwise.
  bool promote() {
    // Check if there is something to promote.
    // Right now, if we do not have anything to combine with,
    // we assume the promotion is not profitable.
    if (InstsToBePromoted.empty() || !CombineInst)
      return false;

    // Check cost.
    if (!StressStoreExtract && !isProfitableToPromote())
      return false;

    // Promote.
    for (auto &ToBePromoted : InstsToBePromoted)
      promoteImpl(ToBePromoted);
    InstsToBePromoted.clear();
    return true;
  }
};

} // end anonymous namespace

void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
  // At this point, we know that all the operands of ToBePromoted but Def
  // can be statically promoted.
  // For Def, we need to use its parameter in ToBePromoted:
  // b = ToBePromoted ty1 a
  // Def = Transition ty1 b to ty2
  // Move the transition down.
  // 1. Replace all uses of the promoted operation by the transition.
  // = ... b => = ... Def.
  assert(ToBePromoted->getType() == Transition->getType() &&
         "The type of the result of the transition does not match "
         "the final type");
  ToBePromoted->replaceAllUsesWith(Transition);
  // 2. Update the type of the uses.
  // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
  Type *TransitionTy = getTransitionType();
  ToBePromoted->mutateType(TransitionTy);
  // 3. Update all the operands of the promoted operation with promoted
  // operands.
  // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
  for (Use &U : ToBePromoted->operands()) {
    Value *Val = U.get();
    Value *NewVal = nullptr;
    if (Val == Transition)
      NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
    else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
             isa<ConstantFP>(Val)) {
      // Use a splat constant if it is not safe to use undef.
      NewVal = getConstantVector(
          cast<Constant>(Val),
          isa<UndefValue>(Val) ||
              canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
    } else
      llvm_unreachable("Did you modified shouldPromote and forgot to update "
                       "this?");
    ToBePromoted->setOperand(U.getOperandNo(), NewVal);
  }
  Transition->moveAfter(ToBePromoted);
  Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
}

/// Some targets can do store(extractelement) with one instruction.
/// Try to push the extractelement towards the stores when the target
/// has this feature and this is profitable.
bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
  unsigned CombineCost = std::numeric_limits<unsigned>::max();
  if (DisableStoreExtract ||
      (!StressStoreExtract &&
       !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
                                       Inst->getOperand(1), CombineCost)))
    return false;

  // At this point we know that Inst is a vector to scalar transition.
  // Try to move it down the def-use chain, until:
  // - We can combine the transition with its single use
  //   => we got rid of the transition.
  // - We escape the current basic block
  //   => we would need to check that we are moving it at a cheaper place and
  //      we do not do that for now.
  BasicBlock *Parent = Inst->getParent();
  LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
  VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
  // If the transition has more than one use, assume this is not going to be
  // beneficial.
  while (Inst->hasOneUse()) {
    Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
    LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');

    if (ToBePromoted->getParent() != Parent) {
      LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
                        << ToBePromoted->getParent()->getName()
                        << ") than the transition (" << Parent->getName()
                        << ").\n");
      return false;
    }

    if (VPH.canCombine(ToBePromoted)) {
      LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
                        << "will be combined with: " << *ToBePromoted << '\n');
      VPH.recordCombineInstruction(ToBePromoted);
      bool Changed = VPH.promote();
      NumStoreExtractExposed += Changed;
      return Changed;
    }

    LLVM_DEBUG(dbgs() << "Try promoting.\n");
    if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
      return false;

    LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");

    VPH.enqueueForPromotion(ToBePromoted);
    Inst = ToBePromoted;
  }
  return false;
}

/// For the instruction sequence of store below, F and I values
/// are bundled together as an i64 value before being stored into memory.
/// Sometimes it is more efficient to generate separate stores for F and I,
/// which can remove the bitwise instructions or sink them to colder places.
///
///   (store (or (zext (bitcast F to i32) to i64),
///              (shl (zext I to i64), 32)), addr)  -->
///   (store F, addr) and (store I, addr+4)
///
/// Similarly, splitting for other merged store can also be beneficial, like:
/// For pair of {i32, i32}, i64 store --> two i32 stores.
/// For pair of {i32, i16}, i64 store --> two i32 stores.
/// For pair of {i16, i16}, i32 store --> two i16 stores.
/// For pair of {i16, i8},  i32 store --> two i16 stores.
/// For pair of {i8, i8},   i16 store --> two i8 stores.
///
/// We allow each target to determine specifically which kind of splitting is
/// supported.
///
/// The store patterns are commonly seen from the simple code snippet below
/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
///   void goo(const std::pair<int, float> &);
///   hoo() {
///     ...
///     goo(std::make_pair(tmp, ftmp));
///     ...
///   }
///
/// Although we already have similar splitting in DAG Combine, we duplicate
/// it in CodeGenPrepare to catch the case in which pattern is across
/// multiple BBs. The logic in DAG Combine is kept to catch case generated
/// during code expansion.
static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
                                const TargetLowering &TLI) {
  // Handle simple but common cases only.
  Type *StoreType = SI.getValueOperand()->getType();

  // The code below assumes shifting a value by <number of bits>,
  // whereas scalable vectors would have to be shifted by
  // <2log(vscale) + number of bits> in order to store the
  // low/high parts. Bailing out for now.
  if (isa<ScalableVectorType>(StoreType))
    return false;

  if (!DL.typeSizeEqualsStoreSize(StoreType) ||
      DL.getTypeSizeInBits(StoreType) == 0)
    return false;

  unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
  Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
  if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
    return false;

  // Don't split the store if it is volatile.
  if (SI.isVolatile())
    return false;

  // Match the following patterns:
  // (store (or (zext LValue to i64),
  //            (shl (zext HValue to i64), 32)), HalfValBitSize)
  //  or
  // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
  //            (zext LValue to i64),
  // Expect both operands of OR and the first operand of SHL have only
  // one use.
  Value *LValue, *HValue;
  if (!match(SI.getValueOperand(),
             m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
                    m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
                                   m_SpecificInt(HalfValBitSize))))))
    return false;

  // Check LValue and HValue are int with size less or equal than 32.
  if (!LValue->getType()->isIntegerTy() ||
      DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
      !HValue->getType()->isIntegerTy() ||
      DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
    return false;

  // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
  // as the input of target query.
  auto *LBC = dyn_cast<BitCastInst>(LValue);
  auto *HBC = dyn_cast<BitCastInst>(HValue);
  EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
                  : EVT::getEVT(LValue->getType());
  EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
                   : EVT::getEVT(HValue->getType());
  if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
    return false;

  // Start to split store.
  IRBuilder<> Builder(SI.getContext());
  Builder.SetInsertPoint(&SI);

  // If LValue/HValue is a bitcast in another BB, create a new one in current
  // BB so it may be merged with the splitted stores by dag combiner.
  if (LBC && LBC->getParent() != SI.getParent())
    LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
  if (HBC && HBC->getParent() != SI.getParent())
    HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());

  bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
  auto CreateSplitStore = [&](Value *V, bool Upper) {
    V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
    Value *Addr = Builder.CreateBitCast(
        SI.getOperand(1),
        SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
    Align Alignment = SI.getAlign();
    const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
    if (IsOffsetStore) {
      Addr = Builder.CreateGEP(
          SplitStoreType, Addr,
          ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));

      // When splitting the store in half, naturally one half will retain the
      // alignment of the original wider store, regardless of whether it was
      // over-aligned or not, while the other will require adjustment.
      Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
    }
    Builder.CreateAlignedStore(V, Addr, Alignment);
  };

  CreateSplitStore(LValue, false);
  CreateSplitStore(HValue, true);

  // Delete the old store.
  SI.eraseFromParent();
  return true;
}

// Return true if the GEP has two operands, the first operand is of a sequential
// type, and the second operand is a constant.
static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
  gep_type_iterator I = gep_type_begin(*GEP);
  return GEP->getNumOperands() == 2 &&
      I.isSequential() &&
      isa<ConstantInt>(GEP->getOperand(1));
}

// Try unmerging GEPs to reduce liveness interference (register pressure) across
// IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
// reducing liveness interference across those edges benefits global register
// allocation. Currently handles only certain cases.
//
// For example, unmerge %GEPI and %UGEPI as below.
//
// ---------- BEFORE ----------
// SrcBlock:
//   ...
//   %GEPIOp = ...
//   ...
//   %GEPI = gep %GEPIOp, Idx
//   ...
//   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
//   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
//   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
//   %UGEPI)
//
// DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
// DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
// ...
//
// DstBi:
//   ...
//   %UGEPI = gep %GEPIOp, UIdx
// ...
// ---------------------------
//
// ---------- AFTER ----------
// SrcBlock:
//   ... (same as above)
//    (* %GEPI is still alive on the indirectbr edges)
//    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
//    unmerging)
// ...
//
// DstBi:
//   ...
//   %UGEPI = gep %GEPI, (UIdx-Idx)
//   ...
// ---------------------------
//
// The register pressure on the IndirectBr edges is reduced because %GEPIOp is
// no longer alive on them.
//
// We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
// of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
// not to disable further simplications and optimizations as a result of GEP
// merging.
//
// Note this unmerging may increase the length of the data flow critical path
// (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
// between the register pressure and the length of data-flow critical
// path. Restricting this to the uncommon IndirectBr case would minimize the
// impact of potentially longer critical path, if any, and the impact on compile
// time.
static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
                                             const TargetTransformInfo *TTI) {
  BasicBlock *SrcBlock = GEPI->getParent();
  // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
  // (non-IndirectBr) cases exit early here.
  if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
    return false;
  // Check that GEPI is a simple gep with a single constant index.
  if (!GEPSequentialConstIndexed(GEPI))
    return false;
  ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
  // Check that GEPI is a cheap one.
  if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
                         TargetTransformInfo::TCK_SizeAndLatency)
      > TargetTransformInfo::TCC_Basic)
    return false;
  Value *GEPIOp = GEPI->getOperand(0);
  // Check that GEPIOp is an instruction that's also defined in SrcBlock.
  if (!isa<Instruction>(GEPIOp))
    return false;
  auto *GEPIOpI = cast<Instruction>(GEPIOp);
  if (GEPIOpI->getParent() != SrcBlock)
    return false;
  // Check that GEP is used outside the block, meaning it's alive on the
  // IndirectBr edge(s).
  if (find_if(GEPI->users(), [&](User *Usr) {
        if (auto *I = dyn_cast<Instruction>(Usr)) {
          if (I->getParent() != SrcBlock) {
            return true;
          }
        }
        return false;
      }) == GEPI->users().end())
    return false;
  // The second elements of the GEP chains to be unmerged.
  std::vector<GetElementPtrInst *> UGEPIs;
  // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
  // on IndirectBr edges.
  for (User *Usr : GEPIOp->users()) {
    if (Usr == GEPI) continue;
    // Check if Usr is an Instruction. If not, give up.
    if (!isa<Instruction>(Usr))
      return false;
    auto *UI = cast<Instruction>(Usr);
    // Check if Usr in the same block as GEPIOp, which is fine, skip.
    if (UI->getParent() == SrcBlock)
      continue;
    // Check if Usr is a GEP. If not, give up.
    if (!isa<GetElementPtrInst>(Usr))
      return false;
    auto *UGEPI = cast<GetElementPtrInst>(Usr);
    // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
    // the pointer operand to it. If so, record it in the vector. If not, give
    // up.
    if (!GEPSequentialConstIndexed(UGEPI))
      return false;
    if (UGEPI->getOperand(0) != GEPIOp)
      return false;
    if (GEPIIdx->getType() !=
        cast<ConstantInt>(UGEPI->getOperand(1))->getType())
      return false;
    ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
    if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
                           TargetTransformInfo::TCK_SizeAndLatency)
        > TargetTransformInfo::TCC_Basic)
      return false;
    UGEPIs.push_back(UGEPI);
  }
  if (UGEPIs.size() == 0)
    return false;
  // Check the materializing cost of (Uidx-Idx).
  for (GetElementPtrInst *UGEPI : UGEPIs) {
    ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
    APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
    unsigned ImmCost =
      TTI->getIntImmCost(NewIdx, GEPIIdx->getType(),
                         TargetTransformInfo::TCK_SizeAndLatency);
    if (ImmCost > TargetTransformInfo::TCC_Basic)
      return false;
  }
  // Now unmerge between GEPI and UGEPIs.
  for (GetElementPtrInst *UGEPI : UGEPIs) {
    UGEPI->setOperand(0, GEPI);
    ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
    Constant *NewUGEPIIdx =
        ConstantInt::get(GEPIIdx->getType(),
                         UGEPIIdx->getValue() - GEPIIdx->getValue());
    UGEPI->setOperand(1, NewUGEPIIdx);
    // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
    // inbounds to avoid UB.
    if (!GEPI->isInBounds()) {
      UGEPI->setIsInBounds(false);
    }
  }
  // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
  // alive on IndirectBr edges).
  assert(find_if(GEPIOp->users(), [&](User *Usr) {
        return cast<Instruction>(Usr)->getParent() != SrcBlock;
      }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
  return true;
}

bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
  // Bail out if we inserted the instruction to prevent optimizations from
  // stepping on each other's toes.
  if (InsertedInsts.count(I))
    return false;

  // TODO: Move into the switch on opcode below here.
  if (PHINode *P = dyn_cast<PHINode>(I)) {
    // It is possible for very late stage optimizations (such as SimplifyCFG)
    // to introduce PHI nodes too late to be cleaned up.  If we detect such a
    // trivial PHI, go ahead and zap it here.
    if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
      LargeOffsetGEPMap.erase(P);
      P->replaceAllUsesWith(V);
      P->eraseFromParent();
      ++NumPHIsElim;
      return true;
    }
    return false;
  }

  if (CastInst *CI = dyn_cast<CastInst>(I)) {
    // If the source of the cast is a constant, then this should have
    // already been constant folded.  The only reason NOT to constant fold
    // it is if something (e.g. LSR) was careful to place the constant
    // evaluation in a block other than then one that uses it (e.g. to hoist
    // the address of globals out of a loop).  If this is the case, we don't
    // want to forward-subst the cast.
    if (isa<Constant>(CI->getOperand(0)))
      return false;

    if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
      return true;

    if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
      /// Sink a zext or sext into its user blocks if the target type doesn't
      /// fit in one register
      if (TLI->getTypeAction(CI->getContext(),
                             TLI->getValueType(*DL, CI->getType())) ==
          TargetLowering::TypeExpandInteger) {
        return SinkCast(CI);
      } else {
        bool MadeChange = optimizeExt(I);
        return MadeChange | optimizeExtUses(I);
      }
    }
    return false;
  }

  if (auto *Cmp = dyn_cast<CmpInst>(I))
    if (optimizeCmp(Cmp, ModifiedDT))
      return true;

  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
    bool Modified = optimizeLoadExt(LI);
    unsigned AS = LI->getPointerAddressSpace();
    Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
    return Modified;
  }

  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    if (splitMergedValStore(*SI, *DL, *TLI))
      return true;
    SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
    unsigned AS = SI->getPointerAddressSpace();
    return optimizeMemoryInst(I, SI->getOperand(1),
                              SI->getOperand(0)->getType(), AS);
  }

  if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
      unsigned AS = RMW->getPointerAddressSpace();
      return optimizeMemoryInst(I, RMW->getPointerOperand(),
                                RMW->getType(), AS);
  }

  if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
      unsigned AS = CmpX->getPointerAddressSpace();
      return optimizeMemoryInst(I, CmpX->getPointerOperand(),
                                CmpX->getCompareOperand()->getType(), AS);
  }

  BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);

  if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking)
    return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);

  // TODO: Move this into the switch on opcode - it handles shifts already.
  if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
                BinOp->getOpcode() == Instruction::LShr)) {
    ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
    if (CI && TLI->hasExtractBitsInsn())
      if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
        return true;
  }

  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
    if (GEPI->hasAllZeroIndices()) {
      /// The GEP operand must be a pointer, so must its result -> BitCast
      Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
                                        GEPI->getName(), GEPI);
      NC->setDebugLoc(GEPI->getDebugLoc());
      GEPI->replaceAllUsesWith(NC);
      GEPI->eraseFromParent();
      ++NumGEPsElim;
      optimizeInst(NC, ModifiedDT);
      return true;
    }
    if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
      return true;
    }
    return false;
  }

  if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
    // freeze(icmp a, const)) -> icmp (freeze a), const
    // This helps generate efficient conditional jumps.
    Instruction *CmpI = nullptr;
    if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
      CmpI = II;
    else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
      CmpI = F->getFastMathFlags().none() ? F : nullptr;

    if (CmpI && CmpI->hasOneUse()) {
      auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
      bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
                    isa<ConstantPointerNull>(Op0);
      bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
                    isa<ConstantPointerNull>(Op1);
      if (Const0 || Const1) {
        if (!Const0 || !Const1) {
          auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI);
          F->takeName(FI);
          CmpI->setOperand(Const0 ? 1 : 0, F);
        }
        FI->replaceAllUsesWith(CmpI);
        FI->eraseFromParent();
        return true;
      }
    }
    return false;
  }

  if (tryToSinkFreeOperands(I))
    return true;

  switch (I->getOpcode()) {
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    return optimizeShiftInst(cast<BinaryOperator>(I));
  case Instruction::Call:
    return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
  case Instruction::Select:
    return optimizeSelectInst(cast<SelectInst>(I));
  case Instruction::ShuffleVector:
    return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
  case Instruction::Switch:
    return optimizeSwitchInst(cast<SwitchInst>(I));
  case Instruction::ExtractElement:
    return optimizeExtractElementInst(cast<ExtractElementInst>(I));
  }

  return false;
}

/// Given an OR instruction, check to see if this is a bitreverse
/// idiom. If so, insert the new intrinsic and return true.
bool CodeGenPrepare::makeBitReverse(Instruction &I) {
  if (!I.getType()->isIntegerTy() ||
      !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
                                     TLI->getValueType(*DL, I.getType(), true)))
    return false;

  SmallVector<Instruction*, 4> Insts;
  if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
    return false;
  Instruction *LastInst = Insts.back();
  I.replaceAllUsesWith(LastInst);
  RecursivelyDeleteTriviallyDeadInstructions(
      &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
  return true;
}

// In this pass we look for GEP and cast instructions that are used
// across basic blocks and rewrite them to improve basic-block-at-a-time
// selection.
bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
  SunkAddrs.clear();
  bool MadeChange = false;

  CurInstIterator = BB.begin();
  while (CurInstIterator != BB.end()) {
    MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
    if (ModifiedDT)
      return true;
  }

  bool MadeBitReverse = true;
  while (MadeBitReverse) {
    MadeBitReverse = false;
    for (auto &I : reverse(BB)) {
      if (makeBitReverse(I)) {
        MadeBitReverse = MadeChange = true;
        break;
      }
    }
  }
  MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);

  return MadeChange;
}

// Some CGP optimizations may move or alter what's computed in a block. Check
// whether a dbg.value intrinsic could be pointed at a more appropriate operand.
bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
  assert(isa<DbgValueInst>(I));
  DbgValueInst &DVI = *cast<DbgValueInst>(I);

  // Does this dbg.value refer to a sunk address calculation?
  Value *Location = DVI.getVariableLocation();
  WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
  Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
  if (SunkAddr) {
    // Point dbg.value at locally computed address, which should give the best
    // opportunity to be accurately lowered. This update may change the type of
    // pointer being referred to; however this makes no difference to debugging
    // information, and we can't generate bitcasts that may affect codegen.
    DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(),
                                           ValueAsMetadata::get(SunkAddr)));
    return true;
  }
  return false;
}

// A llvm.dbg.value may be using a value before its definition, due to
// optimizations in this pass and others. Scan for such dbg.values, and rescue
// them by moving the dbg.value to immediately after the value definition.
// FIXME: Ideally this should never be necessary, and this has the potential
// to re-order dbg.value intrinsics.
bool CodeGenPrepare::placeDbgValues(Function &F) {
  bool MadeChange = false;
  DominatorTree DT(F);

  for (BasicBlock &BB : F) {
    for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
      Instruction *Insn = &*BI++;
      DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
      if (!DVI)
        continue;

      Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());

      if (!VI || VI->isTerminator())
        continue;

      // If VI is a phi in a block with an EHPad terminator, we can't insert
      // after it.
      if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
        continue;

      // If the defining instruction dominates the dbg.value, we do not need
      // to move the dbg.value.
      if (DT.dominates(VI, DVI))
        continue;

      LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
                        << *DVI << ' ' << *VI);
      DVI->removeFromParent();
      if (isa<PHINode>(VI))
        DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
      else
        DVI->insertAfter(VI);
      MadeChange = true;
      ++NumDbgValueMoved;
    }
  }
  return MadeChange;
}

/// Scale down both weights to fit into uint32_t.
static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
  uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
  uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
  NewTrue = NewTrue / Scale;
  NewFalse = NewFalse / Scale;
}

/// Some targets prefer to split a conditional branch like:
/// \code
///   %0 = icmp ne i32 %a, 0
///   %1 = icmp ne i32 %b, 0
///   %or.cond = or i1 %0, %1
///   br i1 %or.cond, label %TrueBB, label %FalseBB
/// \endcode
/// into multiple branch instructions like:
/// \code
///   bb1:
///     %0 = icmp ne i32 %a, 0
///     br i1 %0, label %TrueBB, label %bb2
///   bb2:
///     %1 = icmp ne i32 %b, 0
///     br i1 %1, label %TrueBB, label %FalseBB
/// \endcode
/// This usually allows instruction selection to do even further optimizations
/// and combine the compare with the branch instruction. Currently this is
/// applied for targets which have "cheap" jump instructions.
///
/// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
///
bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
  if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
    return false;

  bool MadeChange = false;
  for (auto &BB : F) {
    // Does this BB end with the following?
    //   %cond1 = icmp|fcmp|binary instruction ...
    //   %cond2 = icmp|fcmp|binary instruction ...
    //   %cond.or = or|and i1 %cond1, cond2
    //   br i1 %cond.or label %dest1, label %dest2"
    BinaryOperator *LogicOp;
    BasicBlock *TBB, *FBB;
    if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
      continue;

    auto *Br1 = cast<BranchInst>(BB.getTerminator());
    if (Br1->getMetadata(LLVMContext::MD_unpredictable))
      continue;

    // The merging of mostly empty BB can cause a degenerate branch.
    if (TBB == FBB)
      continue;

    unsigned Opc;
    Value *Cond1, *Cond2;
    if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
                             m_OneUse(m_Value(Cond2)))))
      Opc = Instruction::And;
    else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
                                 m_OneUse(m_Value(Cond2)))))
      Opc = Instruction::Or;
    else
      continue;

    if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
        !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
      continue;

    LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());

    // Create a new BB.
    auto *TmpBB =
        BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
                           BB.getParent(), BB.getNextNode());

    // Update original basic block by using the first condition directly by the
    // branch instruction and removing the no longer needed and/or instruction.
    Br1->setCondition(Cond1);
    LogicOp->eraseFromParent();

    // Depending on the condition we have to either replace the true or the
    // false successor of the original branch instruction.
    if (Opc == Instruction::And)
      Br1->setSuccessor(0, TmpBB);
    else
      Br1->setSuccessor(1, TmpBB);

    // Fill in the new basic block.
    auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
    if (auto *I = dyn_cast<Instruction>(Cond2)) {
      I->removeFromParent();
      I->insertBefore(Br2);
    }

    // Update PHI nodes in both successors. The original BB needs to be
    // replaced in one successor's PHI nodes, because the branch comes now from
    // the newly generated BB (NewBB). In the other successor we need to add one
    // incoming edge to the PHI nodes, because both branch instructions target
    // now the same successor. Depending on the original branch condition
    // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
    // we perform the correct update for the PHI nodes.
    // This doesn't change the successor order of the just created branch
    // instruction (or any other instruction).
    if (Opc == Instruction::Or)
      std::swap(TBB, FBB);

    // Replace the old BB with the new BB.
    TBB->replacePhiUsesWith(&BB, TmpBB);

    // Add another incoming edge form the new BB.
    for (PHINode &PN : FBB->phis()) {
      auto *Val = PN.getIncomingValueForBlock(&BB);
      PN.addIncoming(Val, TmpBB);
    }

    // Update the branch weights (from SelectionDAGBuilder::
    // FindMergedConditions).
    if (Opc == Instruction::Or) {
      // Codegen X | Y as:
      // BB1:
      //   jmp_if_X TBB
      //   jmp TmpBB
      // TmpBB:
      //   jmp_if_Y TBB
      //   jmp FBB
      //

      // We have flexibility in setting Prob for BB1 and Prob for NewBB.
      // The requirement is that
      //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
      //     = TrueProb for original BB.
      // Assuming the original weights are A and B, one choice is to set BB1's
      // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
      // assumes that
      //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
      // Another choice is to assume TrueProb for BB1 equals to TrueProb for
      // TmpBB, but the math is more complicated.
      uint64_t TrueWeight, FalseWeight;
      if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
        uint64_t NewTrueWeight = TrueWeight;
        uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
        scaleWeights(NewTrueWeight, NewFalseWeight);
        Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
                         .createBranchWeights(TrueWeight, FalseWeight));

        NewTrueWeight = TrueWeight;
        NewFalseWeight = 2 * FalseWeight;
        scaleWeights(NewTrueWeight, NewFalseWeight);
        Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
                         .createBranchWeights(TrueWeight, FalseWeight));
      }
    } else {
      // Codegen X & Y as:
      // BB1:
      //   jmp_if_X TmpBB
      //   jmp FBB
      // TmpBB:
      //   jmp_if_Y TBB
      //   jmp FBB
      //
      //  This requires creation of TmpBB after CurBB.

      // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
      // The requirement is that
      //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
      //     = FalseProb for original BB.
      // Assuming the original weights are A and B, one choice is to set BB1's
      // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
      // assumes that
      //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
      uint64_t TrueWeight, FalseWeight;
      if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
        uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
        uint64_t NewFalseWeight = FalseWeight;
        scaleWeights(NewTrueWeight, NewFalseWeight);
        Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
                         .createBranchWeights(TrueWeight, FalseWeight));

        NewTrueWeight = 2 * TrueWeight;
        NewFalseWeight = FalseWeight;
        scaleWeights(NewTrueWeight, NewFalseWeight);
        Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
                         .createBranchWeights(TrueWeight, FalseWeight));
      }
    }

    ModifiedDT = true;
    MadeChange = true;

    LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
               TmpBB->dump());
  }
  return MadeChange;
}