FixupStatepointCallerSaved.cpp 22.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
//===-- FixupStatepointCallerSaved.cpp - Fixup caller saved registers  ----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Statepoint instruction in deopt parameters contains values which are
/// meaningful to the runtime and should be able to be read at the moment the
/// call returns. So we can say that we need to encode the fact that these
/// values are "late read" by runtime. If we could express this notion for
/// register allocator it would produce the right form for us.
/// The need to fixup (i.e this pass) is specifically handling the fact that
/// we cannot describe such a late read for the register allocator.
/// Register allocator may put the value on a register clobbered by the call.
/// This pass forces the spill of such registers and replaces corresponding
/// statepoint operands to added spill slots.
///
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "fixup-statepoint-caller-saved"
STATISTIC(NumSpilledRegisters, "Number of spilled register");
STATISTIC(NumSpillSlotsAllocated, "Number of spill slots allocated");
STATISTIC(NumSpillSlotsExtended, "Number of spill slots extended");

static cl::opt<bool> FixupSCSExtendSlotSize(
    "fixup-scs-extend-slot-size", cl::Hidden, cl::init(false),
    cl::desc("Allow spill in spill slot of greater size than register size"),
    cl::Hidden);

static cl::opt<bool> PassGCPtrInCSR(
    "fixup-allow-gcptr-in-csr", cl::Hidden, cl::init(false),
    cl::desc("Allow passing GC Pointer arguments in callee saved registers"));

static cl::opt<bool> EnableCopyProp(
    "fixup-scs-enable-copy-propagation", cl::Hidden, cl::init(true),
    cl::desc("Enable simple copy propagation during register reloading"));

// This is purely debugging option.
// It may be handy for investigating statepoint spilling issues.
static cl::opt<unsigned> MaxStatepointsWithRegs(
    "fixup-max-csr-statepoints", cl::Hidden,
    cl::desc("Max number of statepoints allowed to pass GC Ptrs in registers"));

namespace {

class FixupStatepointCallerSaved : public MachineFunctionPass {
public:
  static char ID;

  FixupStatepointCallerSaved() : MachineFunctionPass(ID) {
    initializeFixupStatepointCallerSavedPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  StringRef getPassName() const override {
    return "Fixup Statepoint Caller Saved";
  }

  bool runOnMachineFunction(MachineFunction &MF) override;
};

} // End anonymous namespace.

char FixupStatepointCallerSaved::ID = 0;
char &llvm::FixupStatepointCallerSavedID = FixupStatepointCallerSaved::ID;

INITIALIZE_PASS_BEGIN(FixupStatepointCallerSaved, DEBUG_TYPE,
                      "Fixup Statepoint Caller Saved", false, false)
INITIALIZE_PASS_END(FixupStatepointCallerSaved, DEBUG_TYPE,
                    "Fixup Statepoint Caller Saved", false, false)

// Utility function to get size of the register.
static unsigned getRegisterSize(const TargetRegisterInfo &TRI, Register Reg) {
  const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg);
  return TRI.getSpillSize(*RC);
}

// Advance iterator to the next stack map entry
static MachineInstr::const_mop_iterator
advanceToNextStackMapElt(MachineInstr::const_mop_iterator MOI) {
  if (MOI->isImm()) {
    switch (MOI->getImm()) {
    default:
      llvm_unreachable("Unrecognized operand type.");
    case StackMaps::DirectMemRefOp:
      MOI += 2; // <Reg>, <Imm>
      break;
    case StackMaps::IndirectMemRefOp:
      MOI += 3; // <Size>, <Reg>, <Imm>
      break;
    case StackMaps::ConstantOp:
      MOI += 1;
      break;
    }
  }
  return ++MOI;
}

// Return statepoint GC args as a set
static SmallSet<Register, 8> collectGCRegs(MachineInstr &MI) {
  StatepointOpers SO(&MI);
  unsigned NumDeoptIdx = SO.getNumDeoptArgsIdx();
  unsigned NumDeoptArgs = MI.getOperand(NumDeoptIdx).getImm();
  MachineInstr::const_mop_iterator MOI(MI.operands_begin() + NumDeoptIdx + 1),
      MOE(MI.operands_end());

  // Skip deopt args
  while (NumDeoptArgs--)
    MOI = advanceToNextStackMapElt(MOI);

  SmallSet<Register, 8> Result;
  while (MOI != MOE) {
    if (MOI->isReg() && !MOI->isImplicit())
      Result.insert(MOI->getReg());
    MOI = advanceToNextStackMapElt(MOI);
  }
  return Result;
}

// Try to eliminate redundant copy to register which we're going to
// spill, i.e. try to change:
//    X = COPY Y
//    SPILL X
//  to
//    SPILL Y
//  If there are no uses of X between copy and STATEPOINT, that COPY
//  may be eliminated.
//  Reg - register we're about to spill
//  RI - On entry points to statepoint.
//       On successful copy propagation set to new spill point.
//  IsKill - set to true if COPY is Kill (there are no uses of Y)
//  Returns either found source copy register or original one.
static Register performCopyPropagation(Register Reg,
                                       MachineBasicBlock::iterator &RI,
                                       bool &IsKill, const TargetInstrInfo &TII,
                                       const TargetRegisterInfo &TRI) {
  // First check if statepoint itself uses Reg in non-meta operands.
  int Idx = RI->findRegisterUseOperandIdx(Reg, false, &TRI);
  if (Idx >= 0 && (unsigned)Idx < StatepointOpers(&*RI).getNumDeoptArgsIdx()) {
    IsKill = false;
    return Reg;
  }

  if (!EnableCopyProp)
    return Reg;

  MachineBasicBlock *MBB = RI->getParent();
  MachineBasicBlock::reverse_iterator E = MBB->rend();
  MachineInstr *Def = nullptr, *Use = nullptr;
  for (auto It = ++(RI.getReverse()); It != E; ++It) {
    if (It->readsRegister(Reg, &TRI) && !Use)
      Use = &*It;
    if (It->modifiesRegister(Reg, &TRI)) {
      Def = &*It;
      break;
    }
  }

  if (!Def)
    return Reg;

  auto DestSrc = TII.isCopyInstr(*Def);
  if (!DestSrc || DestSrc->Destination->getReg() != Reg)
    return Reg;

  Register SrcReg = DestSrc->Source->getReg();

  if (getRegisterSize(TRI, Reg) != getRegisterSize(TRI, SrcReg))
    return Reg;

  LLVM_DEBUG(dbgs() << "spillRegisters: perform copy propagation "
                    << printReg(Reg, &TRI) << " -> " << printReg(SrcReg, &TRI)
                    << "\n");

  // Insert spill immediately after Def
  RI = ++MachineBasicBlock::iterator(Def);
  IsKill = DestSrc->Source->isKill();

  // There are no uses of original register between COPY and STATEPOINT.
  // There can't be any after STATEPOINT, so we can eliminate Def.
  if (!Use) {
    LLVM_DEBUG(dbgs() << "spillRegisters: removing dead copy " << *Def);
    Def->eraseFromParent();
  }
  return SrcReg;
}

namespace {
// Pair {Register, FrameIndex}
using RegSlotPair = std::pair<Register, int>;

// Keeps track of what reloads were inserted in MBB.
class RegReloadCache {
  using ReloadSet = SmallSet<RegSlotPair, 8>;
  DenseMap<const MachineBasicBlock *, ReloadSet> Reloads;

public:
  RegReloadCache() = default;

  // Record reload of Reg from FI in block MBB
  void recordReload(Register Reg, int FI, const MachineBasicBlock *MBB) {
    RegSlotPair RSP(Reg, FI);
    auto Res = Reloads[MBB].insert(RSP);
    (void)Res;
    assert(Res.second && "reload already exists");
  }

  // Does basic block MBB contains reload of Reg from FI?
  bool hasReload(Register Reg, int FI, const MachineBasicBlock *MBB) {
    RegSlotPair RSP(Reg, FI);
    return Reloads.count(MBB) && Reloads[MBB].count(RSP);
  }
};

// Cache used frame indexes during statepoint re-write to re-use them in
// processing next statepoint instruction.
// Two strategies. One is to preserve the size of spill slot while another one
// extends the size of spill slots to reduce the number of them, causing
// the less total frame size. But unspill will have "implicit" any extend.
class FrameIndexesCache {
private:
  struct FrameIndexesPerSize {
    // List of used frame indexes during processing previous statepoints.
    SmallVector<int, 8> Slots;
    // Current index of un-used yet frame index.
    unsigned Index = 0;
  };
  MachineFrameInfo &MFI;
  const TargetRegisterInfo &TRI;
  // Map size to list of frame indexes of this size. If the mode is
  // FixupSCSExtendSlotSize then the key 0 is used to keep all frame indexes.
  // If the size of required spill slot is greater than in a cache then the
  // size will be increased.
  DenseMap<unsigned, FrameIndexesPerSize> Cache;

  // Keeps track of slots reserved for the shared landing pad processing.
  // Initialized from GlobalIndices for the current EHPad.
  SmallSet<int, 8> ReservedSlots;

  // Landing pad can be destination of several statepoints. Every register
  // defined by such statepoints must be spilled to the same stack slot.
  // This map keeps that information.
  DenseMap<const MachineBasicBlock *, SmallVector<RegSlotPair, 8>>
      GlobalIndices;

  FrameIndexesPerSize &getCacheBucket(unsigned Size) {
    // In FixupSCSExtendSlotSize mode the bucket with 0 index is used
    // for all sizes.
    return Cache[FixupSCSExtendSlotSize ? 0 : Size];
  }

public:
  FrameIndexesCache(MachineFrameInfo &MFI, const TargetRegisterInfo &TRI)
      : MFI(MFI), TRI(TRI) {}
  // Reset the current state of used frame indexes. After invocation of
  // this function all frame indexes are available for allocation with
  // the exception of slots reserved for landing pad processing (if any).
  void reset(const MachineBasicBlock *EHPad) {
    for (auto &It : Cache)
      It.second.Index = 0;

    ReservedSlots.clear();
    if (EHPad && GlobalIndices.count(EHPad))
      for (auto &RSP : GlobalIndices[EHPad])
        ReservedSlots.insert(RSP.second);
  }

  // Get frame index to spill the register.
  int getFrameIndex(Register Reg, MachineBasicBlock *EHPad) {
    // Check if slot for Reg is already reserved at EHPad.
    auto It = GlobalIndices.find(EHPad);
    if (It != GlobalIndices.end()) {
      auto &Vec = It->second;
      auto Idx = llvm::find_if(
          Vec, [Reg](RegSlotPair &RSP) { return Reg == RSP.first; });
      if (Idx != Vec.end()) {
        int FI = Idx->second;
        LLVM_DEBUG(dbgs() << "Found global FI " << FI << " for register "
                          << printReg(Reg, &TRI) << " at "
                          << printMBBReference(*EHPad) << "\n");
        assert(ReservedSlots.count(FI) && "using unreserved slot");
        return FI;
      }
    }

    unsigned Size = getRegisterSize(TRI, Reg);
    FrameIndexesPerSize &Line = getCacheBucket(Size);
    while (Line.Index < Line.Slots.size()) {
      int FI = Line.Slots[Line.Index++];
      if (ReservedSlots.count(FI))
        continue;
      // If all sizes are kept together we probably need to extend the
      // spill slot size.
      if (MFI.getObjectSize(FI) < Size) {
        MFI.setObjectSize(FI, Size);
        MFI.setObjectAlignment(FI, Align(Size));
        NumSpillSlotsExtended++;
      }
      return FI;
    }
    int FI = MFI.CreateSpillStackObject(Size, Align(Size));
    NumSpillSlotsAllocated++;
    Line.Slots.push_back(FI);
    ++Line.Index;

    // Remember assignment {Reg, FI} for EHPad
    if (EHPad) {
      GlobalIndices[EHPad].push_back(std::make_pair(Reg, FI));
      LLVM_DEBUG(dbgs() << "Reserved FI " << FI << " for spilling reg "
                        << printReg(Reg, &TRI) << " at landing pad "
                        << printMBBReference(*EHPad) << "\n");
    }

    return FI;
  }

  // Sort all registers to spill in descendent order. In the
  // FixupSCSExtendSlotSize mode it will minimize the total frame size.
  // In non FixupSCSExtendSlotSize mode we can skip this step.
  void sortRegisters(SmallVectorImpl<Register> &Regs) {
    if (!FixupSCSExtendSlotSize)
      return;
    llvm::sort(Regs.begin(), Regs.end(), [&](Register &A, Register &B) {
      return getRegisterSize(TRI, A) > getRegisterSize(TRI, B);
    });
  }
};

// Describes the state of the current processing statepoint instruction.
class StatepointState {
private:
  // statepoint instruction.
  MachineInstr &MI;
  MachineFunction &MF;
  // If non-null then statepoint is invoke, and this points to the landing pad.
  MachineBasicBlock *EHPad;
  const TargetRegisterInfo &TRI;
  const TargetInstrInfo &TII;
  MachineFrameInfo &MFI;
  // Mask with callee saved registers.
  const uint32_t *Mask;
  // Cache of frame indexes used on previous instruction processing.
  FrameIndexesCache &CacheFI;
  bool AllowGCPtrInCSR;
  // Operands with physical registers requiring spilling.
  SmallVector<unsigned, 8> OpsToSpill;
  // Set of register to spill.
  SmallVector<Register, 8> RegsToSpill;
  // Set of registers to reload after statepoint.
  SmallVector<Register, 8> RegsToReload;
  // Map Register to Frame Slot index.
  DenseMap<Register, int> RegToSlotIdx;

public:
  StatepointState(MachineInstr &MI, const uint32_t *Mask,
                  FrameIndexesCache &CacheFI, bool AllowGCPtrInCSR)
      : MI(MI), MF(*MI.getMF()), TRI(*MF.getSubtarget().getRegisterInfo()),
        TII(*MF.getSubtarget().getInstrInfo()), MFI(MF.getFrameInfo()),
        Mask(Mask), CacheFI(CacheFI), AllowGCPtrInCSR(AllowGCPtrInCSR) {

    // Find statepoint's landing pad, if any.
    EHPad = nullptr;
    MachineBasicBlock *MBB = MI.getParent();
    // Invoke statepoint must be last one in block.
    bool Last = std::none_of(++MI.getIterator(), MBB->end().getInstrIterator(),
                             [](MachineInstr &I) {
                               return I.getOpcode() == TargetOpcode::STATEPOINT;
                             });

    if (!Last)
      return;

    auto IsEHPad = [](MachineBasicBlock *B) { return B->isEHPad(); };

    assert(llvm::count_if(MBB->successors(), IsEHPad) < 2 && "multiple EHPads");

    auto It = llvm::find_if(MBB->successors(), IsEHPad);
    if (It != MBB->succ_end())
      EHPad = *It;
  }

  MachineBasicBlock *getEHPad() const { return EHPad; }

  // Return true if register is callee saved.
  bool isCalleeSaved(Register Reg) { return (Mask[Reg / 32] >> Reg % 32) & 1; }

  // Iterates over statepoint meta args to find caller saver registers.
  // Also cache the size of found registers.
  // Returns true if caller save registers found.
  bool findRegistersToSpill() {
    SmallSet<Register, 8> VisitedRegs;
    SmallSet<Register, 8> GCRegs = collectGCRegs(MI);
    for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
                  EndIdx = MI.getNumOperands();
         Idx < EndIdx; ++Idx) {
      MachineOperand &MO = MI.getOperand(Idx);
      if (!MO.isReg() || MO.isImplicit())
        continue;
      Register Reg = MO.getReg();
      assert(Reg.isPhysical() && "Only physical regs are expected");

      if (isCalleeSaved(Reg) && (AllowGCPtrInCSR || !is_contained(GCRegs, Reg)))
        continue;

      LLVM_DEBUG(dbgs() << "Will spill " << printReg(Reg, &TRI) << " at index "
                        << Idx << "\n");

      if (VisitedRegs.insert(Reg).second)
        RegsToSpill.push_back(Reg);
      OpsToSpill.push_back(Idx);
    }
    CacheFI.sortRegisters(RegsToSpill);
    return !RegsToSpill.empty();
  }

  // Spill all caller saved registers right before statepoint instruction.
  // Remember frame index where register is spilled.
  void spillRegisters() {
    for (Register Reg : RegsToSpill) {
      int FI = CacheFI.getFrameIndex(Reg, EHPad);
      const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg);

      NumSpilledRegisters++;
      RegToSlotIdx[Reg] = FI;

      LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, &TRI) << " to FI " << FI
                        << "\n");

      // Perform trivial copy propagation
      bool IsKill = true;
      MachineBasicBlock::iterator InsertBefore(MI);
      Reg = performCopyPropagation(Reg, InsertBefore, IsKill, TII, TRI);

      LLVM_DEBUG(dbgs() << "Insert spill before " << *InsertBefore);
      TII.storeRegToStackSlot(*MI.getParent(), InsertBefore, Reg, IsKill, FI,
                              RC, &TRI);
    }
  }

  void insertReloadBefore(unsigned Reg, MachineBasicBlock::iterator It,
                          MachineBasicBlock *MBB) {
    const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg);
    int FI = RegToSlotIdx[Reg];
    if (It != MBB->end()) {
      TII.loadRegFromStackSlot(*MBB, It, Reg, FI, RC, &TRI);
      return;
    }

    // To insert reload at the end of MBB, insert it before last instruction
    // and then swap them.
    assert(MBB->begin() != MBB->end() && "Empty block");
    --It;
    TII.loadRegFromStackSlot(*MBB, It, Reg, FI, RC, &TRI);
    MachineInstr *Reload = It->getPrevNode();
    int Dummy = 0;
    (void)Dummy;
    assert(TII.isLoadFromStackSlot(*Reload, Dummy) == Reg);
    assert(Dummy == FI);
    MBB->remove(Reload);
    MBB->insertAfter(It, Reload);
  }

  // Insert reloads of (relocated) registers spilled in statepoint.
  void insertReloads(MachineInstr *NewStatepoint, RegReloadCache &RC) {
    MachineBasicBlock *MBB = NewStatepoint->getParent();
    auto InsertPoint = std::next(NewStatepoint->getIterator());

    for (auto Reg : RegsToReload) {
      insertReloadBefore(Reg, InsertPoint, MBB);
      LLVM_DEBUG(dbgs() << "Reloading " << printReg(Reg, &TRI) << " from FI "
                        << RegToSlotIdx[Reg] << " after statepoint\n");

      if (EHPad && !RC.hasReload(Reg, RegToSlotIdx[Reg], EHPad)) {
        RC.recordReload(Reg, RegToSlotIdx[Reg], EHPad);
        auto EHPadInsertPoint = EHPad->SkipPHIsLabelsAndDebug(EHPad->begin());
        insertReloadBefore(Reg, EHPadInsertPoint, EHPad);
        LLVM_DEBUG(dbgs() << "...also reload at EHPad "
                          << printMBBReference(*EHPad) << "\n");
      }
    }
  }

  // Re-write statepoint machine instruction to replace caller saved operands
  // with indirect memory location (frame index).
  MachineInstr *rewriteStatepoint() {
    MachineInstr *NewMI =
        MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
    MachineInstrBuilder MIB(MF, NewMI);

    unsigned NumOps = MI.getNumOperands();

    // New indices for the remaining defs.
    SmallVector<unsigned, 8> NewIndices;
    unsigned NumDefs = MI.getNumDefs();
    for (unsigned I = 0; I < NumDefs; ++I) {
      MachineOperand &DefMO = MI.getOperand(I);
      assert(DefMO.isReg() && DefMO.isDef() && "Expected Reg Def operand");
      Register Reg = DefMO.getReg();
      if (!AllowGCPtrInCSR) {
        assert(is_contained(RegsToSpill, Reg));
        RegsToReload.push_back(Reg);
      } else {
        if (isCalleeSaved(Reg)) {
          NewIndices.push_back(NewMI->getNumOperands());
          MIB.addReg(Reg, RegState::Define);
        } else {
          NewIndices.push_back(NumOps);
          RegsToReload.push_back(Reg);
        }
      }
    }

    // Add End marker.
    OpsToSpill.push_back(MI.getNumOperands());
    unsigned CurOpIdx = 0;

    for (unsigned I = NumDefs; I < MI.getNumOperands(); ++I) {
      MachineOperand &MO = MI.getOperand(I);
      if (I == OpsToSpill[CurOpIdx]) {
        int FI = RegToSlotIdx[MO.getReg()];
        MIB.addImm(StackMaps::IndirectMemRefOp);
        MIB.addImm(getRegisterSize(TRI, MO.getReg()));
        assert(MO.isReg() && "Should be register");
        assert(MO.getReg().isPhysical() && "Should be physical register");
        MIB.addFrameIndex(FI);
        MIB.addImm(0);
        ++CurOpIdx;
      } else {
        MIB.add(MO);
        unsigned OldDef;
        if (AllowGCPtrInCSR && MI.isRegTiedToDefOperand(I, &OldDef)) {
          assert(OldDef < NumDefs);
          assert(NewIndices[OldDef] < NumOps);
          MIB->tieOperands(NewIndices[OldDef], MIB->getNumOperands() - 1);
        }
      }
    }
    assert(CurOpIdx == (OpsToSpill.size() - 1) && "Not all operands processed");
    // Add mem operands.
    NewMI->setMemRefs(MF, MI.memoperands());
    for (auto It : RegToSlotIdx) {
      Register R = It.first;
      int FrameIndex = It.second;
      auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
      MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
      if (is_contained(RegsToReload, R))
        Flags |= MachineMemOperand::MOStore;
      auto *MMO =
          MF.getMachineMemOperand(PtrInfo, Flags, getRegisterSize(TRI, R),
                                  MFI.getObjectAlign(FrameIndex));
      NewMI->addMemOperand(MF, MMO);
    }

    // Insert new statepoint and erase old one.
    MI.getParent()->insert(MI, NewMI);

    LLVM_DEBUG(dbgs() << "rewritten statepoint to : " << *NewMI << "\n");
    MI.eraseFromParent();
    return NewMI;
  }
};

class StatepointProcessor {
private:
  MachineFunction &MF;
  const TargetRegisterInfo &TRI;
  FrameIndexesCache CacheFI;
  RegReloadCache ReloadCache;

public:
  StatepointProcessor(MachineFunction &MF)
      : MF(MF), TRI(*MF.getSubtarget().getRegisterInfo()),
        CacheFI(MF.getFrameInfo(), TRI) {}

  bool process(MachineInstr &MI, bool AllowGCPtrInCSR) {
    StatepointOpers SO(&MI);
    uint64_t Flags = SO.getFlags();
    // Do nothing for LiveIn, it supports all registers.
    if (Flags & (uint64_t)StatepointFlags::DeoptLiveIn)
      return false;
    LLVM_DEBUG(dbgs() << "\nMBB " << MI.getParent()->getNumber() << " "
                      << MI.getParent()->getName() << " : process statepoint "
                      << MI);
    CallingConv::ID CC = SO.getCallingConv();
    const uint32_t *Mask = TRI.getCallPreservedMask(MF, CC);
    StatepointState SS(MI, Mask, CacheFI, AllowGCPtrInCSR);
    CacheFI.reset(SS.getEHPad());

    if (!SS.findRegistersToSpill())
      return false;

    SS.spillRegisters();
    auto *NewStatepoint = SS.rewriteStatepoint();
    SS.insertReloads(NewStatepoint, ReloadCache);
    return true;
  }
};
} // namespace

bool FixupStatepointCallerSaved::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  const Function &F = MF.getFunction();
  if (!F.hasGC())
    return false;

  SmallVector<MachineInstr *, 16> Statepoints;
  for (MachineBasicBlock &BB : MF)
    for (MachineInstr &I : BB)
      if (I.getOpcode() == TargetOpcode::STATEPOINT)
        Statepoints.push_back(&I);

  if (Statepoints.empty())
    return false;

  bool Changed = false;
  StatepointProcessor SPP(MF);
  unsigned NumStatepoints = 0;
  bool AllowGCPtrInCSR = PassGCPtrInCSR;
  for (MachineInstr *I : Statepoints) {
    ++NumStatepoints;
    if (MaxStatepointsWithRegs.getNumOccurrences() &&
        NumStatepoints >= MaxStatepointsWithRegs)
      AllowGCPtrInCSR = false;
    Changed |= SPP.process(*I, AllowGCPtrInCSR);
  }
  return Changed;
}