InstrRefBasedImpl.cpp 121 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
//===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file InstrRefBasedImpl.cpp
///
/// This is a separate implementation of LiveDebugValues, see
/// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
///
/// This pass propagates variable locations between basic blocks, resolving
/// control flow conflicts between them. The problem is much like SSA
/// construction, where each DBG_VALUE instruction assigns the *value* that
/// a variable has, and every instruction where the variable is in scope uses
/// that variable. The resulting map of instruction-to-value is then translated
/// into a register (or spill) location for each variable over each instruction.
///
/// This pass determines which DBG_VALUE dominates which instructions, or if
/// none do, where values must be merged (like PHI nodes). The added
/// complication is that because codegen has already finished, a PHI node may
/// be needed for a variable location to be correct, but no register or spill
/// slot merges the necessary values. In these circumstances, the variable
/// location is dropped.
///
/// What makes this analysis non-trivial is loops: we cannot tell in advance
/// whether a variable location is live throughout a loop, or whether its
/// location is clobbered (or redefined by another DBG_VALUE), without
/// exploring all the way through.
///
/// To make this simpler we perform two kinds of analysis. First, we identify
/// every value defined by every instruction (ignoring those that only move
/// another value), then compute a map of which values are available for each
/// instruction. This is stronger than a reaching-def analysis, as we create
/// PHI values where other values merge.
///
/// Secondly, for each variable, we effectively re-construct SSA using each
/// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the
/// first analysis from the location they refer to. We can then compute the
/// dominance frontiers of where a variable has a value, and create PHI nodes
/// where they merge.
/// This isn't precisely SSA-construction though, because the function shape
/// is pre-defined. If a variable location requires a PHI node, but no
/// PHI for the relevant values is present in the function (as computed by the
/// first analysis), the location must be dropped.
///
/// Once both are complete, we can pass back over all instructions knowing:
///  * What _value_ each variable should contain, either defined by an
///    instruction or where control flow merges
///  * What the location of that value is (if any).
/// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when
/// a value moves location. After this pass runs, all variable locations within
/// a block should be specified by DBG_VALUEs within that block, allowing
/// DbgEntityHistoryCalculator to focus on individual blocks.
///
/// This pass is able to go fast because the size of the first
/// reaching-definition analysis is proportional to the working-set size of
/// the function, which the compiler tries to keep small. (It's also
/// proportional to the number of blocks). Additionally, we repeatedly perform
/// the second reaching-definition analysis with only the variables and blocks
/// in a single lexical scope, exploiting their locality.
///
/// Determining where PHIs happen is trickier with this approach, and it comes
/// to a head in the major problem for LiveDebugValues: is a value live-through
/// a loop, or not? Your garden-variety dataflow analysis aims to build a set of
/// facts about a function, however this analysis needs to generate new value
/// numbers at joins.
///
/// To do this, consider a lattice of all definition values, from instructions
/// and from PHIs. Each PHI is characterised by the RPO number of the block it
/// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B):
/// with non-PHI values at the top, and any PHI value in the last block (by RPO
/// order) at the bottom.
///
/// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below,
/// "rank" always refers to the former).
///
/// At any join, for each register, we consider:
///  * All incoming values, and
///  * The PREVIOUS live-in value at this join.
/// If all incoming values agree: that's the live-in value. If they do not, the
/// incoming values are ranked according to the partial order, and the NEXT
/// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of
/// the same rank are ignored as conflicting). If there are no candidate values,
/// or if the rank of the live-in would be lower than the rank of the current
/// blocks PHIs, create a new PHI value.
///
/// Intuitively: if it's not immediately obvious what value a join should result
/// in, we iteratively descend from instruction-definitions down through PHI
/// values, getting closer to the current block each time. If the current block
/// is a loop head, this ordering is effectively searching outer levels of
/// loops, to find a value that's live-through the current loop.
///
/// If there is no value that's live-through this loop, a PHI is created for
/// this location instead. We can't use a lower-ranked PHI because by definition
/// it doesn't dominate the current block. We can't create a PHI value any
/// earlier, because we risk creating a PHI value at a location where values do
/// not in fact merge, thus misrepresenting the truth, and not making the true
/// live-through value for variable locations.
///
/// This algorithm applies to both calculating the availability of values in
/// the first analysis, and the location of variables in the second. However
/// for the second we add an extra dimension of pain: creating a variable
/// location PHI is only valid if, for each incoming edge,
///  * There is a value for the variable on the incoming edge, and
///  * All the edges have that value in the same register.
/// Or put another way: we can only create a variable-location PHI if there is
/// a matching machine-location PHI, each input to which is the variables value
/// in the predecessor block.
///
/// To accomodate this difference, each point on the lattice is split in
/// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately
/// have a location determined are "definite" PHIs, and no further work is
/// needed. Otherwise, a location that all non-backedge predecessors agree
/// on is picked and propagated as a "proposed" PHI value. If that PHI value
/// is truly live-through, it'll appear on the loop backedges on the next
/// dataflow iteration, after which the block live-in moves to be a "definite"
/// PHI. If it's not truly live-through, the variable value will be downgraded
/// further as we explore the lattice, or remains "proposed" and is considered
/// invalid once dataflow completes.
///
/// ### Terminology
///
/// A machine location is a register or spill slot, a value is something that's
/// defined by an instruction or PHI node, while a variable value is the value
/// assigned to a variable. A variable location is a machine location, that must
/// contain the appropriate variable value. A value that is a PHI node is
/// occasionally called an mphi.
///
/// The first dataflow problem is the "machine value location" problem,
/// because we're determining which machine locations contain which values.
/// The "locations" are constant: what's unknown is what value they contain.
///
/// The second dataflow problem (the one for variables) is the "variable value
/// problem", because it's determining what values a variable has, rather than
/// what location those values are placed in. Unfortunately, it's not that
/// simple, because producing a PHI value always involves picking a location.
/// This is an imperfection that we just have to accept, at least for now.
///
/// TODO:
///   Overlapping fragments
///   Entry values
///   Add back DEBUG statements for debugging this
///   Collect statistics
///
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <queue>
#include <tuple>
#include <utility>
#include <vector>
#include <limits.h>
#include <limits>

#include "LiveDebugValues.h"

using namespace llvm;

#define DEBUG_TYPE "livedebugvalues"

STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed");

// Act more like the VarLoc implementation, by propagating some locations too
// far and ignoring some transfers.
static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
                                   cl::desc("Act like old LiveDebugValues did"),
                                   cl::init(false));

// Rely on isStoreToStackSlotPostFE and similar to observe all stack spills.
static cl::opt<bool>
    ObserveAllStackops("observe-all-stack-ops", cl::Hidden,
                       cl::desc("Allow non-kill spill and restores"),
                       cl::init(false));

namespace {

// The location at which a spilled value resides. It consists of a register and
// an offset.
struct SpillLoc {
  unsigned SpillBase;
  int SpillOffset;
  bool operator==(const SpillLoc &Other) const {
    return std::tie(SpillBase, SpillOffset) ==
           std::tie(Other.SpillBase, Other.SpillOffset);
  }
  bool operator<(const SpillLoc &Other) const {
    return std::tie(SpillBase, SpillOffset) <
           std::tie(Other.SpillBase, Other.SpillOffset);
  }
};

class LocIdx {
  unsigned Location;

  // Default constructor is private, initializing to an illegal location number.
  // Use only for "not an entry" elements in IndexedMaps.
  LocIdx() : Location(UINT_MAX) { }

public:
  #define NUM_LOC_BITS 24
  LocIdx(unsigned L) : Location(L) {
    assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
  }

  static LocIdx MakeIllegalLoc() {
    return LocIdx();
  }

  bool isIllegal() const {
    return Location == UINT_MAX;
  }

  uint64_t asU64() const {
    return Location;
  }

  bool operator==(unsigned L) const {
    return Location == L;
  }

  bool operator==(const LocIdx &L) const {
    return Location == L.Location;
  }

  bool operator!=(unsigned L) const {
    return !(*this == L);
  }

  bool operator!=(const LocIdx &L) const {
    return !(*this == L);
  }

  bool operator<(const LocIdx &Other) const {
    return Location < Other.Location;
  }
};

class LocIdxToIndexFunctor {
public:
  using argument_type = LocIdx;
  unsigned operator()(const LocIdx &L) const {
    return L.asU64();
  }
};

/// Unique identifier for a value defined by an instruction, as a value type.
/// Casts back and forth to a uint64_t. Probably replacable with something less
/// bit-constrained. Each value identifies the instruction and machine location
/// where the value is defined, although there may be no corresponding machine
/// operand for it (ex: regmasks clobbering values). The instructions are
/// one-based, and definitions that are PHIs have instruction number zero.
///
/// The obvious limits of a 1M block function or 1M instruction blocks are
/// problematic; but by that point we should probably have bailed out of
/// trying to analyse the function.
class ValueIDNum {
  uint64_t BlockNo : 20;         /// The block where the def happens.
  uint64_t InstNo : 20;          /// The Instruction where the def happens.
                                 /// One based, is distance from start of block.
  uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens.

public:
  // XXX -- temporarily enabled while the live-in / live-out tables are moved
  // to something more type-y
  ValueIDNum() : BlockNo(0xFFFFF),
                 InstNo(0xFFFFF),
                 LocNo(0xFFFFFF) { }

  ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc)
    : BlockNo(Block), InstNo(Inst), LocNo(Loc) { }

  ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc)
    : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { }

  uint64_t getBlock() const { return BlockNo; }
  uint64_t getInst() const { return InstNo; }
  uint64_t getLoc() const { return LocNo; }
  bool isPHI() const { return InstNo == 0; }

  uint64_t asU64() const {
    uint64_t TmpBlock = BlockNo;
    uint64_t TmpInst = InstNo;
    return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo;
  }

  static ValueIDNum fromU64(uint64_t v) {
    uint64_t L = (v & 0x3FFF);
    return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L};
  }

  bool operator<(const ValueIDNum &Other) const {
    return asU64() < Other.asU64();
  }

  bool operator==(const ValueIDNum &Other) const {
    return std::tie(BlockNo, InstNo, LocNo) ==
           std::tie(Other.BlockNo, Other.InstNo, Other.LocNo);
  }

  bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }

  std::string asString(const std::string &mlocname) const {
    return Twine("bb ")
        .concat(Twine(BlockNo).concat(Twine(" inst ").concat(
            Twine(InstNo).concat(Twine(" loc ").concat(Twine(mlocname))))))
        .str();
  }

  static ValueIDNum EmptyValue;
};

} // end anonymous namespace

namespace {

/// Meta qualifiers for a value. Pair of whatever expression is used to qualify
/// the the value, and Boolean of whether or not it's indirect.
class DbgValueProperties {
public:
  DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
      : DIExpr(DIExpr), Indirect(Indirect) {}

  /// Extract properties from an existing DBG_VALUE instruction.
  DbgValueProperties(const MachineInstr &MI) {
    assert(MI.isDebugValue());
    DIExpr = MI.getDebugExpression();
    Indirect = MI.getOperand(1).isImm();
  }

  bool operator==(const DbgValueProperties &Other) const {
    return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
  }

  bool operator!=(const DbgValueProperties &Other) const {
    return !(*this == Other);
  }

  const DIExpression *DIExpr;
  bool Indirect;
};

/// Tracker for what values are in machine locations. Listens to the Things
/// being Done by various instructions, and maintains a table of what machine
/// locations have what values (as defined by a ValueIDNum).
///
/// There are potentially a much larger number of machine locations on the
/// target machine than the actual working-set size of the function. On x86 for
/// example, we're extremely unlikely to want to track values through control
/// or debug registers. To avoid doing so, MLocTracker has several layers of
/// indirection going on, with two kinds of ``location'':
///  * A LocID uniquely identifies a register or spill location, with a
///    predictable value.
///  * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum.
/// Whenever a location is def'd or used by a MachineInstr, we automagically
/// create a new LocIdx for a location, but not otherwise. This ensures we only
/// account for locations that are actually used or defined. The cost is another
/// vector lookup (of LocID -> LocIdx) over any other implementation. This is
/// fairly cheap, and the compiler tries to reduce the working-set at any one
/// time in the function anyway.
///
/// Register mask operands completely blow this out of the water; I've just
/// piled hacks on top of hacks to get around that.
class MLocTracker {
public:
  MachineFunction &MF;
  const TargetInstrInfo &TII;
  const TargetRegisterInfo &TRI;
  const TargetLowering &TLI;

  /// IndexedMap type, mapping from LocIdx to ValueIDNum.
  typedef IndexedMap<ValueIDNum, LocIdxToIndexFunctor> LocToValueType;

  /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
  /// packed, entries only exist for locations that are being tracked.
  LocToValueType LocIdxToIDNum;

  /// "Map" of machine location IDs (i.e., raw register or spill number) to the
  /// LocIdx key / number for that location. There are always at least as many
  /// as the number of registers on the target -- if the value in the register
  /// is not being tracked, then the LocIdx value will be zero. New entries are
  /// appended if a new spill slot begins being tracked.
  /// This, and the corresponding reverse map persist for the analysis of the
  /// whole function, and is necessarying for decoding various vectors of
  /// values.
  std::vector<LocIdx> LocIDToLocIdx;

  /// Inverse map of LocIDToLocIdx.
  IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;

  /// Unique-ification of spill slots. Used to number them -- their LocID
  /// number is the index in SpillLocs minus one plus NumRegs.
  UniqueVector<SpillLoc> SpillLocs;

  // If we discover a new machine location, assign it an mphi with this
  // block number.
  unsigned CurBB;

  /// Cached local copy of the number of registers the target has.
  unsigned NumRegs;

  /// Collection of register mask operands that have been observed. Second part
  /// of pair indicates the instruction that they happened in. Used to
  /// reconstruct where defs happened if we start tracking a location later
  /// on.
  SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;

  /// Iterator for locations and the values they contain. Dereferencing
  /// produces a struct/pair containing the LocIdx key for this location,
  /// and a reference to the value currently stored. Simplifies the process
  /// of seeking a particular location.
  class MLocIterator {
    LocToValueType &ValueMap;
    LocIdx Idx;

  public:
    class value_type {
      public:
      value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { }
      const LocIdx Idx;  /// Read-only index of this location.
      ValueIDNum &Value; /// Reference to the stored value at this location.
    };

    MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
      : ValueMap(ValueMap), Idx(Idx) { }

    bool operator==(const MLocIterator &Other) const {
      assert(&ValueMap == &Other.ValueMap);
      return Idx == Other.Idx;
    }

    bool operator!=(const MLocIterator &Other) const {
      return !(*this == Other);
    }

    void operator++() {
      Idx = LocIdx(Idx.asU64() + 1);
    }

    value_type operator*() {
      return value_type(Idx, ValueMap[LocIdx(Idx)]);
    }
  };

  MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
              const TargetRegisterInfo &TRI, const TargetLowering &TLI)
      : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
        LocIdxToIDNum(ValueIDNum::EmptyValue),
        LocIdxToLocID(0) {
    NumRegs = TRI.getNumRegs();
    reset();
    LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
    assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure

    // Always track SP. This avoids the implicit clobbering caused by regmasks
    // from affectings its values. (LiveDebugValues disbelieves calls and
    // regmasks that claim to clobber SP).
    unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
    if (SP) {
      unsigned ID = getLocID(SP, false);
      (void)lookupOrTrackRegister(ID);
    }
  }

  /// Produce location ID number for indexing LocIDToLocIdx. Takes the register
  /// or spill number, and flag for whether it's a spill or not.
  unsigned getLocID(unsigned RegOrSpill, bool isSpill) {
    return (isSpill) ? RegOrSpill + NumRegs - 1 : RegOrSpill;
  }

  /// Accessor for reading the value at Idx.
  ValueIDNum getNumAtPos(LocIdx Idx) const {
    assert(Idx.asU64() < LocIdxToIDNum.size());
    return LocIdxToIDNum[Idx];
  }

  unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); }

  /// Reset all locations to contain a PHI value at the designated block. Used
  /// sometimes for actual PHI values, othertimes to indicate the block entry
  /// value (before any more information is known).
  void setMPhis(unsigned NewCurBB) {
    CurBB = NewCurBB;
    for (auto Location : locations())
      Location.Value = {CurBB, 0, Location.Idx};
  }

  /// Load values for each location from array of ValueIDNums. Take current
  /// bbnum just in case we read a value from a hitherto untouched register.
  void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
    CurBB = NewCurBB;
    // Iterate over all tracked locations, and load each locations live-in
    // value into our local index.
    for (auto Location : locations())
      Location.Value = Locs[Location.Idx.asU64()];
  }

  /// Wipe any un-necessary location records after traversing a block.
  void reset(void) {
    // We could reset all the location values too; however either loadFromArray
    // or setMPhis should be called before this object is re-used. Just
    // clear Masks, they're definitely not needed.
    Masks.clear();
  }

  /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
  /// the information in this pass uninterpretable.
  void clear(void) {
    reset();
    LocIDToLocIdx.clear();
    LocIdxToLocID.clear();
    LocIdxToIDNum.clear();
    //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0
    SpillLocs = decltype(SpillLocs)();

    LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
  }

  /// Set a locaiton to a certain value.
  void setMLoc(LocIdx L, ValueIDNum Num) {
    assert(L.asU64() < LocIdxToIDNum.size());
    LocIdxToIDNum[L] = Num;
  }

  /// Create a LocIdx for an untracked register ID. Initialize it to either an
  /// mphi value representing a live-in, or a recent register mask clobber.
  LocIdx trackRegister(unsigned ID) {
    assert(ID != 0);
    LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
    LocIdxToIDNum.grow(NewIdx);
    LocIdxToLocID.grow(NewIdx);

    // Default: it's an mphi.
    ValueIDNum ValNum = {CurBB, 0, NewIdx};
    // Was this reg ever touched by a regmask?
    for (const auto &MaskPair : reverse(Masks)) {
      if (MaskPair.first->clobbersPhysReg(ID)) {
        // There was an earlier def we skipped.
        ValNum = {CurBB, MaskPair.second, NewIdx};
        break;
      }
    }

    LocIdxToIDNum[NewIdx] = ValNum;
    LocIdxToLocID[NewIdx] = ID;
    return NewIdx;
  }

  LocIdx lookupOrTrackRegister(unsigned ID) {
    LocIdx &Index = LocIDToLocIdx[ID];
    if (Index.isIllegal())
      Index = trackRegister(ID);
    return Index;
  }

  /// Record a definition of the specified register at the given block / inst.
  /// This doesn't take a ValueIDNum, because the definition and its location
  /// are synonymous.
  void defReg(Register R, unsigned BB, unsigned Inst) {
    unsigned ID = getLocID(R, false);
    LocIdx Idx = lookupOrTrackRegister(ID);
    ValueIDNum ValueID = {BB, Inst, Idx};
    LocIdxToIDNum[Idx] = ValueID;
  }

  /// Set a register to a value number. To be used if the value number is
  /// known in advance.
  void setReg(Register R, ValueIDNum ValueID) {
    unsigned ID = getLocID(R, false);
    LocIdx Idx = lookupOrTrackRegister(ID);
    LocIdxToIDNum[Idx] = ValueID;
  }

  ValueIDNum readReg(Register R) {
    unsigned ID = getLocID(R, false);
    LocIdx Idx = lookupOrTrackRegister(ID);
    return LocIdxToIDNum[Idx];
  }

  /// Reset a register value to zero / empty. Needed to replicate the
  /// VarLoc implementation where a copy to/from a register effectively
  /// clears the contents of the source register. (Values can only have one
  ///  machine location in VarLocBasedImpl).
  void wipeRegister(Register R) {
    unsigned ID = getLocID(R, false);
    LocIdx Idx = LocIDToLocIdx[ID];
    LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
  }

  /// Determine the LocIdx of an existing register.
  LocIdx getRegMLoc(Register R) {
    unsigned ID = getLocID(R, false);
    return LocIDToLocIdx[ID];
  }

  /// Record a RegMask operand being executed. Defs any register we currently
  /// track, stores a pointer to the mask in case we have to account for it
  /// later.
  void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) {
    // Ensure SP exists, so that we don't override it later.
    unsigned SP = TLI.getStackPointerRegisterToSaveRestore();

    // Def any register we track have that isn't preserved. The regmask
    // terminates the liveness of a register, meaning its value can't be
    // relied upon -- we represent this by giving it a new value.
    for (auto Location : locations()) {
      unsigned ID = LocIdxToLocID[Location.Idx];
      // Don't clobber SP, even if the mask says it's clobbered.
      if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID))
        defReg(ID, CurBB, InstID);
    }
    Masks.push_back(std::make_pair(MO, InstID));
  }

  /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
  LocIdx getOrTrackSpillLoc(SpillLoc L) {
    unsigned SpillID = SpillLocs.idFor(L);
    if (SpillID == 0) {
      SpillID = SpillLocs.insert(L);
      unsigned L = getLocID(SpillID, true);
      LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
      LocIdxToIDNum.grow(Idx);
      LocIdxToLocID.grow(Idx);
      LocIDToLocIdx.push_back(Idx);
      LocIdxToLocID[Idx] = L;
      return Idx;
    } else {
      unsigned L = getLocID(SpillID, true);
      LocIdx Idx = LocIDToLocIdx[L];
      return Idx;
    }
  }

  /// Set the value stored in a spill slot.
  void setSpill(SpillLoc L, ValueIDNum ValueID) {
    LocIdx Idx = getOrTrackSpillLoc(L);
    LocIdxToIDNum[Idx] = ValueID;
  }

  /// Read whatever value is in a spill slot, or None if it isn't tracked.
  Optional<ValueIDNum> readSpill(SpillLoc L) {
    unsigned SpillID = SpillLocs.idFor(L);
    if (SpillID == 0)
      return None;

    unsigned LocID = getLocID(SpillID, true);
    LocIdx Idx = LocIDToLocIdx[LocID];
    return LocIdxToIDNum[Idx];
  }

  /// Determine the LocIdx of a spill slot. Return None if it previously
  /// hasn't had a value assigned.
  Optional<LocIdx> getSpillMLoc(SpillLoc L) {
    unsigned SpillID = SpillLocs.idFor(L);
    if (SpillID == 0)
      return None;
    unsigned LocNo = getLocID(SpillID, true);
    return LocIDToLocIdx[LocNo];
  }

  /// Return true if Idx is a spill machine location.
  bool isSpill(LocIdx Idx) const {
    return LocIdxToLocID[Idx] >= NumRegs;
  }

  MLocIterator begin() {
    return MLocIterator(LocIdxToIDNum, 0);
  }

  MLocIterator end() {
    return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
  }

  /// Return a range over all locations currently tracked.
  iterator_range<MLocIterator> locations() {
    return llvm::make_range(begin(), end());
  }

  std::string LocIdxToName(LocIdx Idx) const {
    unsigned ID = LocIdxToLocID[Idx];
    if (ID >= NumRegs)
      return Twine("slot ").concat(Twine(ID - NumRegs)).str();
    else
      return TRI.getRegAsmName(ID).str();
  }

  std::string IDAsString(const ValueIDNum &Num) const {
    std::string DefName = LocIdxToName(Num.getLoc());
    return Num.asString(DefName);
  }

  LLVM_DUMP_METHOD
  void dump() {
    for (auto Location : locations()) {
      std::string MLocName = LocIdxToName(Location.Value.getLoc());
      std::string DefName = Location.Value.asString(MLocName);
      dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
    }
  }

  LLVM_DUMP_METHOD
  void dump_mloc_map() {
    for (auto Location : locations()) {
      std::string foo = LocIdxToName(Location.Idx);
      dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
    }
  }

  /// Create a DBG_VALUE based on  machine location \p MLoc. Qualify it with the
  /// information in \pProperties, for variable Var. Don't insert it anywhere,
  /// just return the builder for it.
  MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
                              const DbgValueProperties &Properties) {
    DebugLoc DL =
        DebugLoc::get(0, 0, Var.getVariable()->getScope(), Var.getInlinedAt());
    auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));

    const DIExpression *Expr = Properties.DIExpr;
    if (!MLoc) {
      // No location -> DBG_VALUE $noreg
      MIB.addReg(0, RegState::Debug);
      MIB.addReg(0, RegState::Debug);
    } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
      unsigned LocID = LocIdxToLocID[*MLoc];
      const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1];
      Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
                                   Spill.SpillOffset);
      unsigned Base = Spill.SpillBase;
      MIB.addReg(Base, RegState::Debug);
      MIB.addImm(0);
    } else {
      unsigned LocID = LocIdxToLocID[*MLoc];
      MIB.addReg(LocID, RegState::Debug);
      if (Properties.Indirect)
        MIB.addImm(0);
      else
        MIB.addReg(0, RegState::Debug);
    }

    MIB.addMetadata(Var.getVariable());
    MIB.addMetadata(Expr);
    return MIB;
  }
};

/// Class recording the (high level) _value_ of a variable. Identifies either
/// the value of the variable as a ValueIDNum, or a constant MachineOperand.
/// This class also stores meta-information about how the value is qualified.
/// Used to reason about variable values when performing the second
/// (DebugVariable specific) dataflow analysis.
class DbgValue {
public:
  union {
    /// If Kind is Def, the value number that this value is based on.
    ValueIDNum ID;
    /// If Kind is Const, the MachineOperand defining this value.
    MachineOperand MO;
    /// For a NoVal DbgValue, which block it was generated in.
    unsigned BlockNo;
  };
  /// Qualifiers for the ValueIDNum above.
  DbgValueProperties Properties;

  typedef enum {
    Undef,     // Represents a DBG_VALUE $noreg in the transfer function only.
    Def,       // This value is defined by an inst, or is a PHI value.
    Const,     // A constant value contained in the MachineOperand field.
    Proposed,  // This is a tentative PHI value, which may be confirmed or
               // invalidated later.
    NoVal      // Empty DbgValue, generated during dataflow. BlockNo stores
               // which block this was generated in.
   } KindT;
  /// Discriminator for whether this is a constant or an in-program value.
  KindT Kind;

  DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
    : ID(Val), Properties(Prop), Kind(Kind) {
    assert(Kind == Def || Kind == Proposed);
  }

  DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
    : BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
    assert(Kind == NoVal);
  }

  DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
    : MO(MO), Properties(Prop), Kind(Kind) {
    assert(Kind == Const);
  }

  DbgValue(const DbgValueProperties &Prop, KindT Kind)
    : Properties(Prop), Kind(Kind) {
    assert(Kind == Undef &&
           "Empty DbgValue constructor must pass in Undef kind");
  }

  void dump(const MLocTracker *MTrack) const {
    if (Kind == Const) {
      MO.dump();
    } else if (Kind == NoVal) {
      dbgs() << "NoVal(" << BlockNo << ")";
    } else if (Kind == Proposed) {
      dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")";
    } else {
      assert(Kind == Def);
      dbgs() << MTrack->IDAsString(ID);
    }
    if (Properties.Indirect)
      dbgs() << " indir";
    if (Properties.DIExpr)
      dbgs() << " " << *Properties.DIExpr;
  }

  bool operator==(const DbgValue &Other) const {
    if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
      return false;
    else if (Kind == Proposed && ID != Other.ID)
      return false;
    else if (Kind == Def && ID != Other.ID)
      return false;
    else if (Kind == NoVal && BlockNo != Other.BlockNo)
      return false;
    else if (Kind == Const)
      return MO.isIdenticalTo(Other.MO);

    return true;
  }

  bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
};

/// Types for recording sets of variable fragments that overlap. For a given
/// local variable, we record all other fragments of that variable that could
/// overlap it, to reduce search time.
using FragmentOfVar =
    std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
using OverlapMap =
    DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;

/// Collection of DBG_VALUEs observed when traversing a block. Records each
/// variable and the value the DBG_VALUE refers to. Requires the machine value
/// location dataflow algorithm to have run already, so that values can be
/// identified.
class VLocTracker {
public:
  /// Map DebugVariable to the latest Value it's defined to have.
  /// Needs to be a MapVector because we determine order-in-the-input-MIR from
  /// the order in this container.
  /// We only retain the last DbgValue in each block for each variable, to
  /// determine the blocks live-out variable value. The Vars container forms the
  /// transfer function for this block, as part of the dataflow analysis. The
  /// movement of values between locations inside of a block is handled at a
  /// much later stage, in the TransferTracker class.
  MapVector<DebugVariable, DbgValue> Vars;
  DenseMap<DebugVariable, const DILocation *> Scopes;
  MachineBasicBlock *MBB;

public:
  VLocTracker() {}

  void defVar(const MachineInstr &MI, Optional<ValueIDNum> ID) {
    // XXX skipping overlapping fragments for now.
    assert(MI.isDebugValue());
    DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
                      MI.getDebugLoc()->getInlinedAt());
    DbgValueProperties Properties(MI);
    DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
                        : DbgValue(Properties, DbgValue::Undef);

    // Attempt insertion; overwrite if it's already mapped.
    auto Result = Vars.insert(std::make_pair(Var, Rec));
    if (!Result.second)
      Result.first->second = Rec;
    Scopes[Var] = MI.getDebugLoc().get();
  }

  void defVar(const MachineInstr &MI, const MachineOperand &MO) {
    // XXX skipping overlapping fragments for now.
    assert(MI.isDebugValue());
    DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
                      MI.getDebugLoc()->getInlinedAt());
    DbgValueProperties Properties(MI);
    DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);

    // Attempt insertion; overwrite if it's already mapped.
    auto Result = Vars.insert(std::make_pair(Var, Rec));
    if (!Result.second)
      Result.first->second = Rec;
    Scopes[Var] = MI.getDebugLoc().get();
  }
};

/// Tracker for converting machine value locations and variable values into
/// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
/// specifying block live-in locations and transfers within blocks.
///
/// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
/// and must be initialized with the set of variable values that are live-in to
/// the block. The caller then repeatedly calls process(). TransferTracker picks
/// out variable locations for the live-in variable values (if there _is_ a
/// location) and creates the corresponding DBG_VALUEs. Then, as the block is
/// stepped through, transfers of values between machine locations are
/// identified and if profitable, a DBG_VALUE created.
///
/// This is where debug use-before-defs would be resolved: a variable with an
/// unavailable value could materialize in the middle of a block, when the
/// value becomes available. Or, we could detect clobbers and re-specify the
/// variable in a backup location. (XXX these are unimplemented).
class TransferTracker {
public:
  const TargetInstrInfo *TII;
  /// This machine location tracker is assumed to always contain the up-to-date
  /// value mapping for all machine locations. TransferTracker only reads
  /// information from it. (XXX make it const?)
  MLocTracker *MTracker;
  MachineFunction &MF;

  /// Record of all changes in variable locations at a block position. Awkwardly
  /// we allow inserting either before or after the point: MBB != nullptr
  /// indicates it's before, otherwise after.
  struct Transfer {
    MachineBasicBlock::iterator Pos; /// Position to insert DBG_VALUes
    MachineBasicBlock *MBB;          /// non-null if we should insert after.
    SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
  };

  typedef struct {
    LocIdx Loc;
    DbgValueProperties Properties;
  } LocAndProperties;

  /// Collection of transfers (DBG_VALUEs) to be inserted.
  SmallVector<Transfer, 32> Transfers;

  /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
  /// between TransferTrackers view of variable locations and MLocTrackers. For
  /// example, MLocTracker observes all clobbers, but TransferTracker lazily
  /// does not.
  std::vector<ValueIDNum> VarLocs;

  /// Map from LocIdxes to which DebugVariables are based that location.
  /// Mantained while stepping through the block. Not accurate if
  /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
  std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;

  /// Map from DebugVariable to it's current location and qualifying meta
  /// information. To be used in conjunction with ActiveMLocs to construct
  /// enough information for the DBG_VALUEs for a particular LocIdx.
  DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;

  /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
  SmallVector<MachineInstr *, 4> PendingDbgValues;

  const TargetRegisterInfo &TRI;
  const BitVector &CalleeSavedRegs;

  TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
                  MachineFunction &MF, const TargetRegisterInfo &TRI,
                  const BitVector &CalleeSavedRegs)
      : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
        CalleeSavedRegs(CalleeSavedRegs) {}

  /// Load object with live-in variable values. \p mlocs contains the live-in
  /// values in each machine location, while \p vlocs the live-in variable
  /// values. This method picks variable locations for the live-in variables,
  /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
  /// object fields to track variable locations as we step through the block.
  /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
  void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
                  SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
                  unsigned NumLocs) {
    ActiveMLocs.clear();
    ActiveVLocs.clear();
    VarLocs.clear();
    VarLocs.reserve(NumLocs);

    auto isCalleeSaved = [&](LocIdx L) {
      unsigned Reg = MTracker->LocIdxToLocID[L];
      if (Reg >= MTracker->NumRegs)
        return false;
      for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
        if (CalleeSavedRegs.test(*RAI))
          return true;
      return false;
    };

    // Map of the preferred location for each value.
    std::map<ValueIDNum, LocIdx> ValueToLoc;

    // Produce a map of value numbers to the current machine locs they live
    // in. When emulating VarLocBasedImpl, there should only be one
    // location; when not, we get to pick.
    for (auto Location : MTracker->locations()) {
      LocIdx Idx = Location.Idx;
      ValueIDNum &VNum = MLocs[Idx.asU64()];
      VarLocs.push_back(VNum);
      auto it = ValueToLoc.find(VNum);
      // In order of preference, pick:
      //  * Callee saved registers,
      //  * Other registers,
      //  * Spill slots.
      if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
          (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
        // Insert, or overwrite if insertion failed.
        auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
        if (!PrefLocRes.second)
          PrefLocRes.first->second = Idx;
      }
    }

    // Now map variables to their picked LocIdxes.
    for (auto Var : VLocs) {
      if (Var.second.Kind == DbgValue::Const) {
        PendingDbgValues.push_back(
            emitMOLoc(Var.second.MO, Var.first, Var.second.Properties));
        continue;
      }

      // If the value has no location, we can't make a variable location.
      auto ValuesPreferredLoc = ValueToLoc.find(Var.second.ID);
      if (ValuesPreferredLoc == ValueToLoc.end())
        continue;

      LocIdx M = ValuesPreferredLoc->second;
      auto NewValue = LocAndProperties{M, Var.second.Properties};
      auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
      if (!Result.second)
        Result.first->second = NewValue;
      ActiveMLocs[M].insert(Var.first);
      PendingDbgValues.push_back(
          MTracker->emitLoc(M, Var.first, Var.second.Properties));
    }
    flushDbgValues(MBB.begin(), &MBB);
  }

  /// Helper to move created DBG_VALUEs into Transfers collection.
  void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
    if (PendingDbgValues.size() > 0) {
      Transfers.push_back({Pos, MBB, PendingDbgValues});
      PendingDbgValues.clear();
    }
  }

  /// Handle a DBG_VALUE within a block. Terminate the variables current
  /// location, and record the value its DBG_VALUE refers to, so that we can
  /// detect location transfers later on.
  void redefVar(const MachineInstr &MI) {
    DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
                      MI.getDebugLoc()->getInlinedAt());
    const MachineOperand &MO = MI.getOperand(0);

    // Erase any previous location,
    auto It = ActiveVLocs.find(Var);
    if (It != ActiveVLocs.end()) {
      ActiveMLocs[It->second.Loc].erase(Var);
    }

    // Insert a new variable location. Ignore non-register locations, we don't
    // transfer those, and can't currently describe spill locs independently of
    // regs.
    // (This is because a spill location is a DBG_VALUE of the stack pointer).
    if (!MO.isReg() || MO.getReg() == 0) {
      if (It != ActiveVLocs.end())
        ActiveVLocs.erase(It);
      return;
    }

    Register Reg = MO.getReg();
    LocIdx MLoc = MTracker->getRegMLoc(Reg);
    DbgValueProperties Properties(MI);

    // Check whether our local copy of values-by-location in #VarLocs is out of
    // date. Wipe old tracking data for the location if it's been clobbered in
    // the meantime.
    if (MTracker->getNumAtPos(MLoc) != VarLocs[MLoc.asU64()]) {
      for (auto &P : ActiveMLocs[MLoc.asU64()]) {
        ActiveVLocs.erase(P);
      }
      ActiveMLocs[MLoc].clear();
      VarLocs[MLoc.asU64()] = MTracker->getNumAtPos(MLoc);
    }

    ActiveMLocs[MLoc].insert(Var);
    if (It == ActiveVLocs.end()) {
      ActiveVLocs.insert(std::make_pair(Var, LocAndProperties{MLoc, Properties}));
    } else {
      It->second.Loc = MLoc;
      It->second.Properties = Properties;
    }
  }

  /// Explicitly terminate variable locations based on \p mloc. Creates undef
  /// DBG_VALUEs for any variables that were located there, and clears
  /// #ActiveMLoc / #ActiveVLoc tracking information for that location.
  void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos) {
    assert(MTracker->isSpill(MLoc));
    auto ActiveMLocIt = ActiveMLocs.find(MLoc);
    if (ActiveMLocIt == ActiveMLocs.end())
      return;

    VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;

    for (auto &Var : ActiveMLocIt->second) {
      auto ActiveVLocIt = ActiveVLocs.find(Var);
      // Create an undef. We can't feed in a nullptr DIExpression alas,
      // so use the variables last expression. Pass None as the location.
      const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
      DbgValueProperties Properties(Expr, false);
      PendingDbgValues.push_back(MTracker->emitLoc(None, Var, Properties));
      ActiveVLocs.erase(ActiveVLocIt);
    }
    flushDbgValues(Pos, nullptr);

    ActiveMLocIt->second.clear();
  }

  /// Transfer variables based on \p Src to be based on \p Dst. This handles
  /// both register copies as well as spills and restores. Creates DBG_VALUEs
  /// describing the movement.
  void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
    // Does Src still contain the value num we expect? If not, it's been
    // clobbered in the meantime, and our variable locations are stale.
    if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src))
      return;

    // assert(ActiveMLocs[Dst].size() == 0);
    //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
    ActiveMLocs[Dst] = ActiveMLocs[Src];
    VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];

    // For each variable based on Src; create a location at Dst.
    for (auto &Var : ActiveMLocs[Src]) {
      auto ActiveVLocIt = ActiveVLocs.find(Var);
      assert(ActiveVLocIt != ActiveVLocs.end());
      ActiveVLocIt->second.Loc = Dst;

      assert(Dst != 0);
      MachineInstr *MI =
          MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
      PendingDbgValues.push_back(MI);
    }
    ActiveMLocs[Src].clear();
    flushDbgValues(Pos, nullptr);

    // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
    // about the old location.
    if (EmulateOldLDV)
      VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
  }

  MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
                                const DebugVariable &Var,
                                const DbgValueProperties &Properties) {
    DebugLoc DL =
        DebugLoc::get(0, 0, Var.getVariable()->getScope(), Var.getInlinedAt());
    auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
    MIB.add(MO);
    if (Properties.Indirect)
      MIB.addImm(0);
    else
      MIB.addReg(0);
    MIB.addMetadata(Var.getVariable());
    MIB.addMetadata(Properties.DIExpr);
    return MIB;
  }
};

class InstrRefBasedLDV : public LDVImpl {
private:
  using FragmentInfo = DIExpression::FragmentInfo;
  using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;

  // Helper while building OverlapMap, a map of all fragments seen for a given
  // DILocalVariable.
  using VarToFragments =
      DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;

  /// Machine location/value transfer function, a mapping of which locations
  // are assigned which new values.
  typedef std::map<LocIdx, ValueIDNum> MLocTransferMap;

  /// Live in/out structure for the variable values: a per-block map of
  /// variables to their values. XXX, better name?
  typedef DenseMap<const MachineBasicBlock *,
                   DenseMap<DebugVariable, DbgValue> *>
      LiveIdxT;

  typedef std::pair<DebugVariable, DbgValue> VarAndLoc;

  /// Type for a live-in value: the predecessor block, and its value.
  typedef std::pair<MachineBasicBlock *, DbgValue *> InValueT;

  /// Vector (per block) of a collection (inner smallvector) of live-ins.
  /// Used as the result type for the variable value dataflow problem.
  typedef SmallVector<SmallVector<VarAndLoc, 8>, 8> LiveInsT;

  const TargetRegisterInfo *TRI;
  const TargetInstrInfo *TII;
  const TargetFrameLowering *TFI;
  BitVector CalleeSavedRegs;
  LexicalScopes LS;
  TargetPassConfig *TPC;

  /// Object to track machine locations as we step through a block. Could
  /// probably be a field rather than a pointer, as it's always used.
  MLocTracker *MTracker;

  /// Number of the current block LiveDebugValues is stepping through.
  unsigned CurBB;

  /// Number of the current instruction LiveDebugValues is evaluating.
  unsigned CurInst;

  /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
  /// steps through a block. Reads the values at each location from the
  /// MLocTracker object.
  VLocTracker *VTracker;

  /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
  /// between locations during stepping, creates new DBG_VALUEs when values move
  /// location.
  TransferTracker *TTracker;

  /// Blocks which are artificial, i.e. blocks which exclusively contain
  /// instructions without DebugLocs, or with line 0 locations.
  SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;

  // Mapping of blocks to and from their RPOT order.
  DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
  DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
  DenseMap<unsigned, unsigned> BBNumToRPO;

  // Map of overlapping variable fragments.
  OverlapMap OverlapFragments;
  VarToFragments SeenFragments;

  /// Tests whether this instruction is a spill to a stack slot.
  bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);

  /// Decide if @MI is a spill instruction and return true if it is. We use 2
  /// criteria to make this decision:
  /// - Is this instruction a store to a spill slot?
  /// - Is there a register operand that is both used and killed?
  /// TODO: Store optimization can fold spills into other stores (including
  /// other spills). We do not handle this yet (more than one memory operand).
  bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
                       unsigned &Reg);

  /// If a given instruction is identified as a spill, return the spill slot
  /// and set \p Reg to the spilled register.
  Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI,
                                          MachineFunction *MF, unsigned &Reg);

  /// Given a spill instruction, extract the register and offset used to
  /// address the spill slot in a target independent way.
  SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);

  /// Observe a single instruction while stepping through a block.
  void process(MachineInstr &MI);

  /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
  /// \returns true if MI was recognized and processed.
  bool transferDebugValue(const MachineInstr &MI);

  /// Examines whether \p MI is copy instruction, and notifies trackers.
  /// \returns true if MI was recognized and processed.
  bool transferRegisterCopy(MachineInstr &MI);

  /// Examines whether \p MI is stack spill or restore  instruction, and
  /// notifies trackers. \returns true if MI was recognized and processed.
  bool transferSpillOrRestoreInst(MachineInstr &MI);

  /// Examines \p MI for any registers that it defines, and notifies trackers.
  void transferRegisterDef(MachineInstr &MI);

  /// Copy one location to the other, accounting for movement of subregisters
  /// too.
  void performCopy(Register Src, Register Dst);

  void accumulateFragmentMap(MachineInstr &MI);

  /// Step through the function, recording register definitions and movements
  /// in an MLocTracker. Convert the observations into a per-block transfer
  /// function in \p MLocTransfer, suitable for using with the machine value
  /// location dataflow problem. Do the same with VLoc trackers in \p VLocs,
  /// although the precise machine value numbers can't be known until after
  /// the machine value number problem is solved.
  void produceTransferFunctions(MachineFunction &MF,
                                SmallVectorImpl<MLocTransferMap> &MLocTransfer,
                                unsigned MaxNumBlocks,
                                SmallVectorImpl<VLocTracker> &VLocs);

  /// Solve the machine value location dataflow problem. Takes as input the
  /// transfer functions in \p MLocTransfer. Writes the output live-in and
  /// live-out arrays to the (initialized to zero) multidimensional arrays in
  /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
  /// number, the inner by LocIdx.
  void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
                    SmallVectorImpl<MLocTransferMap> &MLocTransfer);

  /// Perform a control flow join (lattice value meet) of the values in machine
  /// locations at \p MBB. Follows the algorithm described in the file-comment,
  /// reading live-outs of predecessors from \p OutLocs, the current live ins
  /// from \p InLocs, and assigning the newly computed live ins back into
  /// \p InLocs. \returns two bools -- the first indicates whether a change
  /// was made, the second whether a lattice downgrade occurred. If the latter
  /// is true, revisiting this block is necessary.
  std::tuple<bool, bool>
  mlocJoin(MachineBasicBlock &MBB,
           SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
           ValueIDNum **OutLocs, ValueIDNum *InLocs);

  /// Solve the variable value dataflow problem, for a single lexical scope.
  /// Uses the algorithm from the file comment to resolve control flow joins,
  /// although there are extra hacks, see vlocJoin. Reads the
  /// locations of values from the \p MInLocs and \p MOutLocs arrays (see
  /// mlocDataflow) and reads the variable values transfer function from
  /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally,
  /// with the live-ins permanently stored to \p Output once the fixedpoint is
  /// reached.
  /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
  /// that we should be tracking.
  /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but
  /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations
  /// through.
  void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc,
                    const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
                    SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
                    LiveInsT &Output, ValueIDNum **MOutLocs,
                    ValueIDNum **MInLocs,
                    SmallVectorImpl<VLocTracker> &AllTheVLocs);

  /// Compute the live-ins to a block, considering control flow merges according
  /// to the method in the file comment. Live out and live in variable values
  /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB
  /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins
  /// are modified.
  /// \p InLocsT Output argument, storage for calculated live-ins.
  /// \returns two bools -- the first indicates whether a change
  /// was made, the second whether a lattice downgrade occurred. If the latter
  /// is true, revisiting this block is necessary.
  std::tuple<bool, bool>
  vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
           SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited,
           unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars,
           ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
           SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
           SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
           DenseMap<DebugVariable, DbgValue> &InLocsT);

  /// Continue exploration of the variable-value lattice, as explained in the
  /// file-level comment. \p OldLiveInLocation contains the current
  /// exploration position, from which we need to descend further. \p Values
  /// contains the set of live-in values, \p CurBlockRPONum the RPO number of
  /// the current block, and \p CandidateLocations a set of locations that
  /// should be considered as PHI locations, if we reach the bottom of the
  /// lattice. \returns true if we should downgrade; the value is the agreeing
  /// value number in a non-backedge predecessor.
  bool vlocDowngradeLattice(const MachineBasicBlock &MBB,
                            const DbgValue &OldLiveInLocation,
                            const SmallVectorImpl<InValueT> &Values,
                            unsigned CurBlockRPONum);

  /// For the given block and live-outs feeding into it, try to find a
  /// machine location where they all join. If a solution for all predecessors
  /// can't be found, a location where all non-backedge-predecessors join
  /// will be returned instead. While this method finds a join location, this
  /// says nothing as to whether it should be used.
  /// \returns Pair of value ID if found, and true when the correct value
  /// is available on all predecessor edges, or false if it's only available
  /// for non-backedge predecessors.
  std::tuple<Optional<ValueIDNum>, bool>
  pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var,
              const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
              ValueIDNum **MInLocs,
              const SmallVectorImpl<MachineBasicBlock *> &BlockOrders);

  /// Given the solutions to the two dataflow problems, machine value locations
  /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the
  /// TransferTracker class over the function to produce live-in and transfer
  /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the
  /// order given by AllVarsNumbering -- this could be any stable order, but
  /// right now "order of appearence in function, when explored in RPO", so
  /// that we can compare explictly against VarLocBasedImpl.
  void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns,
                     ValueIDNum **MInLocs,
                     DenseMap<DebugVariable, unsigned> &AllVarsNumbering);

  /// Boilerplate computation of some initial sets, artifical blocks and
  /// RPOT block ordering.
  void initialSetup(MachineFunction &MF);

  bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override;

public:
  /// Default construct and initialize the pass.
  InstrRefBasedLDV();

  LLVM_DUMP_METHOD
  void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;

  bool isCalleeSaved(LocIdx L) {
    unsigned Reg = MTracker->LocIdxToLocID[L];
    for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
      if (CalleeSavedRegs.test(*RAI))
        return true;
    return false;
  }
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
//            Implementation
//===----------------------------------------------------------------------===//

ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};

/// Default construct and initialize the pass.
InstrRefBasedLDV::InstrRefBasedLDV() {}

//===----------------------------------------------------------------------===//
//            Debug Range Extension Implementation
//===----------------------------------------------------------------------===//

#ifndef NDEBUG
// Something to restore in the future.
// void InstrRefBasedLDV::printVarLocInMBB(..)
#endif

SpillLoc
InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
  assert(MI.hasOneMemOperand() &&
         "Spill instruction does not have exactly one memory operand?");
  auto MMOI = MI.memoperands_begin();
  const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
  assert(PVal->kind() == PseudoSourceValue::FixedStack &&
         "Inconsistent memory operand in spill instruction");
  int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
  const MachineBasicBlock *MBB = MI.getParent();
  Register Reg;
  int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
  return {Reg, Offset};
}

/// End all previous ranges related to @MI and start a new range from @MI
/// if it is a DBG_VALUE instr.
bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
  if (!MI.isDebugValue())
    return false;

  const DILocalVariable *Var = MI.getDebugVariable();
  const DIExpression *Expr = MI.getDebugExpression();
  const DILocation *DebugLoc = MI.getDebugLoc();
  const DILocation *InlinedAt = DebugLoc->getInlinedAt();
  assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
         "Expected inlined-at fields to agree");

  DebugVariable V(Var, Expr, InlinedAt);

  // If there are no instructions in this lexical scope, do no location tracking
  // at all, this variable shouldn't get a legitimate location range.
  auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
  if (Scope == nullptr)
    return true; // handled it; by doing nothing

  const MachineOperand &MO = MI.getOperand(0);

  // MLocTracker needs to know that this register is read, even if it's only
  // read by a debug inst.
  if (MO.isReg() && MO.getReg() != 0)
    (void)MTracker->readReg(MO.getReg());

  // If we're preparing for the second analysis (variables), the machine value
  // locations are already solved, and we report this DBG_VALUE and the value
  // it refers to to VLocTracker.
  if (VTracker) {
    if (MO.isReg()) {
      // Feed defVar the new variable location, or if this is a
      // DBG_VALUE $noreg, feed defVar None.
      if (MO.getReg())
        VTracker->defVar(MI, MTracker->readReg(MO.getReg()));
      else
        VTracker->defVar(MI, None);
    } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
               MI.getOperand(0).isCImm()) {
      VTracker->defVar(MI, MI.getOperand(0));
    }
  }

  // If performing final tracking of transfers, report this variable definition
  // to the TransferTracker too.
  if (TTracker)
    TTracker->redefVar(MI);
  return true;
}

void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
  // Meta Instructions do not affect the debug liveness of any register they
  // define.
  if (MI.isImplicitDef()) {
    // Except when there's an implicit def, and the location it's defining has
    // no value number. The whole point of an implicit def is to announce that
    // the register is live, without be specific about it's value. So define
    // a value if there isn't one already.
    ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
    // Has a legitimate value -> ignore the implicit def.
    if (Num.getLoc() != 0)
      return;
    // Otherwise, def it here.
  } else if (MI.isMetaInstruction())
    return;

  MachineFunction *MF = MI.getMF();
  const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
  unsigned SP = TLI->getStackPointerRegisterToSaveRestore();

  // Find the regs killed by MI, and find regmasks of preserved regs.
  // Max out the number of statically allocated elements in `DeadRegs`, as this
  // prevents fallback to std::set::count() operations.
  SmallSet<uint32_t, 32> DeadRegs;
  SmallVector<const uint32_t *, 4> RegMasks;
  SmallVector<const MachineOperand *, 4> RegMaskPtrs;
  for (const MachineOperand &MO : MI.operands()) {
    // Determine whether the operand is a register def.
    if (MO.isReg() && MO.isDef() && MO.getReg() &&
        Register::isPhysicalRegister(MO.getReg()) &&
        !(MI.isCall() && MO.getReg() == SP)) {
      // Remove ranges of all aliased registers.
      for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
        // FIXME: Can we break out of this loop early if no insertion occurs?
        DeadRegs.insert(*RAI);
    } else if (MO.isRegMask()) {
      RegMasks.push_back(MO.getRegMask());
      RegMaskPtrs.push_back(&MO);
    }
  }

  // Tell MLocTracker about all definitions, of regmasks and otherwise.
  for (uint32_t DeadReg : DeadRegs)
    MTracker->defReg(DeadReg, CurBB, CurInst);

  for (auto *MO : RegMaskPtrs)
    MTracker->writeRegMask(MO, CurBB, CurInst);
}

void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
  ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);

  MTracker->setReg(DstRegNum, SrcValue);

  // In all circumstances, re-def the super registers. It's definitely a new
  // value now. This doesn't uniquely identify the composition of subregs, for
  // example, two identical values in subregisters composed in different
  // places would not get equal value numbers.
  for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI)
    MTracker->defReg(*SRI, CurBB, CurInst);

  // If we're emulating VarLocBasedImpl, just define all the subregisters.
  // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not
  // through prior copies.
  if (EmulateOldLDV) {
    for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI)
      MTracker->defReg(DRI.getSubReg(), CurBB, CurInst);
    return;
  }

  // Otherwise, actually copy subregisters from one location to another.
  // XXX: in addition, any subregisters of DstRegNum that don't line up with
  // the source register should be def'd.
  for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
    unsigned SrcSubReg = SRI.getSubReg();
    unsigned SubRegIdx = SRI.getSubRegIndex();
    unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
    if (!DstSubReg)
      continue;

    // Do copy. There are two matching subregisters, the source value should
    // have been def'd when the super-reg was, the latter might not be tracked
    // yet.
    // This will force SrcSubReg to be tracked, if it isn't yet.
    (void)MTracker->readReg(SrcSubReg);
    LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg);
    assert(SrcL.asU64());
    (void)MTracker->readReg(DstSubReg);
    LocIdx DstL = MTracker->getRegMLoc(DstSubReg);
    assert(DstL.asU64());
    (void)DstL;
    ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL};

    MTracker->setReg(DstSubReg, CpyValue);
  }
}

bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
                                          MachineFunction *MF) {
  // TODO: Handle multiple stores folded into one.
  if (!MI.hasOneMemOperand())
    return false;

  if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
    return false; // This is not a spill instruction, since no valid size was
                  // returned from either function.

  return true;
}

bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
                                       MachineFunction *MF, unsigned &Reg) {
  if (!isSpillInstruction(MI, MF))
    return false;

  // XXX FIXME: On x86, isStoreToStackSlotPostFE returns '1' instead of an
  // actual register number.
  if (ObserveAllStackops) {
    int FI;
    Reg = TII->isStoreToStackSlotPostFE(MI, FI);
    return Reg != 0;
  }

  auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
    if (!MO.isReg() || !MO.isUse()) {
      Reg = 0;
      return false;
    }
    Reg = MO.getReg();
    return MO.isKill();
  };

  for (const MachineOperand &MO : MI.operands()) {
    // In a spill instruction generated by the InlineSpiller the spilled
    // register has its kill flag set.
    if (isKilledReg(MO, Reg))
      return true;
    if (Reg != 0) {
      // Check whether next instruction kills the spilled register.
      // FIXME: Current solution does not cover search for killed register in
      // bundles and instructions further down the chain.
      auto NextI = std::next(MI.getIterator());
      // Skip next instruction that points to basic block end iterator.
      if (MI.getParent()->end() == NextI)
        continue;
      unsigned RegNext;
      for (const MachineOperand &MONext : NextI->operands()) {
        // Return true if we came across the register from the
        // previous spill instruction that is killed in NextI.
        if (isKilledReg(MONext, RegNext) && RegNext == Reg)
          return true;
      }
    }
  }
  // Return false if we didn't find spilled register.
  return false;
}

Optional<SpillLoc>
InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
                                       MachineFunction *MF, unsigned &Reg) {
  if (!MI.hasOneMemOperand())
    return None;

  // FIXME: Handle folded restore instructions with more than one memory
  // operand.
  if (MI.getRestoreSize(TII)) {
    Reg = MI.getOperand(0).getReg();
    return extractSpillBaseRegAndOffset(MI);
  }
  return None;
}

bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
  // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
  // limitations under the new model. Therefore, when comparing them, compare
  // versions that don't attempt spills or restores at all.
  if (EmulateOldLDV)
    return false;

  MachineFunction *MF = MI.getMF();
  unsigned Reg;
  Optional<SpillLoc> Loc;

  LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););

  // First, if there are any DBG_VALUEs pointing at a spill slot that is
  // written to, terminate that variable location. The value in memory
  // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
  if (isSpillInstruction(MI, MF)) {
    Loc = extractSpillBaseRegAndOffset(MI);

    if (TTracker) {
      Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc);
      if (MLoc)
        TTracker->clobberMloc(*MLoc, MI.getIterator());
    }
  }

  // Try to recognise spill and restore instructions that may transfer a value.
  if (isLocationSpill(MI, MF, Reg)) {
    Loc = extractSpillBaseRegAndOffset(MI);
    auto ValueID = MTracker->readReg(Reg);

    // If the location is empty, produce a phi, signify it's the live-in value.
    if (ValueID.getLoc() == 0)
      ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)};

    MTracker->setSpill(*Loc, ValueID);
    auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc);
    assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?");
    LocIdx SpillLocIdx = *OptSpillLocIdx;

    // Tell TransferTracker about this spill, produce DBG_VALUEs for it.
    if (TTracker)
      TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx,
                              MI.getIterator());

    // VarLocBasedImpl would, at this point, stop tracking the source
    // register of the store.
    if (EmulateOldLDV) {
      for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
        MTracker->defReg(*RAI, CurBB, CurInst);
    }
  } else {
    if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
      return false;

    // Is there a value to be restored?
    auto OptValueID = MTracker->readSpill(*Loc);
    if (OptValueID) {
      ValueIDNum ValueID = *OptValueID;
      LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc);
      // XXX -- can we recover sub-registers of this value? Until we can, first
      // overwrite all defs of the register being restored to.
      for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
        MTracker->defReg(*RAI, CurBB, CurInst);

      // Now override the reg we're restoring to.
      MTracker->setReg(Reg, ValueID);

      // Report this restore to the transfer tracker too.
      if (TTracker)
        TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg),
                                MI.getIterator());
    } else {
      // There isn't anything in the location; not clear if this is a code path
      // that still runs. Def this register anyway just in case.
      for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
        MTracker->defReg(*RAI, CurBB, CurInst);

      // Force the spill slot to be tracked.
      LocIdx L = MTracker->getOrTrackSpillLoc(*Loc);

      // Set the restored value to be a machine phi number, signifying that it's
      // whatever the spills live-in value is in this block. Definitely has
      // a LocIdx due to the setSpill above.
      ValueIDNum ValueID = {CurBB, 0, L};
      MTracker->setReg(Reg, ValueID);
      MTracker->setSpill(*Loc, ValueID);
    }
  }
  return true;
}

bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
  auto DestSrc = TII->isCopyInstr(MI);
  if (!DestSrc)
    return false;

  const MachineOperand *DestRegOp = DestSrc->Destination;
  const MachineOperand *SrcRegOp = DestSrc->Source;

  auto isCalleeSavedReg = [&](unsigned Reg) {
    for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
      if (CalleeSavedRegs.test(*RAI))
        return true;
    return false;
  };

  Register SrcReg = SrcRegOp->getReg();
  Register DestReg = DestRegOp->getReg();

  // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
  if (SrcReg == DestReg)
    return true;

  // For emulating VarLocBasedImpl:
  // We want to recognize instructions where destination register is callee
  // saved register. If register that could be clobbered by the call is
  // included, there would be a great chance that it is going to be clobbered
  // soon. It is more likely that previous register, which is callee saved, is
  // going to stay unclobbered longer, even if it is killed.
  //
  // For InstrRefBasedImpl, we can track multiple locations per value, so
  // ignore this condition.
  if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
    return false;

  // InstrRefBasedImpl only followed killing copies.
  if (EmulateOldLDV && !SrcRegOp->isKill())
    return false;

  // Copy MTracker info, including subregs if available.
  InstrRefBasedLDV::performCopy(SrcReg, DestReg);

  // Only produce a transfer of DBG_VALUE within a block where old LDV
  // would have. We might make use of the additional value tracking in some
  // other way, later.
  if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
    TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
                            MTracker->getRegMLoc(DestReg), MI.getIterator());

  // VarLocBasedImpl would quit tracking the old location after copying.
  if (EmulateOldLDV && SrcReg != DestReg)
    MTracker->defReg(SrcReg, CurBB, CurInst);

  return true;
}

/// Accumulate a mapping between each DILocalVariable fragment and other
/// fragments of that DILocalVariable which overlap. This reduces work during
/// the data-flow stage from "Find any overlapping fragments" to "Check if the
/// known-to-overlap fragments are present".
/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
///           fragment usage.
void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
  DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
                      MI.getDebugLoc()->getInlinedAt());
  FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();

  // If this is the first sighting of this variable, then we are guaranteed
  // there are currently no overlapping fragments either. Initialize the set
  // of seen fragments, record no overlaps for the current one, and return.
  auto SeenIt = SeenFragments.find(MIVar.getVariable());
  if (SeenIt == SeenFragments.end()) {
    SmallSet<FragmentInfo, 4> OneFragment;
    OneFragment.insert(ThisFragment);
    SeenFragments.insert({MIVar.getVariable(), OneFragment});

    OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
    return;
  }

  // If this particular Variable/Fragment pair already exists in the overlap
  // map, it has already been accounted for.
  auto IsInOLapMap =
      OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
  if (!IsInOLapMap.second)
    return;

  auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
  auto &AllSeenFragments = SeenIt->second;

  // Otherwise, examine all other seen fragments for this variable, with "this"
  // fragment being a previously unseen fragment. Record any pair of
  // overlapping fragments.
  for (auto &ASeenFragment : AllSeenFragments) {
    // Does this previously seen fragment overlap?
    if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
      // Yes: Mark the current fragment as being overlapped.
      ThisFragmentsOverlaps.push_back(ASeenFragment);
      // Mark the previously seen fragment as being overlapped by the current
      // one.
      auto ASeenFragmentsOverlaps =
          OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
      assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
             "Previously seen var fragment has no vector of overlaps");
      ASeenFragmentsOverlaps->second.push_back(ThisFragment);
    }
  }

  AllSeenFragments.insert(ThisFragment);
}

void InstrRefBasedLDV::process(MachineInstr &MI) {
  // Try to interpret an MI as a debug or transfer instruction. Only if it's
  // none of these should we interpret it's register defs as new value
  // definitions.
  if (transferDebugValue(MI))
    return;
  if (transferRegisterCopy(MI))
    return;
  if (transferSpillOrRestoreInst(MI))
    return;
  transferRegisterDef(MI);
}

void InstrRefBasedLDV::produceTransferFunctions(
    MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
    unsigned MaxNumBlocks, SmallVectorImpl<VLocTracker> &VLocs) {
  // Because we try to optimize around register mask operands by ignoring regs
  // that aren't currently tracked, we set up something ugly for later: RegMask
  // operands that are seen earlier than the first use of a register, still need
  // to clobber that register in the transfer function. But this information
  // isn't actively recorded. Instead, we track each RegMask used in each block,
  // and accumulated the clobbered but untracked registers in each block into
  // the following bitvector. Later, if new values are tracked, we can add
  // appropriate clobbers.
  SmallVector<BitVector, 32> BlockMasks;
  BlockMasks.resize(MaxNumBlocks);

  // Reserve one bit per register for the masks described above.
  unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
  for (auto &BV : BlockMasks)
    BV.resize(TRI->getNumRegs(), true);

  // Step through all instructions and inhale the transfer function.
  for (auto &MBB : MF) {
    // Object fields that are read by trackers to know where we are in the
    // function.
    CurBB = MBB.getNumber();
    CurInst = 1;

    // Set all machine locations to a PHI value. For transfer function
    // production only, this signifies the live-in value to the block.
    MTracker->reset();
    MTracker->setMPhis(CurBB);

    VTracker = &VLocs[CurBB];
    VTracker->MBB = &MBB;

    // Step through each instruction in this block.
    for (auto &MI : MBB) {
      process(MI);
      // Also accumulate fragment map.
      if (MI.isDebugValue())
        accumulateFragmentMap(MI);
      ++CurInst;
    }

    // Produce the transfer function, a map of machine location to new value. If
    // any machine location has the live-in phi value from the start of the
    // block, it's live-through and doesn't need recording in the transfer
    // function.
    for (auto Location : MTracker->locations()) {
      LocIdx Idx = Location.Idx;
      ValueIDNum &P = Location.Value;
      if (P.isPHI() && P.getLoc() == Idx.asU64())
        continue;

      // Insert-or-update.
      auto &TransferMap = MLocTransfer[CurBB];
      auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
      if (!Result.second)
        Result.first->second = P;
    }

    // Accumulate any bitmask operands into the clobberred reg mask for this
    // block.
    for (auto &P : MTracker->Masks) {
      BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
    }
  }

  // Compute a bitvector of all the registers that are tracked in this block.
  const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
  unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
  BitVector UsedRegs(TRI->getNumRegs());
  for (auto Location : MTracker->locations()) {
    unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
    if (ID >= TRI->getNumRegs() || ID == SP)
      continue;
    UsedRegs.set(ID);
  }

  // Check that any regmask-clobber of a register that gets tracked, is not
  // live-through in the transfer function. It needs to be clobbered at the
  // very least.
  for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
    BitVector &BV = BlockMasks[I];
    BV.flip();
    BV &= UsedRegs;
    // This produces all the bits that we clobber, but also use. Check that
    // they're all clobbered or at least set in the designated transfer
    // elem.
    for (unsigned Bit : BV.set_bits()) {
      unsigned ID = MTracker->getLocID(Bit, false);
      LocIdx Idx = MTracker->LocIDToLocIdx[ID];
      auto &TransferMap = MLocTransfer[I];

      // Install a value representing the fact that this location is effectively
      // written to in this block. As there's no reserved value, instead use
      // a value number that is never generated. Pick the value number for the
      // first instruction in the block, def'ing this location, which we know
      // this block never used anyway.
      ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
      auto Result =
        TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
      if (!Result.second) {
        ValueIDNum &ValueID = Result.first->second;
        if (ValueID.getBlock() == I && ValueID.isPHI())
          // It was left as live-through. Set it to clobbered.
          ValueID = NotGeneratedNum;
      }
    }
  }
}

std::tuple<bool, bool>
InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB,
                           SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
                           ValueIDNum **OutLocs, ValueIDNum *InLocs) {
  LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
  bool Changed = false;
  bool DowngradeOccurred = false;

  // Collect predecessors that have been visited. Anything that hasn't been
  // visited yet is a backedge on the first iteration, and the meet of it's
  // lattice value for all locations will be unaffected.
  SmallVector<const MachineBasicBlock *, 8> BlockOrders;
  for (auto Pred : MBB.predecessors()) {
    if (Visited.count(Pred)) {
      BlockOrders.push_back(Pred);
    }
  }

  // Visit predecessors in RPOT order.
  auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
    return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
  };
  llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp);

  // Skip entry block.
  if (BlockOrders.size() == 0)
    return std::tuple<bool, bool>(false, false);

  // Step through all machine locations, then look at each predecessor and
  // detect disagreements.
  unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second;
  for (auto Location : MTracker->locations()) {
    LocIdx Idx = Location.Idx;
    // Pick out the first predecessors live-out value for this location. It's
    // guaranteed to be not a backedge, as we order by RPO.
    ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];

    // Some flags for whether there's a disagreement, and whether it's a
    // disagreement with a backedge or not.
    bool Disagree = false;
    bool NonBackEdgeDisagree = false;

    // Loop around everything that wasn't 'base'.
    for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
      auto *MBB = BlockOrders[I];
      if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) {
        // Live-out of a predecessor disagrees with the first predecessor.
        Disagree = true;

        // Test whether it's a disagreemnt in the backedges or not.
        if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e
          NonBackEdgeDisagree = true;
      }
    }

    bool OverRide = false;
    if (Disagree && !NonBackEdgeDisagree) {
      // Only the backedges disagree. Consider demoting the livein
      // lattice value, as per the file level comment. The value we consider
      // demoting to is the value that the non-backedge predecessors agree on.
      // The order of values is that non-PHIs are \top, a PHI at this block
      // \bot, and phis between the two are ordered by their RPO number.
      // If there's no agreement, or we've already demoted to this PHI value
      // before, replace with a PHI value at this block.

      // Calculate order numbers: zero means normal def, nonzero means RPO
      // number.
      unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1;
      if (!BaseVal.isPHI())
        BaseBlockRPONum = 0;

      ValueIDNum &InLocID = InLocs[Idx.asU64()];
      unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1;
      if (!InLocID.isPHI())
        InLocRPONum = 0;

      // Should we ignore the disagreeing backedges, and override with the
      // value the other predecessors agree on (in "base")?
      unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1;
      if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) {
        // Override.
        OverRide = true;
        DowngradeOccurred = true;
      }
    }
    // else: if we disagree in the non-backedges, then this is definitely
    // a control flow merge where different values merge. Make it a PHI.

    // Generate a phi...
    ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx};
    ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal;
    if (InLocs[Idx.asU64()] != NewVal) {
      Changed |= true;
      InLocs[Idx.asU64()] = NewVal;
    }
  }

  // Uhhhhhh, reimplement NumInserted and NumRemoved pls.
  return std::tuple<bool, bool>(Changed, DowngradeOccurred);
}

void InstrRefBasedLDV::mlocDataflow(
    ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
    SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
  std::priority_queue<unsigned int, std::vector<unsigned int>,
                      std::greater<unsigned int>>
      Worklist, Pending;

  // We track what is on the current and pending worklist to avoid inserting
  // the same thing twice. We could avoid this with a custom priority queue,
  // but this is probably not worth it.
  SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;

  // Initialize worklist with every block to be visited.
  for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
    Worklist.push(I);
    OnWorklist.insert(OrderToBB[I]);
  }

  MTracker->reset();

  // Set inlocs for entry block -- each as a PHI at the entry block. Represents
  // the incoming value to the function.
  MTracker->setMPhis(0);
  for (auto Location : MTracker->locations())
    MInLocs[0][Location.Idx.asU64()] = Location.Value;

  SmallPtrSet<const MachineBasicBlock *, 16> Visited;
  while (!Worklist.empty() || !Pending.empty()) {
    // Vector for storing the evaluated block transfer function.
    SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;

    while (!Worklist.empty()) {
      MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
      CurBB = MBB->getNumber();
      Worklist.pop();

      // Join the values in all predecessor blocks.
      bool InLocsChanged, DowngradeOccurred;
      std::tie(InLocsChanged, DowngradeOccurred) =
          mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
      InLocsChanged |= Visited.insert(MBB).second;

      // If a downgrade occurred, book us in for re-examination on the next
      // iteration.
      if (DowngradeOccurred && OnPending.insert(MBB).second)
        Pending.push(BBToOrder[MBB]);

      // Don't examine transfer function if we've visited this loc at least
      // once, and inlocs haven't changed.
      if (!InLocsChanged)
        continue;

      // Load the current set of live-ins into MLocTracker.
      MTracker->loadFromArray(MInLocs[CurBB], CurBB);

      // Each element of the transfer function can be a new def, or a read of
      // a live-in value. Evaluate each element, and store to "ToRemap".
      ToRemap.clear();
      for (auto &P : MLocTransfer[CurBB]) {
        if (P.second.getBlock() == CurBB && P.second.isPHI()) {
          // This is a movement of whatever was live in. Read it.
          ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc());
          ToRemap.push_back(std::make_pair(P.first, NewID));
        } else {
          // It's a def. Just set it.
          assert(P.second.getBlock() == CurBB);
          ToRemap.push_back(std::make_pair(P.first, P.second));
        }
      }

      // Commit the transfer function changes into mloc tracker, which
      // transforms the contents of the MLocTracker into the live-outs.
      for (auto &P : ToRemap)
        MTracker->setMLoc(P.first, P.second);

      // Now copy out-locs from mloc tracker into out-loc vector, checking
      // whether changes have occurred. These changes can have come from both
      // the transfer function, and mlocJoin.
      bool OLChanged = false;
      for (auto Location : MTracker->locations()) {
        OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
        MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
      }

      MTracker->reset();

      // No need to examine successors again if out-locs didn't change.
      if (!OLChanged)
        continue;

      // All successors should be visited: put any back-edges on the pending
      // list for the next dataflow iteration, and any other successors to be
      // visited this iteration, if they're not going to be already.
      for (auto s : MBB->successors()) {
        // Does branching to this successor represent a back-edge?
        if (BBToOrder[s] > BBToOrder[MBB]) {
          // No: visit it during this dataflow iteration.
          if (OnWorklist.insert(s).second)
            Worklist.push(BBToOrder[s]);
        } else {
          // Yes: visit it on the next iteration.
          if (OnPending.insert(s).second)
            Pending.push(BBToOrder[s]);
        }
      }
    }

    Worklist.swap(Pending);
    std::swap(OnPending, OnWorklist);
    OnPending.clear();
    // At this point, pending must be empty, since it was just the empty
    // worklist
    assert(Pending.empty() && "Pending should be empty");
  }

  // Once all the live-ins don't change on mlocJoin(), we've reached a
  // fixedpoint.
}

bool InstrRefBasedLDV::vlocDowngradeLattice(
    const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation,
    const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) {
  // Ranking value preference: see file level comment, the highest rank is
  // a plain def, followed by PHI values in reverse post-order. Numerically,
  // we assign all defs the rank '0', all PHIs their blocks RPO number plus
  // one, and consider the lowest value the highest ranked.
  int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1;
  if (!OldLiveInLocation.ID.isPHI())
    OldLiveInRank = 0;

  // Allow any unresolvable conflict to be over-ridden.
  if (OldLiveInLocation.Kind == DbgValue::NoVal) {
    // Although if it was an unresolvable conflict from _this_ block, then
    // all other seeking of downgrades and PHIs must have failed before hand.
    if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber())
      return false;
    OldLiveInRank = INT_MIN;
  }

  auto &InValue = *Values[0].second;

  if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal)
    return false;

  unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()];
  int ThisRank = ThisRPO + 1;
  if (!InValue.ID.isPHI())
    ThisRank = 0;

  // Too far down the lattice?
  if (ThisRPO >= CurBlockRPONum)
    return false;

  // Higher in the lattice than what we've already explored?
  if (ThisRank <= OldLiveInRank)
    return false;

  return true;
}

std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc(
    MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts,
    ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
    const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) {
  // Collect a set of locations from predecessor where its live-out value can
  // be found.
  SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
  unsigned NumLocs = MTracker->getNumLocs();
  unsigned BackEdgesStart = 0;

  for (auto p : BlockOrders) {
    // Pick out where backedges start in the list of predecessors. Relies on
    // BlockOrders being sorted by RPO.
    if (BBToOrder[p] < BBToOrder[&MBB])
      ++BackEdgesStart;

    // For each predecessor, create a new set of locations.
    Locs.resize(Locs.size() + 1);
    unsigned ThisBBNum = p->getNumber();
    auto LiveOutMap = LiveOuts.find(p);
    if (LiveOutMap == LiveOuts.end())
      // This predecessor isn't in scope, it must have no live-in/live-out
      // locations.
      continue;

    auto It = LiveOutMap->second->find(Var);
    if (It == LiveOutMap->second->end())
      // There's no value recorded for this variable in this predecessor,
      // leave an empty set of locations.
      continue;

    const DbgValue &OutVal = It->second;

    if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
      // Consts and no-values cannot have locations we can join on.
      continue;

    assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def);
    ValueIDNum ValToLookFor = OutVal.ID;

    // Search the live-outs of the predecessor for the specified value.
    for (unsigned int I = 0; I < NumLocs; ++I) {
      if (MOutLocs[ThisBBNum][I] == ValToLookFor)
        Locs.back().push_back(LocIdx(I));
    }
  }

  // If there were no locations at all, return an empty result.
  if (Locs.empty())
    return std::tuple<Optional<ValueIDNum>, bool>(None, false);

  // Lambda for seeking a common location within a range of location-sets.
  typedef SmallVector<SmallVector<LocIdx, 4>, 8>::iterator LocsIt;
  auto SeekLocation =
      [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> {
    // Starting with the first set of locations, take the intersection with
    // subsequent sets.
    SmallVector<LocIdx, 4> base = Locs[0];
    for (auto &S : SearchRange) {
      SmallVector<LocIdx, 4> new_base;
      std::set_intersection(base.begin(), base.end(), S.begin(), S.end(),
                            std::inserter(new_base, new_base.begin()));
      base = new_base;
    }
    if (base.empty())
      return None;

    // We now have a set of LocIdxes that contain the right output value in
    // each of the predecessors. Pick the lowest; if there's a register loc,
    // that'll be it.
    return *base.begin();
  };

  // Search for a common location for all predecessors. If we can't, then fall
  // back to only finding a common location between non-backedge predecessors.
  bool ValidForAllLocs = true;
  auto TheLoc = SeekLocation(Locs);
  if (!TheLoc) {
    ValidForAllLocs = false;
    TheLoc =
        SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart));
  }

  if (!TheLoc)
    return std::tuple<Optional<ValueIDNum>, bool>(None, false);

  // Return a PHI-value-number for the found location.
  LocIdx L = *TheLoc;
  ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
  return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs);
}

std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin(
    MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
    SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum,
    const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs,
    ValueIDNum **MInLocs,
    SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
    SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
    DenseMap<DebugVariable, DbgValue> &InLocsT) {
  bool DowngradeOccurred = false;

  // To emulate VarLocBasedImpl, process this block if it's not in scope but
  // _does_ assign a variable value. No live-ins for this scope are transferred
  // in though, so we can return immediately.
  if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) {
    if (VLOCVisited)
      return std::tuple<bool, bool>(true, false);
    return std::tuple<bool, bool>(false, false);
  }

  LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
  bool Changed = false;

  // Find any live-ins computed in a prior iteration.
  auto ILSIt = VLOCInLocs.find(&MBB);
  assert(ILSIt != VLOCInLocs.end());
  auto &ILS = *ILSIt->second;

  // Order predecessors by RPOT order, for exploring them in that order.
  SmallVector<MachineBasicBlock *, 8> BlockOrders;
  for (auto p : MBB.predecessors())
    BlockOrders.push_back(p);

  auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
    return BBToOrder[A] < BBToOrder[B];
  };

  llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp);

  unsigned CurBlockRPONum = BBToOrder[&MBB];

  // Force a re-visit to loop heads in the first dataflow iteration.
  // FIXME: if we could "propose" Const values this wouldn't be needed,
  // because they'd need to be confirmed before being emitted.
  if (!BlockOrders.empty() &&
      BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum &&
      VLOCVisited)
    DowngradeOccurred = true;

  auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) {
    auto Result = InLocsT.insert(std::make_pair(DV, VR));
    (void)Result;
    assert(Result.second);
  };

  auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) {
    DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal);

    ConfirmValue(Var, NoLocPHIVal);
  };

  // Attempt to join the values for each variable.
  for (auto &Var : AllVars) {
    // Collect all the DbgValues for this variable.
    SmallVector<InValueT, 8> Values;
    bool Bail = false;
    unsigned BackEdgesStart = 0;
    for (auto p : BlockOrders) {
      // If the predecessor isn't in scope / to be explored, we'll never be
      // able to join any locations.
      if (BlocksToExplore.find(p) == BlocksToExplore.end()) {
        Bail = true;
        break;
      }

      // Don't attempt to handle unvisited predecessors: they're implicitly
      // "unknown"s in the lattice.
      if (VLOCVisited && !VLOCVisited->count(p))
        continue;

      // If the predecessors OutLocs is absent, there's not much we can do.
      auto OL = VLOCOutLocs.find(p);
      if (OL == VLOCOutLocs.end()) {
        Bail = true;
        break;
      }

      // No live-out value for this predecessor also means we can't produce
      // a joined value.
      auto VIt = OL->second->find(Var);
      if (VIt == OL->second->end()) {
        Bail = true;
        break;
      }

      // Keep track of where back-edges begin in the Values vector. Relies on
      // BlockOrders being sorted by RPO.
      unsigned ThisBBRPONum = BBToOrder[p];
      if (ThisBBRPONum < CurBlockRPONum)
        ++BackEdgesStart;

      Values.push_back(std::make_pair(p, &VIt->second));
    }

    // If there were no values, or one of the predecessors couldn't have a
    // value, then give up immediately. It's not safe to produce a live-in
    // value.
    if (Bail || Values.size() == 0)
      continue;

    // Enumeration identifying the current state of the predecessors values.
    enum {
      Unset = 0,
      Agreed,       // All preds agree on the variable value.
      PropDisagree, // All preds agree, but the value kind is Proposed in some.
      BEDisagree,   // Only back-edges disagree on variable value.
      PHINeeded,    // Non-back-edge predecessors have conflicing values.
      NoSolution    // Conflicting Value metadata makes solution impossible.
    } OurState = Unset;

    // All (non-entry) blocks have at least one non-backedge predecessor.
    // Pick the variable value from the first of these, to compare against
    // all others.
    const DbgValue &FirstVal = *Values[0].second;
    const ValueIDNum &FirstID = FirstVal.ID;

    // Scan for variable values that can't be resolved: if they have different
    // DIExpressions, different indirectness, or are mixed constants /
    // non-constants.
    for (auto &V : Values) {
      if (V.second->Properties != FirstVal.Properties)
        OurState = NoSolution;
      if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
        OurState = NoSolution;
    }

    // Flags diagnosing _how_ the values disagree.
    bool NonBackEdgeDisagree = false;
    bool DisagreeOnPHINess = false;
    bool IDDisagree = false;
    bool Disagree = false;
    if (OurState == Unset) {
      for (auto &V : Values) {
        if (*V.second == FirstVal)
          continue; // No disagreement.

        Disagree = true;

        // Flag whether the value number actually diagrees.
        if (V.second->ID != FirstID)
          IDDisagree = true;

        // Distinguish whether disagreement happens in backedges or not.
        // Relies on Values (and BlockOrders) being sorted by RPO.
        unsigned ThisBBRPONum = BBToOrder[V.first];
        if (ThisBBRPONum < CurBlockRPONum)
          NonBackEdgeDisagree = true;

        // Is there a difference in whether the value is definite or only
        // proposed?
        if (V.second->Kind != FirstVal.Kind &&
            (V.second->Kind == DbgValue::Proposed ||
             V.second->Kind == DbgValue::Def) &&
            (FirstVal.Kind == DbgValue::Proposed ||
             FirstVal.Kind == DbgValue::Def))
          DisagreeOnPHINess = true;
      }

      // Collect those flags together and determine an overall state for
      // what extend the predecessors agree on a live-in value.
      if (!Disagree)
        OurState = Agreed;
      else if (!IDDisagree && DisagreeOnPHINess)
        OurState = PropDisagree;
      else if (!NonBackEdgeDisagree)
        OurState = BEDisagree;
      else
        OurState = PHINeeded;
    }

    // An extra indicator: if we only disagree on whether the value is a
    // Def, or proposed, then also flag whether that disagreement happens
    // in backedges only.
    bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess &&
                         !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def;

    const auto &Properties = FirstVal.Properties;

    auto OldLiveInIt = ILS.find(Var);
    const DbgValue *OldLiveInLocation =
        (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr;

    bool OverRide = false;
    if (OurState == BEDisagree && OldLiveInLocation) {
      // Only backedges disagree: we can consider downgrading. If there was a
      // previous live-in value, use it to work out whether the current
      // incoming value represents a lattice downgrade or not.
      OverRide =
          vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum);
    }

    // Use the current state of predecessor agreement and other flags to work
    // out what to do next. Possibilities include:
    //  * Accept a value all predecessors agree on, or accept one that
    //    represents a step down the exploration lattice,
    //  * Use a PHI value number, if one can be found,
    //  * Propose a PHI value number, and see if it gets confirmed later,
    //  * Emit a 'NoVal' value, indicating we couldn't resolve anything.
    if (OurState == Agreed) {
      // Easiest solution: all predecessors agree on the variable value.
      ConfirmValue(Var, FirstVal);
    } else if (OurState == BEDisagree && OverRide) {
      // Only backedges disagree, and the other predecessors have produced
      // a new live-in value further down the exploration lattice.
      DowngradeOccurred = true;
      ConfirmValue(Var, FirstVal);
    } else if (OurState == PropDisagree) {
      // Predecessors agree on value, but some say it's only a proposed value.
      // Propagate it as proposed: unless it was proposed in this block, in
      // which case we're able to confirm the value.
      if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) {
        ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
      } else if (PropOnlyInBEs) {
        // If only backedges disagree, a higher (in RPO) block confirmed this
        // location, and we need to propagate it into this loop.
        ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
      } else {
        // Otherwise; a Def meeting a Proposed is still a Proposed.
        ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed));
      }
    } else if ((OurState == PHINeeded || OurState == BEDisagree)) {
      // Predecessors disagree and can't be downgraded: this can only be
      // solved with a PHI. Use pickVPHILoc to go look for one.
      Optional<ValueIDNum> VPHI;
      bool AllEdgesVPHI = false;
      std::tie(VPHI, AllEdgesVPHI) =
          pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders);

      if (VPHI && AllEdgesVPHI) {
        // There's a PHI value that's valid for all predecessors -- we can use
        // it. If any of the non-backedge predecessors have proposed values
        // though, this PHI is also only proposed, until the predecessors are
        // confirmed.
        DbgValue::KindT K = DbgValue::Def;
        for (unsigned int I = 0; I < BackEdgesStart; ++I)
          if (Values[I].second->Kind == DbgValue::Proposed)
            K = DbgValue::Proposed;

        ConfirmValue(Var, DbgValue(*VPHI, Properties, K));
      } else if (VPHI) {
        // There's a PHI value, but it's only legal for backedges. Leave this
        // as a proposed PHI value: it might come back on the backedges,
        // and allow us to confirm it in the future.
        DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed);
        ConfirmValue(Var, NoBEValue);
      } else {
        ConfirmNoVal(Var, Properties);
      }
    } else {
      // Otherwise: we don't know. Emit a "phi but no real loc" phi.
      ConfirmNoVal(Var, Properties);
    }
  }

  // Store newly calculated in-locs into VLOCInLocs, if they've changed.
  Changed = ILS != InLocsT;
  if (Changed)
    ILS = InLocsT;

  return std::tuple<bool, bool>(Changed, DowngradeOccurred);
}

void InstrRefBasedLDV::vlocDataflow(
    const LexicalScope *Scope, const DILocation *DILoc,
    const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
    SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
    ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
    SmallVectorImpl<VLocTracker> &AllTheVLocs) {
  // This method is much like mlocDataflow: but focuses on a single
  // LexicalScope at a time. Pick out a set of blocks and variables that are
  // to have their value assignments solved, then run our dataflow algorithm
  // until a fixedpoint is reached.
  std::priority_queue<unsigned int, std::vector<unsigned int>,
                      std::greater<unsigned int>>
      Worklist, Pending;
  SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;

  // The set of blocks we'll be examining.
  SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;

  // The order in which to examine them (RPO).
  SmallVector<MachineBasicBlock *, 8> BlockOrders;

  // RPO ordering function.
  auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
    return BBToOrder[A] < BBToOrder[B];
  };

  LS.getMachineBasicBlocks(DILoc, BlocksToExplore);

  // A separate container to distinguish "blocks we're exploring" versus
  // "blocks that are potentially in scope. See comment at start of vlocJoin.
  SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;

  // Old LiveDebugValues tracks variable locations that come out of blocks
  // not in scope, where DBG_VALUEs occur. This is something we could
  // legitimately ignore, but lets allow it for now.
  if (EmulateOldLDV)
    BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());

  // We also need to propagate variable values through any artificial blocks
  // that immediately follow blocks in scope.
  DenseSet<const MachineBasicBlock *> ToAdd;

  // Helper lambda: For a given block in scope, perform a depth first search
  // of all the artificial successors, adding them to the ToAdd collection.
  auto AccumulateArtificialBlocks =
      [this, &ToAdd, &BlocksToExplore,
       &InScopeBlocks](const MachineBasicBlock *MBB) {
        // Depth-first-search state: each node is a block and which successor
        // we're currently exploring.
        SmallVector<std::pair<const MachineBasicBlock *,
                              MachineBasicBlock::const_succ_iterator>,
                    8>
            DFS;

        // Find any artificial successors not already tracked.
        for (auto *succ : MBB->successors()) {
          if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
            continue;
          if (!ArtificialBlocks.count(succ))
            continue;
          DFS.push_back(std::make_pair(succ, succ->succ_begin()));
          ToAdd.insert(succ);
        }

        // Search all those blocks, depth first.
        while (!DFS.empty()) {
          const MachineBasicBlock *CurBB = DFS.back().first;
          MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
          // Walk back if we've explored this blocks successors to the end.
          if (CurSucc == CurBB->succ_end()) {
            DFS.pop_back();
            continue;
          }

          // If the current successor is artificial and unexplored, descend into
          // it.
          if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
            DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
            ToAdd.insert(*CurSucc);
            continue;
          }

          ++CurSucc;
        }
      };

  // Search in-scope blocks and those containing a DBG_VALUE from this scope
  // for artificial successors.
  for (auto *MBB : BlocksToExplore)
    AccumulateArtificialBlocks(MBB);
  for (auto *MBB : InScopeBlocks)
    AccumulateArtificialBlocks(MBB);

  BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
  InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());

  // Single block scope: not interesting! No propagation at all. Note that
  // this could probably go above ArtificialBlocks without damage, but
  // that then produces output differences from original-live-debug-values,
  // which propagates from a single block into many artificial ones.
  if (BlocksToExplore.size() == 1)
    return;

  // Picks out relevants blocks RPO order and sort them.
  for (auto *MBB : BlocksToExplore)
    BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));

  llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp);
  unsigned NumBlocks = BlockOrders.size();

  // Allocate some vectors for storing the live ins and live outs. Large.
  SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts;
  LiveIns.resize(NumBlocks);
  LiveOuts.resize(NumBlocks);

  // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
  // vlocJoin.
  LiveIdxT LiveOutIdx, LiveInIdx;
  LiveOutIdx.reserve(NumBlocks);
  LiveInIdx.reserve(NumBlocks);
  for (unsigned I = 0; I < NumBlocks; ++I) {
    LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
    LiveInIdx[BlockOrders[I]] = &LiveIns[I];
  }

  for (auto *MBB : BlockOrders) {
    Worklist.push(BBToOrder[MBB]);
    OnWorklist.insert(MBB);
  }

  // Iterate over all the blocks we selected, propagating variable values.
  bool FirstTrip = true;
  SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited;
  while (!Worklist.empty() || !Pending.empty()) {
    while (!Worklist.empty()) {
      auto *MBB = OrderToBB[Worklist.top()];
      CurBB = MBB->getNumber();
      Worklist.pop();

      DenseMap<DebugVariable, DbgValue> JoinedInLocs;

      // Join values from predecessors. Updates LiveInIdx, and writes output
      // into JoinedInLocs.
      bool InLocsChanged, DowngradeOccurred;
      std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin(
          *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr,
          CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks,
          BlocksToExplore, JoinedInLocs);

      auto &VTracker = AllTheVLocs[MBB->getNumber()];
      bool FirstVisit = VLOCVisited.insert(MBB).second;

      // Always explore transfer function if inlocs changed, or if we've not
      // visited this block before.
      InLocsChanged |= FirstVisit;

      // If a downgrade occurred, book us in for re-examination on the next
      // iteration.
      if (DowngradeOccurred && OnPending.insert(MBB).second)
        Pending.push(BBToOrder[MBB]);

      // Patch up the variable value transfer function to use the live-in
      // machine values, now that that problem is solved.
      if (FirstVisit) {
        for (auto &Transfer : VTracker.Vars) {
          if (Transfer.second.Kind == DbgValue::Def &&
              Transfer.second.ID.getBlock() == CurBB &&
              Transfer.second.ID.isPHI()) {
            LocIdx Loc = Transfer.second.ID.getLoc();
            Transfer.second.ID = MInLocs[CurBB][Loc.asU64()];
          }
        }
      }

      if (!InLocsChanged)
        continue;

      // Do transfer function.
      for (auto &Transfer : VTracker.Vars) {
        // Is this var we're mangling in this scope?
        if (VarsWeCareAbout.count(Transfer.first)) {
          // Erase on empty transfer (DBG_VALUE $noreg).
          if (Transfer.second.Kind == DbgValue::Undef) {
            JoinedInLocs.erase(Transfer.first);
          } else {
            // Insert new variable value; or overwrite.
            auto NewValuePair = std::make_pair(Transfer.first, Transfer.second);
            auto Result = JoinedInLocs.insert(NewValuePair);
            if (!Result.second)
              Result.first->second = Transfer.second;
          }
        }
      }

      // Did the live-out locations change?
      bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB];

      // If they haven't changed, there's no need to explore further.
      if (!OLChanged)
        continue;

      // Commit to the live-out record.
      *LiveOutIdx[MBB] = JoinedInLocs;

      // We should visit all successors. Ensure we'll visit any non-backedge
      // successors during this dataflow iteration; book backedge successors
      // to be visited next time around.
      for (auto s : MBB->successors()) {
        // Ignore out of scope / not-to-be-explored successors.
        if (LiveInIdx.find(s) == LiveInIdx.end())
          continue;

        if (BBToOrder[s] > BBToOrder[MBB]) {
          if (OnWorklist.insert(s).second)
            Worklist.push(BBToOrder[s]);
        } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
          Pending.push(BBToOrder[s]);
        }
      }
    }
    Worklist.swap(Pending);
    std::swap(OnWorklist, OnPending);
    OnPending.clear();
    assert(Pending.empty());
    FirstTrip = false;
  }

  // Dataflow done. Now what? Save live-ins. Ignore any that are still marked
  // as being variable-PHIs, because those did not have their machine-PHI
  // value confirmed. Such variable values are places that could have been
  // PHIs, but are not.
  for (auto *MBB : BlockOrders) {
    auto &VarMap = *LiveInIdx[MBB];
    for (auto &P : VarMap) {
      if (P.second.Kind == DbgValue::Proposed ||
          P.second.Kind == DbgValue::NoVal)
        continue;
      Output[MBB->getNumber()].push_back(P);
    }
  }

  BlockOrders.clear();
  BlocksToExplore.clear();
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void InstrRefBasedLDV::dump_mloc_transfer(
    const MLocTransferMap &mloc_transfer) const {
  for (auto &P : mloc_transfer) {
    std::string foo = MTracker->LocIdxToName(P.first);
    std::string bar = MTracker->IDAsString(P.second);
    dbgs() << "Loc " << foo << " --> " << bar << "\n";
  }
}
#endif

void InstrRefBasedLDV::emitLocations(
    MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MInLocs,
    DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
  TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs);
  unsigned NumLocs = MTracker->getNumLocs();

  // For each block, load in the machine value locations and variable value
  // live-ins, then step through each instruction in the block. New DBG_VALUEs
  // to be inserted will be created along the way.
  for (MachineBasicBlock &MBB : MF) {
    unsigned bbnum = MBB.getNumber();
    MTracker->reset();
    MTracker->loadFromArray(MInLocs[bbnum], bbnum);
    TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
                         NumLocs);

    CurBB = bbnum;
    CurInst = 1;
    for (auto &MI : MBB) {
      process(MI);
      ++CurInst;
    }
  }

  // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
  // in DWARF in different orders. Use the order that they appear when walking
  // through each block / each instruction, stored in AllVarsNumbering.
  auto OrderDbgValues = [&](const MachineInstr *A,
                            const MachineInstr *B) -> bool {
    DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
                       A->getDebugLoc()->getInlinedAt());
    DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
                       B->getDebugLoc()->getInlinedAt());
    return AllVarsNumbering.find(VarA)->second <
           AllVarsNumbering.find(VarB)->second;
  };

  // Go through all the transfers recorded in the TransferTracker -- this is
  // both the live-ins to a block, and any movements of values that happen
  // in the middle.
  for (auto &P : TTracker->Transfers) {
    // Sort them according to appearance order.
    llvm::sort(P.Insts.begin(), P.Insts.end(), OrderDbgValues);
    // Insert either before or after the designated point...
    if (P.MBB) {
      MachineBasicBlock &MBB = *P.MBB;
      for (auto *MI : P.Insts) {
        MBB.insert(P.Pos, MI);
      }
    } else {
      MachineBasicBlock &MBB = *P.Pos->getParent();
      for (auto *MI : P.Insts) {
        MBB.insertAfter(P.Pos, MI);
      }
    }
  }
}

void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
  // Build some useful data structures.
  auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
    if (const DebugLoc &DL = MI.getDebugLoc())
      return DL.getLine() != 0;
    return false;
  };
  // Collect a set of all the artificial blocks.
  for (auto &MBB : MF)
    if (none_of(MBB.instrs(), hasNonArtificialLocation))
      ArtificialBlocks.insert(&MBB);

  // Compute mappings of block <=> RPO order.
  ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
  unsigned int RPONumber = 0;
  for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
    OrderToBB[RPONumber] = *RI;
    BBToOrder[*RI] = RPONumber;
    BBNumToRPO[(*RI)->getNumber()] = RPONumber;
    ++RPONumber;
  }
}

/// Calculate the liveness information for the given machine function and
/// extend ranges across basic blocks.
bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
                                    TargetPassConfig *TPC) {
  // No subprogram means this function contains no debuginfo.
  if (!MF.getFunction().getSubprogram())
    return false;

  LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
  this->TPC = TPC;

  TRI = MF.getSubtarget().getRegisterInfo();
  TII = MF.getSubtarget().getInstrInfo();
  TFI = MF.getSubtarget().getFrameLowering();
  TFI->getCalleeSaves(MF, CalleeSavedRegs);
  LS.initialize(MF);

  MTracker =
      new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
  VTracker = nullptr;
  TTracker = nullptr;

  SmallVector<MLocTransferMap, 32> MLocTransfer;
  SmallVector<VLocTracker, 8> vlocs;
  LiveInsT SavedLiveIns;

  int MaxNumBlocks = -1;
  for (auto &MBB : MF)
    MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
  assert(MaxNumBlocks >= 0);
  ++MaxNumBlocks;

  MLocTransfer.resize(MaxNumBlocks);
  vlocs.resize(MaxNumBlocks);
  SavedLiveIns.resize(MaxNumBlocks);

  initialSetup(MF);

  produceTransferFunctions(MF, MLocTransfer, MaxNumBlocks, vlocs);

  // Allocate and initialize two array-of-arrays for the live-in and live-out
  // machine values. The outer dimension is the block number; while the inner
  // dimension is a LocIdx from MLocTracker.
  ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
  ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
  unsigned NumLocs = MTracker->getNumLocs();
  for (int i = 0; i < MaxNumBlocks; ++i) {
    MOutLocs[i] = new ValueIDNum[NumLocs];
    MInLocs[i] = new ValueIDNum[NumLocs];
  }

  // Solve the machine value dataflow problem using the MLocTransfer function,
  // storing the computed live-ins / live-outs into the array-of-arrays. We use
  // both live-ins and live-outs for decision making in the variable value
  // dataflow problem.
  mlocDataflow(MInLocs, MOutLocs, MLocTransfer);

  // Number all variables in the order that they appear, to be used as a stable
  // insertion order later.
  DenseMap<DebugVariable, unsigned> AllVarsNumbering;

  // Map from one LexicalScope to all the variables in that scope.
  DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;

  // Map from One lexical scope to all blocks in that scope.
  DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
      ScopeToBlocks;

  // Store a DILocation that describes a scope.
  DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;

  // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
  // the order is unimportant, it just has to be stable.
  for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
    auto *MBB = OrderToBB[I];
    auto *VTracker = &vlocs[MBB->getNumber()];
    // Collect each variable with a DBG_VALUE in this block.
    for (auto &idx : VTracker->Vars) {
      const auto &Var = idx.first;
      const DILocation *ScopeLoc = VTracker->Scopes[Var];
      assert(ScopeLoc != nullptr);
      auto *Scope = LS.findLexicalScope(ScopeLoc);

      // No insts in scope -> shouldn't have been recorded.
      assert(Scope != nullptr);

      AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
      ScopeToVars[Scope].insert(Var);
      ScopeToBlocks[Scope].insert(VTracker->MBB);
      ScopeToDILocation[Scope] = ScopeLoc;
    }
  }

  // OK. Iterate over scopes: there might be something to be said for
  // ordering them by size/locality, but that's for the future. For each scope,
  // solve the variable value problem, producing a map of variables to values
  // in SavedLiveIns.
  for (auto &P : ScopeToVars) {
    vlocDataflow(P.first, ScopeToDILocation[P.first], P.second,
                 ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
                 vlocs);
  }

  // Using the computed value locations and variable values for each block,
  // create the DBG_VALUE instructions representing the extended variable
  // locations.
  emitLocations(MF, SavedLiveIns, MInLocs, AllVarsNumbering);

  for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
    delete[] MOutLocs[Idx];
    delete[] MInLocs[Idx];
  }
  delete[] MOutLocs;
  delete[] MInLocs;

  // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
  bool Changed = TTracker->Transfers.size() != 0;

  delete MTracker;
  delete TTracker;
  MTracker = nullptr;
  VTracker = nullptr;
  TTracker = nullptr;

  ArtificialBlocks.clear();
  OrderToBB.clear();
  BBToOrder.clear();
  BBNumToRPO.clear();

  return Changed;
}

LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
  return new InstrRefBasedLDV();
}