MachineBlockPlacement.cpp 139 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
//===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements basic block placement transformations using the CFG
// structure and branch probability estimates.
//
// The pass strives to preserve the structure of the CFG (that is, retain
// a topological ordering of basic blocks) in the absence of a *strong* signal
// to the contrary from probabilities. However, within the CFG structure, it
// attempts to choose an ordering which favors placing more likely sequences of
// blocks adjacent to each other.
//
// The algorithm works from the inner-most loop within a function outward, and
// at each stage walks through the basic blocks, trying to coalesce them into
// sequential chains where allowed by the CFG (or demanded by heavy
// probabilities). Finally, it walks the blocks in topological order, and the
// first time it reaches a chain of basic blocks, it schedules them in the
// function in-order.
//
//===----------------------------------------------------------------------===//

#include "BranchFolding.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/MachineSizeOpts.h"
#include "llvm/CodeGen/TailDuplicator.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "block-placement"

STATISTIC(NumCondBranches, "Number of conditional branches");
STATISTIC(NumUncondBranches, "Number of unconditional branches");
STATISTIC(CondBranchTakenFreq,
          "Potential frequency of taking conditional branches");
STATISTIC(UncondBranchTakenFreq,
          "Potential frequency of taking unconditional branches");

static cl::opt<unsigned> AlignAllBlock(
    "align-all-blocks",
    cl::desc("Force the alignment of all blocks in the function in log2 format "
             "(e.g 4 means align on 16B boundaries)."),
    cl::init(0), cl::Hidden);

static cl::opt<unsigned> AlignAllNonFallThruBlocks(
    "align-all-nofallthru-blocks",
    cl::desc("Force the alignment of all blocks that have no fall-through "
             "predecessors (i.e. don't add nops that are executed). In log2 "
             "format (e.g 4 means align on 16B boundaries)."),
    cl::init(0), cl::Hidden);

// FIXME: Find a good default for this flag and remove the flag.
static cl::opt<unsigned> ExitBlockBias(
    "block-placement-exit-block-bias",
    cl::desc("Block frequency percentage a loop exit block needs "
             "over the original exit to be considered the new exit."),
    cl::init(0), cl::Hidden);

// Definition:
// - Outlining: placement of a basic block outside the chain or hot path.

static cl::opt<unsigned> LoopToColdBlockRatio(
    "loop-to-cold-block-ratio",
    cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
             "(frequency of block) is greater than this ratio"),
    cl::init(5), cl::Hidden);

static cl::opt<bool> ForceLoopColdBlock(
    "force-loop-cold-block",
    cl::desc("Force outlining cold blocks from loops."),
    cl::init(false), cl::Hidden);

static cl::opt<bool>
    PreciseRotationCost("precise-rotation-cost",
                        cl::desc("Model the cost of loop rotation more "
                                 "precisely by using profile data."),
                        cl::init(false), cl::Hidden);

static cl::opt<bool>
    ForcePreciseRotationCost("force-precise-rotation-cost",
                             cl::desc("Force the use of precise cost "
                                      "loop rotation strategy."),
                             cl::init(false), cl::Hidden);

static cl::opt<unsigned> MisfetchCost(
    "misfetch-cost",
    cl::desc("Cost that models the probabilistic risk of an instruction "
             "misfetch due to a jump comparing to falling through, whose cost "
             "is zero."),
    cl::init(1), cl::Hidden);

static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
                                      cl::desc("Cost of jump instructions."),
                                      cl::init(1), cl::Hidden);
static cl::opt<bool>
TailDupPlacement("tail-dup-placement",
              cl::desc("Perform tail duplication during placement. "
                       "Creates more fallthrough opportunites in "
                       "outline branches."),
              cl::init(true), cl::Hidden);

static cl::opt<bool>
BranchFoldPlacement("branch-fold-placement",
              cl::desc("Perform branch folding during placement. "
                       "Reduces code size."),
              cl::init(true), cl::Hidden);

// Heuristic for tail duplication.
static cl::opt<unsigned> TailDupPlacementThreshold(
    "tail-dup-placement-threshold",
    cl::desc("Instruction cutoff for tail duplication during layout. "
             "Tail merging during layout is forced to have a threshold "
             "that won't conflict."), cl::init(2),
    cl::Hidden);

// Heuristic for aggressive tail duplication.
static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
    "tail-dup-placement-aggressive-threshold",
    cl::desc("Instruction cutoff for aggressive tail duplication during "
             "layout. Used at -O3. Tail merging during layout is forced to "
             "have a threshold that won't conflict."), cl::init(4),
    cl::Hidden);

// Heuristic for tail duplication.
static cl::opt<unsigned> TailDupPlacementPenalty(
    "tail-dup-placement-penalty",
    cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
             "Copying can increase fallthrough, but it also increases icache "
             "pressure. This parameter controls the penalty to account for that. "
             "Percent as integer."),
    cl::init(2),
    cl::Hidden);

// Heuristic for tail duplication if profile count is used in cost model.
static cl::opt<unsigned> TailDupProfilePercentThreshold(
    "tail-dup-profile-percent-threshold",
    cl::desc("If profile count information is used in tail duplication cost "
             "model, the gained fall through number from tail duplication "
             "should be at least this percent of hot count."),
    cl::init(50), cl::Hidden);

// Heuristic for triangle chains.
static cl::opt<unsigned> TriangleChainCount(
    "triangle-chain-count",
    cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
             "triangle tail duplication heuristic to kick in. 0 to disable."),
    cl::init(2),
    cl::Hidden);

extern cl::opt<unsigned> StaticLikelyProb;
extern cl::opt<unsigned> ProfileLikelyProb;

// Internal option used to control BFI display only after MBP pass.
// Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
// -view-block-layout-with-bfi=
extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;

// Command line option to specify the name of the function for CFG dump
// Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
extern cl::opt<std::string> ViewBlockFreqFuncName;

namespace {

class BlockChain;

/// Type for our function-wide basic block -> block chain mapping.
using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;

/// A chain of blocks which will be laid out contiguously.
///
/// This is the datastructure representing a chain of consecutive blocks that
/// are profitable to layout together in order to maximize fallthrough
/// probabilities and code locality. We also can use a block chain to represent
/// a sequence of basic blocks which have some external (correctness)
/// requirement for sequential layout.
///
/// Chains can be built around a single basic block and can be merged to grow
/// them. They participate in a block-to-chain mapping, which is updated
/// automatically as chains are merged together.
class BlockChain {
  /// The sequence of blocks belonging to this chain.
  ///
  /// This is the sequence of blocks for a particular chain. These will be laid
  /// out in-order within the function.
  SmallVector<MachineBasicBlock *, 4> Blocks;

  /// A handle to the function-wide basic block to block chain mapping.
  ///
  /// This is retained in each block chain to simplify the computation of child
  /// block chains for SCC-formation and iteration. We store the edges to child
  /// basic blocks, and map them back to their associated chains using this
  /// structure.
  BlockToChainMapType &BlockToChain;

public:
  /// Construct a new BlockChain.
  ///
  /// This builds a new block chain representing a single basic block in the
  /// function. It also registers itself as the chain that block participates
  /// in with the BlockToChain mapping.
  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
      : Blocks(1, BB), BlockToChain(BlockToChain) {
    assert(BB && "Cannot create a chain with a null basic block");
    BlockToChain[BB] = this;
  }

  /// Iterator over blocks within the chain.
  using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
  using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;

  /// Beginning of blocks within the chain.
  iterator begin() { return Blocks.begin(); }
  const_iterator begin() const { return Blocks.begin(); }

  /// End of blocks within the chain.
  iterator end() { return Blocks.end(); }
  const_iterator end() const { return Blocks.end(); }

  bool remove(MachineBasicBlock* BB) {
    for(iterator i = begin(); i != end(); ++i) {
      if (*i == BB) {
        Blocks.erase(i);
        return true;
      }
    }
    return false;
  }

  /// Merge a block chain into this one.
  ///
  /// This routine merges a block chain into this one. It takes care of forming
  /// a contiguous sequence of basic blocks, updating the edge list, and
  /// updating the block -> chain mapping. It does not free or tear down the
  /// old chain, but the old chain's block list is no longer valid.
  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
    assert(BB && "Can't merge a null block.");
    assert(!Blocks.empty() && "Can't merge into an empty chain.");

    // Fast path in case we don't have a chain already.
    if (!Chain) {
      assert(!BlockToChain[BB] &&
             "Passed chain is null, but BB has entry in BlockToChain.");
      Blocks.push_back(BB);
      BlockToChain[BB] = this;
      return;
    }

    assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
    assert(Chain->begin() != Chain->end());

    // Update the incoming blocks to point to this chain, and add them to the
    // chain structure.
    for (MachineBasicBlock *ChainBB : *Chain) {
      Blocks.push_back(ChainBB);
      assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
      BlockToChain[ChainBB] = this;
    }
  }

#ifndef NDEBUG
  /// Dump the blocks in this chain.
  LLVM_DUMP_METHOD void dump() {
    for (MachineBasicBlock *MBB : *this)
      MBB->dump();
  }
#endif // NDEBUG

  /// Count of predecessors of any block within the chain which have not
  /// yet been scheduled.  In general, we will delay scheduling this chain
  /// until those predecessors are scheduled (or we find a sufficiently good
  /// reason to override this heuristic.)  Note that when forming loop chains,
  /// blocks outside the loop are ignored and treated as if they were already
  /// scheduled.
  ///
  /// Note: This field is reinitialized multiple times - once for each loop,
  /// and then once for the function as a whole.
  unsigned UnscheduledPredecessors = 0;
};

class MachineBlockPlacement : public MachineFunctionPass {
  /// A type for a block filter set.
  using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;

  /// Pair struct containing basic block and taildup profitability
  struct BlockAndTailDupResult {
    MachineBasicBlock *BB;
    bool ShouldTailDup;
  };

  /// Triple struct containing edge weight and the edge.
  struct WeightedEdge {
    BlockFrequency Weight;
    MachineBasicBlock *Src;
    MachineBasicBlock *Dest;
  };

  /// work lists of blocks that are ready to be laid out
  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
  SmallVector<MachineBasicBlock *, 16> EHPadWorkList;

  /// Edges that have already been computed as optimal.
  DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;

  /// Machine Function
  MachineFunction *F;

  /// A handle to the branch probability pass.
  const MachineBranchProbabilityInfo *MBPI;

  /// A handle to the function-wide block frequency pass.
  std::unique_ptr<MBFIWrapper> MBFI;

  /// A handle to the loop info.
  MachineLoopInfo *MLI;

  /// Preferred loop exit.
  /// Member variable for convenience. It may be removed by duplication deep
  /// in the call stack.
  MachineBasicBlock *PreferredLoopExit;

  /// A handle to the target's instruction info.
  const TargetInstrInfo *TII;

  /// A handle to the target's lowering info.
  const TargetLoweringBase *TLI;

  /// A handle to the post dominator tree.
  MachinePostDominatorTree *MPDT;

  ProfileSummaryInfo *PSI;

  /// Duplicator used to duplicate tails during placement.
  ///
  /// Placement decisions can open up new tail duplication opportunities, but
  /// since tail duplication affects placement decisions of later blocks, it
  /// must be done inline.
  TailDuplicator TailDup;

  /// Partial tail duplication threshold.
  BlockFrequency DupThreshold;

  /// True:  use block profile count to compute tail duplication cost.
  /// False: use block frequency to compute tail duplication cost.
  bool UseProfileCount;

  /// Allocator and owner of BlockChain structures.
  ///
  /// We build BlockChains lazily while processing the loop structure of
  /// a function. To reduce malloc traffic, we allocate them using this
  /// slab-like allocator, and destroy them after the pass completes. An
  /// important guarantee is that this allocator produces stable pointers to
  /// the chains.
  SpecificBumpPtrAllocator<BlockChain> ChainAllocator;

  /// Function wide BasicBlock to BlockChain mapping.
  ///
  /// This mapping allows efficiently moving from any given basic block to the
  /// BlockChain it participates in, if any. We use it to, among other things,
  /// allow implicitly defining edges between chains as the existing edges
  /// between basic blocks.
  DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;

#ifndef NDEBUG
  /// The set of basic blocks that have terminators that cannot be fully
  /// analyzed.  These basic blocks cannot be re-ordered safely by
  /// MachineBlockPlacement, and we must preserve physical layout of these
  /// blocks and their successors through the pass.
  SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
#endif

  /// Get block profile count or frequency according to UseProfileCount.
  /// The return value is used to model tail duplication cost.
  BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) {
    if (UseProfileCount) {
      auto Count = MBFI->getBlockProfileCount(BB);
      if (Count)
        return *Count;
      else
        return 0;
    } else
      return MBFI->getBlockFreq(BB);
  }

  /// Scale the DupThreshold according to basic block size.
  BlockFrequency scaleThreshold(MachineBasicBlock *BB);
  void initDupThreshold();

  /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
  /// if the count goes to 0, add them to the appropriate work list.
  void markChainSuccessors(
      const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
      const BlockFilterSet *BlockFilter = nullptr);

  /// Decrease the UnscheduledPredecessors count for a single block, and
  /// if the count goes to 0, add them to the appropriate work list.
  void markBlockSuccessors(
      const BlockChain &Chain, const MachineBasicBlock *BB,
      const MachineBasicBlock *LoopHeaderBB,
      const BlockFilterSet *BlockFilter = nullptr);

  BranchProbability
  collectViableSuccessors(
      const MachineBasicBlock *BB, const BlockChain &Chain,
      const BlockFilterSet *BlockFilter,
      SmallVector<MachineBasicBlock *, 4> &Successors);
  bool shouldPredBlockBeOutlined(
      const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
      const BlockChain &Chain, const BlockFilterSet *BlockFilter,
      BranchProbability SuccProb, BranchProbability HotProb);
  bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred,
                       BlockFilterSet *BlockFilter);
  void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates,
                               MachineBasicBlock *BB,
                               BlockFilterSet *BlockFilter);
  bool repeatedlyTailDuplicateBlock(
      MachineBasicBlock *BB, MachineBasicBlock *&LPred,
      const MachineBasicBlock *LoopHeaderBB,
      BlockChain &Chain, BlockFilterSet *BlockFilter,
      MachineFunction::iterator &PrevUnplacedBlockIt);
  bool maybeTailDuplicateBlock(
      MachineBasicBlock *BB, MachineBasicBlock *LPred,
      BlockChain &Chain, BlockFilterSet *BlockFilter,
      MachineFunction::iterator &PrevUnplacedBlockIt,
      bool &DuplicatedToLPred);
  bool hasBetterLayoutPredecessor(
      const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
      const BlockChain &SuccChain, BranchProbability SuccProb,
      BranchProbability RealSuccProb, const BlockChain &Chain,
      const BlockFilterSet *BlockFilter);
  BlockAndTailDupResult selectBestSuccessor(
      const MachineBasicBlock *BB, const BlockChain &Chain,
      const BlockFilterSet *BlockFilter);
  MachineBasicBlock *selectBestCandidateBlock(
      const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
  MachineBasicBlock *getFirstUnplacedBlock(
      const BlockChain &PlacedChain,
      MachineFunction::iterator &PrevUnplacedBlockIt,
      const BlockFilterSet *BlockFilter);

  /// Add a basic block to the work list if it is appropriate.
  ///
  /// If the optional parameter BlockFilter is provided, only MBB
  /// present in the set will be added to the worklist. If nullptr
  /// is provided, no filtering occurs.
  void fillWorkLists(const MachineBasicBlock *MBB,
                     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
                     const BlockFilterSet *BlockFilter);

  void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
                  BlockFilterSet *BlockFilter = nullptr);
  bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
                               const MachineBasicBlock *OldTop);
  bool hasViableTopFallthrough(const MachineBasicBlock *Top,
                               const BlockFilterSet &LoopBlockSet);
  BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
                                    const BlockFilterSet &LoopBlockSet);
  BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
                                  const MachineBasicBlock *OldTop,
                                  const MachineBasicBlock *ExitBB,
                                  const BlockFilterSet &LoopBlockSet);
  MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
      const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
  MachineBasicBlock *findBestLoopTop(
      const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
  MachineBasicBlock *findBestLoopExit(
      const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
      BlockFrequency &ExitFreq);
  BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
  void buildLoopChains(const MachineLoop &L);
  void rotateLoop(
      BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
      BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
  void rotateLoopWithProfile(
      BlockChain &LoopChain, const MachineLoop &L,
      const BlockFilterSet &LoopBlockSet);
  void buildCFGChains();
  void optimizeBranches();
  void alignBlocks();
  /// Returns true if a block should be tail-duplicated to increase fallthrough
  /// opportunities.
  bool shouldTailDuplicate(MachineBasicBlock *BB);
  /// Check the edge frequencies to see if tail duplication will increase
  /// fallthroughs.
  bool isProfitableToTailDup(
    const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
    BranchProbability QProb,
    const BlockChain &Chain, const BlockFilterSet *BlockFilter);

  /// Check for a trellis layout.
  bool isTrellis(const MachineBasicBlock *BB,
                 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
                 const BlockChain &Chain, const BlockFilterSet *BlockFilter);

  /// Get the best successor given a trellis layout.
  BlockAndTailDupResult getBestTrellisSuccessor(
      const MachineBasicBlock *BB,
      const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
      BranchProbability AdjustedSumProb, const BlockChain &Chain,
      const BlockFilterSet *BlockFilter);

  /// Get the best pair of non-conflicting edges.
  static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
      const MachineBasicBlock *BB,
      MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);

  /// Returns true if a block can tail duplicate into all unplaced
  /// predecessors. Filters based on loop.
  bool canTailDuplicateUnplacedPreds(
      const MachineBasicBlock *BB, MachineBasicBlock *Succ,
      const BlockChain &Chain, const BlockFilterSet *BlockFilter);

  /// Find chains of triangles to tail-duplicate where a global analysis works,
  /// but a local analysis would not find them.
  void precomputeTriangleChains();

public:
  static char ID; // Pass identification, replacement for typeid

  MachineBlockPlacement() : MachineFunctionPass(ID) {
    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &F) override;

  bool allowTailDupPlacement() const {
    assert(F);
    return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineBranchProbabilityInfo>();
    AU.addRequired<MachineBlockFrequencyInfo>();
    if (TailDupPlacement)
      AU.addRequired<MachinePostDominatorTree>();
    AU.addRequired<MachineLoopInfo>();
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
    AU.addRequired<TargetPassConfig>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char MachineBlockPlacement::ID = 0;

char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;

INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
                      "Branch Probability Basic Block Placement", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
                    "Branch Probability Basic Block Placement", false, false)

#ifndef NDEBUG
/// Helper to print the name of a MBB.
///
/// Only used by debug logging.
static std::string getBlockName(const MachineBasicBlock *BB) {
  std::string Result;
  raw_string_ostream OS(Result);
  OS << printMBBReference(*BB);
  OS << " ('" << BB->getName() << "')";
  OS.flush();
  return Result;
}
#endif

/// Mark a chain's successors as having one fewer preds.
///
/// When a chain is being merged into the "placed" chain, this routine will
/// quickly walk the successors of each block in the chain and mark them as
/// having one fewer active predecessor. It also adds any successors of this
/// chain which reach the zero-predecessor state to the appropriate worklist.
void MachineBlockPlacement::markChainSuccessors(
    const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
    const BlockFilterSet *BlockFilter) {
  // Walk all the blocks in this chain, marking their successors as having
  // a predecessor placed.
  for (MachineBasicBlock *MBB : Chain) {
    markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
  }
}

/// Mark a single block's successors as having one fewer preds.
///
/// Under normal circumstances, this is only called by markChainSuccessors,
/// but if a block that was to be placed is completely tail-duplicated away,
/// and was duplicated into the chain end, we need to redo markBlockSuccessors
/// for just that block.
void MachineBlockPlacement::markBlockSuccessors(
    const BlockChain &Chain, const MachineBasicBlock *MBB,
    const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
  // Add any successors for which this is the only un-placed in-loop
  // predecessor to the worklist as a viable candidate for CFG-neutral
  // placement. No subsequent placement of this block will violate the CFG
  // shape, so we get to use heuristics to choose a favorable placement.
  for (MachineBasicBlock *Succ : MBB->successors()) {
    if (BlockFilter && !BlockFilter->count(Succ))
      continue;
    BlockChain &SuccChain = *BlockToChain[Succ];
    // Disregard edges within a fixed chain, or edges to the loop header.
    if (&Chain == &SuccChain || Succ == LoopHeaderBB)
      continue;

    // This is a cross-chain edge that is within the loop, so decrement the
    // loop predecessor count of the destination chain.
    if (SuccChain.UnscheduledPredecessors == 0 ||
        --SuccChain.UnscheduledPredecessors > 0)
      continue;

    auto *NewBB = *SuccChain.begin();
    if (NewBB->isEHPad())
      EHPadWorkList.push_back(NewBB);
    else
      BlockWorkList.push_back(NewBB);
  }
}

/// This helper function collects the set of successors of block
/// \p BB that are allowed to be its layout successors, and return
/// the total branch probability of edges from \p BB to those
/// blocks.
BranchProbability MachineBlockPlacement::collectViableSuccessors(
    const MachineBasicBlock *BB, const BlockChain &Chain,
    const BlockFilterSet *BlockFilter,
    SmallVector<MachineBasicBlock *, 4> &Successors) {
  // Adjust edge probabilities by excluding edges pointing to blocks that is
  // either not in BlockFilter or is already in the current chain. Consider the
  // following CFG:
  //
  //     --->A
  //     |  / \
  //     | B   C
  //     |  \ / \
  //     ----D   E
  //
  // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
  // A->C is chosen as a fall-through, D won't be selected as a successor of C
  // due to CFG constraint (the probability of C->D is not greater than
  // HotProb to break topo-order). If we exclude E that is not in BlockFilter
  // when calculating the probability of C->D, D will be selected and we
  // will get A C D B as the layout of this loop.
  auto AdjustedSumProb = BranchProbability::getOne();
  for (MachineBasicBlock *Succ : BB->successors()) {
    bool SkipSucc = false;
    if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
      SkipSucc = true;
    } else {
      BlockChain *SuccChain = BlockToChain[Succ];
      if (SuccChain == &Chain) {
        SkipSucc = true;
      } else if (Succ != *SuccChain->begin()) {
        LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
                          << " -> Mid chain!\n");
        continue;
      }
    }
    if (SkipSucc)
      AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
    else
      Successors.push_back(Succ);
  }

  return AdjustedSumProb;
}

/// The helper function returns the branch probability that is adjusted
/// or normalized over the new total \p AdjustedSumProb.
static BranchProbability
getAdjustedProbability(BranchProbability OrigProb,
                       BranchProbability AdjustedSumProb) {
  BranchProbability SuccProb;
  uint32_t SuccProbN = OrigProb.getNumerator();
  uint32_t SuccProbD = AdjustedSumProb.getNumerator();
  if (SuccProbN >= SuccProbD)
    SuccProb = BranchProbability::getOne();
  else
    SuccProb = BranchProbability(SuccProbN, SuccProbD);

  return SuccProb;
}

/// Check if \p BB has exactly the successors in \p Successors.
static bool
hasSameSuccessors(MachineBasicBlock &BB,
                  SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
  if (BB.succ_size() != Successors.size())
    return false;
  // We don't want to count self-loops
  if (Successors.count(&BB))
    return false;
  for (MachineBasicBlock *Succ : BB.successors())
    if (!Successors.count(Succ))
      return false;
  return true;
}

/// Check if a block should be tail duplicated to increase fallthrough
/// opportunities.
/// \p BB Block to check.
bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
  // Blocks with single successors don't create additional fallthrough
  // opportunities. Don't duplicate them. TODO: When conditional exits are
  // analyzable, allow them to be duplicated.
  bool IsSimple = TailDup.isSimpleBB(BB);

  if (BB->succ_size() == 1)
    return false;
  return TailDup.shouldTailDuplicate(IsSimple, *BB);
}

/// Compare 2 BlockFrequency's with a small penalty for \p A.
/// In order to be conservative, we apply a X% penalty to account for
/// increased icache pressure and static heuristics. For small frequencies
/// we use only the numerators to improve accuracy. For simplicity, we assume the
/// penalty is less than 100%
/// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
                            uint64_t EntryFreq) {
  BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
  BlockFrequency Gain = A - B;
  return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
}

/// Check the edge frequencies to see if tail duplication will increase
/// fallthroughs. It only makes sense to call this function when
/// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
/// always locally profitable if we would have picked \p Succ without
/// considering duplication.
bool MachineBlockPlacement::isProfitableToTailDup(
    const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
    BranchProbability QProb,
    const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
  // We need to do a probability calculation to make sure this is profitable.
  // First: does succ have a successor that post-dominates? This affects the
  // calculation. The 2 relevant cases are:
  //    BB         BB
  //    | \Qout    | \Qout
  //   P|  C       |P C
  //    =   C'     =   C'
  //    |  /Qin    |  /Qin
  //    | /        | /
  //    Succ       Succ
  //    / \        | \  V
  //  U/   =V      |U \
  //  /     \      =   D
  //  D      E     |  /
  //               | /
  //               |/
  //               PDom
  //  '=' : Branch taken for that CFG edge
  // In the second case, Placing Succ while duplicating it into C prevents the
  // fallthrough of Succ into either D or PDom, because they now have C as an
  // unplaced predecessor

  // Start by figuring out which case we fall into
  MachineBasicBlock *PDom = nullptr;
  SmallVector<MachineBasicBlock *, 4> SuccSuccs;
  // Only scan the relevant successors
  auto AdjustedSuccSumProb =
      collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
  BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
  auto BBFreq = MBFI->getBlockFreq(BB);
  auto SuccFreq = MBFI->getBlockFreq(Succ);
  BlockFrequency P = BBFreq * PProb;
  BlockFrequency Qout = BBFreq * QProb;
  uint64_t EntryFreq = MBFI->getEntryFreq();
  // If there are no more successors, it is profitable to copy, as it strictly
  // increases fallthrough.
  if (SuccSuccs.size() == 0)
    return greaterWithBias(P, Qout, EntryFreq);

  auto BestSuccSucc = BranchProbability::getZero();
  // Find the PDom or the best Succ if no PDom exists.
  for (MachineBasicBlock *SuccSucc : SuccSuccs) {
    auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
    if (Prob > BestSuccSucc)
      BestSuccSucc = Prob;
    if (PDom == nullptr)
      if (MPDT->dominates(SuccSucc, Succ)) {
        PDom = SuccSucc;
        break;
      }
  }
  // For the comparisons, we need to know Succ's best incoming edge that isn't
  // from BB.
  auto SuccBestPred = BlockFrequency(0);
  for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
    if (SuccPred == Succ || SuccPred == BB
        || BlockToChain[SuccPred] == &Chain
        || (BlockFilter && !BlockFilter->count(SuccPred)))
      continue;
    auto Freq = MBFI->getBlockFreq(SuccPred)
        * MBPI->getEdgeProbability(SuccPred, Succ);
    if (Freq > SuccBestPred)
      SuccBestPred = Freq;
  }
  // Qin is Succ's best unplaced incoming edge that isn't BB
  BlockFrequency Qin = SuccBestPred;
  // If it doesn't have a post-dominating successor, here is the calculation:
  //    BB        BB
  //    | \Qout   |  \
  //   P|  C      |   =
  //    =   C'    |    C
  //    |  /Qin   |     |
  //    | /       |     C' (+Succ)
  //    Succ      Succ /|
  //    / \       |  \/ |
  //  U/   =V     |  == |
  //  /     \     | /  \|
  //  D      E    D     E
  //  '=' : Branch taken for that CFG edge
  //  Cost in the first case is: P + V
  //  For this calculation, we always assume P > Qout. If Qout > P
  //  The result of this function will be ignored at the caller.
  //  Let F = SuccFreq - Qin
  //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V

  if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
    BranchProbability UProb = BestSuccSucc;
    BranchProbability VProb = AdjustedSuccSumProb - UProb;
    BlockFrequency F = SuccFreq - Qin;
    BlockFrequency V = SuccFreq * VProb;
    BlockFrequency QinU = std::min(Qin, F) * UProb;
    BlockFrequency BaseCost = P + V;
    BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
    return greaterWithBias(BaseCost, DupCost, EntryFreq);
  }
  BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
  BranchProbability VProb = AdjustedSuccSumProb - UProb;
  BlockFrequency U = SuccFreq * UProb;
  BlockFrequency V = SuccFreq * VProb;
  BlockFrequency F = SuccFreq - Qin;
  // If there is a post-dominating successor, here is the calculation:
  // BB         BB                 BB          BB
  // | \Qout    |   \               | \Qout     |  \
  // |P C       |    =              |P C        |   =
  // =   C'     |P    C             =   C'      |P   C
  // |  /Qin    |      |            |  /Qin     |     |
  // | /        |      C' (+Succ)   | /         |     C' (+Succ)
  // Succ       Succ  /|            Succ        Succ /|
  // | \  V     |   \/ |            | \  V      |  \/ |
  // |U \       |U  /\ =?           |U =        |U /\ |
  // =   D      = =  =?|            |   D       | =  =|
  // |  /       |/     D            |  /        |/    D
  // | /        |     /             | =         |    /
  // |/         |    /              |/          |   =
  // Dom         Dom                Dom         Dom
  //  '=' : Branch taken for that CFG edge
  // The cost for taken branches in the first case is P + U
  // Let F = SuccFreq - Qin
  // The cost in the second case (assuming independence), given the layout:
  // BB, Succ, (C+Succ), D, Dom or the layout:
  // BB, Succ, D, Dom, (C+Succ)
  // is Qout + max(F, Qin) * U + min(F, Qin)
  // compare P + U vs Qout + P * U + Qin.
  //
  // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
  //
  // For the 3rd case, the cost is P + 2 * V
  // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
  // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
  if (UProb > AdjustedSuccSumProb / 2 &&
      !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
                                  Chain, BlockFilter))
    // Cases 3 & 4
    return greaterWithBias(
        (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
        EntryFreq);
  // Cases 1 & 2
  return greaterWithBias((P + U),
                         (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
                          std::max(Qin, F) * UProb),
                         EntryFreq);
}

/// Check for a trellis layout. \p BB is the upper part of a trellis if its
/// successors form the lower part of a trellis. A successor set S forms the
/// lower part of a trellis if all of the predecessors of S are either in S or
/// have all of S as successors. We ignore trellises where BB doesn't have 2
/// successors because for fewer than 2, it's trivial, and for 3 or greater they
/// are very uncommon and complex to compute optimally. Allowing edges within S
/// is not strictly a trellis, but the same algorithm works, so we allow it.
bool MachineBlockPlacement::isTrellis(
    const MachineBasicBlock *BB,
    const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
    const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
  // Technically BB could form a trellis with branching factor higher than 2.
  // But that's extremely uncommon.
  if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
    return false;

  SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
                                                       BB->succ_end());
  // To avoid reviewing the same predecessors twice.
  SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;

  for (MachineBasicBlock *Succ : ViableSuccs) {
    int PredCount = 0;
    for (auto SuccPred : Succ->predecessors()) {
      // Allow triangle successors, but don't count them.
      if (Successors.count(SuccPred)) {
        // Make sure that it is actually a triangle.
        for (MachineBasicBlock *CheckSucc : SuccPred->successors())
          if (!Successors.count(CheckSucc))
            return false;
        continue;
      }
      const BlockChain *PredChain = BlockToChain[SuccPred];
      if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
          PredChain == &Chain || PredChain == BlockToChain[Succ])
        continue;
      ++PredCount;
      // Perform the successor check only once.
      if (!SeenPreds.insert(SuccPred).second)
        continue;
      if (!hasSameSuccessors(*SuccPred, Successors))
        return false;
    }
    // If one of the successors has only BB as a predecessor, it is not a
    // trellis.
    if (PredCount < 1)
      return false;
  }
  return true;
}

/// Pick the highest total weight pair of edges that can both be laid out.
/// The edges in \p Edges[0] are assumed to have a different destination than
/// the edges in \p Edges[1]. Simple counting shows that the best pair is either
/// the individual highest weight edges to the 2 different destinations, or in
/// case of a conflict, one of them should be replaced with a 2nd best edge.
std::pair<MachineBlockPlacement::WeightedEdge,
          MachineBlockPlacement::WeightedEdge>
MachineBlockPlacement::getBestNonConflictingEdges(
    const MachineBasicBlock *BB,
    MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
        Edges) {
  // Sort the edges, and then for each successor, find the best incoming
  // predecessor. If the best incoming predecessors aren't the same,
  // then that is clearly the best layout. If there is a conflict, one of the
  // successors will have to fallthrough from the second best predecessor. We
  // compare which combination is better overall.

  // Sort for highest frequency.
  auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };

  llvm::stable_sort(Edges[0], Cmp);
  llvm::stable_sort(Edges[1], Cmp);
  auto BestA = Edges[0].begin();
  auto BestB = Edges[1].begin();
  // Arrange for the correct answer to be in BestA and BestB
  // If the 2 best edges don't conflict, the answer is already there.
  if (BestA->Src == BestB->Src) {
    // Compare the total fallthrough of (Best + Second Best) for both pairs
    auto SecondBestA = std::next(BestA);
    auto SecondBestB = std::next(BestB);
    BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
    BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
    if (BestAScore < BestBScore)
      BestA = SecondBestA;
    else
      BestB = SecondBestB;
  }
  // Arrange for the BB edge to be in BestA if it exists.
  if (BestB->Src == BB)
    std::swap(BestA, BestB);
  return std::make_pair(*BestA, *BestB);
}

/// Get the best successor from \p BB based on \p BB being part of a trellis.
/// We only handle trellises with 2 successors, so the algorithm is
/// straightforward: Find the best pair of edges that don't conflict. We find
/// the best incoming edge for each successor in the trellis. If those conflict,
/// we consider which of them should be replaced with the second best.
/// Upon return the two best edges will be in \p BestEdges. If one of the edges
/// comes from \p BB, it will be in \p BestEdges[0]
MachineBlockPlacement::BlockAndTailDupResult
MachineBlockPlacement::getBestTrellisSuccessor(
    const MachineBasicBlock *BB,
    const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
    BranchProbability AdjustedSumProb, const BlockChain &Chain,
    const BlockFilterSet *BlockFilter) {

  BlockAndTailDupResult Result = {nullptr, false};
  SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
                                                       BB->succ_end());

  // We assume size 2 because it's common. For general n, we would have to do
  // the Hungarian algorithm, but it's not worth the complexity because more
  // than 2 successors is fairly uncommon, and a trellis even more so.
  if (Successors.size() != 2 || ViableSuccs.size() != 2)
    return Result;

  // Collect the edge frequencies of all edges that form the trellis.
  SmallVector<WeightedEdge, 8> Edges[2];
  int SuccIndex = 0;
  for (auto Succ : ViableSuccs) {
    for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
      // Skip any placed predecessors that are not BB
      if (SuccPred != BB)
        if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
            BlockToChain[SuccPred] == &Chain ||
            BlockToChain[SuccPred] == BlockToChain[Succ])
          continue;
      BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
                                MBPI->getEdgeProbability(SuccPred, Succ);
      Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
    }
    ++SuccIndex;
  }

  // Pick the best combination of 2 edges from all the edges in the trellis.
  WeightedEdge BestA, BestB;
  std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);

  if (BestA.Src != BB) {
    // If we have a trellis, and BB doesn't have the best fallthrough edges,
    // we shouldn't choose any successor. We've already looked and there's a
    // better fallthrough edge for all the successors.
    LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
    return Result;
  }

  // Did we pick the triangle edge? If tail-duplication is profitable, do
  // that instead. Otherwise merge the triangle edge now while we know it is
  // optimal.
  if (BestA.Dest == BestB.Src) {
    // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
    // would be better.
    MachineBasicBlock *Succ1 = BestA.Dest;
    MachineBasicBlock *Succ2 = BestB.Dest;
    // Check to see if tail-duplication would be profitable.
    if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
        canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
        isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
                              Chain, BlockFilter)) {
      LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
                     MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
                 dbgs() << "    Selected: " << getBlockName(Succ2)
                        << ", probability: " << Succ2Prob
                        << " (Tail Duplicate)\n");
      Result.BB = Succ2;
      Result.ShouldTailDup = true;
      return Result;
    }
  }
  // We have already computed the optimal edge for the other side of the
  // trellis.
  ComputedEdges[BestB.Src] = { BestB.Dest, false };

  auto TrellisSucc = BestA.Dest;
  LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
                 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
             dbgs() << "    Selected: " << getBlockName(TrellisSucc)
                    << ", probability: " << SuccProb << " (Trellis)\n");
  Result.BB = TrellisSucc;
  return Result;
}

/// When the option allowTailDupPlacement() is on, this method checks if the
/// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
/// into all of its unplaced, unfiltered predecessors, that are not BB.
bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
    const MachineBasicBlock *BB, MachineBasicBlock *Succ,
    const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
  if (!shouldTailDuplicate(Succ))
    return false;

  // The result of canTailDuplicate.
  bool Duplicate = true;
  // Number of possible duplication.
  unsigned int NumDup = 0;

  // For CFG checking.
  SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
                                                       BB->succ_end());
  for (MachineBasicBlock *Pred : Succ->predecessors()) {
    // Make sure all unplaced and unfiltered predecessors can be
    // tail-duplicated into.
    // Skip any blocks that are already placed or not in this loop.
    if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
        || BlockToChain[Pred] == &Chain)
      continue;
    if (!TailDup.canTailDuplicate(Succ, Pred)) {
      if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
        // This will result in a trellis after tail duplication, so we don't
        // need to copy Succ into this predecessor. In the presence
        // of a trellis tail duplication can continue to be profitable.
        // For example:
        // A            A
        // |\           |\
        // | \          | \
        // |  C         |  C+BB
        // | /          |  |
        // |/           |  |
        // BB    =>     BB |
        // |\           |\/|
        // | \          |/\|
        // |  D         |  D
        // | /          | /
        // |/           |/
        // Succ         Succ
        //
        // After BB was duplicated into C, the layout looks like the one on the
        // right. BB and C now have the same successors. When considering
        // whether Succ can be duplicated into all its unplaced predecessors, we
        // ignore C.
        // We can do this because C already has a profitable fallthrough, namely
        // D. TODO(iteratee): ignore sufficiently cold predecessors for
        // duplication and for this test.
        //
        // This allows trellises to be laid out in 2 separate chains
        // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
        // because it allows the creation of 2 fallthrough paths with links
        // between them, and we correctly identify the best layout for these
        // CFGs. We want to extend trellises that the user created in addition
        // to trellises created by tail-duplication, so we just look for the
        // CFG.
        continue;
      Duplicate = false;
      continue;
    }
    NumDup++;
  }

  // No possible duplication in current filter set.
  if (NumDup == 0)
    return false;

  // If profile information is available, findDuplicateCandidates can do more
  // precise benefit analysis.
  if (F->getFunction().hasProfileData())
    return true;

  // This is mainly for function exit BB.
  // The integrated tail duplication is really designed for increasing
  // fallthrough from predecessors from Succ to its successors. We may need
  // other machanism to handle different cases.
  if (Succ->succ_size() == 0)
    return true;

  // Plus the already placed predecessor.
  NumDup++;

  // If the duplication candidate has more unplaced predecessors than
  // successors, the extra duplication can't bring more fallthrough.
  //
  //     Pred1 Pred2 Pred3
  //         \   |   /
  //          \  |  /
  //           \ | /
  //            Dup
  //            / \
  //           /   \
  //       Succ1  Succ2
  //
  // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
  // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
  // but the duplication into Pred3 can't increase fallthrough.
  //
  // A small number of extra duplication may not hurt too much. We need a better
  // heuristic to handle it.
  if ((NumDup > Succ->succ_size()) || !Duplicate)
    return false;

  return true;
}

/// Find chains of triangles where we believe it would be profitable to
/// tail-duplicate them all, but a local analysis would not find them.
/// There are 3 ways this can be profitable:
/// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
///    longer chains)
/// 2) The chains are statically correlated. Branch probabilities have a very
///    U-shaped distribution.
///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
///    If the branches in a chain are likely to be from the same side of the
///    distribution as their predecessor, but are independent at runtime, this
///    transformation is profitable. (Because the cost of being wrong is a small
///    fixed cost, unlike the standard triangle layout where the cost of being
///    wrong scales with the # of triangles.)
/// 3) The chains are dynamically correlated. If the probability that a previous
///    branch was taken positively influences whether the next branch will be
///    taken
/// We believe that 2 and 3 are common enough to justify the small margin in 1.
void MachineBlockPlacement::precomputeTriangleChains() {
  struct TriangleChain {
    std::vector<MachineBasicBlock *> Edges;

    TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
        : Edges({src, dst}) {}

    void append(MachineBasicBlock *dst) {
      assert(getKey()->isSuccessor(dst) &&
             "Attempting to append a block that is not a successor.");
      Edges.push_back(dst);
    }

    unsigned count() const { return Edges.size() - 1; }

    MachineBasicBlock *getKey() const {
      return Edges.back();
    }
  };

  if (TriangleChainCount == 0)
    return;

  LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
  // Map from last block to the chain that contains it. This allows us to extend
  // chains as we find new triangles.
  DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
  for (MachineBasicBlock &BB : *F) {
    // If BB doesn't have 2 successors, it doesn't start a triangle.
    if (BB.succ_size() != 2)
      continue;
    MachineBasicBlock *PDom = nullptr;
    for (MachineBasicBlock *Succ : BB.successors()) {
      if (!MPDT->dominates(Succ, &BB))
        continue;
      PDom = Succ;
      break;
    }
    // If BB doesn't have a post-dominating successor, it doesn't form a
    // triangle.
    if (PDom == nullptr)
      continue;
    // If PDom has a hint that it is low probability, skip this triangle.
    if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
      continue;
    // If PDom isn't eligible for duplication, this isn't the kind of triangle
    // we're looking for.
    if (!shouldTailDuplicate(PDom))
      continue;
    bool CanTailDuplicate = true;
    // If PDom can't tail-duplicate into it's non-BB predecessors, then this
    // isn't the kind of triangle we're looking for.
    for (MachineBasicBlock* Pred : PDom->predecessors()) {
      if (Pred == &BB)
        continue;
      if (!TailDup.canTailDuplicate(PDom, Pred)) {
        CanTailDuplicate = false;
        break;
      }
    }
    // If we can't tail-duplicate PDom to its predecessors, then skip this
    // triangle.
    if (!CanTailDuplicate)
      continue;

    // Now we have an interesting triangle. Insert it if it's not part of an
    // existing chain.
    // Note: This cannot be replaced with a call insert() or emplace() because
    // the find key is BB, but the insert/emplace key is PDom.
    auto Found = TriangleChainMap.find(&BB);
    // If it is, remove the chain from the map, grow it, and put it back in the
    // map with the end as the new key.
    if (Found != TriangleChainMap.end()) {
      TriangleChain Chain = std::move(Found->second);
      TriangleChainMap.erase(Found);
      Chain.append(PDom);
      TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
    } else {
      auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
      assert(InsertResult.second && "Block seen twice.");
      (void)InsertResult;
    }
  }

  // Iterating over a DenseMap is safe here, because the only thing in the body
  // of the loop is inserting into another DenseMap (ComputedEdges).
  // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
  for (auto &ChainPair : TriangleChainMap) {
    TriangleChain &Chain = ChainPair.second;
    // Benchmarking has shown that due to branch correlation duplicating 2 or
    // more triangles is profitable, despite the calculations assuming
    // independence.
    if (Chain.count() < TriangleChainCount)
      continue;
    MachineBasicBlock *dst = Chain.Edges.back();
    Chain.Edges.pop_back();
    for (MachineBasicBlock *src : reverse(Chain.Edges)) {
      LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
                        << getBlockName(dst)
                        << " as pre-computed based on triangles.\n");

      auto InsertResult = ComputedEdges.insert({src, {dst, true}});
      assert(InsertResult.second && "Block seen twice.");
      (void)InsertResult;

      dst = src;
    }
  }
}

// When profile is not present, return the StaticLikelyProb.
// When profile is available, we need to handle the triangle-shape CFG.
static BranchProbability getLayoutSuccessorProbThreshold(
      const MachineBasicBlock *BB) {
  if (!BB->getParent()->getFunction().hasProfileData())
    return BranchProbability(StaticLikelyProb, 100);
  if (BB->succ_size() == 2) {
    const MachineBasicBlock *Succ1 = *BB->succ_begin();
    const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
    if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
      /* See case 1 below for the cost analysis. For BB->Succ to
       * be taken with smaller cost, the following needs to hold:
       *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
       *   So the threshold T in the calculation below
       *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
       *   So T / (1 - T) = 2, Yielding T = 2/3
       * Also adding user specified branch bias, we have
       *   T = (2/3)*(ProfileLikelyProb/50)
       *     = (2*ProfileLikelyProb)/150)
       */
      return BranchProbability(2 * ProfileLikelyProb, 150);
    }
  }
  return BranchProbability(ProfileLikelyProb, 100);
}

/// Checks to see if the layout candidate block \p Succ has a better layout
/// predecessor than \c BB. If yes, returns true.
/// \p SuccProb: The probability adjusted for only remaining blocks.
///   Only used for logging
/// \p RealSuccProb: The un-adjusted probability.
/// \p Chain: The chain that BB belongs to and Succ is being considered for.
/// \p BlockFilter: if non-null, the set of blocks that make up the loop being
///    considered
bool MachineBlockPlacement::hasBetterLayoutPredecessor(
    const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
    const BlockChain &SuccChain, BranchProbability SuccProb,
    BranchProbability RealSuccProb, const BlockChain &Chain,
    const BlockFilterSet *BlockFilter) {

  // There isn't a better layout when there are no unscheduled predecessors.
  if (SuccChain.UnscheduledPredecessors == 0)
    return false;

  // There are two basic scenarios here:
  // -------------------------------------
  // Case 1: triangular shape CFG (if-then):
  //     BB
  //     | \
  //     |  \
  //     |   Pred
  //     |   /
  //     Succ
  // In this case, we are evaluating whether to select edge -> Succ, e.g.
  // set Succ as the layout successor of BB. Picking Succ as BB's
  // successor breaks the CFG constraints (FIXME: define these constraints).
  // With this layout, Pred BB
  // is forced to be outlined, so the overall cost will be cost of the
  // branch taken from BB to Pred, plus the cost of back taken branch
  // from Pred to Succ, as well as the additional cost associated
  // with the needed unconditional jump instruction from Pred To Succ.

  // The cost of the topological order layout is the taken branch cost
  // from BB to Succ, so to make BB->Succ a viable candidate, the following
  // must hold:
  //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
  //      < freq(BB->Succ) *  taken_branch_cost.
  // Ignoring unconditional jump cost, we get
  //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
  //    prob(BB->Succ) > 2 * prob(BB->Pred)
  //
  // When real profile data is available, we can precisely compute the
  // probability threshold that is needed for edge BB->Succ to be considered.
  // Without profile data, the heuristic requires the branch bias to be
  // a lot larger to make sure the signal is very strong (e.g. 80% default).
  // -----------------------------------------------------------------
  // Case 2: diamond like CFG (if-then-else):
  //     S
  //    / \
  //   |   \
  //  BB    Pred
  //   \    /
  //    Succ
  //    ..
  //
  // The current block is BB and edge BB->Succ is now being evaluated.
  // Note that edge S->BB was previously already selected because
  // prob(S->BB) > prob(S->Pred).
  // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
  // choose Pred, we will have a topological ordering as shown on the left
  // in the picture below. If we choose Succ, we have the solution as shown
  // on the right:
  //
  //   topo-order:
  //
  //       S-----                             ---S
  //       |    |                             |  |
  //    ---BB   |                             |  BB
  //    |       |                             |  |
  //    |  Pred--                             |  Succ--
  //    |  |                                  |       |
  //    ---Succ                               ---Pred--
  //
  // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
  //      = freq(S->Pred) + freq(S->BB)
  //
  // If we have profile data (i.e, branch probabilities can be trusted), the
  // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
  // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
  // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
  // means the cost of topological order is greater.
  // When profile data is not available, however, we need to be more
  // conservative. If the branch prediction is wrong, breaking the topo-order
  // will actually yield a layout with large cost. For this reason, we need
  // strong biased branch at block S with Prob(S->BB) in order to select
  // BB->Succ. This is equivalent to looking the CFG backward with backward
  // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
  // profile data).
  // --------------------------------------------------------------------------
  // Case 3: forked diamond
  //       S
  //      / \
  //     /   \
  //   BB    Pred
  //   | \   / |
  //   |  \ /  |
  //   |   X   |
  //   |  / \  |
  //   | /   \ |
  //   S1     S2
  //
  // The current block is BB and edge BB->S1 is now being evaluated.
  // As above S->BB was already selected because
  // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
  //
  // topo-order:
  //
  //     S-------|                     ---S
  //     |       |                     |  |
  //  ---BB      |                     |  BB
  //  |          |                     |  |
  //  |  Pred----|                     |  S1----
  //  |  |                             |       |
  //  --(S1 or S2)                     ---Pred--
  //                                        |
  //                                       S2
  //
  // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
  //    + min(freq(Pred->S1), freq(Pred->S2))
  // Non-topo-order cost:
  // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
  // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
  // is 0. Then the non topo layout is better when
  // freq(S->Pred) < freq(BB->S1).
  // This is exactly what is checked below.
  // Note there are other shapes that apply (Pred may not be a single block,
  // but they all fit this general pattern.)
  BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);

  // Make sure that a hot successor doesn't have a globally more
  // important predecessor.
  BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
  bool BadCFGConflict = false;

  for (MachineBasicBlock *Pred : Succ->predecessors()) {
    BlockChain *PredChain = BlockToChain[Pred];
    if (Pred == Succ || PredChain == &SuccChain ||
        (BlockFilter && !BlockFilter->count(Pred)) ||
        PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
        // This check is redundant except for look ahead. This function is
        // called for lookahead by isProfitableToTailDup when BB hasn't been
        // placed yet.
        (Pred == BB))
      continue;
    // Do backward checking.
    // For all cases above, we need a backward checking to filter out edges that
    // are not 'strongly' biased.
    // BB  Pred
    //  \ /
    //  Succ
    // We select edge BB->Succ if
    //      freq(BB->Succ) > freq(Succ) * HotProb
    //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
    //      HotProb
    //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
    // Case 1 is covered too, because the first equation reduces to:
    // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
    BlockFrequency PredEdgeFreq =
        MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
    if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
      BadCFGConflict = true;
      break;
    }
  }

  if (BadCFGConflict) {
    LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
                      << SuccProb << " (prob) (non-cold CFG conflict)\n");
    return true;
  }

  return false;
}

/// Select the best successor for a block.
///
/// This looks across all successors of a particular block and attempts to
/// select the "best" one to be the layout successor. It only considers direct
/// successors which also pass the block filter. It will attempt to avoid
/// breaking CFG structure, but cave and break such structures in the case of
/// very hot successor edges.
///
/// \returns The best successor block found, or null if none are viable, along
/// with a boolean indicating if tail duplication is necessary.
MachineBlockPlacement::BlockAndTailDupResult
MachineBlockPlacement::selectBestSuccessor(
    const MachineBasicBlock *BB, const BlockChain &Chain,
    const BlockFilterSet *BlockFilter) {
  const BranchProbability HotProb(StaticLikelyProb, 100);

  BlockAndTailDupResult BestSucc = { nullptr, false };
  auto BestProb = BranchProbability::getZero();

  SmallVector<MachineBasicBlock *, 4> Successors;
  auto AdjustedSumProb =
      collectViableSuccessors(BB, Chain, BlockFilter, Successors);

  LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
                    << "\n");

  // if we already precomputed the best successor for BB, return that if still
  // applicable.
  auto FoundEdge = ComputedEdges.find(BB);
  if (FoundEdge != ComputedEdges.end()) {
    MachineBasicBlock *Succ = FoundEdge->second.BB;
    ComputedEdges.erase(FoundEdge);
    BlockChain *SuccChain = BlockToChain[Succ];
    if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
        SuccChain != &Chain && Succ == *SuccChain->begin())
      return FoundEdge->second;
  }

  // if BB is part of a trellis, Use the trellis to determine the optimal
  // fallthrough edges
  if (isTrellis(BB, Successors, Chain, BlockFilter))
    return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
                                   BlockFilter);

  // For blocks with CFG violations, we may be able to lay them out anyway with
  // tail-duplication. We keep this vector so we can perform the probability
  // calculations the minimum number of times.
  SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4>
      DupCandidates;
  for (MachineBasicBlock *Succ : Successors) {
    auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
    BranchProbability SuccProb =
        getAdjustedProbability(RealSuccProb, AdjustedSumProb);

    BlockChain &SuccChain = *BlockToChain[Succ];
    // Skip the edge \c BB->Succ if block \c Succ has a better layout
    // predecessor that yields lower global cost.
    if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
                                   Chain, BlockFilter)) {
      // If tail duplication would make Succ profitable, place it.
      if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
        DupCandidates.emplace_back(SuccProb, Succ);
      continue;
    }

    LLVM_DEBUG(
        dbgs() << "    Candidate: " << getBlockName(Succ)
               << ", probability: " << SuccProb
               << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
               << "\n");

    if (BestSucc.BB && BestProb >= SuccProb) {
      LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
      continue;
    }

    LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
    BestSucc.BB = Succ;
    BestProb = SuccProb;
  }
  // Handle the tail duplication candidates in order of decreasing probability.
  // Stop at the first one that is profitable. Also stop if they are less
  // profitable than BestSucc. Position is important because we preserve it and
  // prefer first best match. Here we aren't comparing in order, so we capture
  // the position instead.
  llvm::stable_sort(DupCandidates,
                    [](std::tuple<BranchProbability, MachineBasicBlock *> L,
                       std::tuple<BranchProbability, MachineBasicBlock *> R) {
                      return std::get<0>(L) > std::get<0>(R);
                    });
  for (auto &Tup : DupCandidates) {
    BranchProbability DupProb;
    MachineBasicBlock *Succ;
    std::tie(DupProb, Succ) = Tup;
    if (DupProb < BestProb)
      break;
    if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
        && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
      LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
                        << ", probability: " << DupProb
                        << " (Tail Duplicate)\n");
      BestSucc.BB = Succ;
      BestSucc.ShouldTailDup = true;
      break;
    }
  }

  if (BestSucc.BB)
    LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");

  return BestSucc;
}

/// Select the best block from a worklist.
///
/// This looks through the provided worklist as a list of candidate basic
/// blocks and select the most profitable one to place. The definition of
/// profitable only really makes sense in the context of a loop. This returns
/// the most frequently visited block in the worklist, which in the case of
/// a loop, is the one most desirable to be physically close to the rest of the
/// loop body in order to improve i-cache behavior.
///
/// \returns The best block found, or null if none are viable.
MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
    const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
  // Once we need to walk the worklist looking for a candidate, cleanup the
  // worklist of already placed entries.
  // FIXME: If this shows up on profiles, it could be folded (at the cost of
  // some code complexity) into the loop below.
  WorkList.erase(llvm::remove_if(WorkList,
                                 [&](MachineBasicBlock *BB) {
                                   return BlockToChain.lookup(BB) == &Chain;
                                 }),
                 WorkList.end());

  if (WorkList.empty())
    return nullptr;

  bool IsEHPad = WorkList[0]->isEHPad();

  MachineBasicBlock *BestBlock = nullptr;
  BlockFrequency BestFreq;
  for (MachineBasicBlock *MBB : WorkList) {
    assert(MBB->isEHPad() == IsEHPad &&
           "EHPad mismatch between block and work list.");

    BlockChain &SuccChain = *BlockToChain[MBB];
    if (&SuccChain == &Chain)
      continue;

    assert(SuccChain.UnscheduledPredecessors == 0 &&
           "Found CFG-violating block");

    BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
    LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
               MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");

    // For ehpad, we layout the least probable first as to avoid jumping back
    // from least probable landingpads to more probable ones.
    //
    // FIXME: Using probability is probably (!) not the best way to achieve
    // this. We should probably have a more principled approach to layout
    // cleanup code.
    //
    // The goal is to get:
    //
    //                 +--------------------------+
    //                 |                          V
    // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
    //
    // Rather than:
    //
    //                 +-------------------------------------+
    //                 V                                     |
    // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
    if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
      continue;

    BestBlock = MBB;
    BestFreq = CandidateFreq;
  }

  return BestBlock;
}

/// Retrieve the first unplaced basic block.
///
/// This routine is called when we are unable to use the CFG to walk through
/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
/// We walk through the function's blocks in order, starting from the
/// LastUnplacedBlockIt. We update this iterator on each call to avoid
/// re-scanning the entire sequence on repeated calls to this routine.
MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
    const BlockChain &PlacedChain,
    MachineFunction::iterator &PrevUnplacedBlockIt,
    const BlockFilterSet *BlockFilter) {
  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
       ++I) {
    if (BlockFilter && !BlockFilter->count(&*I))
      continue;
    if (BlockToChain[&*I] != &PlacedChain) {
      PrevUnplacedBlockIt = I;
      // Now select the head of the chain to which the unplaced block belongs
      // as the block to place. This will force the entire chain to be placed,
      // and satisfies the requirements of merging chains.
      return *BlockToChain[&*I]->begin();
    }
  }
  return nullptr;
}

void MachineBlockPlacement::fillWorkLists(
    const MachineBasicBlock *MBB,
    SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
    const BlockFilterSet *BlockFilter = nullptr) {
  BlockChain &Chain = *BlockToChain[MBB];
  if (!UpdatedPreds.insert(&Chain).second)
    return;

  assert(
      Chain.UnscheduledPredecessors == 0 &&
      "Attempting to place block with unscheduled predecessors in worklist.");
  for (MachineBasicBlock *ChainBB : Chain) {
    assert(BlockToChain[ChainBB] == &Chain &&
           "Block in chain doesn't match BlockToChain map.");
    for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
      if (BlockFilter && !BlockFilter->count(Pred))
        continue;
      if (BlockToChain[Pred] == &Chain)
        continue;
      ++Chain.UnscheduledPredecessors;
    }
  }

  if (Chain.UnscheduledPredecessors != 0)
    return;

  MachineBasicBlock *BB = *Chain.begin();
  if (BB->isEHPad())
    EHPadWorkList.push_back(BB);
  else
    BlockWorkList.push_back(BB);
}

void MachineBlockPlacement::buildChain(
    const MachineBasicBlock *HeadBB, BlockChain &Chain,
    BlockFilterSet *BlockFilter) {
  assert(HeadBB && "BB must not be null.\n");
  assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
  MachineFunction::iterator PrevUnplacedBlockIt = F->begin();

  const MachineBasicBlock *LoopHeaderBB = HeadBB;
  markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
  MachineBasicBlock *BB = *std::prev(Chain.end());
  while (true) {
    assert(BB && "null block found at end of chain in loop.");
    assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
    assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");


    // Look for the best viable successor if there is one to place immediately
    // after this block.
    auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
    MachineBasicBlock* BestSucc = Result.BB;
    bool ShouldTailDup = Result.ShouldTailDup;
    if (allowTailDupPlacement())
      ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
                                                                  Chain,
                                                                  BlockFilter));

    // If an immediate successor isn't available, look for the best viable
    // block among those we've identified as not violating the loop's CFG at
    // this point. This won't be a fallthrough, but it will increase locality.
    if (!BestSucc)
      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
    if (!BestSucc)
      BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);

    if (!BestSucc) {
      BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
      if (!BestSucc)
        break;

      LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
                           "layout successor until the CFG reduces\n");
    }

    // Placement may have changed tail duplication opportunities.
    // Check for that now.
    if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
      repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
                                       BlockFilter, PrevUnplacedBlockIt);
      // If the chosen successor was duplicated into BB, don't bother laying
      // it out, just go round the loop again with BB as the chain end.
      if (!BB->isSuccessor(BestSucc))
        continue;
    }

    // Place this block, updating the datastructures to reflect its placement.
    BlockChain &SuccChain = *BlockToChain[BestSucc];
    // Zero out UnscheduledPredecessors for the successor we're about to merge in case
    // we selected a successor that didn't fit naturally into the CFG.
    SuccChain.UnscheduledPredecessors = 0;
    LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
                      << getBlockName(BestSucc) << "\n");
    markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
    Chain.merge(BestSucc, &SuccChain);
    BB = *std::prev(Chain.end());
  }

  LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
                    << getBlockName(*Chain.begin()) << "\n");
}

// If bottom of block BB has only one successor OldTop, in most cases it is
// profitable to move it before OldTop, except the following case:
//
//     -->OldTop<-
//     |    .    |
//     |    .    |
//     |    .    |
//     ---Pred   |
//          |    |
//         BB-----
//
// If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
// layout the other successor below it, so it can't reduce taken branch.
// In this case we keep its original layout.
bool
MachineBlockPlacement::canMoveBottomBlockToTop(
    const MachineBasicBlock *BottomBlock,
    const MachineBasicBlock *OldTop) {
  if (BottomBlock->pred_size() != 1)
    return true;
  MachineBasicBlock *Pred = *BottomBlock->pred_begin();
  if (Pred->succ_size() != 2)
    return true;

  MachineBasicBlock *OtherBB = *Pred->succ_begin();
  if (OtherBB == BottomBlock)
    OtherBB = *Pred->succ_rbegin();
  if (OtherBB == OldTop)
    return false;

  return true;
}

// Find out the possible fall through frequence to the top of a loop.
BlockFrequency
MachineBlockPlacement::TopFallThroughFreq(
    const MachineBasicBlock *Top,
    const BlockFilterSet &LoopBlockSet) {
  BlockFrequency MaxFreq = 0;
  for (MachineBasicBlock *Pred : Top->predecessors()) {
    BlockChain *PredChain = BlockToChain[Pred];
    if (!LoopBlockSet.count(Pred) &&
        (!PredChain || Pred == *std::prev(PredChain->end()))) {
      // Found a Pred block can be placed before Top.
      // Check if Top is the best successor of Pred.
      auto TopProb = MBPI->getEdgeProbability(Pred, Top);
      bool TopOK = true;
      for (MachineBasicBlock *Succ : Pred->successors()) {
        auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
        BlockChain *SuccChain = BlockToChain[Succ];
        // Check if Succ can be placed after Pred.
        // Succ should not be in any chain, or it is the head of some chain.
        if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
            (!SuccChain || Succ == *SuccChain->begin())) {
          TopOK = false;
          break;
        }
      }
      if (TopOK) {
        BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
                                  MBPI->getEdgeProbability(Pred, Top);
        if (EdgeFreq > MaxFreq)
          MaxFreq = EdgeFreq;
      }
    }
  }
  return MaxFreq;
}

// Compute the fall through gains when move NewTop before OldTop.
//
// In following diagram, edges marked as "-" are reduced fallthrough, edges
// marked as "+" are increased fallthrough, this function computes
//
//      SUM(increased fallthrough) - SUM(decreased fallthrough)
//
//              |
//              | -
//              V
//        --->OldTop
//        |     .
//        |     .
//       +|     .    +
//        |   Pred --->
//        |     |-
//        |     V
//        --- NewTop <---
//              |-
//              V
//
BlockFrequency
MachineBlockPlacement::FallThroughGains(
    const MachineBasicBlock *NewTop,
    const MachineBasicBlock *OldTop,
    const MachineBasicBlock *ExitBB,
    const BlockFilterSet &LoopBlockSet) {
  BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
  BlockFrequency FallThrough2Exit = 0;
  if (ExitBB)
    FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
        MBPI->getEdgeProbability(NewTop, ExitBB);
  BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
      MBPI->getEdgeProbability(NewTop, OldTop);

  // Find the best Pred of NewTop.
   MachineBasicBlock *BestPred = nullptr;
   BlockFrequency FallThroughFromPred = 0;
   for (MachineBasicBlock *Pred : NewTop->predecessors()) {
     if (!LoopBlockSet.count(Pred))
       continue;
     BlockChain *PredChain = BlockToChain[Pred];
     if (!PredChain || Pred == *std::prev(PredChain->end())) {
       BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
           MBPI->getEdgeProbability(Pred, NewTop);
       if (EdgeFreq > FallThroughFromPred) {
         FallThroughFromPred = EdgeFreq;
         BestPred = Pred;
       }
     }
   }

   // If NewTop is not placed after Pred, another successor can be placed
   // after Pred.
   BlockFrequency NewFreq = 0;
   if (BestPred) {
     for (MachineBasicBlock *Succ : BestPred->successors()) {
       if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
         continue;
       if (ComputedEdges.find(Succ) != ComputedEdges.end())
         continue;
       BlockChain *SuccChain = BlockToChain[Succ];
       if ((SuccChain && (Succ != *SuccChain->begin())) ||
           (SuccChain == BlockToChain[BestPred]))
         continue;
       BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
           MBPI->getEdgeProbability(BestPred, Succ);
       if (EdgeFreq > NewFreq)
         NewFreq = EdgeFreq;
     }
     BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
         MBPI->getEdgeProbability(BestPred, NewTop);
     if (NewFreq > OrigEdgeFreq) {
       // If NewTop is not the best successor of Pred, then Pred doesn't
       // fallthrough to NewTop. So there is no FallThroughFromPred and
       // NewFreq.
       NewFreq = 0;
       FallThroughFromPred = 0;
     }
   }

   BlockFrequency Result = 0;
   BlockFrequency Gains = BackEdgeFreq + NewFreq;
   BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
       FallThroughFromPred;
   if (Gains > Lost)
     Result = Gains - Lost;
   return Result;
}

/// Helper function of findBestLoopTop. Find the best loop top block
/// from predecessors of old top.
///
/// Look for a block which is strictly better than the old top for laying
/// out before the old top of the loop. This looks for only two patterns:
///
///     1. a block has only one successor, the old loop top
///
///        Because such a block will always result in an unconditional jump,
///        rotating it in front of the old top is always profitable.
///
///     2. a block has two successors, one is old top, another is exit
///        and it has more than one predecessors
///
///        If it is below one of its predecessors P, only P can fall through to
///        it, all other predecessors need a jump to it, and another conditional
///        jump to loop header. If it is moved before loop header, all its
///        predecessors jump to it, then fall through to loop header. So all its
///        predecessors except P can reduce one taken branch.
///        At the same time, move it before old top increases the taken branch
///        to loop exit block, so the reduced taken branch will be compared with
///        the increased taken branch to the loop exit block.
MachineBasicBlock *
MachineBlockPlacement::findBestLoopTopHelper(
    MachineBasicBlock *OldTop,
    const MachineLoop &L,
    const BlockFilterSet &LoopBlockSet) {
  // Check that the header hasn't been fused with a preheader block due to
  // crazy branches. If it has, we need to start with the header at the top to
  // prevent pulling the preheader into the loop body.
  BlockChain &HeaderChain = *BlockToChain[OldTop];
  if (!LoopBlockSet.count(*HeaderChain.begin()))
    return OldTop;

  LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
                    << "\n");

  BlockFrequency BestGains = 0;
  MachineBasicBlock *BestPred = nullptr;
  for (MachineBasicBlock *Pred : OldTop->predecessors()) {
    if (!LoopBlockSet.count(Pred))
      continue;
    if (Pred == L.getHeader())
      continue;
    LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has "
                      << Pred->succ_size() << " successors, ";
               MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
    if (Pred->succ_size() > 2)
      continue;

    MachineBasicBlock *OtherBB = nullptr;
    if (Pred->succ_size() == 2) {
      OtherBB = *Pred->succ_begin();
      if (OtherBB == OldTop)
        OtherBB = *Pred->succ_rbegin();
    }

    if (!canMoveBottomBlockToTop(Pred, OldTop))
      continue;

    BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
                                            LoopBlockSet);
    if ((Gains > 0) && (Gains > BestGains ||
        ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
      BestPred = Pred;
      BestGains = Gains;
    }
  }

  // If no direct predecessor is fine, just use the loop header.
  if (!BestPred) {
    LLVM_DEBUG(dbgs() << "    final top unchanged\n");
    return OldTop;
  }

  // Walk backwards through any straight line of predecessors.
  while (BestPred->pred_size() == 1 &&
         (*BestPred->pred_begin())->succ_size() == 1 &&
         *BestPred->pred_begin() != L.getHeader())
    BestPred = *BestPred->pred_begin();

  LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
  return BestPred;
}

/// Find the best loop top block for layout.
///
/// This function iteratively calls findBestLoopTopHelper, until no new better
/// BB can be found.
MachineBasicBlock *
MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
                                       const BlockFilterSet &LoopBlockSet) {
  // Placing the latch block before the header may introduce an extra branch
  // that skips this block the first time the loop is executed, which we want
  // to avoid when optimising for size.
  // FIXME: in theory there is a case that does not introduce a new branch,
  // i.e. when the layout predecessor does not fallthrough to the loop header.
  // In practice this never happens though: there always seems to be a preheader
  // that can fallthrough and that is also placed before the header.
  bool OptForSize = F->getFunction().hasOptSize() ||
                    llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get());
  if (OptForSize)
    return L.getHeader();

  MachineBasicBlock *OldTop = nullptr;
  MachineBasicBlock *NewTop = L.getHeader();
  while (NewTop != OldTop) {
    OldTop = NewTop;
    NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
    if (NewTop != OldTop)
      ComputedEdges[NewTop] = { OldTop, false };
  }
  return NewTop;
}

/// Find the best loop exiting block for layout.
///
/// This routine implements the logic to analyze the loop looking for the best
/// block to layout at the top of the loop. Typically this is done to maximize
/// fallthrough opportunities.
MachineBasicBlock *
MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
                                        const BlockFilterSet &LoopBlockSet,
                                        BlockFrequency &ExitFreq) {
  // We don't want to layout the loop linearly in all cases. If the loop header
  // is just a normal basic block in the loop, we want to look for what block
  // within the loop is the best one to layout at the top. However, if the loop
  // header has be pre-merged into a chain due to predecessors not having
  // analyzable branches, *and* the predecessor it is merged with is *not* part
  // of the loop, rotating the header into the middle of the loop will create
  // a non-contiguous range of blocks which is Very Bad. So start with the
  // header and only rotate if safe.
  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
  if (!LoopBlockSet.count(*HeaderChain.begin()))
    return nullptr;

  BlockFrequency BestExitEdgeFreq;
  unsigned BestExitLoopDepth = 0;
  MachineBasicBlock *ExitingBB = nullptr;
  // If there are exits to outer loops, loop rotation can severely limit
  // fallthrough opportunities unless it selects such an exit. Keep a set of
  // blocks where rotating to exit with that block will reach an outer loop.
  SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;

  LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
                    << getBlockName(L.getHeader()) << "\n");
  for (MachineBasicBlock *MBB : L.getBlocks()) {
    BlockChain &Chain = *BlockToChain[MBB];
    // Ensure that this block is at the end of a chain; otherwise it could be
    // mid-way through an inner loop or a successor of an unanalyzable branch.
    if (MBB != *std::prev(Chain.end()))
      continue;

    // Now walk the successors. We need to establish whether this has a viable
    // exiting successor and whether it has a viable non-exiting successor.
    // We store the old exiting state and restore it if a viable looping
    // successor isn't found.
    MachineBasicBlock *OldExitingBB = ExitingBB;
    BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
    bool HasLoopingSucc = false;
    for (MachineBasicBlock *Succ : MBB->successors()) {
      if (Succ->isEHPad())
        continue;
      if (Succ == MBB)
        continue;
      BlockChain &SuccChain = *BlockToChain[Succ];
      // Don't split chains, either this chain or the successor's chain.
      if (&Chain == &SuccChain) {
        LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
                          << getBlockName(Succ) << " (chain conflict)\n");
        continue;
      }

      auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
      if (LoopBlockSet.count(Succ)) {
        LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
                          << getBlockName(Succ) << " (" << SuccProb << ")\n");
        HasLoopingSucc = true;
        continue;
      }

      unsigned SuccLoopDepth = 0;
      if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
        SuccLoopDepth = ExitLoop->getLoopDepth();
        if (ExitLoop->contains(&L))
          BlocksExitingToOuterLoop.insert(MBB);
      }

      BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
      LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
                        << getBlockName(Succ) << " [L:" << SuccLoopDepth
                        << "] (";
                 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
      // Note that we bias this toward an existing layout successor to retain
      // incoming order in the absence of better information. The exit must have
      // a frequency higher than the current exit before we consider breaking
      // the layout.
      BranchProbability Bias(100 - ExitBlockBias, 100);
      if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
          ExitEdgeFreq > BestExitEdgeFreq ||
          (MBB->isLayoutSuccessor(Succ) &&
           !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
        BestExitEdgeFreq = ExitEdgeFreq;
        ExitingBB = MBB;
      }
    }

    if (!HasLoopingSucc) {
      // Restore the old exiting state, no viable looping successor was found.
      ExitingBB = OldExitingBB;
      BestExitEdgeFreq = OldBestExitEdgeFreq;
    }
  }
  // Without a candidate exiting block or with only a single block in the
  // loop, just use the loop header to layout the loop.
  if (!ExitingBB) {
    LLVM_DEBUG(
        dbgs() << "    No other candidate exit blocks, using loop header\n");
    return nullptr;
  }
  if (L.getNumBlocks() == 1) {
    LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
    return nullptr;
  }

  // Also, if we have exit blocks which lead to outer loops but didn't select
  // one of them as the exiting block we are rotating toward, disable loop
  // rotation altogether.
  if (!BlocksExitingToOuterLoop.empty() &&
      !BlocksExitingToOuterLoop.count(ExitingBB))
    return nullptr;

  LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
                    << "\n");
  ExitFreq = BestExitEdgeFreq;
  return ExitingBB;
}

/// Check if there is a fallthrough to loop header Top.
///
///   1. Look for a Pred that can be layout before Top.
///   2. Check if Top is the most possible successor of Pred.
bool
MachineBlockPlacement::hasViableTopFallthrough(
    const MachineBasicBlock *Top,
    const BlockFilterSet &LoopBlockSet) {
  for (MachineBasicBlock *Pred : Top->predecessors()) {
    BlockChain *PredChain = BlockToChain[Pred];
    if (!LoopBlockSet.count(Pred) &&
        (!PredChain || Pred == *std::prev(PredChain->end()))) {
      // Found a Pred block can be placed before Top.
      // Check if Top is the best successor of Pred.
      auto TopProb = MBPI->getEdgeProbability(Pred, Top);
      bool TopOK = true;
      for (MachineBasicBlock *Succ : Pred->successors()) {
        auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
        BlockChain *SuccChain = BlockToChain[Succ];
        // Check if Succ can be placed after Pred.
        // Succ should not be in any chain, or it is the head of some chain.
        if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
          TopOK = false;
          break;
        }
      }
      if (TopOK)
        return true;
    }
  }
  return false;
}

/// Attempt to rotate an exiting block to the bottom of the loop.
///
/// Once we have built a chain, try to rotate it to line up the hot exit block
/// with fallthrough out of the loop if doing so doesn't introduce unnecessary
/// branches. For example, if the loop has fallthrough into its header and out
/// of its bottom already, don't rotate it.
void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
                                       const MachineBasicBlock *ExitingBB,
                                       BlockFrequency ExitFreq,
                                       const BlockFilterSet &LoopBlockSet) {
  if (!ExitingBB)
    return;

  MachineBasicBlock *Top = *LoopChain.begin();
  MachineBasicBlock *Bottom = *std::prev(LoopChain.end());

  // If ExitingBB is already the last one in a chain then nothing to do.
  if (Bottom == ExitingBB)
    return;

  bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);

  // If the header has viable fallthrough, check whether the current loop
  // bottom is a viable exiting block. If so, bail out as rotating will
  // introduce an unnecessary branch.
  if (ViableTopFallthrough) {
    for (MachineBasicBlock *Succ : Bottom->successors()) {
      BlockChain *SuccChain = BlockToChain[Succ];
      if (!LoopBlockSet.count(Succ) &&
          (!SuccChain || Succ == *SuccChain->begin()))
        return;
    }

    // Rotate will destroy the top fallthrough, we need to ensure the new exit
    // frequency is larger than top fallthrough.
    BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
    if (FallThrough2Top >= ExitFreq)
      return;
  }

  BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
  if (ExitIt == LoopChain.end())
    return;

  // Rotating a loop exit to the bottom when there is a fallthrough to top
  // trades the entry fallthrough for an exit fallthrough.
  // If there is no bottom->top edge, but the chosen exit block does have
  // a fallthrough, we break that fallthrough for nothing in return.

  // Let's consider an example. We have a built chain of basic blocks
  // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
  // By doing a rotation we get
  // Bk+1, ..., Bn, B1, ..., Bk
  // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
  // If we had a fallthrough Bk -> Bk+1 it is broken now.
  // It might be compensated by fallthrough Bn -> B1.
  // So we have a condition to avoid creation of extra branch by loop rotation.
  // All below must be true to avoid loop rotation:
  //   If there is a fallthrough to top (B1)
  //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
  //   There is no fallthrough from bottom (Bn) to top (B1).
  // Please note that there is no exit fallthrough from Bn because we checked it
  // above.
  if (ViableTopFallthrough) {
    assert(std::next(ExitIt) != LoopChain.end() &&
           "Exit should not be last BB");
    MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
    if (ExitingBB->isSuccessor(NextBlockInChain))
      if (!Bottom->isSuccessor(Top))
        return;
  }

  LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
                    << " at bottom\n");
  std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
}

/// Attempt to rotate a loop based on profile data to reduce branch cost.
///
/// With profile data, we can determine the cost in terms of missed fall through
/// opportunities when rotating a loop chain and select the best rotation.
/// Basically, there are three kinds of cost to consider for each rotation:
///    1. The possibly missed fall through edge (if it exists) from BB out of
///    the loop to the loop header.
///    2. The possibly missed fall through edges (if they exist) from the loop
///    exits to BB out of the loop.
///    3. The missed fall through edge (if it exists) from the last BB to the
///    first BB in the loop chain.
///  Therefore, the cost for a given rotation is the sum of costs listed above.
///  We select the best rotation with the smallest cost.
void MachineBlockPlacement::rotateLoopWithProfile(
    BlockChain &LoopChain, const MachineLoop &L,
    const BlockFilterSet &LoopBlockSet) {
  auto RotationPos = LoopChain.end();

  BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();

  // A utility lambda that scales up a block frequency by dividing it by a
  // branch probability which is the reciprocal of the scale.
  auto ScaleBlockFrequency = [](BlockFrequency Freq,
                                unsigned Scale) -> BlockFrequency {
    if (Scale == 0)
      return 0;
    // Use operator / between BlockFrequency and BranchProbability to implement
    // saturating multiplication.
    return Freq / BranchProbability(1, Scale);
  };

  // Compute the cost of the missed fall-through edge to the loop header if the
  // chain head is not the loop header. As we only consider natural loops with
  // single header, this computation can be done only once.
  BlockFrequency HeaderFallThroughCost(0);
  MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
  for (auto *Pred : ChainHeaderBB->predecessors()) {
    BlockChain *PredChain = BlockToChain[Pred];
    if (!LoopBlockSet.count(Pred) &&
        (!PredChain || Pred == *std::prev(PredChain->end()))) {
      auto EdgeFreq = MBFI->getBlockFreq(Pred) *
          MBPI->getEdgeProbability(Pred, ChainHeaderBB);
      auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
      // If the predecessor has only an unconditional jump to the header, we
      // need to consider the cost of this jump.
      if (Pred->succ_size() == 1)
        FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
      HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
    }
  }

  // Here we collect all exit blocks in the loop, and for each exit we find out
  // its hottest exit edge. For each loop rotation, we define the loop exit cost
  // as the sum of frequencies of exit edges we collect here, excluding the exit
  // edge from the tail of the loop chain.
  SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
  for (auto BB : LoopChain) {
    auto LargestExitEdgeProb = BranchProbability::getZero();
    for (auto *Succ : BB->successors()) {
      BlockChain *SuccChain = BlockToChain[Succ];
      if (!LoopBlockSet.count(Succ) &&
          (!SuccChain || Succ == *SuccChain->begin())) {
        auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
        LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
      }
    }
    if (LargestExitEdgeProb > BranchProbability::getZero()) {
      auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
      ExitsWithFreq.emplace_back(BB, ExitFreq);
    }
  }

  // In this loop we iterate every block in the loop chain and calculate the
  // cost assuming the block is the head of the loop chain. When the loop ends,
  // we should have found the best candidate as the loop chain's head.
  for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
            EndIter = LoopChain.end();
       Iter != EndIter; Iter++, TailIter++) {
    // TailIter is used to track the tail of the loop chain if the block we are
    // checking (pointed by Iter) is the head of the chain.
    if (TailIter == LoopChain.end())
      TailIter = LoopChain.begin();

    auto TailBB = *TailIter;

    // Calculate the cost by putting this BB to the top.
    BlockFrequency Cost = 0;

    // If the current BB is the loop header, we need to take into account the
    // cost of the missed fall through edge from outside of the loop to the
    // header.
    if (Iter != LoopChain.begin())
      Cost += HeaderFallThroughCost;

    // Collect the loop exit cost by summing up frequencies of all exit edges
    // except the one from the chain tail.
    for (auto &ExitWithFreq : ExitsWithFreq)
      if (TailBB != ExitWithFreq.first)
        Cost += ExitWithFreq.second;

    // The cost of breaking the once fall-through edge from the tail to the top
    // of the loop chain. Here we need to consider three cases:
    // 1. If the tail node has only one successor, then we will get an
    //    additional jmp instruction. So the cost here is (MisfetchCost +
    //    JumpInstCost) * tail node frequency.
    // 2. If the tail node has two successors, then we may still get an
    //    additional jmp instruction if the layout successor after the loop
    //    chain is not its CFG successor. Note that the more frequently executed
    //    jmp instruction will be put ahead of the other one. Assume the
    //    frequency of those two branches are x and y, where x is the frequency
    //    of the edge to the chain head, then the cost will be
    //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
    // 3. If the tail node has more than two successors (this rarely happens),
    //    we won't consider any additional cost.
    if (TailBB->isSuccessor(*Iter)) {
      auto TailBBFreq = MBFI->getBlockFreq(TailBB);
      if (TailBB->succ_size() == 1)
        Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
                                    MisfetchCost + JumpInstCost);
      else if (TailBB->succ_size() == 2) {
        auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
        auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
        auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
                                  ? TailBBFreq * TailToHeadProb.getCompl()
                                  : TailToHeadFreq;
        Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
                ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
      }
    }

    LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
                      << getBlockName(*Iter)
                      << " to the top: " << Cost.getFrequency() << "\n");

    if (Cost < SmallestRotationCost) {
      SmallestRotationCost = Cost;
      RotationPos = Iter;
    }
  }

  if (RotationPos != LoopChain.end()) {
    LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
                      << " to the top\n");
    std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
  }
}

/// Collect blocks in the given loop that are to be placed.
///
/// When profile data is available, exclude cold blocks from the returned set;
/// otherwise, collect all blocks in the loop.
MachineBlockPlacement::BlockFilterSet
MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
  BlockFilterSet LoopBlockSet;

  // Filter cold blocks off from LoopBlockSet when profile data is available.
  // Collect the sum of frequencies of incoming edges to the loop header from
  // outside. If we treat the loop as a super block, this is the frequency of
  // the loop. Then for each block in the loop, we calculate the ratio between
  // its frequency and the frequency of the loop block. When it is too small,
  // don't add it to the loop chain. If there are outer loops, then this block
  // will be merged into the first outer loop chain for which this block is not
  // cold anymore. This needs precise profile data and we only do this when
  // profile data is available.
  if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
    BlockFrequency LoopFreq(0);
    for (auto LoopPred : L.getHeader()->predecessors())
      if (!L.contains(LoopPred))
        LoopFreq += MBFI->getBlockFreq(LoopPred) *
                    MBPI->getEdgeProbability(LoopPred, L.getHeader());

    for (MachineBasicBlock *LoopBB : L.getBlocks()) {
      auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
      if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
        continue;
      LoopBlockSet.insert(LoopBB);
    }
  } else
    LoopBlockSet.insert(L.block_begin(), L.block_end());

  return LoopBlockSet;
}

/// Forms basic block chains from the natural loop structures.
///
/// These chains are designed to preserve the existing *structure* of the code
/// as much as possible. We can then stitch the chains together in a way which
/// both preserves the topological structure and minimizes taken conditional
/// branches.
void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
  // First recurse through any nested loops, building chains for those inner
  // loops.
  for (const MachineLoop *InnerLoop : L)
    buildLoopChains(*InnerLoop);

  assert(BlockWorkList.empty() &&
         "BlockWorkList not empty when starting to build loop chains.");
  assert(EHPadWorkList.empty() &&
         "EHPadWorkList not empty when starting to build loop chains.");
  BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);

  // Check if we have profile data for this function. If yes, we will rotate
  // this loop by modeling costs more precisely which requires the profile data
  // for better layout.
  bool RotateLoopWithProfile =
      ForcePreciseRotationCost ||
      (PreciseRotationCost && F->getFunction().hasProfileData());

  // First check to see if there is an obviously preferable top block for the
  // loop. This will default to the header, but may end up as one of the
  // predecessors to the header if there is one which will result in strictly
  // fewer branches in the loop body.
  MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);

  // If we selected just the header for the loop top, look for a potentially
  // profitable exit block in the event that rotating the loop can eliminate
  // branches by placing an exit edge at the bottom.
  //
  // Loops are processed innermost to uttermost, make sure we clear
  // PreferredLoopExit before processing a new loop.
  PreferredLoopExit = nullptr;
  BlockFrequency ExitFreq;
  if (!RotateLoopWithProfile && LoopTop == L.getHeader())
    PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);

  BlockChain &LoopChain = *BlockToChain[LoopTop];

  // FIXME: This is a really lame way of walking the chains in the loop: we
  // walk the blocks, and use a set to prevent visiting a particular chain
  // twice.
  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
  assert(LoopChain.UnscheduledPredecessors == 0 &&
         "LoopChain should not have unscheduled predecessors.");
  UpdatedPreds.insert(&LoopChain);

  for (const MachineBasicBlock *LoopBB : LoopBlockSet)
    fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);

  buildChain(LoopTop, LoopChain, &LoopBlockSet);

  if (RotateLoopWithProfile)
    rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
  else
    rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);

  LLVM_DEBUG({
    // Crash at the end so we get all of the debugging output first.
    bool BadLoop = false;
    if (LoopChain.UnscheduledPredecessors) {
      BadLoop = true;
      dbgs() << "Loop chain contains a block without its preds placed!\n"
             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
    }
    for (MachineBasicBlock *ChainBB : LoopChain) {
      dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
      if (!LoopBlockSet.remove(ChainBB)) {
        // We don't mark the loop as bad here because there are real situations
        // where this can occur. For example, with an unanalyzable fallthrough
        // from a loop block to a non-loop block or vice versa.
        dbgs() << "Loop chain contains a block not contained by the loop!\n"
               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
               << "  Bad block:    " << getBlockName(ChainBB) << "\n";
      }
    }

    if (!LoopBlockSet.empty()) {
      BadLoop = true;
      for (const MachineBasicBlock *LoopBB : LoopBlockSet)
        dbgs() << "Loop contains blocks never placed into a chain!\n"
               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
               << "  Bad block:    " << getBlockName(LoopBB) << "\n";
    }
    assert(!BadLoop && "Detected problems with the placement of this loop.");
  });

  BlockWorkList.clear();
  EHPadWorkList.clear();
}

void MachineBlockPlacement::buildCFGChains() {
  // Ensure that every BB in the function has an associated chain to simplify
  // the assumptions of the remaining algorithm.
  SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
  for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
       ++FI) {
    MachineBasicBlock *BB = &*FI;
    BlockChain *Chain =
        new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
    // Also, merge any blocks which we cannot reason about and must preserve
    // the exact fallthrough behavior for.
    while (true) {
      Cond.clear();
      MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
      if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
        break;

      MachineFunction::iterator NextFI = std::next(FI);
      MachineBasicBlock *NextBB = &*NextFI;
      // Ensure that the layout successor is a viable block, as we know that
      // fallthrough is a possibility.
      assert(NextFI != FE && "Can't fallthrough past the last block.");
      LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
                        << getBlockName(BB) << " -> " << getBlockName(NextBB)
                        << "\n");
      Chain->merge(NextBB, nullptr);
#ifndef NDEBUG
      BlocksWithUnanalyzableExits.insert(&*BB);
#endif
      FI = NextFI;
      BB = NextBB;
    }
  }

  // Build any loop-based chains.
  PreferredLoopExit = nullptr;
  for (MachineLoop *L : *MLI)
    buildLoopChains(*L);

  assert(BlockWorkList.empty() &&
         "BlockWorkList should be empty before building final chain.");
  assert(EHPadWorkList.empty() &&
         "EHPadWorkList should be empty before building final chain.");

  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
  for (MachineBasicBlock &MBB : *F)
    fillWorkLists(&MBB, UpdatedPreds);

  BlockChain &FunctionChain = *BlockToChain[&F->front()];
  buildChain(&F->front(), FunctionChain);

#ifndef NDEBUG
  using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
#endif
  LLVM_DEBUG({
    // Crash at the end so we get all of the debugging output first.
    bool BadFunc = false;
    FunctionBlockSetType FunctionBlockSet;
    for (MachineBasicBlock &MBB : *F)
      FunctionBlockSet.insert(&MBB);

    for (MachineBasicBlock *ChainBB : FunctionChain)
      if (!FunctionBlockSet.erase(ChainBB)) {
        BadFunc = true;
        dbgs() << "Function chain contains a block not in the function!\n"
               << "  Bad block:    " << getBlockName(ChainBB) << "\n";
      }

    if (!FunctionBlockSet.empty()) {
      BadFunc = true;
      for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
        dbgs() << "Function contains blocks never placed into a chain!\n"
               << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
    }
    assert(!BadFunc && "Detected problems with the block placement.");
  });

  // Remember original layout ordering, so we can update terminators after
  // reordering to point to the original layout successor.
  SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors(
      F->getNumBlockIDs());
  {
    MachineBasicBlock *LastMBB = nullptr;
    for (auto &MBB : *F) {
      if (LastMBB != nullptr)
        OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB;
      LastMBB = &MBB;
    }
    OriginalLayoutSuccessors[F->back().getNumber()] = nullptr;
  }

  // Splice the blocks into place.
  MachineFunction::iterator InsertPos = F->begin();
  LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
  for (MachineBasicBlock *ChainBB : FunctionChain) {
    LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
                                                            : "          ... ")
                      << getBlockName(ChainBB) << "\n");
    if (InsertPos != MachineFunction::iterator(ChainBB))
      F->splice(InsertPos, ChainBB);
    else
      ++InsertPos;

    // Update the terminator of the previous block.
    if (ChainBB == *FunctionChain.begin())
      continue;
    MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));

    // FIXME: It would be awesome of updateTerminator would just return rather
    // than assert when the branch cannot be analyzed in order to remove this
    // boiler plate.
    Cond.clear();
    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.

#ifndef NDEBUG
    if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
      // Given the exact block placement we chose, we may actually not _need_ to
      // be able to edit PrevBB's terminator sequence, but not being _able_ to
      // do that at this point is a bug.
      assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
              !PrevBB->canFallThrough()) &&
             "Unexpected block with un-analyzable fallthrough!");
      Cond.clear();
      TBB = FBB = nullptr;
    }
#endif

    // The "PrevBB" is not yet updated to reflect current code layout, so,
    //   o. it may fall-through to a block without explicit "goto" instruction
    //      before layout, and no longer fall-through it after layout; or
    //   o. just opposite.
    //
    // analyzeBranch() may return erroneous value for FBB when these two
    // situations take place. For the first scenario FBB is mistakenly set NULL;
    // for the 2nd scenario, the FBB, which is expected to be NULL, is
    // mistakenly pointing to "*BI".
    // Thus, if the future change needs to use FBB before the layout is set, it
    // has to correct FBB first by using the code similar to the following:
    //
    // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
    //   PrevBB->updateTerminator();
    //   Cond.clear();
    //   TBB = FBB = nullptr;
    //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
    //     // FIXME: This should never take place.
    //     TBB = FBB = nullptr;
    //   }
    // }
    if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
      PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
    }
  }

  // Fixup the last block.
  Cond.clear();
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
  if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) {
    MachineBasicBlock *PrevBB = &F->back();
    PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
  }

  BlockWorkList.clear();
  EHPadWorkList.clear();
}

void MachineBlockPlacement::optimizeBranches() {
  BlockChain &FunctionChain = *BlockToChain[&F->front()];
  SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.

  // Now that all the basic blocks in the chain have the proper layout,
  // make a final call to analyzeBranch with AllowModify set.
  // Indeed, the target may be able to optimize the branches in a way we
  // cannot because all branches may not be analyzable.
  // E.g., the target may be able to remove an unconditional branch to
  // a fallthrough when it occurs after predicated terminators.
  for (MachineBasicBlock *ChainBB : FunctionChain) {
    Cond.clear();
    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
    if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
      // If PrevBB has a two-way branch, try to re-order the branches
      // such that we branch to the successor with higher probability first.
      if (TBB && !Cond.empty() && FBB &&
          MBPI->getEdgeProbability(ChainBB, FBB) >
              MBPI->getEdgeProbability(ChainBB, TBB) &&
          !TII->reverseBranchCondition(Cond)) {
        LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
                          << getBlockName(ChainBB) << "\n");
        LLVM_DEBUG(dbgs() << "    Edge probability: "
                          << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
                          << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
        DebugLoc dl; // FIXME: this is nowhere
        TII->removeBranch(*ChainBB);
        TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
      }
    }
  }
}

void MachineBlockPlacement::alignBlocks() {
  // Walk through the backedges of the function now that we have fully laid out
  // the basic blocks and align the destination of each backedge. We don't rely
  // exclusively on the loop info here so that we can align backedges in
  // unnatural CFGs and backedges that were introduced purely because of the
  // loop rotations done during this layout pass.
  if (F->getFunction().hasMinSize() ||
      (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
    return;
  BlockChain &FunctionChain = *BlockToChain[&F->front()];
  if (FunctionChain.begin() == FunctionChain.end())
    return; // Empty chain.

  const BranchProbability ColdProb(1, 5); // 20%
  BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
  BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
  for (MachineBasicBlock *ChainBB : FunctionChain) {
    if (ChainBB == *FunctionChain.begin())
      continue;

    // Don't align non-looping basic blocks. These are unlikely to execute
    // enough times to matter in practice. Note that we'll still handle
    // unnatural CFGs inside of a natural outer loop (the common case) and
    // rotated loops.
    MachineLoop *L = MLI->getLoopFor(ChainBB);
    if (!L)
      continue;

    const Align Align = TLI->getPrefLoopAlignment(L);
    if (Align == 1)
      continue; // Don't care about loop alignment.

    // If the block is cold relative to the function entry don't waste space
    // aligning it.
    BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
    if (Freq < WeightedEntryFreq)
      continue;

    // If the block is cold relative to its loop header, don't align it
    // regardless of what edges into the block exist.
    MachineBasicBlock *LoopHeader = L->getHeader();
    BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
    if (Freq < (LoopHeaderFreq * ColdProb))
      continue;

    // If the global profiles indicates so, don't align it.
    if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) &&
        !TLI->alignLoopsWithOptSize())
      continue;

    // Check for the existence of a non-layout predecessor which would benefit
    // from aligning this block.
    MachineBasicBlock *LayoutPred =
        &*std::prev(MachineFunction::iterator(ChainBB));

    // Force alignment if all the predecessors are jumps. We already checked
    // that the block isn't cold above.
    if (!LayoutPred->isSuccessor(ChainBB)) {
      ChainBB->setAlignment(Align);
      continue;
    }

    // Align this block if the layout predecessor's edge into this block is
    // cold relative to the block. When this is true, other predecessors make up
    // all of the hot entries into the block and thus alignment is likely to be
    // important.
    BranchProbability LayoutProb =
        MBPI->getEdgeProbability(LayoutPred, ChainBB);
    BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
    if (LayoutEdgeFreq <= (Freq * ColdProb))
      ChainBB->setAlignment(Align);
  }
}

/// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
/// it was duplicated into its chain predecessor and removed.
/// \p BB    - Basic block that may be duplicated.
///
/// \p LPred - Chosen layout predecessor of \p BB.
///            Updated to be the chain end if LPred is removed.
/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
///                  Used to identify which blocks to update predecessor
///                  counts.
/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
///                          chosen in the given order due to unnatural CFG
///                          only needed if \p BB is removed and
///                          \p PrevUnplacedBlockIt pointed to \p BB.
/// @return true if \p BB was removed.
bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
    MachineBasicBlock *BB, MachineBasicBlock *&LPred,
    const MachineBasicBlock *LoopHeaderBB,
    BlockChain &Chain, BlockFilterSet *BlockFilter,
    MachineFunction::iterator &PrevUnplacedBlockIt) {
  bool Removed, DuplicatedToLPred;
  bool DuplicatedToOriginalLPred;
  Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
                                    PrevUnplacedBlockIt,
                                    DuplicatedToLPred);
  if (!Removed)
    return false;
  DuplicatedToOriginalLPred = DuplicatedToLPred;
  // Iteratively try to duplicate again. It can happen that a block that is
  // duplicated into is still small enough to be duplicated again.
  // No need to call markBlockSuccessors in this case, as the blocks being
  // duplicated from here on are already scheduled.
  while (DuplicatedToLPred && Removed) {
    MachineBasicBlock *DupBB, *DupPred;
    // The removal callback causes Chain.end() to be updated when a block is
    // removed. On the first pass through the loop, the chain end should be the
    // same as it was on function entry. On subsequent passes, because we are
    // duplicating the block at the end of the chain, if it is removed the
    // chain will have shrunk by one block.
    BlockChain::iterator ChainEnd = Chain.end();
    DupBB = *(--ChainEnd);
    // Now try to duplicate again.
    if (ChainEnd == Chain.begin())
      break;
    DupPred = *std::prev(ChainEnd);
    Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
                                      PrevUnplacedBlockIt,
                                      DuplicatedToLPred);
  }
  // If BB was duplicated into LPred, it is now scheduled. But because it was
  // removed, markChainSuccessors won't be called for its chain. Instead we
  // call markBlockSuccessors for LPred to achieve the same effect. This must go
  // at the end because repeating the tail duplication can increase the number
  // of unscheduled predecessors.
  LPred = *std::prev(Chain.end());
  if (DuplicatedToOriginalLPred)
    markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
  return true;
}

/// Tail duplicate \p BB into (some) predecessors if profitable.
/// \p BB    - Basic block that may be duplicated
/// \p LPred - Chosen layout predecessor of \p BB
/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
///                  Used to identify which blocks to update predecessor
///                  counts.
/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
///                          chosen in the given order due to unnatural CFG
///                          only needed if \p BB is removed and
///                          \p PrevUnplacedBlockIt pointed to \p BB.
/// \p DuplicatedToLPred - True if the block was duplicated into LPred.
/// \return  - True if the block was duplicated into all preds and removed.
bool MachineBlockPlacement::maybeTailDuplicateBlock(
    MachineBasicBlock *BB, MachineBasicBlock *LPred,
    BlockChain &Chain, BlockFilterSet *BlockFilter,
    MachineFunction::iterator &PrevUnplacedBlockIt,
    bool &DuplicatedToLPred) {
  DuplicatedToLPred = false;
  if (!shouldTailDuplicate(BB))
    return false;

  LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
                    << "\n");

  // This has to be a callback because none of it can be done after
  // BB is deleted.
  bool Removed = false;
  auto RemovalCallback =
      [&](MachineBasicBlock *RemBB) {
        // Signal to outer function
        Removed = true;

        // Conservative default.
        bool InWorkList = true;
        // Remove from the Chain and Chain Map
        if (BlockToChain.count(RemBB)) {
          BlockChain *Chain = BlockToChain[RemBB];
          InWorkList = Chain->UnscheduledPredecessors == 0;
          Chain->remove(RemBB);
          BlockToChain.erase(RemBB);
        }

        // Handle the unplaced block iterator
        if (&(*PrevUnplacedBlockIt) == RemBB) {
          PrevUnplacedBlockIt++;
        }

        // Handle the Work Lists
        if (InWorkList) {
          SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
          if (RemBB->isEHPad())
            RemoveList = EHPadWorkList;
          RemoveList.erase(
              llvm::remove_if(RemoveList,
                              [RemBB](MachineBasicBlock *BB) {
                                return BB == RemBB;
                              }),
              RemoveList.end());
        }

        // Handle the filter set
        if (BlockFilter) {
          BlockFilter->remove(RemBB);
        }

        // Remove the block from loop info.
        MLI->removeBlock(RemBB);
        if (RemBB == PreferredLoopExit)
          PreferredLoopExit = nullptr;

        LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
                          << getBlockName(RemBB) << "\n");
      };
  auto RemovalCallbackRef =
      function_ref<void(MachineBasicBlock*)>(RemovalCallback);

  SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
  bool IsSimple = TailDup.isSimpleBB(BB);
  SmallVector<MachineBasicBlock *, 8> CandidatePreds;
  SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr;
  if (F->getFunction().hasProfileData()) {
    // We can do partial duplication with precise profile information.
    findDuplicateCandidates(CandidatePreds, BB, BlockFilter);
    if (CandidatePreds.size() == 0)
      return false;
    if (CandidatePreds.size() < BB->pred_size())
      CandidatePtr = &CandidatePreds;
  }
  TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds,
                                 &RemovalCallbackRef, CandidatePtr);

  // Update UnscheduledPredecessors to reflect tail-duplication.
  DuplicatedToLPred = false;
  for (MachineBasicBlock *Pred : DuplicatedPreds) {
    // We're only looking for unscheduled predecessors that match the filter.
    BlockChain* PredChain = BlockToChain[Pred];
    if (Pred == LPred)
      DuplicatedToLPred = true;
    if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
        || PredChain == &Chain)
      continue;
    for (MachineBasicBlock *NewSucc : Pred->successors()) {
      if (BlockFilter && !BlockFilter->count(NewSucc))
        continue;
      BlockChain *NewChain = BlockToChain[NewSucc];
      if (NewChain != &Chain && NewChain != PredChain)
        NewChain->UnscheduledPredecessors++;
    }
  }
  return Removed;
}

// Count the number of actual machine instructions.
static uint64_t countMBBInstruction(MachineBasicBlock *MBB) {
  uint64_t InstrCount = 0;
  for (MachineInstr &MI : *MBB) {
    if (!MI.isPHI() && !MI.isMetaInstruction())
      InstrCount += 1;
  }
  return InstrCount;
}

// The size cost of duplication is the instruction size of the duplicated block.
// So we should scale the threshold accordingly. But the instruction size is not
// available on all targets, so we use the number of instructions instead.
BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) {
  return DupThreshold.getFrequency() * countMBBInstruction(BB);
}

// Returns true if BB is Pred's best successor.
bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB,
                                            MachineBasicBlock *Pred,
                                            BlockFilterSet *BlockFilter) {
  if (BB == Pred)
    return false;
  if (BlockFilter && !BlockFilter->count(Pred))
    return false;
  BlockChain *PredChain = BlockToChain[Pred];
  if (PredChain && (Pred != *std::prev(PredChain->end())))
    return false;

  // Find the successor with largest probability excluding BB.
  BranchProbability BestProb = BranchProbability::getZero();
  for (MachineBasicBlock *Succ : Pred->successors())
    if (Succ != BB) {
      if (BlockFilter && !BlockFilter->count(Succ))
        continue;
      BlockChain *SuccChain = BlockToChain[Succ];
      if (SuccChain && (Succ != *SuccChain->begin()))
        continue;
      BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ);
      if (SuccProb > BestProb)
        BestProb = SuccProb;
    }

  BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB);
  if (BBProb <= BestProb)
    return false;

  // Compute the number of reduced taken branches if Pred falls through to BB
  // instead of another successor. Then compare it with threshold.
  BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
  BlockFrequency Gain = PredFreq * (BBProb - BestProb);
  return Gain > scaleThreshold(BB);
}

// Find out the predecessors of BB and BB can be beneficially duplicated into
// them.
void MachineBlockPlacement::findDuplicateCandidates(
    SmallVectorImpl<MachineBasicBlock *> &Candidates,
    MachineBasicBlock *BB,
    BlockFilterSet *BlockFilter) {
  MachineBasicBlock *Fallthrough = nullptr;
  BranchProbability DefaultBranchProb = BranchProbability::getZero();
  BlockFrequency BBDupThreshold(scaleThreshold(BB));
  SmallVector<MachineBasicBlock *, 8> Preds(BB->pred_begin(), BB->pred_end());
  SmallVector<MachineBasicBlock *, 8> Succs(BB->succ_begin(), BB->succ_end());

  // Sort for highest frequency.
  auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
    return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B);
  };
  auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
    return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B);
  };
  llvm::stable_sort(Succs, CmpSucc);
  llvm::stable_sort(Preds, CmpPred);

  auto SuccIt = Succs.begin();
  if (SuccIt != Succs.end()) {
    DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl();
  }

  // For each predecessors of BB, compute the benefit of duplicating BB,
  // if it is larger than the threshold, add it into Candidates.
  //
  // If we have following control flow.
  //
  //     PB1 PB2 PB3 PB4
  //      \   |  /    /\
  //       \  | /    /  \
  //        \ |/    /    \
  //         BB----/     OB
  //         /\
  //        /  \
  //      SB1 SB2
  //
  // And it can be partially duplicated as
  //
  //   PB2+BB
  //      |  PB1 PB3 PB4
  //      |   |  /    /\
  //      |   | /    /  \
  //      |   |/    /    \
  //      |  BB----/     OB
  //      |\ /|
  //      | X |
  //      |/ \|
  //     SB2 SB1
  //
  // The benefit of duplicating into a predecessor is defined as
  //         Orig_taken_branch - Duplicated_taken_branch
  //
  // The Orig_taken_branch is computed with the assumption that predecessor
  // jumps to BB and the most possible successor is laid out after BB.
  //
  // The Duplicated_taken_branch is computed with the assumption that BB is
  // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
  // SB2 for PB2 in our case). If there is no available successor, the combined
  // block jumps to all BB's successor, like PB3 in this example.
  //
  // If a predecessor has multiple successors, so BB can't be duplicated into
  // it. But it can beneficially fall through to BB, and duplicate BB into other
  // predecessors.
  for (MachineBasicBlock *Pred : Preds) {
    BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);

    if (!TailDup.canTailDuplicate(BB, Pred)) {
      // BB can't be duplicated into Pred, but it is possible to be layout
      // below Pred.
      if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) {
        Fallthrough = Pred;
        if (SuccIt != Succs.end())
          SuccIt++;
      }
      continue;
    }

    BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb;
    BlockFrequency DupCost;
    if (SuccIt == Succs.end()) {
      // Jump to all successors;
      if (Succs.size() > 0)
        DupCost += PredFreq;
    } else {
      // Fallthrough to *SuccIt, jump to all other successors;
      DupCost += PredFreq;
      DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt);
    }

    assert(OrigCost >= DupCost);
    OrigCost -= DupCost;
    if (OrigCost > BBDupThreshold) {
      Candidates.push_back(Pred);
      if (SuccIt != Succs.end())
        SuccIt++;
    }
  }

  // No predecessors can optimally fallthrough to BB.
  // So we can change one duplication into fallthrough.
  if (!Fallthrough) {
    if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) {
      Candidates[0] = Candidates.back();
      Candidates.pop_back();
    }
  }
}

void MachineBlockPlacement::initDupThreshold() {
  DupThreshold = 0;
  if (!F->getFunction().hasProfileData())
    return;

  // We prefer to use prifile count.
  uint64_t HotThreshold = PSI->getOrCompHotCountThreshold();
  if (HotThreshold != UINT64_MAX) {
    UseProfileCount = true;
    DupThreshold = HotThreshold * TailDupProfilePercentThreshold / 100;
    return;
  }

  // Profile count is not available, we can use block frequency instead.
  BlockFrequency MaxFreq = 0;
  for (MachineBasicBlock &MBB : *F) {
    BlockFrequency Freq = MBFI->getBlockFreq(&MBB);
    if (Freq > MaxFreq)
      MaxFreq = Freq;
  }

  BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
  DupThreshold = MaxFreq * ThresholdProb;
  UseProfileCount = false;
}

bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  // Check for single-block functions and skip them.
  if (std::next(MF.begin()) == MF.end())
    return false;

  F = &MF;
  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
  MBFI = std::make_unique<MBFIWrapper>(
      getAnalysis<MachineBlockFrequencyInfo>());
  MLI = &getAnalysis<MachineLoopInfo>();
  TII = MF.getSubtarget().getInstrInfo();
  TLI = MF.getSubtarget().getTargetLowering();
  MPDT = nullptr;
  PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();

  initDupThreshold();

  // Initialize PreferredLoopExit to nullptr here since it may never be set if
  // there are no MachineLoops.
  PreferredLoopExit = nullptr;

  assert(BlockToChain.empty() &&
         "BlockToChain map should be empty before starting placement.");
  assert(ComputedEdges.empty() &&
         "Computed Edge map should be empty before starting placement.");

  unsigned TailDupSize = TailDupPlacementThreshold;
  // If only the aggressive threshold is explicitly set, use it.
  if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
      TailDupPlacementThreshold.getNumOccurrences() == 0)
    TailDupSize = TailDupPlacementAggressiveThreshold;

  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
  // For aggressive optimization, we can adjust some thresholds to be less
  // conservative.
  if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
    // At O3 we should be more willing to copy blocks for tail duplication. This
    // increases size pressure, so we only do it at O3
    // Do this unless only the regular threshold is explicitly set.
    if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
        TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
      TailDupSize = TailDupPlacementAggressiveThreshold;
  }

  if (allowTailDupPlacement()) {
    MPDT = &getAnalysis<MachinePostDominatorTree>();
    bool OptForSize = MF.getFunction().hasOptSize() ||
                      llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
    if (OptForSize)
      TailDupSize = 1;
    bool PreRegAlloc = false;
    TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI,
                   /* LayoutMode */ true, TailDupSize);
    precomputeTriangleChains();
  }

  buildCFGChains();

  // Changing the layout can create new tail merging opportunities.
  // TailMerge can create jump into if branches that make CFG irreducible for
  // HW that requires structured CFG.
  bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
                         PassConfig->getEnableTailMerge() &&
                         BranchFoldPlacement;
  // No tail merging opportunities if the block number is less than four.
  if (MF.size() > 3 && EnableTailMerge) {
    unsigned TailMergeSize = TailDupSize + 1;
    BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
                    *MBFI, *MBPI, PSI, TailMergeSize);

    if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI,
                            /*AfterPlacement=*/true)) {
      // Redo the layout if tail merging creates/removes/moves blocks.
      BlockToChain.clear();
      ComputedEdges.clear();
      // Must redo the post-dominator tree if blocks were changed.
      if (MPDT)
        MPDT->runOnMachineFunction(MF);
      ChainAllocator.DestroyAll();
      buildCFGChains();
    }
  }

  optimizeBranches();
  alignBlocks();

  BlockToChain.clear();
  ComputedEdges.clear();
  ChainAllocator.DestroyAll();

  if (AlignAllBlock)
    // Align all of the blocks in the function to a specific alignment.
    for (MachineBasicBlock &MBB : MF)
      MBB.setAlignment(Align(1ULL << AlignAllBlock));
  else if (AlignAllNonFallThruBlocks) {
    // Align all of the blocks that have no fall-through predecessors to a
    // specific alignment.
    for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
      auto LayoutPred = std::prev(MBI);
      if (!LayoutPred->isSuccessor(&*MBI))
        MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
    }
  }
  if (ViewBlockLayoutWithBFI != GVDT_None &&
      (ViewBlockFreqFuncName.empty() ||
       F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
    MBFI->view("MBP." + MF.getName(), false);
  }


  // We always return true as we have no way to track whether the final order
  // differs from the original order.
  return true;
}

namespace {

/// A pass to compute block placement statistics.
///
/// A separate pass to compute interesting statistics for evaluating block
/// placement. This is separate from the actual placement pass so that they can
/// be computed in the absence of any placement transformations or when using
/// alternative placement strategies.
class MachineBlockPlacementStats : public MachineFunctionPass {
  /// A handle to the branch probability pass.
  const MachineBranchProbabilityInfo *MBPI;

  /// A handle to the function-wide block frequency pass.
  const MachineBlockFrequencyInfo *MBFI;

public:
  static char ID; // Pass identification, replacement for typeid

  MachineBlockPlacementStats() : MachineFunctionPass(ID) {
    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineBranchProbabilityInfo>();
    AU.addRequired<MachineBlockFrequencyInfo>();
    AU.setPreservesAll();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char MachineBlockPlacementStats::ID = 0;

char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;

INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
                      "Basic Block Placement Stats", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
                    "Basic Block Placement Stats", false, false)

bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
  // Check for single-block functions and skip them.
  if (std::next(F.begin()) == F.end())
    return false;

  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();

  for (MachineBasicBlock &MBB : F) {
    BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
    Statistic &NumBranches =
        (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
    Statistic &BranchTakenFreq =
        (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
    for (MachineBasicBlock *Succ : MBB.successors()) {
      // Skip if this successor is a fallthrough.
      if (MBB.isLayoutSuccessor(Succ))
        continue;

      BlockFrequency EdgeFreq =
          BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
      ++NumBranches;
      BranchTakenFreq += EdgeFreq.getFrequency();
    }
  }

  return false;
}