LiveDebugVariables.cpp 51.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
//===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveDebugVariables analysis.
//
// Remove all DBG_VALUE instructions referencing virtual registers and replace
// them with a data structure tracking where live user variables are kept - in a
// virtual register or in a stack slot.
//
// Allow the data structure to be updated during register allocation when values
// are moved between registers and stack slots. Finally emit new DBG_VALUE
// instructions after register allocation is complete.
//
//===----------------------------------------------------------------------===//

#include "LiveDebugVariables.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Metadata.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "livedebugvars"

static cl::opt<bool>
EnableLDV("live-debug-variables", cl::init(true),
          cl::desc("Enable the live debug variables pass"), cl::Hidden);

STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted");

char LiveDebugVariables::ID = 0;

INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
                "Debug Variable Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
                "Debug Variable Analysis", false, false)

void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<MachineDominatorTree>();
  AU.addRequiredTransitive<LiveIntervals>();
  AU.setPreservesAll();
  MachineFunctionPass::getAnalysisUsage(AU);
}

LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
}

enum : unsigned { UndefLocNo = ~0U };

namespace {
/// Describes a debug variable value by location number and expression along
/// with some flags about the original usage of the location.
class DbgVariableValue {
public:
  DbgVariableValue(unsigned LocNo, bool WasIndirect,
                   const DIExpression &Expression)
      : LocNo(LocNo), WasIndirect(WasIndirect), Expression(&Expression) {
    assert(getLocNo() == LocNo && "location truncation");
  }

  DbgVariableValue() : LocNo(0), WasIndirect(0) {}

  const DIExpression *getExpression() const { return Expression; }
  unsigned getLocNo() const {
    // Fix up the undef location number, which gets truncated.
    return LocNo == INT_MAX ? UndefLocNo : LocNo;
  }
  bool getWasIndirect() const { return WasIndirect; }
  bool isUndef() const { return getLocNo() == UndefLocNo; }

  DbgVariableValue changeLocNo(unsigned NewLocNo) const {
    return DbgVariableValue(NewLocNo, WasIndirect, *Expression);
  }

  friend inline bool operator==(const DbgVariableValue &LHS,
                                const DbgVariableValue &RHS) {
    return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect &&
           LHS.Expression == RHS.Expression;
  }

  friend inline bool operator!=(const DbgVariableValue &LHS,
                                const DbgVariableValue &RHS) {
    return !(LHS == RHS);
  }

private:
  unsigned LocNo : 31;
  unsigned WasIndirect : 1;
  const DIExpression *Expression = nullptr;
};
} // namespace

/// Map of where a user value is live to that value.
using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>;

/// Map of stack slot offsets for spilled locations.
/// Non-spilled locations are not added to the map.
using SpillOffsetMap = DenseMap<unsigned, unsigned>;

namespace {

class LDVImpl;

/// A user value is a part of a debug info user variable.
///
/// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
/// holds part of a user variable. The part is identified by a byte offset.
///
/// UserValues are grouped into equivalence classes for easier searching. Two
/// user values are related if they are held by the same virtual register. The
/// equivalence class is the transitive closure of that relation.
class UserValue {
  const DILocalVariable *Variable; ///< The debug info variable we are part of.
  /// The part of the variable we describe.
  const Optional<DIExpression::FragmentInfo> Fragment;
  DebugLoc dl;            ///< The debug location for the variable. This is
                          ///< used by dwarf writer to find lexical scope.
  UserValue *leader;      ///< Equivalence class leader.
  UserValue *next = nullptr; ///< Next value in equivalence class, or null.

  /// Numbered locations referenced by locmap.
  SmallVector<MachineOperand, 4> locations;

  /// Map of slot indices where this value is live.
  LocMap locInts;

  /// Set of interval start indexes that have been trimmed to the
  /// lexical scope.
  SmallSet<SlotIndex, 2> trimmedDefs;

  /// Insert a DBG_VALUE into MBB at Idx for DbgValue.
  void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
                        SlotIndex StopIdx, DbgVariableValue DbgValue,
                        bool Spilled, unsigned SpillOffset, LiveIntervals &LIS,
                        const TargetInstrInfo &TII,
                        const TargetRegisterInfo &TRI);

  /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
  /// is live. Returns true if any changes were made.
  bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs,
                     LiveIntervals &LIS);

public:
  /// Create a new UserValue.
  UserValue(const DILocalVariable *var,
            Optional<DIExpression::FragmentInfo> Fragment, DebugLoc L,
            LocMap::Allocator &alloc)
      : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this),
        locInts(alloc) {}

  /// Get the leader of this value's equivalence class.
  UserValue *getLeader() {
    UserValue *l = leader;
    while (l != l->leader)
      l = l->leader;
    return leader = l;
  }

  /// Return the next UserValue in the equivalence class.
  UserValue *getNext() const { return next; }

  /// Merge equivalence classes.
  static UserValue *merge(UserValue *L1, UserValue *L2) {
    L2 = L2->getLeader();
    if (!L1)
      return L2;
    L1 = L1->getLeader();
    if (L1 == L2)
      return L1;
    // Splice L2 before L1's members.
    UserValue *End = L2;
    while (End->next) {
      End->leader = L1;
      End = End->next;
    }
    End->leader = L1;
    End->next = L1->next;
    L1->next = L2;
    return L1;
  }

  /// Return the location number that matches Loc.
  ///
  /// For undef values we always return location number UndefLocNo without
  /// inserting anything in locations. Since locations is a vector and the
  /// location number is the position in the vector and UndefLocNo is ~0,
  /// we would need a very big vector to put the value at the right position.
  unsigned getLocationNo(const MachineOperand &LocMO) {
    if (LocMO.isReg()) {
      if (LocMO.getReg() == 0)
        return UndefLocNo;
      // For register locations we dont care about use/def and other flags.
      for (unsigned i = 0, e = locations.size(); i != e; ++i)
        if (locations[i].isReg() &&
            locations[i].getReg() == LocMO.getReg() &&
            locations[i].getSubReg() == LocMO.getSubReg())
          return i;
    } else
      for (unsigned i = 0, e = locations.size(); i != e; ++i)
        if (LocMO.isIdenticalTo(locations[i]))
          return i;
    locations.push_back(LocMO);
    // We are storing a MachineOperand outside a MachineInstr.
    locations.back().clearParent();
    // Don't store def operands.
    if (locations.back().isReg()) {
      if (locations.back().isDef())
        locations.back().setIsDead(false);
      locations.back().setIsUse();
    }
    return locations.size() - 1;
  }

  /// Remove (recycle) a location number. If \p LocNo still is used by the
  /// locInts nothing is done.
  void removeLocationIfUnused(unsigned LocNo) {
    // Bail out if LocNo still is used.
    for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
      DbgVariableValue DbgValue = I.value();
      if (DbgValue.getLocNo() == LocNo)
        return;
    }
    // Remove the entry in the locations vector, and adjust all references to
    // location numbers above the removed entry.
    locations.erase(locations.begin() + LocNo);
    for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
      DbgVariableValue DbgValue = I.value();
      if (!DbgValue.isUndef() && DbgValue.getLocNo() > LocNo)
        I.setValueUnchecked(DbgValue.changeLocNo(DbgValue.getLocNo() - 1));
    }
  }

  /// Ensure that all virtual register locations are mapped.
  void mapVirtRegs(LDVImpl *LDV);

  /// Add a definition point to this user value.
  void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect,
              const DIExpression &Expr) {
    DbgVariableValue DbgValue(getLocationNo(LocMO), IsIndirect, Expr);
    // Add a singular (Idx,Idx) -> value mapping.
    LocMap::iterator I = locInts.find(Idx);
    if (!I.valid() || I.start() != Idx)
      I.insert(Idx, Idx.getNextSlot(), DbgValue);
    else
      // A later DBG_VALUE at the same SlotIndex overrides the old location.
      I.setValue(DbgValue);
  }

  /// Extend the current definition as far as possible down.
  ///
  /// Stop when meeting an existing def or when leaving the live
  /// range of VNI. End points where VNI is no longer live are added to Kills.
  ///
  /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
  /// data-flow analysis to propagate them beyond basic block boundaries.
  ///
  /// \param Idx Starting point for the definition.
  /// \param DbgValue value to propagate.
  /// \param LR Restrict liveness to where LR has the value VNI. May be null.
  /// \param VNI When LR is not null, this is the value to restrict to.
  /// \param [out] Kills Append end points of VNI's live range to Kills.
  /// \param LIS Live intervals analysis.
  void extendDef(SlotIndex Idx, DbgVariableValue DbgValue, LiveRange *LR,
                 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
                 LiveIntervals &LIS);

  /// The value in LI may be copies to other registers. Determine if
  /// any of the copies are available at the kill points, and add defs if
  /// possible.
  ///
  /// \param LI Scan for copies of the value in LI->reg.
  /// \param DbgValue Location number of LI->reg, and DIExpression.
  /// \param Kills Points where the range of DbgValue could be extended.
  /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here.
  void addDefsFromCopies(
      LiveInterval *LI, DbgVariableValue DbgValue,
      const SmallVectorImpl<SlotIndex> &Kills,
      SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs,
      MachineRegisterInfo &MRI, LiveIntervals &LIS);

  /// Compute the live intervals of all locations after collecting all their
  /// def points.
  void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
                        LiveIntervals &LIS, LexicalScopes &LS);

  /// Replace OldReg ranges with NewRegs ranges where NewRegs is
  /// live. Returns true if any changes were made.
  bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs,
                     LiveIntervals &LIS);

  /// Rewrite virtual register locations according to the provided virtual
  /// register map. Record the stack slot offsets for the locations that
  /// were spilled.
  void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
                        const TargetInstrInfo &TII,
                        const TargetRegisterInfo &TRI,
                        SpillOffsetMap &SpillOffsets);

  /// Recreate DBG_VALUE instruction from data structures.
  void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
                       const TargetInstrInfo &TII,
                       const TargetRegisterInfo &TRI,
                       const SpillOffsetMap &SpillOffsets);

  /// Return DebugLoc of this UserValue.
  DebugLoc getDebugLoc() { return dl;}

  void print(raw_ostream &, const TargetRegisterInfo *);
};

/// A user label is a part of a debug info user label.
class UserLabel {
  const DILabel *Label; ///< The debug info label we are part of.
  DebugLoc dl;          ///< The debug location for the label. This is
                        ///< used by dwarf writer to find lexical scope.
  SlotIndex loc;        ///< Slot used by the debug label.

  /// Insert a DBG_LABEL into MBB at Idx.
  void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
                        LiveIntervals &LIS, const TargetInstrInfo &TII);

public:
  /// Create a new UserLabel.
  UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx)
      : Label(label), dl(std::move(L)), loc(Idx) {}

  /// Does this UserLabel match the parameters?
  bool matches(const DILabel *L, const DILocation *IA,
             const SlotIndex Index) const {
    return Label == L && dl->getInlinedAt() == IA && loc == Index;
  }

  /// Recreate DBG_LABEL instruction from data structures.
  void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII);

  /// Return DebugLoc of this UserLabel.
  DebugLoc getDebugLoc() { return dl; }

  void print(raw_ostream &, const TargetRegisterInfo *);
};

/// Implementation of the LiveDebugVariables pass.
class LDVImpl {
  LiveDebugVariables &pass;
  LocMap::Allocator allocator;
  MachineFunction *MF = nullptr;
  LiveIntervals *LIS;
  const TargetRegisterInfo *TRI;

  /// Whether emitDebugValues is called.
  bool EmitDone = false;

  /// Whether the machine function is modified during the pass.
  bool ModifiedMF = false;

  /// All allocated UserValue instances.
  SmallVector<std::unique_ptr<UserValue>, 8> userValues;

  /// All allocated UserLabel instances.
  SmallVector<std::unique_ptr<UserLabel>, 2> userLabels;

  /// Map virtual register to eq class leader.
  using VRMap = DenseMap<unsigned, UserValue *>;
  VRMap virtRegToEqClass;

  /// Map to find existing UserValue instances.
  using UVMap = DenseMap<DebugVariable, UserValue *>;
  UVMap userVarMap;

  /// Find or create a UserValue.
  UserValue *getUserValue(const DILocalVariable *Var,
                          Optional<DIExpression::FragmentInfo> Fragment,
                          const DebugLoc &DL);

  /// Find the EC leader for VirtReg or null.
  UserValue *lookupVirtReg(Register VirtReg);

  /// Add DBG_VALUE instruction to our maps.
  ///
  /// \param MI DBG_VALUE instruction
  /// \param Idx Last valid SLotIndex before instruction.
  ///
  /// \returns True if the DBG_VALUE instruction should be deleted.
  bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);

  /// Add DBG_LABEL instruction to UserLabel.
  ///
  /// \param MI DBG_LABEL instruction
  /// \param Idx Last valid SlotIndex before instruction.
  ///
  /// \returns True if the DBG_LABEL instruction should be deleted.
  bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx);

  /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
  /// for each instruction.
  ///
  /// \param mf MachineFunction to be scanned.
  ///
  /// \returns True if any debug values were found.
  bool collectDebugValues(MachineFunction &mf);

  /// Compute the live intervals of all user values after collecting all
  /// their def points.
  void computeIntervals();

public:
  LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}

  bool runOnMachineFunction(MachineFunction &mf);

  /// Release all memory.
  void clear() {
    MF = nullptr;
    userValues.clear();
    userLabels.clear();
    virtRegToEqClass.clear();
    userVarMap.clear();
    // Make sure we call emitDebugValues if the machine function was modified.
    assert((!ModifiedMF || EmitDone) &&
           "Dbg values are not emitted in LDV");
    EmitDone = false;
    ModifiedMF = false;
  }

  /// Map virtual register to an equivalence class.
  void mapVirtReg(Register VirtReg, UserValue *EC);

  /// Replace all references to OldReg with NewRegs.
  void splitRegister(Register OldReg, ArrayRef<Register> NewRegs);

  /// Recreate DBG_VALUE instruction from data structures.
  void emitDebugValues(VirtRegMap *VRM);

  void print(raw_ostream&);
};

} // end anonymous namespace

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
                          const LLVMContext &Ctx) {
  if (!DL)
    return;

  auto *Scope = cast<DIScope>(DL.getScope());
  // Omit the directory, because it's likely to be long and uninteresting.
  CommentOS << Scope->getFilename();
  CommentOS << ':' << DL.getLine();
  if (DL.getCol() != 0)
    CommentOS << ':' << DL.getCol();

  DebugLoc InlinedAtDL = DL.getInlinedAt();
  if (!InlinedAtDL)
    return;

  CommentOS << " @[ ";
  printDebugLoc(InlinedAtDL, CommentOS, Ctx);
  CommentOS << " ]";
}

static void printExtendedName(raw_ostream &OS, const DINode *Node,
                              const DILocation *DL) {
  const LLVMContext &Ctx = Node->getContext();
  StringRef Res;
  unsigned Line = 0;
  if (const auto *V = dyn_cast<const DILocalVariable>(Node)) {
    Res = V->getName();
    Line = V->getLine();
  } else if (const auto *L = dyn_cast<const DILabel>(Node)) {
    Res = L->getName();
    Line = L->getLine();
  }

  if (!Res.empty())
    OS << Res << "," << Line;
  auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr;
  if (InlinedAt) {
    if (DebugLoc InlinedAtDL = InlinedAt) {
      OS << " @[";
      printDebugLoc(InlinedAtDL, OS, Ctx);
      OS << "]";
    }
  }
}

void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
  OS << "!\"";
  printExtendedName(OS, Variable, dl);

  OS << "\"\t";
  for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
    OS << " [" << I.start() << ';' << I.stop() << "):";
    if (I.value().isUndef())
      OS << "undef";
    else {
      OS << I.value().getLocNo();
      if (I.value().getWasIndirect())
        OS << " ind";
    }
  }
  for (unsigned i = 0, e = locations.size(); i != e; ++i) {
    OS << " Loc" << i << '=';
    locations[i].print(OS, TRI);
  }
  OS << '\n';
}

void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
  OS << "!\"";
  printExtendedName(OS, Label, dl);

  OS << "\"\t";
  OS << loc;
  OS << '\n';
}

void LDVImpl::print(raw_ostream &OS) {
  OS << "********** DEBUG VARIABLES **********\n";
  for (auto &userValue : userValues)
    userValue->print(OS, TRI);
  OS << "********** DEBUG LABELS **********\n";
  for (auto &userLabel : userLabels)
    userLabel->print(OS, TRI);
}
#endif

void UserValue::mapVirtRegs(LDVImpl *LDV) {
  for (unsigned i = 0, e = locations.size(); i != e; ++i)
    if (locations[i].isReg() &&
        Register::isVirtualRegister(locations[i].getReg()))
      LDV->mapVirtReg(locations[i].getReg(), this);
}

UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
                                 Optional<DIExpression::FragmentInfo> Fragment,
                                 const DebugLoc &DL) {
  // FIXME: Handle partially overlapping fragments. See
  // https://reviews.llvm.org/D70121#1849741.
  DebugVariable ID(Var, Fragment, DL->getInlinedAt());
  UserValue *&UV = userVarMap[ID];
  if (!UV) {
    userValues.push_back(
        std::make_unique<UserValue>(Var, Fragment, DL, allocator));
    UV = userValues.back().get();
  }
  return UV;
}

void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) {
  assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs");
  UserValue *&Leader = virtRegToEqClass[VirtReg];
  Leader = UserValue::merge(Leader, EC);
}

UserValue *LDVImpl::lookupVirtReg(Register VirtReg) {
  if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
    return UV->getLeader();
  return nullptr;
}

bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
  // DBG_VALUE loc, offset, variable
  if (MI.getNumOperands() != 4 ||
      !(MI.getDebugOffset().isReg() || MI.getDebugOffset().isImm()) ||
      !MI.getDebugVariableOp().isMetadata()) {
    LLVM_DEBUG(dbgs() << "Can't handle " << MI);
    return false;
  }

  // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
  // register that hasn't been defined yet. If we do not remove those here, then
  // the re-insertion of the DBG_VALUE instruction after register allocation
  // will be incorrect.
  // TODO: If earlier passes are corrected to generate sane debug information
  // (and if the machine verifier is improved to catch this), then these checks
  // could be removed or replaced by asserts.
  bool Discard = false;
  if (MI.getDebugOperand(0).isReg() &&
      Register::isVirtualRegister(MI.getDebugOperand(0).getReg())) {
    const Register Reg = MI.getDebugOperand(0).getReg();
    if (!LIS->hasInterval(Reg)) {
      // The DBG_VALUE is described by a virtual register that does not have a
      // live interval. Discard the DBG_VALUE.
      Discard = true;
      LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
                        << " " << MI);
    } else {
      // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg
      // is defined dead at Idx (where Idx is the slot index for the instruction
      // preceding the DBG_VALUE).
      const LiveInterval &LI = LIS->getInterval(Reg);
      LiveQueryResult LRQ = LI.Query(Idx);
      if (!LRQ.valueOutOrDead()) {
        // We have found a DBG_VALUE with the value in a virtual register that
        // is not live. Discard the DBG_VALUE.
        Discard = true;
        LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
                          << " " << MI);
      }
    }
  }

  // Get or create the UserValue for (variable,offset) here.
  bool IsIndirect = MI.isDebugOffsetImm();
  if (IsIndirect)
    assert(MI.getDebugOffset().getImm() == 0 &&
           "DBG_VALUE with nonzero offset");
  const DILocalVariable *Var = MI.getDebugVariable();
  const DIExpression *Expr = MI.getDebugExpression();
  UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc());
  if (!Discard)
    UV->addDef(Idx, MI.getDebugOperand(0), IsIndirect, *Expr);
  else {
    MachineOperand MO = MachineOperand::CreateReg(0U, false);
    MO.setIsDebug();
    UV->addDef(Idx, MO, false, *Expr);
  }
  return true;
}

bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) {
  // DBG_LABEL label
  if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) {
    LLVM_DEBUG(dbgs() << "Can't handle " << MI);
    return false;
  }

  // Get or create the UserLabel for label here.
  const DILabel *Label = MI.getDebugLabel();
  const DebugLoc &DL = MI.getDebugLoc();
  bool Found = false;
  for (auto const &L : userLabels) {
    if (L->matches(Label, DL->getInlinedAt(), Idx)) {
      Found = true;
      break;
    }
  }
  if (!Found)
    userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx));

  return true;
}

bool LDVImpl::collectDebugValues(MachineFunction &mf) {
  bool Changed = false;
  for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
       ++MFI) {
    MachineBasicBlock *MBB = &*MFI;
    for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
         MBBI != MBBE;) {
      // Use the first debug instruction in the sequence to get a SlotIndex
      // for following consecutive debug instructions.
      if (!MBBI->isDebugInstr()) {
        ++MBBI;
        continue;
      }
      // Debug instructions has no slot index. Use the previous
      // non-debug instruction's SlotIndex as its SlotIndex.
      SlotIndex Idx =
          MBBI == MBB->begin()
              ? LIS->getMBBStartIdx(MBB)
              : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
      // Handle consecutive debug instructions with the same slot index.
      do {
        // Only handle DBG_VALUE in handleDebugValue(). Skip all other
        // kinds of debug instructions.
        if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) ||
            (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) {
          MBBI = MBB->erase(MBBI);
          Changed = true;
        } else
          ++MBBI;
      } while (MBBI != MBBE && MBBI->isDebugInstr());
    }
  }
  return Changed;
}

void UserValue::extendDef(SlotIndex Idx, DbgVariableValue DbgValue, LiveRange *LR,
                          const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
                          LiveIntervals &LIS) {
  SlotIndex Start = Idx;
  MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
  SlotIndex Stop = LIS.getMBBEndIdx(MBB);
  LocMap::iterator I = locInts.find(Start);

  // Limit to VNI's live range.
  bool ToEnd = true;
  if (LR && VNI) {
    LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
    if (!Segment || Segment->valno != VNI) {
      if (Kills)
        Kills->push_back(Start);
      return;
    }
    if (Segment->end < Stop) {
      Stop = Segment->end;
      ToEnd = false;
    }
  }

  // There could already be a short def at Start.
  if (I.valid() && I.start() <= Start) {
    // Stop when meeting a different location or an already extended interval.
    Start = Start.getNextSlot();
    if (I.value() != DbgValue || I.stop() != Start)
      return;
    // This is a one-slot placeholder. Just skip it.
    ++I;
  }

  // Limited by the next def.
  if (I.valid() && I.start() < Stop)
    Stop = I.start();
  // Limited by VNI's live range.
  else if (!ToEnd && Kills)
    Kills->push_back(Stop);

  if (Start < Stop)
    I.insert(Start, Stop, DbgValue);
}

void UserValue::addDefsFromCopies(
    LiveInterval *LI, DbgVariableValue DbgValue,
    const SmallVectorImpl<SlotIndex> &Kills,
    SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs,
    MachineRegisterInfo &MRI, LiveIntervals &LIS) {
  if (Kills.empty())
    return;
  // Don't track copies from physregs, there are too many uses.
  if (!Register::isVirtualRegister(LI->reg()))
    return;

  // Collect all the (vreg, valno) pairs that are copies of LI.
  SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
  for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) {
    MachineInstr *MI = MO.getParent();
    // Copies of the full value.
    if (MO.getSubReg() || !MI->isCopy())
      continue;
    Register DstReg = MI->getOperand(0).getReg();

    // Don't follow copies to physregs. These are usually setting up call
    // arguments, and the argument registers are always call clobbered. We are
    // better off in the source register which could be a callee-saved register,
    // or it could be spilled.
    if (!Register::isVirtualRegister(DstReg))
      continue;

    // Is the value extended to reach this copy? If not, another def may be
    // blocking it, or we are looking at a wrong value of LI.
    SlotIndex Idx = LIS.getInstructionIndex(*MI);
    LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
    if (!I.valid() || I.value() != DbgValue)
      continue;

    if (!LIS.hasInterval(DstReg))
      continue;
    LiveInterval *DstLI = &LIS.getInterval(DstReg);
    const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
    assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
    CopyValues.push_back(std::make_pair(DstLI, DstVNI));
  }

  if (CopyValues.empty())
    return;

  LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI
                    << '\n');

  // Try to add defs of the copied values for each kill point.
  for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
    SlotIndex Idx = Kills[i];
    for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
      LiveInterval *DstLI = CopyValues[j].first;
      const VNInfo *DstVNI = CopyValues[j].second;
      if (DstLI->getVNInfoAt(Idx) != DstVNI)
        continue;
      // Check that there isn't already a def at Idx
      LocMap::iterator I = locInts.find(Idx);
      if (I.valid() && I.start() <= Idx)
        continue;
      LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
                        << DstVNI->id << " in " << *DstLI << '\n');
      MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
      assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
      unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
      DbgVariableValue NewValue = DbgValue.changeLocNo(LocNo);
      I.insert(Idx, Idx.getNextSlot(), NewValue);
      NewDefs.push_back(std::make_pair(Idx, NewValue));
      break;
    }
  }
}

void UserValue::computeIntervals(MachineRegisterInfo &MRI,
                                 const TargetRegisterInfo &TRI,
                                 LiveIntervals &LIS, LexicalScopes &LS) {
  SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs;

  // Collect all defs to be extended (Skipping undefs).
  for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
    if (!I.value().isUndef())
      Defs.push_back(std::make_pair(I.start(), I.value()));

  // Extend all defs, and possibly add new ones along the way.
  for (unsigned i = 0; i != Defs.size(); ++i) {
    SlotIndex Idx = Defs[i].first;
    DbgVariableValue DbgValue = Defs[i].second;
    const MachineOperand &LocMO = locations[DbgValue.getLocNo()];

    if (!LocMO.isReg()) {
      extendDef(Idx, DbgValue, nullptr, nullptr, nullptr, LIS);
      continue;
    }

    // Register locations are constrained to where the register value is live.
    if (Register::isVirtualRegister(LocMO.getReg())) {
      LiveInterval *LI = nullptr;
      const VNInfo *VNI = nullptr;
      if (LIS.hasInterval(LocMO.getReg())) {
        LI = &LIS.getInterval(LocMO.getReg());
        VNI = LI->getVNInfoAt(Idx);
      }
      SmallVector<SlotIndex, 16> Kills;
      extendDef(Idx, DbgValue, LI, VNI, &Kills, LIS);
      // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
      // if the original location for example is %vreg0:sub_hi, and we find a
      // full register copy in addDefsFromCopies (at the moment it only handles
      // full register copies), then we must add the sub1 sub-register index to
      // the new location. However, that is only possible if the new virtual
      // register is of the same regclass (or if there is an equivalent
      // sub-register in that regclass). For now, simply skip handling copies if
      // a sub-register is involved.
      if (LI && !LocMO.getSubReg())
        addDefsFromCopies(LI, DbgValue, Kills, Defs, MRI, LIS);
      continue;
    }

    // For physregs, we only mark the start slot idx. DwarfDebug will see it
    // as if the DBG_VALUE is valid up until the end of the basic block, or
    // the next def of the physical register. So we do not need to extend the
    // range. It might actually happen that the DBG_VALUE is the last use of
    // the physical register (e.g. if this is an unused input argument to a
    // function).
  }

  // The computed intervals may extend beyond the range of the debug
  // location's lexical scope. In this case, splitting of an interval
  // can result in an interval outside of the scope being created,
  // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
  // this, trim the intervals to the lexical scope.

  LexicalScope *Scope = LS.findLexicalScope(dl);
  if (!Scope)
    return;

  SlotIndex PrevEnd;
  LocMap::iterator I = locInts.begin();

  // Iterate over the lexical scope ranges. Each time round the loop
  // we check the intervals for overlap with the end of the previous
  // range and the start of the next. The first range is handled as
  // a special case where there is no PrevEnd.
  for (const InsnRange &Range : Scope->getRanges()) {
    SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
    SlotIndex REnd = LIS.getInstructionIndex(*Range.second);

    // Variable locations at the first instruction of a block should be
    // based on the block's SlotIndex, not the first instruction's index.
    if (Range.first == Range.first->getParent()->begin())
      RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first);

    // At the start of each iteration I has been advanced so that
    // I.stop() >= PrevEnd. Check for overlap.
    if (PrevEnd && I.start() < PrevEnd) {
      SlotIndex IStop = I.stop();
      DbgVariableValue DbgValue = I.value();

      // Stop overlaps previous end - trim the end of the interval to
      // the scope range.
      I.setStopUnchecked(PrevEnd);
      ++I;

      // If the interval also overlaps the start of the "next" (i.e.
      // current) range create a new interval for the remainder (which
      // may be further trimmed).
      if (RStart < IStop)
        I.insert(RStart, IStop, DbgValue);
    }

    // Advance I so that I.stop() >= RStart, and check for overlap.
    I.advanceTo(RStart);
    if (!I.valid())
      return;

    if (I.start() < RStart) {
      // Interval start overlaps range - trim to the scope range.
      I.setStartUnchecked(RStart);
      // Remember that this interval was trimmed.
      trimmedDefs.insert(RStart);
    }

    // The end of a lexical scope range is the last instruction in the
    // range. To convert to an interval we need the index of the
    // instruction after it.
    REnd = REnd.getNextIndex();

    // Advance I to first interval outside current range.
    I.advanceTo(REnd);
    if (!I.valid())
      return;

    PrevEnd = REnd;
  }

  // Check for overlap with end of final range.
  if (PrevEnd && I.start() < PrevEnd)
    I.setStopUnchecked(PrevEnd);
}

void LDVImpl::computeIntervals() {
  LexicalScopes LS;
  LS.initialize(*MF);

  for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
    userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
    userValues[i]->mapVirtRegs(this);
  }
}

bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
  clear();
  MF = &mf;
  LIS = &pass.getAnalysis<LiveIntervals>();
  TRI = mf.getSubtarget().getRegisterInfo();
  LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
                    << mf.getName() << " **********\n");

  bool Changed = collectDebugValues(mf);
  computeIntervals();
  LLVM_DEBUG(print(dbgs()));
  ModifiedMF = Changed;
  return Changed;
}

static void removeDebugValues(MachineFunction &mf) {
  for (MachineBasicBlock &MBB : mf) {
    for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
      if (!MBBI->isDebugValue()) {
        ++MBBI;
        continue;
      }
      MBBI = MBB.erase(MBBI);
    }
  }
}

bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
  if (!EnableLDV)
    return false;
  if (!mf.getFunction().getSubprogram()) {
    removeDebugValues(mf);
    return false;
  }
  if (!pImpl)
    pImpl = new LDVImpl(this);
  return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
}

void LiveDebugVariables::releaseMemory() {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->clear();
}

LiveDebugVariables::~LiveDebugVariables() {
  if (pImpl)
    delete static_cast<LDVImpl*>(pImpl);
}

//===----------------------------------------------------------------------===//
//                           Live Range Splitting
//===----------------------------------------------------------------------===//

bool
UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs,
                         LiveIntervals& LIS) {
  LLVM_DEBUG({
    dbgs() << "Splitting Loc" << OldLocNo << '\t';
    print(dbgs(), nullptr);
  });
  bool DidChange = false;
  LocMap::iterator LocMapI;
  LocMapI.setMap(locInts);
  for (unsigned i = 0; i != NewRegs.size(); ++i) {
    LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
    if (LI->empty())
      continue;

    // Don't allocate the new LocNo until it is needed.
    unsigned NewLocNo = UndefLocNo;

    // Iterate over the overlaps between locInts and LI.
    LocMapI.find(LI->beginIndex());
    if (!LocMapI.valid())
      continue;
    LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
    LiveInterval::iterator LIE = LI->end();
    while (LocMapI.valid() && LII != LIE) {
      // At this point, we know that LocMapI.stop() > LII->start.
      LII = LI->advanceTo(LII, LocMapI.start());
      if (LII == LIE)
        break;

      // Now LII->end > LocMapI.start(). Do we have an overlap?
      if (LocMapI.value().getLocNo() == OldLocNo &&
          LII->start < LocMapI.stop()) {
        // Overlapping correct location. Allocate NewLocNo now.
        if (NewLocNo == UndefLocNo) {
          MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false);
          MO.setSubReg(locations[OldLocNo].getSubReg());
          NewLocNo = getLocationNo(MO);
          DidChange = true;
        }

        SlotIndex LStart = LocMapI.start();
        SlotIndex LStop = LocMapI.stop();
        DbgVariableValue OldDbgValue = LocMapI.value();

        // Trim LocMapI down to the LII overlap.
        if (LStart < LII->start)
          LocMapI.setStartUnchecked(LII->start);
        if (LStop > LII->end)
          LocMapI.setStopUnchecked(LII->end);

        // Change the value in the overlap. This may trigger coalescing.
        LocMapI.setValue(OldDbgValue.changeLocNo(NewLocNo));

        // Re-insert any removed OldDbgValue ranges.
        if (LStart < LocMapI.start()) {
          LocMapI.insert(LStart, LocMapI.start(), OldDbgValue);
          ++LocMapI;
          assert(LocMapI.valid() && "Unexpected coalescing");
        }
        if (LStop > LocMapI.stop()) {
          ++LocMapI;
          LocMapI.insert(LII->end, LStop, OldDbgValue);
          --LocMapI;
        }
      }

      // Advance to the next overlap.
      if (LII->end < LocMapI.stop()) {
        if (++LII == LIE)
          break;
        LocMapI.advanceTo(LII->start);
      } else {
        ++LocMapI;
        if (!LocMapI.valid())
          break;
        LII = LI->advanceTo(LII, LocMapI.start());
      }
    }
  }

  // Finally, remove OldLocNo unless it is still used by some interval in the
  // locInts map. One case when OldLocNo still is in use is when the register
  // has been spilled. In such situations the spilled register is kept as a
  // location until rewriteLocations is called (VirtRegMap is mapping the old
  // register to the spill slot). So for a while we can have locations that map
  // to virtual registers that have been removed from both the MachineFunction
  // and from LiveIntervals.
  //
  // We may also just be using the location for a value with a different
  // expression.
  removeLocationIfUnused(OldLocNo);

  LLVM_DEBUG({
    dbgs() << "Split result: \t";
    print(dbgs(), nullptr);
  });
  return DidChange;
}

bool
UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs,
                         LiveIntervals &LIS) {
  bool DidChange = false;
  // Split locations referring to OldReg. Iterate backwards so splitLocation can
  // safely erase unused locations.
  for (unsigned i = locations.size(); i ; --i) {
    unsigned LocNo = i-1;
    const MachineOperand *Loc = &locations[LocNo];
    if (!Loc->isReg() || Loc->getReg() != OldReg)
      continue;
    DidChange |= splitLocation(LocNo, NewRegs, LIS);
  }
  return DidChange;
}

void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) {
  bool DidChange = false;
  for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
    DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);

  if (!DidChange)
    return;

  // Map all of the new virtual registers.
  UserValue *UV = lookupVirtReg(OldReg);
  for (unsigned i = 0; i != NewRegs.size(); ++i)
    mapVirtReg(NewRegs[i], UV);
}

void LiveDebugVariables::
splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
}

void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
                                 const TargetInstrInfo &TII,
                                 const TargetRegisterInfo &TRI,
                                 SpillOffsetMap &SpillOffsets) {
  // Build a set of new locations with new numbers so we can coalesce our
  // IntervalMap if two vreg intervals collapse to the same physical location.
  // Use MapVector instead of SetVector because MapVector::insert returns the
  // position of the previously or newly inserted element. The boolean value
  // tracks if the location was produced by a spill.
  // FIXME: This will be problematic if we ever support direct and indirect
  // frame index locations, i.e. expressing both variables in memory and
  // 'int x, *px = &x'. The "spilled" bit must become part of the location.
  MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
  SmallVector<unsigned, 4> LocNoMap(locations.size());
  for (unsigned I = 0, E = locations.size(); I != E; ++I) {
    bool Spilled = false;
    unsigned SpillOffset = 0;
    MachineOperand Loc = locations[I];
    // Only virtual registers are rewritten.
    if (Loc.isReg() && Loc.getReg() &&
        Register::isVirtualRegister(Loc.getReg())) {
      Register VirtReg = Loc.getReg();
      if (VRM.isAssignedReg(VirtReg) &&
          Register::isPhysicalRegister(VRM.getPhys(VirtReg))) {
        // This can create a %noreg operand in rare cases when the sub-register
        // index is no longer available. That means the user value is in a
        // non-existent sub-register, and %noreg is exactly what we want.
        Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
      } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
        // Retrieve the stack slot offset.
        unsigned SpillSize;
        const MachineRegisterInfo &MRI = MF.getRegInfo();
        const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
        bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
                                             SpillOffset, MF);

        // FIXME: Invalidate the location if the offset couldn't be calculated.
        (void)Success;

        Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
        Spilled = true;
      } else {
        Loc.setReg(0);
        Loc.setSubReg(0);
      }
    }

    // Insert this location if it doesn't already exist and record a mapping
    // from the old number to the new number.
    auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
    unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
    LocNoMap[I] = NewLocNo;
  }

  // Rewrite the locations and record the stack slot offsets for spills.
  locations.clear();
  SpillOffsets.clear();
  for (auto &Pair : NewLocations) {
    bool Spilled;
    unsigned SpillOffset;
    std::tie(Spilled, SpillOffset) = Pair.second;
    locations.push_back(Pair.first);
    if (Spilled) {
      unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
      SpillOffsets[NewLocNo] = SpillOffset;
    }
  }

  // Update the interval map, but only coalesce left, since intervals to the
  // right use the old location numbers. This should merge two contiguous
  // DBG_VALUE intervals with different vregs that were allocated to the same
  // physical register.
  for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
    DbgVariableValue DbgValue = I.value();
    // Undef values don't exist in locations (and thus not in LocNoMap either)
    // so skip over them. See getLocationNo().
    if (DbgValue.isUndef())
      continue;
    unsigned NewLocNo = LocNoMap[DbgValue.getLocNo()];
    I.setValueUnchecked(DbgValue.changeLocNo(NewLocNo));
    I.setStart(I.start());
  }
}

/// Find an iterator for inserting a DBG_VALUE instruction.
static MachineBasicBlock::iterator
findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
                   LiveIntervals &LIS) {
  SlotIndex Start = LIS.getMBBStartIdx(MBB);
  Idx = Idx.getBaseIndex();

  // Try to find an insert location by going backwards from Idx.
  MachineInstr *MI;
  while (!(MI = LIS.getInstructionFromIndex(Idx))) {
    // We've reached the beginning of MBB.
    if (Idx == Start) {
      MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
      return I;
    }
    Idx = Idx.getPrevIndex();
  }

  // Don't insert anything after the first terminator, though.
  return MI->isTerminator() ? MBB->getFirstTerminator() :
                              std::next(MachineBasicBlock::iterator(MI));
}

/// Find an iterator for inserting the next DBG_VALUE instruction
/// (or end if no more insert locations found).
static MachineBasicBlock::iterator
findNextInsertLocation(MachineBasicBlock *MBB,
                       MachineBasicBlock::iterator I,
                       SlotIndex StopIdx, MachineOperand &LocMO,
                       LiveIntervals &LIS,
                       const TargetRegisterInfo &TRI) {
  if (!LocMO.isReg())
    return MBB->instr_end();
  Register Reg = LocMO.getReg();

  // Find the next instruction in the MBB that define the register Reg.
  while (I != MBB->end() && !I->isTerminator()) {
    if (!LIS.isNotInMIMap(*I) &&
        SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
      break;
    if (I->definesRegister(Reg, &TRI))
      // The insert location is directly after the instruction/bundle.
      return std::next(I);
    ++I;
  }
  return MBB->end();
}

void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
                                 SlotIndex StopIdx, DbgVariableValue DbgValue,
                                 bool Spilled, unsigned SpillOffset,
                                 LiveIntervals &LIS, const TargetInstrInfo &TII,
                                 const TargetRegisterInfo &TRI) {
  SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
  // Only search within the current MBB.
  StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
  MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
  // Undef values don't exist in locations so create new "noreg" register MOs
  // for them. See getLocationNo().
  MachineOperand MO =
      !DbgValue.isUndef()
          ? locations[DbgValue.getLocNo()]
          : MachineOperand::CreateReg(
                /* Reg */ 0, /* isDef */ false, /* isImp */ false,
                /* isKill */ false, /* isDead */ false,
                /* isUndef */ false, /* isEarlyClobber */ false,
                /* SubReg */ 0, /* isDebug */ true);

  ++NumInsertedDebugValues;

  assert(cast<DILocalVariable>(Variable)
             ->isValidLocationForIntrinsic(getDebugLoc()) &&
         "Expected inlined-at fields to agree");

  // If the location was spilled, the new DBG_VALUE will be indirect. If the
  // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
  // that the original virtual register was a pointer. Also, add the stack slot
  // offset for the spilled register to the expression.
  const DIExpression *Expr = DbgValue.getExpression();
  uint8_t DIExprFlags = DIExpression::ApplyOffset;
  bool IsIndirect = DbgValue.getWasIndirect();
  if (Spilled) {
    if (IsIndirect)
      DIExprFlags |= DIExpression::DerefAfter;
    Expr =
        DIExpression::prepend(Expr, DIExprFlags, SpillOffset);
    IsIndirect = true;
  }

  assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");

  do {
    BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE),
            IsIndirect, MO, Variable, Expr);

    // Continue and insert DBG_VALUES after every redefinition of register
    // associated with the debug value within the range
    I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
  } while (I != MBB->end());
}

void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
                                 LiveIntervals &LIS,
                                 const TargetInstrInfo &TII) {
  MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS);
  ++NumInsertedDebugLabels;
  BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL))
      .addMetadata(Label);
}

void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
                                const TargetInstrInfo &TII,
                                const TargetRegisterInfo &TRI,
                                const SpillOffsetMap &SpillOffsets) {
  MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();

  for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
    SlotIndex Start = I.start();
    SlotIndex Stop = I.stop();
    DbgVariableValue DbgValue = I.value();
    auto SpillIt = !DbgValue.isUndef() ? SpillOffsets.find(DbgValue.getLocNo())
                                       : SpillOffsets.end();
    bool Spilled = SpillIt != SpillOffsets.end();
    unsigned SpillOffset = Spilled ? SpillIt->second : 0;

    // If the interval start was trimmed to the lexical scope insert the
    // DBG_VALUE at the previous index (otherwise it appears after the
    // first instruction in the range).
    if (trimmedDefs.count(Start))
      Start = Start.getPrevIndex();

    LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop
                      << "):" << DbgValue.getLocNo());
    MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
    SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);

    LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
    insertDebugValue(&*MBB, Start, Stop, DbgValue, Spilled, SpillOffset, LIS,
                     TII, TRI);
    // This interval may span multiple basic blocks.
    // Insert a DBG_VALUE into each one.
    while (Stop > MBBEnd) {
      // Move to the next block.
      Start = MBBEnd;
      if (++MBB == MFEnd)
        break;
      MBBEnd = LIS.getMBBEndIdx(&*MBB);
      LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
      insertDebugValue(&*MBB, Start, Stop, DbgValue, Spilled, SpillOffset, LIS,
                       TII, TRI);
    }
    LLVM_DEBUG(dbgs() << '\n');
    if (MBB == MFEnd)
      break;

    ++I;
  }
}

void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) {
  LLVM_DEBUG(dbgs() << "\t" << loc);
  MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator();

  LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB));
  insertDebugLabel(&*MBB, loc, LIS, TII);

  LLVM_DEBUG(dbgs() << '\n');
}

void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
  LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
  if (!MF)
    return;
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
  SpillOffsetMap SpillOffsets;
  for (auto &userValue : userValues) {
    LLVM_DEBUG(userValue->print(dbgs(), TRI));
    userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
    userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets);
  }
  LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
  for (auto &userLabel : userLabels) {
    LLVM_DEBUG(userLabel->print(dbgs(), TRI));
    userLabel->emitDebugLabel(*LIS, *TII);
  }
  EmitDone = true;
}

void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->print(dbgs());
}
#endif