InlineSpiller.cpp 58.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
//===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The inline spiller modifies the machine function directly instead of
// inserting spills and restores in VirtRegMap.
//
//===----------------------------------------------------------------------===//

#include "SplitKit.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalCalc.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/LiveStacks.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/Spiller.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
STATISTIC(NumSnippets,        "Number of spilled snippets");
STATISTIC(NumSpills,          "Number of spills inserted");
STATISTIC(NumSpillsRemoved,   "Number of spills removed");
STATISTIC(NumReloads,         "Number of reloads inserted");
STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
STATISTIC(NumFolded,          "Number of folded stack accesses");
STATISTIC(NumFoldedLoads,     "Number of folded loads");
STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");

static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
                                     cl::desc("Disable inline spill hoisting"));
static cl::opt<bool>
RestrictStatepointRemat("restrict-statepoint-remat",
                       cl::init(false), cl::Hidden,
                       cl::desc("Restrict remat for statepoint operands"));

namespace {

class HoistSpillHelper : private LiveRangeEdit::Delegate {
  MachineFunction &MF;
  LiveIntervals &LIS;
  LiveStacks &LSS;
  AliasAnalysis *AA;
  MachineDominatorTree &MDT;
  MachineLoopInfo &Loops;
  VirtRegMap &VRM;
  MachineRegisterInfo &MRI;
  const TargetInstrInfo &TII;
  const TargetRegisterInfo &TRI;
  const MachineBlockFrequencyInfo &MBFI;

  InsertPointAnalysis IPA;

  // Map from StackSlot to the LiveInterval of the original register.
  // Note the LiveInterval of the original register may have been deleted
  // after it is spilled. We keep a copy here to track the range where
  // spills can be moved.
  DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;

  // Map from pair of (StackSlot and Original VNI) to a set of spills which
  // have the same stackslot and have equal values defined by Original VNI.
  // These spills are mergeable and are hoist candiates.
  using MergeableSpillsMap =
      MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
  MergeableSpillsMap MergeableSpills;

  /// This is the map from original register to a set containing all its
  /// siblings. To hoist a spill to another BB, we need to find out a live
  /// sibling there and use it as the source of the new spill.
  DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap;

  bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
                     MachineBasicBlock &BB, Register &LiveReg);

  void rmRedundantSpills(
      SmallPtrSet<MachineInstr *, 16> &Spills,
      SmallVectorImpl<MachineInstr *> &SpillsToRm,
      DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);

  void getVisitOrders(
      MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
      SmallVectorImpl<MachineDomTreeNode *> &Orders,
      SmallVectorImpl<MachineInstr *> &SpillsToRm,
      DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
      DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);

  void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
                      SmallPtrSet<MachineInstr *, 16> &Spills,
                      SmallVectorImpl<MachineInstr *> &SpillsToRm,
                      DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);

public:
  HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
                   VirtRegMap &vrm)
      : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
        LSS(pass.getAnalysis<LiveStacks>()),
        AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
        MDT(pass.getAnalysis<MachineDominatorTree>()),
        Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
        MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
        TRI(*mf.getSubtarget().getRegisterInfo()),
        MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
        IPA(LIS, mf.getNumBlockIDs()) {}

  void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
                            unsigned Original);
  bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
  void hoistAllSpills();
  void LRE_DidCloneVirtReg(unsigned, unsigned) override;
};

class InlineSpiller : public Spiller {
  MachineFunction &MF;
  LiveIntervals &LIS;
  LiveStacks &LSS;
  AliasAnalysis *AA;
  MachineDominatorTree &MDT;
  MachineLoopInfo &Loops;
  VirtRegMap &VRM;
  MachineRegisterInfo &MRI;
  const TargetInstrInfo &TII;
  const TargetRegisterInfo &TRI;
  const MachineBlockFrequencyInfo &MBFI;

  // Variables that are valid during spill(), but used by multiple methods.
  LiveRangeEdit *Edit;
  LiveInterval *StackInt;
  int StackSlot;
  unsigned Original;

  // All registers to spill to StackSlot, including the main register.
  SmallVector<Register, 8> RegsToSpill;

  // All COPY instructions to/from snippets.
  // They are ignored since both operands refer to the same stack slot.
  SmallPtrSet<MachineInstr*, 8> SnippetCopies;

  // Values that failed to remat at some point.
  SmallPtrSet<VNInfo*, 8> UsedValues;

  // Dead defs generated during spilling.
  SmallVector<MachineInstr*, 8> DeadDefs;

  // Object records spills information and does the hoisting.
  HoistSpillHelper HSpiller;

  ~InlineSpiller() override = default;

public:
  InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
      : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
        LSS(pass.getAnalysis<LiveStacks>()),
        AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
        MDT(pass.getAnalysis<MachineDominatorTree>()),
        Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
        MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
        TRI(*mf.getSubtarget().getRegisterInfo()),
        MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
        HSpiller(pass, mf, vrm) {}

  void spill(LiveRangeEdit &) override;
  void postOptimization() override;

private:
  bool isSnippet(const LiveInterval &SnipLI);
  void collectRegsToSpill();

  bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }

  bool isSibling(Register Reg);
  bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
  void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);

  void markValueUsed(LiveInterval*, VNInfo*);
  bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
  bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
  void reMaterializeAll();

  bool coalesceStackAccess(MachineInstr *MI, Register Reg);
  bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
                         MachineInstr *LoadMI = nullptr);
  void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
  void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);

  void spillAroundUses(Register Reg);
  void spillAll();
};

} // end anonymous namespace

Spiller::~Spiller() = default;

void Spiller::anchor() {}

Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass,
                                   MachineFunction &mf,
                                   VirtRegMap &vrm) {
  return new InlineSpiller(pass, mf, vrm);
}

//===----------------------------------------------------------------------===//
//                                Snippets
//===----------------------------------------------------------------------===//

// When spilling a virtual register, we also spill any snippets it is connected
// to. The snippets are small live ranges that only have a single real use,
// leftovers from live range splitting. Spilling them enables memory operand
// folding or tightens the live range around the single use.
//
// This minimizes register pressure and maximizes the store-to-load distance for
// spill slots which can be important in tight loops.

/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
/// otherwise return 0.
static Register isFullCopyOf(const MachineInstr &MI, Register Reg) {
  if (!MI.isFullCopy())
    return Register();
  if (MI.getOperand(0).getReg() == Reg)
    return MI.getOperand(1).getReg();
  if (MI.getOperand(1).getReg() == Reg)
    return MI.getOperand(0).getReg();
  return Register();
}

/// isSnippet - Identify if a live interval is a snippet that should be spilled.
/// It is assumed that SnipLI is a virtual register with the same original as
/// Edit->getReg().
bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
  Register Reg = Edit->getReg();

  // A snippet is a tiny live range with only a single instruction using it
  // besides copies to/from Reg or spills/fills. We accept:
  //
  //   %snip = COPY %Reg / FILL fi#
  //   %snip = USE %snip
  //   %Reg = COPY %snip / SPILL %snip, fi#
  //
  if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
    return false;

  MachineInstr *UseMI = nullptr;

  // Check that all uses satisfy our criteria.
  for (MachineRegisterInfo::reg_instr_nodbg_iterator
           RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()),
           E = MRI.reg_instr_nodbg_end();
       RI != E;) {
    MachineInstr &MI = *RI++;

    // Allow copies to/from Reg.
    if (isFullCopyOf(MI, Reg))
      continue;

    // Allow stack slot loads.
    int FI;
    if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
      continue;

    // Allow stack slot stores.
    if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
      continue;

    // Allow a single additional instruction.
    if (UseMI && &MI != UseMI)
      return false;
    UseMI = &MI;
  }
  return true;
}

/// collectRegsToSpill - Collect live range snippets that only have a single
/// real use.
void InlineSpiller::collectRegsToSpill() {
  Register Reg = Edit->getReg();

  // Main register always spills.
  RegsToSpill.assign(1, Reg);
  SnippetCopies.clear();

  // Snippets all have the same original, so there can't be any for an original
  // register.
  if (Original == Reg)
    return;

  for (MachineRegisterInfo::reg_instr_iterator
       RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
    MachineInstr &MI = *RI++;
    Register SnipReg = isFullCopyOf(MI, Reg);
    if (!isSibling(SnipReg))
      continue;
    LiveInterval &SnipLI = LIS.getInterval(SnipReg);
    if (!isSnippet(SnipLI))
      continue;
    SnippetCopies.insert(&MI);
    if (isRegToSpill(SnipReg))
      continue;
    RegsToSpill.push_back(SnipReg);
    LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
    ++NumSnippets;
  }
}

bool InlineSpiller::isSibling(Register Reg) {
  return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
}

/// It is beneficial to spill to earlier place in the same BB in case
/// as follows:
/// There is an alternative def earlier in the same MBB.
/// Hoist the spill as far as possible in SpillMBB. This can ease
/// register pressure:
///
///   x = def
///   y = use x
///   s = copy x
///
/// Hoisting the spill of s to immediately after the def removes the
/// interference between x and y:
///
///   x = def
///   spill x
///   y = use killed x
///
/// This hoist only helps when the copy kills its source.
///
bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
                                       MachineInstr &CopyMI) {
  SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
#ifndef NDEBUG
  VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
  assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
#endif

  Register SrcReg = CopyMI.getOperand(1).getReg();
  LiveInterval &SrcLI = LIS.getInterval(SrcReg);
  VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
  LiveQueryResult SrcQ = SrcLI.Query(Idx);
  MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
  if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
    return false;

  // Conservatively extend the stack slot range to the range of the original
  // value. We may be able to do better with stack slot coloring by being more
  // careful here.
  assert(StackInt && "No stack slot assigned yet.");
  LiveInterval &OrigLI = LIS.getInterval(Original);
  VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
  StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
  LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
                    << *StackInt << '\n');

  // We are going to spill SrcVNI immediately after its def, so clear out
  // any later spills of the same value.
  eliminateRedundantSpills(SrcLI, SrcVNI);

  MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
  MachineBasicBlock::iterator MII;
  if (SrcVNI->isPHIDef())
    MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
  else {
    MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
    assert(DefMI && "Defining instruction disappeared");
    MII = DefMI;
    ++MII;
  }
  // Insert spill without kill flag immediately after def.
  TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
                          MRI.getRegClass(SrcReg), &TRI);
  --MII; // Point to store instruction.
  LIS.InsertMachineInstrInMaps(*MII);
  LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);

  HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
  ++NumSpills;
  return true;
}

/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
/// redundant spills of this value in SLI.reg and sibling copies.
void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
  assert(VNI && "Missing value");
  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
  WorkList.push_back(std::make_pair(&SLI, VNI));
  assert(StackInt && "No stack slot assigned yet.");

  do {
    LiveInterval *LI;
    std::tie(LI, VNI) = WorkList.pop_back_val();
    Register Reg = LI->reg();
    LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
                      << VNI->def << " in " << *LI << '\n');

    // Regs to spill are taken care of.
    if (isRegToSpill(Reg))
      continue;

    // Add all of VNI's live range to StackInt.
    StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
    LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');

    // Find all spills and copies of VNI.
    for (MachineRegisterInfo::use_instr_nodbg_iterator
         UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
         UI != E; ) {
      MachineInstr &MI = *UI++;
      if (!MI.isCopy() && !MI.mayStore())
        continue;
      SlotIndex Idx = LIS.getInstructionIndex(MI);
      if (LI->getVNInfoAt(Idx) != VNI)
        continue;

      // Follow sibling copies down the dominator tree.
      if (Register DstReg = isFullCopyOf(MI, Reg)) {
        if (isSibling(DstReg)) {
           LiveInterval &DstLI = LIS.getInterval(DstReg);
           VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
           assert(DstVNI && "Missing defined value");
           assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
           WorkList.push_back(std::make_pair(&DstLI, DstVNI));
        }
        continue;
      }

      // Erase spills.
      int FI;
      if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
        LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
        // eliminateDeadDefs won't normally remove stores, so switch opcode.
        MI.setDesc(TII.get(TargetOpcode::KILL));
        DeadDefs.push_back(&MI);
        ++NumSpillsRemoved;
        if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
          --NumSpills;
      }
    }
  } while (!WorkList.empty());
}

//===----------------------------------------------------------------------===//
//                            Rematerialization
//===----------------------------------------------------------------------===//

/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
/// instruction cannot be eliminated. See through snippet copies
void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
  WorkList.push_back(std::make_pair(LI, VNI));
  do {
    std::tie(LI, VNI) = WorkList.pop_back_val();
    if (!UsedValues.insert(VNI).second)
      continue;

    if (VNI->isPHIDef()) {
      MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
      for (MachineBasicBlock *P : MBB->predecessors()) {
        VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
        if (PVNI)
          WorkList.push_back(std::make_pair(LI, PVNI));
      }
      continue;
    }

    // Follow snippet copies.
    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
    if (!SnippetCopies.count(MI))
      continue;
    LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
    assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy");
    VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
    assert(SnipVNI && "Snippet undefined before copy");
    WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
  } while (!WorkList.empty());
}

bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
                                                     MachineInstr &MI) {
  if (!RestrictStatepointRemat)
    return true;
  // Here's a quick explanation of the problem we're trying to handle here:
  // * There are some pseudo instructions with more vreg uses than there are
  //   physical registers on the machine.
  // * This is normally handled by spilling the vreg, and folding the reload
  //   into the user instruction.  (Thus decreasing the number of used vregs
  //   until the remainder can be assigned to physregs.)
  // * However, since we may try to spill vregs in any order, we can end up
  //   trying to spill each operand to the instruction, and then rematting it
  //   instead.  When that happens, the new live intervals (for the remats) are
  //   expected to be trivially assignable (i.e. RS_Done).  However, since we
  //   may have more remats than physregs, we're guaranteed to fail to assign
  //   one.
  // At the moment, we only handle this for STATEPOINTs since they're the only
  // pseudo op where we've seen this.  If we start seeing other instructions
  // with the same problem, we need to revisit this.
  if (MI.getOpcode() != TargetOpcode::STATEPOINT)
    return true;
  // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
  // that number of physical registers is enough to cover all fixed arguments.
  // If it is not true we need to revisit it.
  for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
                EndIdx = MI.getNumOperands();
       Idx < EndIdx; ++Idx) {
    MachineOperand &MO = MI.getOperand(Idx);
    if (MO.isReg() && MO.getReg() == VReg)
      return false;
  }
  return true;
}

/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
  // Analyze instruction
  SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
  VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops);

  if (!RI.Reads)
    return false;

  SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
  VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());

  if (!ParentVNI) {
    LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg())
        MO.setIsUndef();
    }
    LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
    return true;
  }

  if (SnippetCopies.count(&MI))
    return false;

  LiveInterval &OrigLI = LIS.getInterval(Original);
  VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
  LiveRangeEdit::Remat RM(ParentVNI);
  RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);

  if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
    markValueUsed(&VirtReg, ParentVNI);
    LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
    return false;
  }

  // If the instruction also writes VirtReg.reg, it had better not require the
  // same register for uses and defs.
  if (RI.Tied) {
    markValueUsed(&VirtReg, ParentVNI);
    LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
    return false;
  }

  // Before rematerializing into a register for a single instruction, try to
  // fold a load into the instruction. That avoids allocating a new register.
  if (RM.OrigMI->canFoldAsLoad() &&
      foldMemoryOperand(Ops, RM.OrigMI)) {
    Edit->markRematerialized(RM.ParentVNI);
    ++NumFoldedLoads;
    return true;
  }

  // If we can't guarantee that we'll be able to actually assign the new vreg,
  // we can't remat.
  if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) {
    markValueUsed(&VirtReg, ParentVNI);
    LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
    return false;
  }

  // Allocate a new register for the remat.
  Register NewVReg = Edit->createFrom(Original);

  // Finally we can rematerialize OrigMI before MI.
  SlotIndex DefIdx =
      Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);

  // We take the DebugLoc from MI, since OrigMI may be attributed to a
  // different source location.
  auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
  NewMI->setDebugLoc(MI.getDebugLoc());

  (void)DefIdx;
  LLVM_DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
                    << *LIS.getInstructionFromIndex(DefIdx));

  // Replace operands
  for (const auto &OpPair : Ops) {
    MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
    if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) {
      MO.setReg(NewVReg);
      MO.setIsKill();
    }
  }
  LLVM_DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');

  ++NumRemats;
  return true;
}

/// reMaterializeAll - Try to rematerialize as many uses as possible,
/// and trim the live ranges after.
void InlineSpiller::reMaterializeAll() {
  if (!Edit->anyRematerializable(AA))
    return;

  UsedValues.clear();

  // Try to remat before all uses of snippets.
  bool anyRemat = false;
  for (Register Reg : RegsToSpill) {
    LiveInterval &LI = LIS.getInterval(Reg);
    for (MachineRegisterInfo::reg_bundle_iterator
           RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
         RegI != E; ) {
      MachineInstr &MI = *RegI++;

      // Debug values are not allowed to affect codegen.
      if (MI.isDebugValue())
        continue;

      assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
             "instruction that isn't a DBG_VALUE");

      anyRemat |= reMaterializeFor(LI, MI);
    }
  }
  if (!anyRemat)
    return;

  // Remove any values that were completely rematted.
  for (Register Reg : RegsToSpill) {
    LiveInterval &LI = LIS.getInterval(Reg);
    for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
         I != E; ++I) {
      VNInfo *VNI = *I;
      if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
        continue;
      MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
      MI->addRegisterDead(Reg, &TRI);
      if (!MI->allDefsAreDead())
        continue;
      LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
      DeadDefs.push_back(MI);
    }
  }

  // Eliminate dead code after remat. Note that some snippet copies may be
  // deleted here.
  if (DeadDefs.empty())
    return;
  LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
  Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);

  // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
  // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
  // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
  // removed, PHI VNI are still left in the LiveInterval.
  // So to get rid of unused reg, we need to check whether it has non-dbg
  // reference instead of whether it has non-empty interval.
  unsigned ResultPos = 0;
  for (Register Reg : RegsToSpill) {
    if (MRI.reg_nodbg_empty(Reg)) {
      Edit->eraseVirtReg(Reg);
      continue;
    }

    assert(LIS.hasInterval(Reg) &&
           (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
           "Empty and not used live-range?!");

    RegsToSpill[ResultPos++] = Reg;
  }
  RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
  LLVM_DEBUG(dbgs() << RegsToSpill.size()
                    << " registers to spill after remat.\n");
}

//===----------------------------------------------------------------------===//
//                                 Spilling
//===----------------------------------------------------------------------===//

/// If MI is a load or store of StackSlot, it can be removed.
bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
  int FI = 0;
  Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
  bool IsLoad = InstrReg;
  if (!IsLoad)
    InstrReg = TII.isStoreToStackSlot(*MI, FI);

  // We have a stack access. Is it the right register and slot?
  if (InstrReg != Reg || FI != StackSlot)
    return false;

  if (!IsLoad)
    HSpiller.rmFromMergeableSpills(*MI, StackSlot);

  LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
  LIS.RemoveMachineInstrFromMaps(*MI);
  MI->eraseFromParent();

  if (IsLoad) {
    ++NumReloadsRemoved;
    --NumReloads;
  } else {
    ++NumSpillsRemoved;
    --NumSpills;
  }

  return true;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD
// Dump the range of instructions from B to E with their slot indexes.
static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
                                               MachineBasicBlock::iterator E,
                                               LiveIntervals const &LIS,
                                               const char *const header,
                                               Register VReg = Register()) {
  char NextLine = '\n';
  char SlotIndent = '\t';

  if (std::next(B) == E) {
    NextLine = ' ';
    SlotIndent = ' ';
  }

  dbgs() << '\t' << header << ": " << NextLine;

  for (MachineBasicBlock::iterator I = B; I != E; ++I) {
    SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();

    // If a register was passed in and this instruction has it as a
    // destination that is marked as an early clobber, print the
    // early-clobber slot index.
    if (VReg) {
      MachineOperand *MO = I->findRegisterDefOperand(VReg);
      if (MO && MO->isEarlyClobber())
        Idx = Idx.getRegSlot(true);
    }

    dbgs() << SlotIndent << Idx << '\t' << *I;
  }
}
#endif

/// foldMemoryOperand - Try folding stack slot references in Ops into their
/// instructions.
///
/// @param Ops    Operand indices from AnalyzeVirtRegInBundle().
/// @param LoadMI Load instruction to use instead of stack slot when non-null.
/// @return       True on success.
bool InlineSpiller::
foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
                  MachineInstr *LoadMI) {
  if (Ops.empty())
    return false;
  // Don't attempt folding in bundles.
  MachineInstr *MI = Ops.front().first;
  if (Ops.back().first != MI || MI->isBundled())
    return false;

  bool WasCopy = MI->isCopy();
  Register ImpReg;

  // TII::foldMemoryOperand will do what we need here for statepoint
  // (fold load into use and remove corresponding def). We will replace
  // uses of removed def with loads (spillAroundUses).
  // For that to work we need to untie def and use to pass it through
  // foldMemoryOperand and signal foldPatchpoint that it is allowed to
  // fold them.
  bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT;

  // Spill subregs if the target allows it.
  // We always want to spill subregs for stackmap/patchpoint pseudos.
  bool SpillSubRegs = TII.isSubregFoldable() ||
                      MI->getOpcode() == TargetOpcode::STATEPOINT ||
                      MI->getOpcode() == TargetOpcode::PATCHPOINT ||
                      MI->getOpcode() == TargetOpcode::STACKMAP;

  // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
  // operands.
  SmallVector<unsigned, 8> FoldOps;
  for (const auto &OpPair : Ops) {
    unsigned Idx = OpPair.second;
    assert(MI == OpPair.first && "Instruction conflict during operand folding");
    MachineOperand &MO = MI->getOperand(Idx);
    if (MO.isImplicit()) {
      ImpReg = MO.getReg();
      continue;
    }

    if (UntieRegs && MO.isTied())
      MI->untieRegOperand(Idx);

    if (!SpillSubRegs && MO.getSubReg())
      return false;
    // We cannot fold a load instruction into a def.
    if (LoadMI && MO.isDef())
      return false;
    // Tied use operands should not be passed to foldMemoryOperand.
    if (!MI->isRegTiedToDefOperand(Idx))
      FoldOps.push_back(Idx);
  }

  // If we only have implicit uses, we won't be able to fold that.
  // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
  if (FoldOps.empty())
    return false;

  MachineInstrSpan MIS(MI, MI->getParent());

  MachineInstr *FoldMI =
      LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
             : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
  if (!FoldMI)
    return false;

  // Remove LIS for any dead defs in the original MI not in FoldMI.
  for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
    if (!MO->isReg())
      continue;
    Register Reg = MO->getReg();
    if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) {
      continue;
    }
    // Skip non-Defs, including undef uses and internal reads.
    if (MO->isUse())
      continue;
    PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
    if (RI.FullyDefined)
      continue;
    // FoldMI does not define this physreg. Remove the LI segment.
    assert(MO->isDead() && "Cannot fold physreg def");
    SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
    LIS.removePhysRegDefAt(Reg, Idx);
  }

  int FI;
  if (TII.isStoreToStackSlot(*MI, FI) &&
      HSpiller.rmFromMergeableSpills(*MI, FI))
    --NumSpills;
  LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
  // Update the call site info.
  if (MI->isCandidateForCallSiteEntry())
    MI->getMF()->moveCallSiteInfo(MI, FoldMI);
  MI->eraseFromParent();

  // Insert any new instructions other than FoldMI into the LIS maps.
  assert(!MIS.empty() && "Unexpected empty span of instructions!");
  for (MachineInstr &MI : MIS)
    if (&MI != FoldMI)
      LIS.InsertMachineInstrInMaps(MI);

  // TII.foldMemoryOperand may have left some implicit operands on the
  // instruction.  Strip them.
  if (ImpReg)
    for (unsigned i = FoldMI->getNumOperands(); i; --i) {
      MachineOperand &MO = FoldMI->getOperand(i - 1);
      if (!MO.isReg() || !MO.isImplicit())
        break;
      if (MO.getReg() == ImpReg)
        FoldMI->RemoveOperand(i - 1);
    }

  LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
                                                "folded"));

  if (!WasCopy)
    ++NumFolded;
  else if (Ops.front().second == 0) {
    ++NumSpills;
    HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
  } else
    ++NumReloads;
  return true;
}

void InlineSpiller::insertReload(Register NewVReg,
                                 SlotIndex Idx,
                                 MachineBasicBlock::iterator MI) {
  MachineBasicBlock &MBB = *MI->getParent();

  MachineInstrSpan MIS(MI, &MBB);
  TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
                           MRI.getRegClass(NewVReg), &TRI);

  LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);

  LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
                                                NewVReg));
  ++NumReloads;
}

/// Check if \p Def fully defines a VReg with an undefined value.
/// If that's the case, that means the value of VReg is actually
/// not relevant.
static bool isRealSpill(const MachineInstr &Def) {
  if (!Def.isImplicitDef())
    return true;
  assert(Def.getNumOperands() == 1 &&
         "Implicit def with more than one definition");
  // We can say that the VReg defined by Def is undef, only if it is
  // fully defined by Def. Otherwise, some of the lanes may not be
  // undef and the value of the VReg matters.
  return Def.getOperand(0).getSubReg();
}

/// insertSpill - Insert a spill of NewVReg after MI.
void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
                                 MachineBasicBlock::iterator MI) {
  // Spill are not terminators, so inserting spills after terminators will
  // violate invariants in MachineVerifier.
  assert(!MI->isTerminator() && "Inserting a spill after a terminator");
  MachineBasicBlock &MBB = *MI->getParent();

  MachineInstrSpan MIS(MI, &MBB);
  MachineBasicBlock::iterator SpillBefore = std::next(MI);
  bool IsRealSpill = isRealSpill(*MI);
  if (IsRealSpill)
    TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
                            MRI.getRegClass(NewVReg), &TRI);
  else
    // Don't spill undef value.
    // Anything works for undef, in particular keeping the memory
    // uninitialized is a viable option and it saves code size and
    // run time.
    BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
        .addReg(NewVReg, getKillRegState(isKill));

  MachineBasicBlock::iterator Spill = std::next(MI);
  LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());

  LLVM_DEBUG(
      dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"));
  ++NumSpills;
  if (IsRealSpill)
    HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
}

/// spillAroundUses - insert spill code around each use of Reg.
void InlineSpiller::spillAroundUses(Register Reg) {
  LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
  LiveInterval &OldLI = LIS.getInterval(Reg);

  // Iterate over instructions using Reg.
  for (MachineRegisterInfo::reg_bundle_iterator
       RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
       RegI != E; ) {
    MachineInstr *MI = &*(RegI++);

    // Debug values are not allowed to affect codegen.
    if (MI->isDebugValue()) {
      // Modify DBG_VALUE now that the value is in a spill slot.
      MachineBasicBlock *MBB = MI->getParent();
      LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI);
      buildDbgValueForSpill(*MBB, MI, *MI, StackSlot);
      MBB->erase(MI);
      continue;
    }

    assert(!MI->isDebugInstr() && "Did not expect to find a use in debug "
           "instruction that isn't a DBG_VALUE");

    // Ignore copies to/from snippets. We'll delete them.
    if (SnippetCopies.count(MI))
      continue;

    // Stack slot accesses may coalesce away.
    if (coalesceStackAccess(MI, Reg))
      continue;

    // Analyze instruction.
    SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
    VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops);

    // Find the slot index where this instruction reads and writes OldLI.
    // This is usually the def slot, except for tied early clobbers.
    SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
    if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
      if (SlotIndex::isSameInstr(Idx, VNI->def))
        Idx = VNI->def;

    // Check for a sibling copy.
    Register SibReg = isFullCopyOf(*MI, Reg);
    if (SibReg && isSibling(SibReg)) {
      // This may actually be a copy between snippets.
      if (isRegToSpill(SibReg)) {
        LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI);
        SnippetCopies.insert(MI);
        continue;
      }
      if (RI.Writes) {
        if (hoistSpillInsideBB(OldLI, *MI)) {
          // This COPY is now dead, the value is already in the stack slot.
          MI->getOperand(0).setIsDead();
          DeadDefs.push_back(MI);
          continue;
        }
      } else {
        // This is a reload for a sib-reg copy. Drop spills downstream.
        LiveInterval &SibLI = LIS.getInterval(SibReg);
        eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
        // The COPY will fold to a reload below.
      }
    }

    // Attempt to fold memory ops.
    if (foldMemoryOperand(Ops))
      continue;

    // Create a new virtual register for spill/fill.
    // FIXME: Infer regclass from instruction alone.
    Register NewVReg = Edit->createFrom(Reg);

    if (RI.Reads)
      insertReload(NewVReg, Idx, MI);

    // Rewrite instruction operands.
    bool hasLiveDef = false;
    for (const auto &OpPair : Ops) {
      MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
      MO.setReg(NewVReg);
      if (MO.isUse()) {
        if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
          MO.setIsKill();
      } else {
        if (!MO.isDead())
          hasLiveDef = true;
      }
    }
    LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');

    // FIXME: Use a second vreg if instruction has no tied ops.
    if (RI.Writes)
      if (hasLiveDef)
        insertSpill(NewVReg, true, MI);
  }
}

/// spillAll - Spill all registers remaining after rematerialization.
void InlineSpiller::spillAll() {
  // Update LiveStacks now that we are committed to spilling.
  if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
    StackSlot = VRM.assignVirt2StackSlot(Original);
    StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
    StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
  } else
    StackInt = &LSS.getInterval(StackSlot);

  if (Original != Edit->getReg())
    VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);

  assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
  for (Register Reg : RegsToSpill)
    StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
                                     StackInt->getValNumInfo(0));
  LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');

  // Spill around uses of all RegsToSpill.
  for (Register Reg : RegsToSpill)
    spillAroundUses(Reg);

  // Hoisted spills may cause dead code.
  if (!DeadDefs.empty()) {
    LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
    Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
  }

  // Finally delete the SnippetCopies.
  for (Register Reg : RegsToSpill) {
    for (MachineRegisterInfo::reg_instr_iterator
         RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
         RI != E; ) {
      MachineInstr &MI = *(RI++);
      assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
      // FIXME: Do this with a LiveRangeEdit callback.
      LIS.RemoveMachineInstrFromMaps(MI);
      MI.eraseFromParent();
    }
  }

  // Delete all spilled registers.
  for (Register Reg : RegsToSpill)
    Edit->eraseVirtReg(Reg);
}

void InlineSpiller::spill(LiveRangeEdit &edit) {
  ++NumSpilledRanges;
  Edit = &edit;
  assert(!Register::isStackSlot(edit.getReg()) &&
         "Trying to spill a stack slot.");
  // Share a stack slot among all descendants of Original.
  Original = VRM.getOriginal(edit.getReg());
  StackSlot = VRM.getStackSlot(Original);
  StackInt = nullptr;

  LLVM_DEBUG(dbgs() << "Inline spilling "
                    << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
                    << ':' << edit.getParent() << "\nFrom original "
                    << printReg(Original) << '\n');
  assert(edit.getParent().isSpillable() &&
         "Attempting to spill already spilled value.");
  assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");

  collectRegsToSpill();
  reMaterializeAll();

  // Remat may handle everything.
  if (!RegsToSpill.empty())
    spillAll();

  Edit->calculateRegClassAndHint(MF, Loops, MBFI);
}

/// Optimizations after all the reg selections and spills are done.
void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }

/// When a spill is inserted, add the spill to MergeableSpills map.
void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
                                            unsigned Original) {
  BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
  LiveInterval &OrigLI = LIS.getInterval(Original);
  // save a copy of LiveInterval in StackSlotToOrigLI because the original
  // LiveInterval may be cleared after all its references are spilled.
  if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
    auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight());
    LI->assign(OrigLI, Allocator);
    StackSlotToOrigLI[StackSlot] = std::move(LI);
  }
  SlotIndex Idx = LIS.getInstructionIndex(Spill);
  VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
  std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
  MergeableSpills[MIdx].insert(&Spill);
}

/// When a spill is removed, remove the spill from MergeableSpills map.
/// Return true if the spill is removed successfully.
bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
                                             int StackSlot) {
  auto It = StackSlotToOrigLI.find(StackSlot);
  if (It == StackSlotToOrigLI.end())
    return false;
  SlotIndex Idx = LIS.getInstructionIndex(Spill);
  VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
  std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
  return MergeableSpills[MIdx].erase(&Spill);
}

/// Check BB to see if it is a possible target BB to place a hoisted spill,
/// i.e., there should be a living sibling of OrigReg at the insert point.
bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
                                     MachineBasicBlock &BB, Register &LiveReg) {
  SlotIndex Idx;
  Register OrigReg = OrigLI.reg();
  MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB);
  if (MI != BB.end())
    Idx = LIS.getInstructionIndex(*MI);
  else
    Idx = LIS.getMBBEndIdx(&BB).getPrevSlot();
  SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
  assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");

  for (const Register &SibReg : Siblings) {
    LiveInterval &LI = LIS.getInterval(SibReg);
    VNInfo *VNI = LI.getVNInfoAt(Idx);
    if (VNI) {
      LiveReg = SibReg;
      return true;
    }
  }
  return false;
}

/// Remove redundant spills in the same BB. Save those redundant spills in
/// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
void HoistSpillHelper::rmRedundantSpills(
    SmallPtrSet<MachineInstr *, 16> &Spills,
    SmallVectorImpl<MachineInstr *> &SpillsToRm,
    DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
  // For each spill saw, check SpillBBToSpill[] and see if its BB already has
  // another spill inside. If a BB contains more than one spill, only keep the
  // earlier spill with smaller SlotIndex.
  for (const auto CurrentSpill : Spills) {
    MachineBasicBlock *Block = CurrentSpill->getParent();
    MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
    MachineInstr *PrevSpill = SpillBBToSpill[Node];
    if (PrevSpill) {
      SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
      SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
      MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
      MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
      SpillsToRm.push_back(SpillToRm);
      SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
    } else {
      SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
    }
  }
  for (const auto SpillToRm : SpillsToRm)
    Spills.erase(SpillToRm);
}

/// Starting from \p Root find a top-down traversal order of the dominator
/// tree to visit all basic blocks containing the elements of \p Spills.
/// Redundant spills will be found and put into \p SpillsToRm at the same
/// time. \p SpillBBToSpill will be populated as part of the process and
/// maps a basic block to the first store occurring in the basic block.
/// \post SpillsToRm.union(Spills\@post) == Spills\@pre
void HoistSpillHelper::getVisitOrders(
    MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
    SmallVectorImpl<MachineDomTreeNode *> &Orders,
    SmallVectorImpl<MachineInstr *> &SpillsToRm,
    DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
    DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
  // The set contains all the possible BB nodes to which we may hoist
  // original spills.
  SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
  // Save the BB nodes on the path from the first BB node containing
  // non-redundant spill to the Root node.
  SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
  // All the spills to be hoisted must originate from a single def instruction
  // to the OrigReg. It means the def instruction should dominate all the spills
  // to be hoisted. We choose the BB where the def instruction is located as
  // the Root.
  MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
  // For every node on the dominator tree with spill, walk up on the dominator
  // tree towards the Root node until it is reached. If there is other node
  // containing spill in the middle of the path, the previous spill saw will
  // be redundant and the node containing it will be removed. All the nodes on
  // the path starting from the first node with non-redundant spill to the Root
  // node will be added to the WorkSet, which will contain all the possible
  // locations where spills may be hoisted to after the loop below is done.
  for (const auto Spill : Spills) {
    MachineBasicBlock *Block = Spill->getParent();
    MachineDomTreeNode *Node = MDT[Block];
    MachineInstr *SpillToRm = nullptr;
    while (Node != RootIDomNode) {
      // If Node dominates Block, and it already contains a spill, the spill in
      // Block will be redundant.
      if (Node != MDT[Block] && SpillBBToSpill[Node]) {
        SpillToRm = SpillBBToSpill[MDT[Block]];
        break;
        /// If we see the Node already in WorkSet, the path from the Node to
        /// the Root node must already be traversed by another spill.
        /// Then no need to repeat.
      } else if (WorkSet.count(Node)) {
        break;
      } else {
        NodesOnPath.insert(Node);
      }
      Node = Node->getIDom();
    }
    if (SpillToRm) {
      SpillsToRm.push_back(SpillToRm);
    } else {
      // Add a BB containing the original spills to SpillsToKeep -- i.e.,
      // set the initial status before hoisting start. The value of BBs
      // containing original spills is set to 0, in order to descriminate
      // with BBs containing hoisted spills which will be inserted to
      // SpillsToKeep later during hoisting.
      SpillsToKeep[MDT[Block]] = 0;
      WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
    }
    NodesOnPath.clear();
  }

  // Sort the nodes in WorkSet in top-down order and save the nodes
  // in Orders. Orders will be used for hoisting in runHoistSpills.
  unsigned idx = 0;
  Orders.push_back(MDT.getBase().getNode(Root));
  do {
    MachineDomTreeNode *Node = Orders[idx++];
    for (MachineDomTreeNode *Child : Node->children()) {
      if (WorkSet.count(Child))
        Orders.push_back(Child);
    }
  } while (idx != Orders.size());
  assert(Orders.size() == WorkSet.size() &&
         "Orders have different size with WorkSet");

#ifndef NDEBUG
  LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
  SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
  for (; RIt != Orders.rend(); RIt++)
    LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
  LLVM_DEBUG(dbgs() << "\n");
#endif
}

/// Try to hoist spills according to BB hotness. The spills to removed will
/// be saved in \p SpillsToRm. The spills to be inserted will be saved in
/// \p SpillsToIns.
void HoistSpillHelper::runHoistSpills(
    LiveInterval &OrigLI, VNInfo &OrigVNI,
    SmallPtrSet<MachineInstr *, 16> &Spills,
    SmallVectorImpl<MachineInstr *> &SpillsToRm,
    DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
  // Visit order of dominator tree nodes.
  SmallVector<MachineDomTreeNode *, 32> Orders;
  // SpillsToKeep contains all the nodes where spills are to be inserted
  // during hoisting. If the spill to be inserted is an original spill
  // (not a hoisted one), the value of the map entry is 0. If the spill
  // is a hoisted spill, the value of the map entry is the VReg to be used
  // as the source of the spill.
  DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
  // Map from BB to the first spill inside of it.
  DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;

  rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);

  MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
  getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
                 SpillBBToSpill);

  // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
  // nodes set and the cost of all the spills inside those nodes.
  // The nodes set are the locations where spills are to be inserted
  // in the subtree of current node.
  using NodesCostPair =
      std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
  DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;

  // Iterate Orders set in reverse order, which will be a bottom-up order
  // in the dominator tree. Once we visit a dom tree node, we know its
  // children have already been visited and the spill locations in the
  // subtrees of all the children have been determined.
  SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
  for (; RIt != Orders.rend(); RIt++) {
    MachineBasicBlock *Block = (*RIt)->getBlock();

    // If Block contains an original spill, simply continue.
    if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
      SpillsInSubTreeMap[*RIt].first.insert(*RIt);
      // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
      SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
      continue;
    }

    // Collect spills in subtree of current node (*RIt) to
    // SpillsInSubTreeMap[*RIt].first.
    for (MachineDomTreeNode *Child : (*RIt)->children()) {
      if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
        continue;
      // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
      // should be placed before getting the begin and end iterators of
      // SpillsInSubTreeMap[Child].first, or else the iterators may be
      // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
      // and the map grows and then the original buckets in the map are moved.
      SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
          SpillsInSubTreeMap[*RIt].first;
      BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
      SubTreeCost += SpillsInSubTreeMap[Child].second;
      auto BI = SpillsInSubTreeMap[Child].first.begin();
      auto EI = SpillsInSubTreeMap[Child].first.end();
      SpillsInSubTree.insert(BI, EI);
      SpillsInSubTreeMap.erase(Child);
    }

    SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
          SpillsInSubTreeMap[*RIt].first;
    BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
    // No spills in subtree, simply continue.
    if (SpillsInSubTree.empty())
      continue;

    // Check whether Block is a possible candidate to insert spill.
    Register LiveReg;
    if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
      continue;

    // If there are multiple spills that could be merged, bias a little
    // to hoist the spill.
    BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
                                       ? BranchProbability(9, 10)
                                       : BranchProbability(1, 1);
    if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
      // Hoist: Move spills to current Block.
      for (const auto SpillBB : SpillsInSubTree) {
        // When SpillBB is a BB contains original spill, insert the spill
        // to SpillsToRm.
        if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
            !SpillsToKeep[SpillBB]) {
          MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
          SpillsToRm.push_back(SpillToRm);
        }
        // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
        SpillsToKeep.erase(SpillBB);
      }
      // Current Block is the BB containing the new hoisted spill. Add it to
      // SpillsToKeep. LiveReg is the source of the new spill.
      SpillsToKeep[*RIt] = LiveReg;
      LLVM_DEBUG({
        dbgs() << "spills in BB: ";
        for (const auto Rspill : SpillsInSubTree)
          dbgs() << Rspill->getBlock()->getNumber() << " ";
        dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
               << "\n";
      });
      SpillsInSubTree.clear();
      SpillsInSubTree.insert(*RIt);
      SubTreeCost = MBFI.getBlockFreq(Block);
    }
  }
  // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
  // save them to SpillsToIns.
  for (const auto &Ent : SpillsToKeep) {
    if (Ent.second)
      SpillsToIns[Ent.first->getBlock()] = Ent.second;
  }
}

/// For spills with equal values, remove redundant spills and hoist those left
/// to less hot spots.
///
/// Spills with equal values will be collected into the same set in
/// MergeableSpills when spill is inserted. These equal spills are originated
/// from the same defining instruction and are dominated by the instruction.
/// Before hoisting all the equal spills, redundant spills inside in the same
/// BB are first marked to be deleted. Then starting from the spills left, walk
/// up on the dominator tree towards the Root node where the define instruction
/// is located, mark the dominated spills to be deleted along the way and
/// collect the BB nodes on the path from non-dominated spills to the define
/// instruction into a WorkSet. The nodes in WorkSet are the candidate places
/// where we are considering to hoist the spills. We iterate the WorkSet in
/// bottom-up order, and for each node, we will decide whether to hoist spills
/// inside its subtree to that node. In this way, we can get benefit locally
/// even if hoisting all the equal spills to one cold place is impossible.
void HoistSpillHelper::hoistAllSpills() {
  SmallVector<Register, 4> NewVRegs;
  LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);

  for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
    Register Reg = Register::index2VirtReg(i);
    Register Original = VRM.getPreSplitReg(Reg);
    if (!MRI.def_empty(Reg))
      Virt2SiblingsMap[Original].insert(Reg);
  }

  // Each entry in MergeableSpills contains a spill set with equal values.
  for (auto &Ent : MergeableSpills) {
    int Slot = Ent.first.first;
    LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
    VNInfo *OrigVNI = Ent.first.second;
    SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
    if (Ent.second.empty())
      continue;

    LLVM_DEBUG({
      dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
             << "Equal spills in BB: ";
      for (const auto spill : EqValSpills)
        dbgs() << spill->getParent()->getNumber() << " ";
      dbgs() << "\n";
    });

    // SpillsToRm is the spill set to be removed from EqValSpills.
    SmallVector<MachineInstr *, 16> SpillsToRm;
    // SpillsToIns is the spill set to be newly inserted after hoisting.
    DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;

    runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);

    LLVM_DEBUG({
      dbgs() << "Finally inserted spills in BB: ";
      for (const auto &Ispill : SpillsToIns)
        dbgs() << Ispill.first->getNumber() << " ";
      dbgs() << "\nFinally removed spills in BB: ";
      for (const auto Rspill : SpillsToRm)
        dbgs() << Rspill->getParent()->getNumber() << " ";
      dbgs() << "\n";
    });

    // Stack live range update.
    LiveInterval &StackIntvl = LSS.getInterval(Slot);
    if (!SpillsToIns.empty() || !SpillsToRm.empty())
      StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
                                     StackIntvl.getValNumInfo(0));

    // Insert hoisted spills.
    for (auto const &Insert : SpillsToIns) {
      MachineBasicBlock *BB = Insert.first;
      Register LiveReg = Insert.second;
      MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB);
      TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot,
                              MRI.getRegClass(LiveReg), &TRI);
      LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI);
      ++NumSpills;
    }

    // Remove redundant spills or change them to dead instructions.
    NumSpills -= SpillsToRm.size();
    for (auto const RMEnt : SpillsToRm) {
      RMEnt->setDesc(TII.get(TargetOpcode::KILL));
      for (unsigned i = RMEnt->getNumOperands(); i; --i) {
        MachineOperand &MO = RMEnt->getOperand(i - 1);
        if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
          RMEnt->RemoveOperand(i - 1);
      }
    }
    Edit.eliminateDeadDefs(SpillsToRm, None, AA);
  }
}

/// For VirtReg clone, the \p New register should have the same physreg or
/// stackslot as the \p old register.
void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
  if (VRM.hasPhys(Old))
    VRM.assignVirt2Phys(New, VRM.getPhys(Old));
  else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
    VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
  else
    llvm_unreachable("VReg should be assigned either physreg or stackslot");
}