RegisterCoalescer.cpp
152 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the generic RegisterCoalescer interface which
// is used as the common interface used by all clients and
// implementations of register coalescing.
//
//===----------------------------------------------------------------------===//
#include "RegisterCoalescer.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <limits>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "regalloc"
STATISTIC(numJoins , "Number of interval joins performed");
STATISTIC(numCrossRCs , "Number of cross class joins performed");
STATISTIC(numCommutes , "Number of instruction commuting performed");
STATISTIC(numExtends , "Number of copies extended");
STATISTIC(NumReMats , "Number of instructions re-materialized");
STATISTIC(NumInflated , "Number of register classes inflated");
STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
STATISTIC(NumShrinkToUses, "Number of shrinkToUses called");
static cl::opt<bool> EnableJoining("join-liveintervals",
cl::desc("Coalesce copies (default=true)"),
cl::init(true), cl::Hidden);
static cl::opt<bool> UseTerminalRule("terminal-rule",
cl::desc("Apply the terminal rule"),
cl::init(false), cl::Hidden);
/// Temporary flag to test critical edge unsplitting.
static cl::opt<bool>
EnableJoinSplits("join-splitedges",
cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
/// Temporary flag to test global copy optimization.
static cl::opt<cl::boolOrDefault>
EnableGlobalCopies("join-globalcopies",
cl::desc("Coalesce copies that span blocks (default=subtarget)"),
cl::init(cl::BOU_UNSET), cl::Hidden);
static cl::opt<bool>
VerifyCoalescing("verify-coalescing",
cl::desc("Verify machine instrs before and after register coalescing"),
cl::Hidden);
static cl::opt<unsigned> LateRematUpdateThreshold(
"late-remat-update-threshold", cl::Hidden,
cl::desc("During rematerialization for a copy, if the def instruction has "
"many other copy uses to be rematerialized, delay the multiple "
"separate live interval update work and do them all at once after "
"all those rematerialization are done. It will save a lot of "
"repeated work. "),
cl::init(100));
static cl::opt<unsigned> LargeIntervalSizeThreshold(
"large-interval-size-threshold", cl::Hidden,
cl::desc("If the valnos size of an interval is larger than the threshold, "
"it is regarded as a large interval. "),
cl::init(100));
static cl::opt<unsigned> LargeIntervalFreqThreshold(
"large-interval-freq-threshold", cl::Hidden,
cl::desc("For a large interval, if it is coalesed with other live "
"intervals many times more than the threshold, stop its "
"coalescing to control the compile time. "),
cl::init(100));
namespace {
class JoinVals;
class RegisterCoalescer : public MachineFunctionPass,
private LiveRangeEdit::Delegate {
MachineFunction* MF = nullptr;
MachineRegisterInfo* MRI = nullptr;
const TargetRegisterInfo* TRI = nullptr;
const TargetInstrInfo* TII = nullptr;
LiveIntervals *LIS = nullptr;
const MachineLoopInfo* Loops = nullptr;
AliasAnalysis *AA = nullptr;
RegisterClassInfo RegClassInfo;
/// Debug variable location tracking -- for each VReg, maintain an
/// ordered-by-slot-index set of DBG_VALUEs, to help quick
/// identification of whether coalescing may change location validity.
using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
DenseMap<unsigned, std::vector<DbgValueLoc>> DbgVRegToValues;
/// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
/// To avoid repeatedly merging sets of DbgValueLocs, instead record
/// which vregs have been coalesced, and where to. This map is from
/// vreg => {set of vregs merged in}.
DenseMap<unsigned, SmallVector<unsigned, 4>> DbgMergedVRegNums;
/// A LaneMask to remember on which subregister live ranges we need to call
/// shrinkToUses() later.
LaneBitmask ShrinkMask;
/// True if the main range of the currently coalesced intervals should be
/// checked for smaller live intervals.
bool ShrinkMainRange = false;
/// True if the coalescer should aggressively coalesce global copies
/// in favor of keeping local copies.
bool JoinGlobalCopies = false;
/// True if the coalescer should aggressively coalesce fall-thru
/// blocks exclusively containing copies.
bool JoinSplitEdges = false;
/// Copy instructions yet to be coalesced.
SmallVector<MachineInstr*, 8> WorkList;
SmallVector<MachineInstr*, 8> LocalWorkList;
/// Set of instruction pointers that have been erased, and
/// that may be present in WorkList.
SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
/// Dead instructions that are about to be deleted.
SmallVector<MachineInstr*, 8> DeadDefs;
/// Virtual registers to be considered for register class inflation.
SmallVector<unsigned, 8> InflateRegs;
/// The collection of live intervals which should have been updated
/// immediately after rematerialiation but delayed until
/// lateLiveIntervalUpdate is called.
DenseSet<unsigned> ToBeUpdated;
/// Record how many times the large live interval with many valnos
/// has been tried to join with other live interval.
DenseMap<unsigned, unsigned long> LargeLIVisitCounter;
/// Recursively eliminate dead defs in DeadDefs.
void eliminateDeadDefs();
/// LiveRangeEdit callback for eliminateDeadDefs().
void LRE_WillEraseInstruction(MachineInstr *MI) override;
/// Coalesce the LocalWorkList.
void coalesceLocals();
/// Join compatible live intervals
void joinAllIntervals();
/// Coalesce copies in the specified MBB, putting
/// copies that cannot yet be coalesced into WorkList.
void copyCoalesceInMBB(MachineBasicBlock *MBB);
/// Tries to coalesce all copies in CurrList. Returns true if any progress
/// was made.
bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
/// If one def has many copy like uses, and those copy uses are all
/// rematerialized, the live interval update needed for those
/// rematerializations will be delayed and done all at once instead
/// of being done multiple times. This is to save compile cost because
/// live interval update is costly.
void lateLiveIntervalUpdate();
/// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
/// src/dst of the copy instruction CopyMI. This returns true if the copy
/// was successfully coalesced away. If it is not currently possible to
/// coalesce this interval, but it may be possible if other things get
/// coalesced, then it returns true by reference in 'Again'.
bool joinCopy(MachineInstr *CopyMI, bool &Again);
/// Attempt to join these two intervals. On failure, this
/// returns false. The output "SrcInt" will not have been modified, so we
/// can use this information below to update aliases.
bool joinIntervals(CoalescerPair &CP);
/// Attempt joining two virtual registers. Return true on success.
bool joinVirtRegs(CoalescerPair &CP);
/// If a live interval has many valnos and is coalesced with other
/// live intervals many times, we regard such live interval as having
/// high compile time cost.
bool isHighCostLiveInterval(LiveInterval &LI);
/// Attempt joining with a reserved physreg.
bool joinReservedPhysReg(CoalescerPair &CP);
/// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
/// Subranges in @p LI which only partially interfere with the desired
/// LaneMask are split as necessary. @p LaneMask are the lanes that
/// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
/// lanemasks already adjusted to the coalesced register.
void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
LaneBitmask LaneMask, CoalescerPair &CP,
unsigned DstIdx);
/// Join the liveranges of two subregisters. Joins @p RRange into
/// @p LRange, @p RRange may be invalid afterwards.
void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
LaneBitmask LaneMask, const CoalescerPair &CP);
/// We found a non-trivially-coalescable copy. If the source value number is
/// defined by a copy from the destination reg see if we can merge these two
/// destination reg valno# into a single value number, eliminating a copy.
/// This returns true if an interval was modified.
bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
/// Return true if there are definitions of IntB
/// other than BValNo val# that can reach uses of AValno val# of IntA.
bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
VNInfo *AValNo, VNInfo *BValNo);
/// We found a non-trivially-coalescable copy.
/// If the source value number is defined by a commutable instruction and
/// its other operand is coalesced to the copy dest register, see if we
/// can transform the copy into a noop by commuting the definition.
/// This returns a pair of two flags:
/// - the first element is true if an interval was modified,
/// - the second element is true if the destination interval needs
/// to be shrunk after deleting the copy.
std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
MachineInstr *CopyMI);
/// We found a copy which can be moved to its less frequent predecessor.
bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
/// If the source of a copy is defined by a
/// trivial computation, replace the copy by rematerialize the definition.
bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
bool &IsDefCopy);
/// Return true if a copy involving a physreg should be joined.
bool canJoinPhys(const CoalescerPair &CP);
/// Replace all defs and uses of SrcReg to DstReg and update the subregister
/// number if it is not zero. If DstReg is a physical register and the
/// existing subregister number of the def / use being updated is not zero,
/// make sure to set it to the correct physical subregister.
void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
/// If the given machine operand reads only undefined lanes add an undef
/// flag.
/// This can happen when undef uses were previously concealed by a copy
/// which we coalesced. Example:
/// %0:sub0<def,read-undef> = ...
/// %1 = COPY %0 <-- Coalescing COPY reveals undef
/// = use %1:sub1 <-- hidden undef use
void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
MachineOperand &MO, unsigned SubRegIdx);
/// Handle copies of undef values. If the undef value is an incoming
/// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
/// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
/// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
/// Check whether or not we should apply the terminal rule on the
/// destination (Dst) of \p Copy.
/// When the terminal rule applies, Copy is not profitable to
/// coalesce.
/// Dst is terminal if it has exactly one affinity (Dst, Src) and
/// at least one interference (Dst, Dst2). If Dst is terminal, the
/// terminal rule consists in checking that at least one of
/// interfering node, say Dst2, has an affinity of equal or greater
/// weight with Src.
/// In that case, Dst2 and Dst will not be able to be both coalesced
/// with Src. Since Dst2 exposes more coalescing opportunities than
/// Dst, we can drop \p Copy.
bool applyTerminalRule(const MachineInstr &Copy) const;
/// Wrapper method for \see LiveIntervals::shrinkToUses.
/// This method does the proper fixing of the live-ranges when the afore
/// mentioned method returns true.
void shrinkToUses(LiveInterval *LI,
SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
NumShrinkToUses++;
if (LIS->shrinkToUses(LI, Dead)) {
/// Check whether or not \p LI is composed by multiple connected
/// components and if that is the case, fix that.
SmallVector<LiveInterval*, 8> SplitLIs;
LIS->splitSeparateComponents(*LI, SplitLIs);
}
}
/// Wrapper Method to do all the necessary work when an Instruction is
/// deleted.
/// Optimizations should use this to make sure that deleted instructions
/// are always accounted for.
void deleteInstr(MachineInstr* MI) {
ErasedInstrs.insert(MI);
LIS->RemoveMachineInstrFromMaps(*MI);
MI->eraseFromParent();
}
/// Walk over function and initialize the DbgVRegToValues map.
void buildVRegToDbgValueMap(MachineFunction &MF);
/// Test whether, after merging, any DBG_VALUEs would refer to a
/// different value number than before merging, and whether this can
/// be resolved. If not, mark the DBG_VALUE as being undef.
void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
JoinVals &LHSVals, LiveRange &RHS,
JoinVals &RHSVals);
void checkMergingChangesDbgValuesImpl(unsigned Reg, LiveRange &OtherRange,
LiveRange &RegRange, JoinVals &Vals2);
public:
static char ID; ///< Class identification, replacement for typeinfo
RegisterCoalescer() : MachineFunctionPass(ID) {
initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override;
void releaseMemory() override;
/// This is the pass entry point.
bool runOnMachineFunction(MachineFunction&) override;
/// Implement the dump method.
void print(raw_ostream &O, const Module* = nullptr) const override;
};
} // end anonymous namespace
char RegisterCoalescer::ID = 0;
char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
"Simple Register Coalescing", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
"Simple Register Coalescing", false, false)
LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
const MachineInstr *MI, unsigned &Src,
unsigned &Dst, unsigned &SrcSub,
unsigned &DstSub) {
if (MI->isCopy()) {
Dst = MI->getOperand(0).getReg();
DstSub = MI->getOperand(0).getSubReg();
Src = MI->getOperand(1).getReg();
SrcSub = MI->getOperand(1).getSubReg();
} else if (MI->isSubregToReg()) {
Dst = MI->getOperand(0).getReg();
DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
MI->getOperand(3).getImm());
Src = MI->getOperand(2).getReg();
SrcSub = MI->getOperand(2).getSubReg();
} else
return false;
return true;
}
/// Return true if this block should be vacated by the coalescer to eliminate
/// branches. The important cases to handle in the coalescer are critical edges
/// split during phi elimination which contain only copies. Simple blocks that
/// contain non-branches should also be vacated, but this can be handled by an
/// earlier pass similar to early if-conversion.
static bool isSplitEdge(const MachineBasicBlock *MBB) {
if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
return false;
for (const auto &MI : *MBB) {
if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
return false;
}
return true;
}
bool CoalescerPair::setRegisters(const MachineInstr *MI) {
SrcReg = DstReg = 0;
SrcIdx = DstIdx = 0;
NewRC = nullptr;
Flipped = CrossClass = false;
unsigned Src, Dst, SrcSub, DstSub;
if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
return false;
Partial = SrcSub || DstSub;
// If one register is a physreg, it must be Dst.
if (Register::isPhysicalRegister(Src)) {
if (Register::isPhysicalRegister(Dst))
return false;
std::swap(Src, Dst);
std::swap(SrcSub, DstSub);
Flipped = true;
}
const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
if (Register::isPhysicalRegister(Dst)) {
// Eliminate DstSub on a physreg.
if (DstSub) {
Dst = TRI.getSubReg(Dst, DstSub);
if (!Dst) return false;
DstSub = 0;
}
// Eliminate SrcSub by picking a corresponding Dst superregister.
if (SrcSub) {
Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
if (!Dst) return false;
} else if (!MRI.getRegClass(Src)->contains(Dst)) {
return false;
}
} else {
// Both registers are virtual.
const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
// Both registers have subreg indices.
if (SrcSub && DstSub) {
// Copies between different sub-registers are never coalescable.
if (Src == Dst && SrcSub != DstSub)
return false;
NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
SrcIdx, DstIdx);
if (!NewRC)
return false;
} else if (DstSub) {
// SrcReg will be merged with a sub-register of DstReg.
SrcIdx = DstSub;
NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
} else if (SrcSub) {
// DstReg will be merged with a sub-register of SrcReg.
DstIdx = SrcSub;
NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
} else {
// This is a straight copy without sub-registers.
NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
}
// The combined constraint may be impossible to satisfy.
if (!NewRC)
return false;
// Prefer SrcReg to be a sub-register of DstReg.
// FIXME: Coalescer should support subregs symmetrically.
if (DstIdx && !SrcIdx) {
std::swap(Src, Dst);
std::swap(SrcIdx, DstIdx);
Flipped = !Flipped;
}
CrossClass = NewRC != DstRC || NewRC != SrcRC;
}
// Check our invariants
assert(Register::isVirtualRegister(Src) && "Src must be virtual");
assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&
"Cannot have a physical SubIdx");
SrcReg = Src;
DstReg = Dst;
return true;
}
bool CoalescerPair::flip() {
if (Register::isPhysicalRegister(DstReg))
return false;
std::swap(SrcReg, DstReg);
std::swap(SrcIdx, DstIdx);
Flipped = !Flipped;
return true;
}
bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
if (!MI)
return false;
unsigned Src, Dst, SrcSub, DstSub;
if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
return false;
// Find the virtual register that is SrcReg.
if (Dst == SrcReg) {
std::swap(Src, Dst);
std::swap(SrcSub, DstSub);
} else if (Src != SrcReg) {
return false;
}
// Now check that Dst matches DstReg.
if (Register::isPhysicalRegister(DstReg)) {
if (!Register::isPhysicalRegister(Dst))
return false;
assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
// DstSub could be set for a physreg from INSERT_SUBREG.
if (DstSub)
Dst = TRI.getSubReg(Dst, DstSub);
// Full copy of Src.
if (!SrcSub)
return DstReg == Dst;
// This is a partial register copy. Check that the parts match.
return TRI.getSubReg(DstReg, SrcSub) == Dst;
} else {
// DstReg is virtual.
if (DstReg != Dst)
return false;
// Registers match, do the subregisters line up?
return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
TRI.composeSubRegIndices(DstIdx, DstSub);
}
}
void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addPreservedID(MachineDominatorsID);
MachineFunctionPass::getAnalysisUsage(AU);
}
void RegisterCoalescer::eliminateDeadDefs() {
SmallVector<Register, 8> NewRegs;
LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
nullptr, this).eliminateDeadDefs(DeadDefs);
}
void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
// MI may be in WorkList. Make sure we don't visit it.
ErasedInstrs.insert(MI);
}
bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
MachineInstr *CopyMI) {
assert(!CP.isPartial() && "This doesn't work for partial copies.");
assert(!CP.isPhys() && "This doesn't work for physreg copies.");
LiveInterval &IntA =
LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
LiveInterval &IntB =
LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
// We have a non-trivially-coalescable copy with IntA being the source and
// IntB being the dest, thus this defines a value number in IntB. If the
// source value number (in IntA) is defined by a copy from B, see if we can
// merge these two pieces of B into a single value number, eliminating a copy.
// For example:
//
// A3 = B0
// ...
// B1 = A3 <- this copy
//
// In this case, B0 can be extended to where the B1 copy lives, allowing the
// B1 value number to be replaced with B0 (which simplifies the B
// liveinterval).
// BValNo is a value number in B that is defined by a copy from A. 'B1' in
// the example above.
LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
if (BS == IntB.end()) return false;
VNInfo *BValNo = BS->valno;
// Get the location that B is defined at. Two options: either this value has
// an unknown definition point or it is defined at CopyIdx. If unknown, we
// can't process it.
if (BValNo->def != CopyIdx) return false;
// AValNo is the value number in A that defines the copy, A3 in the example.
SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
// The live segment might not exist after fun with physreg coalescing.
if (AS == IntA.end()) return false;
VNInfo *AValNo = AS->valno;
// If AValNo is defined as a copy from IntB, we can potentially process this.
// Get the instruction that defines this value number.
MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
// Don't allow any partial copies, even if isCoalescable() allows them.
if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
return false;
// Get the Segment in IntB that this value number starts with.
LiveInterval::iterator ValS =
IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
if (ValS == IntB.end())
return false;
// Make sure that the end of the live segment is inside the same block as
// CopyMI.
MachineInstr *ValSEndInst =
LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
return false;
// Okay, we now know that ValS ends in the same block that the CopyMI
// live-range starts. If there are no intervening live segments between them
// in IntB, we can merge them.
if (ValS+1 != BS) return false;
LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI));
SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
// We are about to delete CopyMI, so need to remove it as the 'instruction
// that defines this value #'. Update the valnum with the new defining
// instruction #.
BValNo->def = FillerStart;
// Okay, we can merge them. We need to insert a new liverange:
// [ValS.end, BS.begin) of either value number, then we merge the
// two value numbers.
IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
// Okay, merge "B1" into the same value number as "B0".
if (BValNo != ValS->valno)
IntB.MergeValueNumberInto(BValNo, ValS->valno);
// Do the same for the subregister segments.
for (LiveInterval::SubRange &S : IntB.subranges()) {
// Check for SubRange Segments of the form [1234r,1234d:0) which can be
// removed to prevent creating bogus SubRange Segments.
LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
S.removeSegment(*SS, true);
continue;
}
// The subrange may have ended before FillerStart. If so, extend it.
if (!S.getVNInfoAt(FillerStart)) {
SlotIndex BBStart =
LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart));
S.extendInBlock(BBStart, FillerStart);
}
VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
if (SubBValNo != SubValSNo)
S.MergeValueNumberInto(SubBValNo, SubValSNo);
}
LLVM_DEBUG(dbgs() << " result = " << IntB << '\n');
// If the source instruction was killing the source register before the
// merge, unset the isKill marker given the live range has been extended.
int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true);
if (UIdx != -1) {
ValSEndInst->getOperand(UIdx).setIsKill(false);
}
// Rewrite the copy.
CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI);
// If the copy instruction was killing the destination register or any
// subrange before the merge trim the live range.
bool RecomputeLiveRange = AS->end == CopyIdx;
if (!RecomputeLiveRange) {
for (LiveInterval::SubRange &S : IntA.subranges()) {
LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
if (SS != S.end() && SS->end == CopyIdx) {
RecomputeLiveRange = true;
break;
}
}
}
if (RecomputeLiveRange)
shrinkToUses(&IntA);
++numExtends;
return true;
}
bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
LiveInterval &IntB,
VNInfo *AValNo,
VNInfo *BValNo) {
// If AValNo has PHI kills, conservatively assume that IntB defs can reach
// the PHI values.
if (LIS->hasPHIKill(IntA, AValNo))
return true;
for (LiveRange::Segment &ASeg : IntA.segments) {
if (ASeg.valno != AValNo) continue;
LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
if (BI != IntB.begin())
--BI;
for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
if (BI->valno == BValNo)
continue;
if (BI->start <= ASeg.start && BI->end > ASeg.start)
return true;
if (BI->start > ASeg.start && BI->start < ASeg.end)
return true;
}
}
return false;
}
/// Copy segments with value number @p SrcValNo from liverange @p Src to live
/// range @Dst and use value number @p DstValNo there.
static std::pair<bool,bool>
addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
const VNInfo *SrcValNo) {
bool Changed = false;
bool MergedWithDead = false;
for (const LiveRange::Segment &S : Src.segments) {
if (S.valno != SrcValNo)
continue;
// This is adding a segment from Src that ends in a copy that is about
// to be removed. This segment is going to be merged with a pre-existing
// segment in Dst. This works, except in cases when the corresponding
// segment in Dst is dead. For example: adding [192r,208r:1) from Src
// to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
// Recognized such cases, so that the segments can be shrunk.
LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
LiveRange::Segment &Merged = *Dst.addSegment(Added);
if (Merged.end.isDead())
MergedWithDead = true;
Changed = true;
}
return std::make_pair(Changed, MergedWithDead);
}
std::pair<bool,bool>
RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
MachineInstr *CopyMI) {
assert(!CP.isPhys());
LiveInterval &IntA =
LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
LiveInterval &IntB =
LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
// We found a non-trivially-coalescable copy with IntA being the source and
// IntB being the dest, thus this defines a value number in IntB. If the
// source value number (in IntA) is defined by a commutable instruction and
// its other operand is coalesced to the copy dest register, see if we can
// transform the copy into a noop by commuting the definition. For example,
//
// A3 = op A2 killed B0
// ...
// B1 = A3 <- this copy
// ...
// = op A3 <- more uses
//
// ==>
//
// B2 = op B0 killed A2
// ...
// B1 = B2 <- now an identity copy
// ...
// = op B2 <- more uses
// BValNo is a value number in B that is defined by a copy from A. 'B1' in
// the example above.
SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
assert(BValNo != nullptr && BValNo->def == CopyIdx);
// AValNo is the value number in A that defines the copy, A3 in the example.
VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
assert(AValNo && !AValNo->isUnused() && "COPY source not live");
if (AValNo->isPHIDef())
return { false, false };
MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
if (!DefMI)
return { false, false };
if (!DefMI->isCommutable())
return { false, false };
// If DefMI is a two-address instruction then commuting it will change the
// destination register.
int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg());
assert(DefIdx != -1);
unsigned UseOpIdx;
if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
return { false, false };
// FIXME: The code below tries to commute 'UseOpIdx' operand with some other
// commutable operand which is expressed by 'CommuteAnyOperandIndex'value
// passed to the method. That _other_ operand is chosen by
// the findCommutedOpIndices() method.
//
// That is obviously an area for improvement in case of instructions having
// more than 2 operands. For example, if some instruction has 3 commutable
// operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
// op#2<->op#3) of commute transformation should be considered/tried here.
unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
return { false, false };
MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
Register NewReg = NewDstMO.getReg();
if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill())
return { false, false };
// Make sure there are no other definitions of IntB that would reach the
// uses which the new definition can reach.
if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
return { false, false };
// If some of the uses of IntA.reg is already coalesced away, return false.
// It's not possible to determine whether it's safe to perform the coalescing.
for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) {
MachineInstr *UseMI = MO.getParent();
unsigned OpNo = &MO - &UseMI->getOperand(0);
SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
if (US == IntA.end() || US->valno != AValNo)
continue;
// If this use is tied to a def, we can't rewrite the register.
if (UseMI->isRegTiedToDefOperand(OpNo))
return { false, false };
}
LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
<< *DefMI);
// At this point we have decided that it is legal to do this
// transformation. Start by commuting the instruction.
MachineBasicBlock *MBB = DefMI->getParent();
MachineInstr *NewMI =
TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
if (!NewMI)
return { false, false };
if (Register::isVirtualRegister(IntA.reg()) &&
Register::isVirtualRegister(IntB.reg()) &&
!MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg())))
return { false, false };
if (NewMI != DefMI) {
LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
MachineBasicBlock::iterator Pos = DefMI;
MBB->insert(Pos, NewMI);
MBB->erase(DefMI);
}
// If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
// A = or A, B
// ...
// B = A
// ...
// C = killed A
// ...
// = B
// Update uses of IntA of the specific Val# with IntB.
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg()),
UE = MRI->use_end();
UI != UE;
/* ++UI is below because of possible MI removal */) {
MachineOperand &UseMO = *UI;
++UI;
if (UseMO.isUndef())
continue;
MachineInstr *UseMI = UseMO.getParent();
if (UseMI->isDebugValue()) {
// FIXME These don't have an instruction index. Not clear we have enough
// info to decide whether to do this replacement or not. For now do it.
UseMO.setReg(NewReg);
continue;
}
SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
assert(US != IntA.end() && "Use must be live");
if (US->valno != AValNo)
continue;
// Kill flags are no longer accurate. They are recomputed after RA.
UseMO.setIsKill(false);
if (Register::isPhysicalRegister(NewReg))
UseMO.substPhysReg(NewReg, *TRI);
else
UseMO.setReg(NewReg);
if (UseMI == CopyMI)
continue;
if (!UseMI->isCopy())
continue;
if (UseMI->getOperand(0).getReg() != IntB.reg() ||
UseMI->getOperand(0).getSubReg())
continue;
// This copy will become a noop. If it's defining a new val#, merge it into
// BValNo.
SlotIndex DefIdx = UseIdx.getRegSlot();
VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
if (!DVNI)
continue;
LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
assert(DVNI->def == DefIdx);
BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
for (LiveInterval::SubRange &S : IntB.subranges()) {
VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
if (!SubDVNI)
continue;
VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
assert(SubBValNo->def == CopyIdx);
S.MergeValueNumberInto(SubDVNI, SubBValNo);
}
deleteInstr(UseMI);
}
// Extend BValNo by merging in IntA live segments of AValNo. Val# definition
// is updated.
bool ShrinkB = false;
BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
if (!IntA.hasSubRanges()) {
LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg());
IntA.createSubRangeFrom(Allocator, Mask, IntA);
} else if (!IntB.hasSubRanges()) {
LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg());
IntB.createSubRangeFrom(Allocator, Mask, IntB);
}
SlotIndex AIdx = CopyIdx.getRegSlot(true);
LaneBitmask MaskA;
const SlotIndexes &Indexes = *LIS->getSlotIndexes();
for (LiveInterval::SubRange &SA : IntA.subranges()) {
VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
// Even if we are dealing with a full copy, some lanes can
// still be undefined.
// E.g.,
// undef A.subLow = ...
// B = COPY A <== A.subHigh is undefined here and does
// not have a value number.
if (!ASubValNo)
continue;
MaskA |= SA.LaneMask;
IntB.refineSubRanges(
Allocator, SA.LaneMask,
[&Allocator, &SA, CopyIdx, ASubValNo,
&ShrinkB](LiveInterval::SubRange &SR) {
VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
: SR.getVNInfoAt(CopyIdx);
assert(BSubValNo != nullptr);
auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
ShrinkB |= P.second;
if (P.first)
BSubValNo->def = ASubValNo->def;
},
Indexes, *TRI);
}
// Go over all subranges of IntB that have not been covered by IntA,
// and delete the segments starting at CopyIdx. This can happen if
// IntA has undef lanes that are defined in IntB.
for (LiveInterval::SubRange &SB : IntB.subranges()) {
if ((SB.LaneMask & MaskA).any())
continue;
if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
SB.removeSegment(*S, true);
}
}
BValNo->def = AValNo->def;
auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
ShrinkB |= P.second;
LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
LIS->removeVRegDefAt(IntA, AValNo->def);
LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
++numCommutes;
return { true, ShrinkB };
}
/// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
/// predecessor of BB2, and if B is not redefined on the way from A = B
/// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
/// execution goes through the path from BB0 to BB2. We may move B = A
/// to the predecessor without such reversed copy.
/// So we will transform the program from:
/// BB0:
/// A = B; BB1:
/// ... ...
/// / \ /
/// BB2:
/// ...
/// B = A;
///
/// to:
///
/// BB0: BB1:
/// A = B; ...
/// ... B = A;
/// / \ /
/// BB2:
/// ...
///
/// A special case is when BB0 and BB2 are the same BB which is the only
/// BB in a loop:
/// BB1:
/// ...
/// BB0/BB2: ----
/// B = A; |
/// ... |
/// A = B; |
/// |-------
/// |
/// We may hoist B = A from BB0/BB2 to BB1.
///
/// The major preconditions for correctness to remove such partial
/// redundancy include:
/// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
/// the PHI is defined by the reversed copy A = B in BB0.
/// 2. No B is referenced from the start of BB2 to B = A.
/// 3. No B is defined from A = B to the end of BB0.
/// 4. BB1 has only one successor.
///
/// 2 and 4 implicitly ensure B is not live at the end of BB1.
/// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
/// colder place, which not only prevent endless loop, but also make sure
/// the movement of copy is beneficial.
bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
MachineInstr &CopyMI) {
assert(!CP.isPhys());
if (!CopyMI.isFullCopy())
return false;
MachineBasicBlock &MBB = *CopyMI.getParent();
// If this block is the target of an invoke/inlineasm_br, moving the copy into
// the predecessor is tricker, and we don't handle it.
if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
return false;
if (MBB.pred_size() != 2)
return false;
LiveInterval &IntA =
LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
LiveInterval &IntB =
LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
// A is defined by PHI at the entry of MBB.
SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
assert(AValNo && !AValNo->isUnused() && "COPY source not live");
if (!AValNo->isPHIDef())
return false;
// No B is referenced before CopyMI in MBB.
if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
return false;
// MBB has two predecessors: one contains A = B so no copy will be inserted
// for it. The other one will have a copy moved from MBB.
bool FoundReverseCopy = false;
MachineBasicBlock *CopyLeftBB = nullptr;
for (MachineBasicBlock *Pred : MBB.predecessors()) {
VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
if (!DefMI || !DefMI->isFullCopy()) {
CopyLeftBB = Pred;
continue;
}
// Check DefMI is a reverse copy and it is in BB Pred.
if (DefMI->getOperand(0).getReg() != IntA.reg() ||
DefMI->getOperand(1).getReg() != IntB.reg() ||
DefMI->getParent() != Pred) {
CopyLeftBB = Pred;
continue;
}
// If there is any other def of B after DefMI and before the end of Pred,
// we need to keep the copy of B = A at the end of Pred if we remove
// B = A from MBB.
bool ValB_Changed = false;
for (auto VNI : IntB.valnos) {
if (VNI->isUnused())
continue;
if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
ValB_Changed = true;
break;
}
}
if (ValB_Changed) {
CopyLeftBB = Pred;
continue;
}
FoundReverseCopy = true;
}
// If no reverse copy is found in predecessors, nothing to do.
if (!FoundReverseCopy)
return false;
// If CopyLeftBB is nullptr, it means every predecessor of MBB contains
// reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
// If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
// update IntA/IntB.
//
// If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
// MBB is hotter than CopyLeftBB.
if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
return false;
// Now (almost sure it's) ok to move copy.
if (CopyLeftBB) {
// Position in CopyLeftBB where we should insert new copy.
auto InsPos = CopyLeftBB->getFirstTerminator();
// Make sure that B isn't referenced in the terminators (if any) at the end
// of the predecessor since we're about to insert a new definition of B
// before them.
if (InsPos != CopyLeftBB->end()) {
SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
return false;
}
LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
<< printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
// Insert new copy to CopyLeftBB.
MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
TII->get(TargetOpcode::COPY), IntB.reg())
.addReg(IntA.reg());
SlotIndex NewCopyIdx =
LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
for (LiveInterval::SubRange &SR : IntB.subranges())
SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
// If the newly created Instruction has an address of an instruction that was
// deleted before (object recycled by the allocator) it needs to be removed from
// the deleted list.
ErasedInstrs.erase(NewCopyMI);
} else {
LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
<< printMBBReference(MBB) << '\t' << CopyMI);
}
// Remove CopyMI.
// Note: This is fine to remove the copy before updating the live-ranges.
// While updating the live-ranges, we only look at slot indices and
// never go back to the instruction.
// Mark instructions as deleted.
deleteInstr(&CopyMI);
// Update the liveness.
SmallVector<SlotIndex, 8> EndPoints;
VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
&EndPoints);
BValNo->markUnused();
// Extend IntB to the EndPoints of its original live interval.
LIS->extendToIndices(IntB, EndPoints);
// Now, do the same for its subranges.
for (LiveInterval::SubRange &SR : IntB.subranges()) {
EndPoints.clear();
VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
assert(BValNo && "All sublanes should be live");
LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
BValNo->markUnused();
// We can have a situation where the result of the original copy is live,
// but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
// the copy appear as an endpoint from pruneValue(), but we don't want it
// to because the copy has been removed. We can go ahead and remove that
// endpoint; there is no other situation here that there could be a use at
// the same place as we know that the copy is a full copy.
for (unsigned I = 0; I != EndPoints.size(); ) {
if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
EndPoints[I] = EndPoints.back();
EndPoints.pop_back();
continue;
}
++I;
}
SmallVector<SlotIndex, 8> Undefs;
IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI,
*LIS->getSlotIndexes());
LIS->extendToIndices(SR, EndPoints, Undefs);
}
// If any dead defs were extended, truncate them.
shrinkToUses(&IntB);
// Finally, update the live-range of IntA.
shrinkToUses(&IntA);
return true;
}
/// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
/// defining a subregister.
static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
assert(!Register::isPhysicalRegister(Reg) &&
"This code cannot handle physreg aliasing");
for (const MachineOperand &Op : MI.operands()) {
if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
continue;
// Return true if we define the full register or don't care about the value
// inside other subregisters.
if (Op.getSubReg() == 0 || Op.isUndef())
return true;
}
return false;
}
bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
MachineInstr *CopyMI,
bool &IsDefCopy) {
IsDefCopy = false;
unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
if (Register::isPhysicalRegister(SrcReg))
return false;
LiveInterval &SrcInt = LIS->getInterval(SrcReg);
SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
if (!ValNo)
return false;
if (ValNo->isPHIDef() || ValNo->isUnused())
return false;
MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
if (!DefMI)
return false;
if (DefMI->isCopyLike()) {
IsDefCopy = true;
return false;
}
if (!TII->isAsCheapAsAMove(*DefMI))
return false;
if (!TII->isTriviallyReMaterializable(*DefMI, AA))
return false;
if (!definesFullReg(*DefMI, SrcReg))
return false;
bool SawStore = false;
if (!DefMI->isSafeToMove(AA, SawStore))
return false;
const MCInstrDesc &MCID = DefMI->getDesc();
if (MCID.getNumDefs() != 1)
return false;
// Only support subregister destinations when the def is read-undef.
MachineOperand &DstOperand = CopyMI->getOperand(0);
Register CopyDstReg = DstOperand.getReg();
if (DstOperand.getSubReg() && !DstOperand.isUndef())
return false;
// If both SrcIdx and DstIdx are set, correct rematerialization would widen
// the register substantially (beyond both source and dest size). This is bad
// for performance since it can cascade through a function, introducing many
// extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
// around after a few subreg copies).
if (SrcIdx && DstIdx)
return false;
const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
if (!DefMI->isImplicitDef()) {
if (Register::isPhysicalRegister(DstReg)) {
unsigned NewDstReg = DstReg;
unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
DefMI->getOperand(0).getSubReg());
if (NewDstIdx)
NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
// Finally, make sure that the physical subregister that will be
// constructed later is permitted for the instruction.
if (!DefRC->contains(NewDstReg))
return false;
} else {
// Theoretically, some stack frame reference could exist. Just make sure
// it hasn't actually happened.
assert(Register::isVirtualRegister(DstReg) &&
"Only expect to deal with virtual or physical registers");
}
}
DebugLoc DL = CopyMI->getDebugLoc();
MachineBasicBlock *MBB = CopyMI->getParent();
MachineBasicBlock::iterator MII =
std::next(MachineBasicBlock::iterator(CopyMI));
TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
MachineInstr &NewMI = *std::prev(MII);
NewMI.setDebugLoc(DL);
// In a situation like the following:
// %0:subreg = instr ; DefMI, subreg = DstIdx
// %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
// instead of widening %1 to the register class of %0 simply do:
// %1 = instr
const TargetRegisterClass *NewRC = CP.getNewRC();
if (DstIdx != 0) {
MachineOperand &DefMO = NewMI.getOperand(0);
if (DefMO.getSubReg() == DstIdx) {
assert(SrcIdx == 0 && CP.isFlipped()
&& "Shouldn't have SrcIdx+DstIdx at this point");
const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
const TargetRegisterClass *CommonRC =
TRI->getCommonSubClass(DefRC, DstRC);
if (CommonRC != nullptr) {
NewRC = CommonRC;
DstIdx = 0;
DefMO.setSubReg(0);
DefMO.setIsUndef(false); // Only subregs can have def+undef.
}
}
}
// CopyMI may have implicit operands, save them so that we can transfer them
// over to the newly materialized instruction after CopyMI is removed.
SmallVector<MachineOperand, 4> ImplicitOps;
ImplicitOps.reserve(CopyMI->getNumOperands() -
CopyMI->getDesc().getNumOperands());
for (unsigned I = CopyMI->getDesc().getNumOperands(),
E = CopyMI->getNumOperands();
I != E; ++I) {
MachineOperand &MO = CopyMI->getOperand(I);
if (MO.isReg()) {
assert(MO.isImplicit() && "No explicit operands after implicit operands.");
// Discard VReg implicit defs.
if (Register::isPhysicalRegister(MO.getReg()))
ImplicitOps.push_back(MO);
}
}
LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
CopyMI->eraseFromParent();
ErasedInstrs.insert(CopyMI);
// NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
// We need to remember these so we can add intervals once we insert
// NewMI into SlotIndexes.
SmallVector<unsigned, 4> NewMIImplDefs;
for (unsigned i = NewMI.getDesc().getNumOperands(),
e = NewMI.getNumOperands();
i != e; ++i) {
MachineOperand &MO = NewMI.getOperand(i);
if (MO.isReg() && MO.isDef()) {
assert(MO.isImplicit() && MO.isDead() &&
Register::isPhysicalRegister(MO.getReg()));
NewMIImplDefs.push_back(MO.getReg());
}
}
if (Register::isVirtualRegister(DstReg)) {
unsigned NewIdx = NewMI.getOperand(0).getSubReg();
if (DefRC != nullptr) {
if (NewIdx)
NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
else
NewRC = TRI->getCommonSubClass(NewRC, DefRC);
assert(NewRC && "subreg chosen for remat incompatible with instruction");
}
// Remap subranges to new lanemask and change register class.
LiveInterval &DstInt = LIS->getInterval(DstReg);
for (LiveInterval::SubRange &SR : DstInt.subranges()) {
SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
}
MRI->setRegClass(DstReg, NewRC);
// Update machine operands and add flags.
updateRegDefsUses(DstReg, DstReg, DstIdx);
NewMI.getOperand(0).setSubReg(NewIdx);
// updateRegDefUses can add an "undef" flag to the definition, since
// it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
// sure that "undef" is not set.
if (NewIdx == 0)
NewMI.getOperand(0).setIsUndef(false);
// Add dead subregister definitions if we are defining the whole register
// but only part of it is live.
// This could happen if the rematerialization instruction is rematerializing
// more than actually is used in the register.
// An example would be:
// %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
// ; Copying only part of the register here, but the rest is undef.
// %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
// ==>
// ; Materialize all the constants but only using one
// %2 = LOAD_CONSTANTS 5, 8
//
// at this point for the part that wasn't defined before we could have
// subranges missing the definition.
if (NewIdx == 0 && DstInt.hasSubRanges()) {
SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
SlotIndex DefIndex =
CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
for (LiveInterval::SubRange &SR : DstInt.subranges()) {
if (!SR.liveAt(DefIndex))
SR.createDeadDef(DefIndex, Alloc);
MaxMask &= ~SR.LaneMask;
}
if (MaxMask.any()) {
LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
SR->createDeadDef(DefIndex, Alloc);
}
}
// Make sure that the subrange for resultant undef is removed
// For example:
// %1:sub1<def,read-undef> = LOAD CONSTANT 1
// %2 = COPY %1
// ==>
// %2:sub1<def, read-undef> = LOAD CONSTANT 1
// ; Correct but need to remove the subrange for %2:sub0
// ; as it is now undef
if (NewIdx != 0 && DstInt.hasSubRanges()) {
// The affected subregister segments can be removed.
SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
bool UpdatedSubRanges = false;
SlotIndex DefIndex =
CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
for (LiveInterval::SubRange &SR : DstInt.subranges()) {
if ((SR.LaneMask & DstMask).none()) {
LLVM_DEBUG(dbgs()
<< "Removing undefined SubRange "
<< PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
// VNI is in ValNo - remove any segments in this SubRange that have this ValNo
if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
SR.removeValNo(RmValNo);
UpdatedSubRanges = true;
}
} else {
// We know that this lane is defined by this instruction,
// but at this point it may be empty because it is not used by
// anything. This happens when updateRegDefUses adds the missing
// lanes. Assign that lane a dead def so that the interferences
// are properly modeled.
if (SR.empty())
SR.createDeadDef(DefIndex, Alloc);
}
}
if (UpdatedSubRanges)
DstInt.removeEmptySubRanges();
}
} else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
// The New instruction may be defining a sub-register of what's actually
// been asked for. If so it must implicitly define the whole thing.
assert(Register::isPhysicalRegister(DstReg) &&
"Only expect virtual or physical registers in remat");
NewMI.getOperand(0).setIsDead(true);
NewMI.addOperand(MachineOperand::CreateReg(
CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
// Record small dead def live-ranges for all the subregisters
// of the destination register.
// Otherwise, variables that live through may miss some
// interferences, thus creating invalid allocation.
// E.g., i386 code:
// %1 = somedef ; %1 GR8
// %2 = remat ; %2 GR32
// CL = COPY %2.sub_8bit
// = somedef %1 ; %1 GR8
// =>
// %1 = somedef ; %1 GR8
// dead ECX = remat ; implicit-def CL
// = somedef %1 ; %1 GR8
// %1 will see the interferences with CL but not with CH since
// no live-ranges would have been created for ECX.
// Fix that!
SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
Units.isValid(); ++Units)
if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
}
if (NewMI.getOperand(0).getSubReg())
NewMI.getOperand(0).setIsUndef();
// Transfer over implicit operands to the rematerialized instruction.
for (MachineOperand &MO : ImplicitOps)
NewMI.addOperand(MO);
SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
unsigned Reg = NewMIImplDefs[i];
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
}
LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
++NumReMats;
// If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
// to describe DstReg instead.
if (MRI->use_nodbg_empty(SrcReg)) {
for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
MachineInstr *UseMI = UseMO.getParent();
if (UseMI->isDebugValue()) {
if (Register::isPhysicalRegister(DstReg))
UseMO.substPhysReg(DstReg, *TRI);
else
UseMO.setReg(DstReg);
// Move the debug value directly after the def of the rematerialized
// value in DstReg.
MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
}
}
}
if (ToBeUpdated.count(SrcReg))
return true;
unsigned NumCopyUses = 0;
for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
if (UseMO.getParent()->isCopyLike())
NumCopyUses++;
}
if (NumCopyUses < LateRematUpdateThreshold) {
// The source interval can become smaller because we removed a use.
shrinkToUses(&SrcInt, &DeadDefs);
if (!DeadDefs.empty())
eliminateDeadDefs();
} else {
ToBeUpdated.insert(SrcReg);
}
return true;
}
MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
// ProcessImplicitDefs may leave some copies of <undef> values, it only
// removes local variables. When we have a copy like:
//
// %1 = COPY undef %2
//
// We delete the copy and remove the corresponding value number from %1.
// Any uses of that value number are marked as <undef>.
// Note that we do not query CoalescerPair here but redo isMoveInstr as the
// CoalescerPair may have a new register class with adjusted subreg indices
// at this point.
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
return nullptr;
SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
// CopyMI is undef iff SrcReg is not live before the instruction.
if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
if ((SR.LaneMask & SrcMask).none())
continue;
if (SR.liveAt(Idx))
return nullptr;
}
} else if (SrcLI.liveAt(Idx))
return nullptr;
// If the undef copy defines a live-out value (i.e. an input to a PHI def),
// then replace it with an IMPLICIT_DEF.
LiveInterval &DstLI = LIS->getInterval(DstReg);
SlotIndex RegIndex = Idx.getRegSlot();
LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
assert(Seg != nullptr && "No segment for defining instruction");
if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
if (V->isPHIDef()) {
CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
MachineOperand &MO = CopyMI->getOperand(i-1);
if (MO.isReg() && MO.isUse())
CopyMI->RemoveOperand(i-1);
}
LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
"implicit def\n");
return CopyMI;
}
}
// Remove any DstReg segments starting at the instruction.
LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
// Remove value or merge with previous one in case of a subregister def.
if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
DstLI.MergeValueNumberInto(VNI, PrevVNI);
// The affected subregister segments can be removed.
LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
for (LiveInterval::SubRange &SR : DstLI.subranges()) {
if ((SR.LaneMask & DstMask).none())
continue;
VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
SR.removeValNo(SVNI);
}
DstLI.removeEmptySubRanges();
} else
LIS->removeVRegDefAt(DstLI, RegIndex);
// Mark uses as undef.
for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
if (MO.isDef() /*|| MO.isUndef()*/)
continue;
const MachineInstr &MI = *MO.getParent();
SlotIndex UseIdx = LIS->getInstructionIndex(MI);
LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
bool isLive;
if (!UseMask.all() && DstLI.hasSubRanges()) {
isLive = false;
for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
if ((SR.LaneMask & UseMask).none())
continue;
if (SR.liveAt(UseIdx)) {
isLive = true;
break;
}
}
} else
isLive = DstLI.liveAt(UseIdx);
if (isLive)
continue;
MO.setIsUndef(true);
LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
}
// A def of a subregister may be a use of the other subregisters, so
// deleting a def of a subregister may also remove uses. Since CopyMI
// is still part of the function (but about to be erased), mark all
// defs of DstReg in it as <undef>, so that shrinkToUses would
// ignore them.
for (MachineOperand &MO : CopyMI->operands())
if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
MO.setIsUndef(true);
LIS->shrinkToUses(&DstLI);
return CopyMI;
}
void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
MachineOperand &MO, unsigned SubRegIdx) {
LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
if (MO.isDef())
Mask = ~Mask;
bool IsUndef = true;
for (const LiveInterval::SubRange &S : Int.subranges()) {
if ((S.LaneMask & Mask).none())
continue;
if (S.liveAt(UseIdx)) {
IsUndef = false;
break;
}
}
if (IsUndef) {
MO.setIsUndef(true);
// We found out some subregister use is actually reading an undefined
// value. In some cases the whole vreg has become undefined at this
// point so we have to potentially shrink the main range if the
// use was ending a live segment there.
LiveQueryResult Q = Int.Query(UseIdx);
if (Q.valueOut() == nullptr)
ShrinkMainRange = true;
}
}
void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, unsigned DstReg,
unsigned SubIdx) {
bool DstIsPhys = Register::isPhysicalRegister(DstReg);
LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
unsigned SubReg = MO.getSubReg();
if (SubReg == 0 || MO.isUndef())
continue;
MachineInstr &MI = *MO.getParent();
if (MI.isDebugValue())
continue;
SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
addUndefFlag(*DstInt, UseIdx, MO, SubReg);
}
}
SmallPtrSet<MachineInstr*, 8> Visited;
for (MachineRegisterInfo::reg_instr_iterator
I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
I != E; ) {
MachineInstr *UseMI = &*(I++);
// Each instruction can only be rewritten once because sub-register
// composition is not always idempotent. When SrcReg != DstReg, rewriting
// the UseMI operands removes them from the SrcReg use-def chain, but when
// SrcReg is DstReg we could encounter UseMI twice if it has multiple
// operands mentioning the virtual register.
if (SrcReg == DstReg && !Visited.insert(UseMI).second)
continue;
SmallVector<unsigned,8> Ops;
bool Reads, Writes;
std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
// If SrcReg wasn't read, it may still be the case that DstReg is live-in
// because SrcReg is a sub-register.
if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
// Replace SrcReg with DstReg in all UseMI operands.
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
MachineOperand &MO = UseMI->getOperand(Ops[i]);
// Adjust <undef> flags in case of sub-register joins. We don't want to
// turn a full def into a read-modify-write sub-register def and vice
// versa.
if (SubIdx && MO.isDef())
MO.setIsUndef(!Reads);
// A subreg use of a partially undef (super) register may be a complete
// undef use now and then has to be marked that way.
if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
if (!DstInt->hasSubRanges()) {
BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg());
LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
// The unused lanes are just empty live-ranges at this point.
// It is the caller responsibility to set the proper
// dead segments if there is an actual dead def of the
// unused lanes. This may happen with rematerialization.
DstInt->createSubRange(Allocator, UnusedLanes);
}
SlotIndex MIIdx = UseMI->isDebugValue()
? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
: LIS->getInstructionIndex(*UseMI);
SlotIndex UseIdx = MIIdx.getRegSlot(true);
addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
}
if (DstIsPhys)
MO.substPhysReg(DstReg, *TRI);
else
MO.substVirtReg(DstReg, SubIdx, *TRI);
}
LLVM_DEBUG({
dbgs() << "\t\tupdated: ";
if (!UseMI->isDebugValue())
dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
dbgs() << *UseMI;
});
}
}
bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
// Always join simple intervals that are defined by a single copy from a
// reserved register. This doesn't increase register pressure, so it is
// always beneficial.
if (!MRI->isReserved(CP.getDstReg())) {
LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
return false;
}
LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
if (JoinVInt.containsOneValue())
return true;
LLVM_DEBUG(
dbgs() << "\tCannot join complex intervals into reserved register.\n");
return false;
}
bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
Again = false;
LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
CoalescerPair CP(*TRI);
if (!CP.setRegisters(CopyMI)) {
LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
return false;
}
if (CP.getNewRC()) {
auto SrcRC = MRI->getRegClass(CP.getSrcReg());
auto DstRC = MRI->getRegClass(CP.getDstReg());
unsigned SrcIdx = CP.getSrcIdx();
unsigned DstIdx = CP.getDstIdx();
if (CP.isFlipped()) {
std::swap(SrcIdx, DstIdx);
std::swap(SrcRC, DstRC);
}
if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
CP.getNewRC(), *LIS)) {
LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
return false;
}
}
// Dead code elimination. This really should be handled by MachineDCE, but
// sometimes dead copies slip through, and we can't generate invalid live
// ranges.
if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
DeadDefs.push_back(CopyMI);
eliminateDeadDefs();
return true;
}
// Eliminate undefs.
if (!CP.isPhys()) {
// If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
if (UndefMI->isImplicitDef())
return false;
deleteInstr(CopyMI);
return false; // Not coalescable.
}
}
// Coalesced copies are normally removed immediately, but transformations
// like removeCopyByCommutingDef() can inadvertently create identity copies.
// When that happens, just join the values and remove the copy.
if (CP.getSrcReg() == CP.getDstReg()) {
LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
LiveQueryResult LRQ = LI.Query(CopyIdx);
if (VNInfo *DefVNI = LRQ.valueDefined()) {
VNInfo *ReadVNI = LRQ.valueIn();
assert(ReadVNI && "No value before copy and no <undef> flag.");
assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
LI.MergeValueNumberInto(DefVNI, ReadVNI);
// Process subregister liveranges.
for (LiveInterval::SubRange &S : LI.subranges()) {
LiveQueryResult SLRQ = S.Query(CopyIdx);
if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
VNInfo *SReadVNI = SLRQ.valueIn();
S.MergeValueNumberInto(SDefVNI, SReadVNI);
}
}
LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
}
deleteInstr(CopyMI);
return true;
}
// Enforce policies.
if (CP.isPhys()) {
LLVM_DEBUG(dbgs() << "\tConsidering merging "
<< printReg(CP.getSrcReg(), TRI) << " with "
<< printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
if (!canJoinPhys(CP)) {
// Before giving up coalescing, if definition of source is defined by
// trivial computation, try rematerializing it.
bool IsDefCopy;
if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
return true;
if (IsDefCopy)
Again = true; // May be possible to coalesce later.
return false;
}
} else {
// When possible, let DstReg be the larger interval.
if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
LIS->getInterval(CP.getDstReg()).size())
CP.flip();
LLVM_DEBUG({
dbgs() << "\tConsidering merging to "
<< TRI->getRegClassName(CP.getNewRC()) << " with ";
if (CP.getDstIdx() && CP.getSrcIdx())
dbgs() << printReg(CP.getDstReg()) << " in "
<< TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
<< printReg(CP.getSrcReg()) << " in "
<< TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
else
dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
<< printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
});
}
ShrinkMask = LaneBitmask::getNone();
ShrinkMainRange = false;
// Okay, attempt to join these two intervals. On failure, this returns false.
// Otherwise, if one of the intervals being joined is a physreg, this method
// always canonicalizes DstInt to be it. The output "SrcInt" will not have
// been modified, so we can use this information below to update aliases.
if (!joinIntervals(CP)) {
// Coalescing failed.
// If definition of source is defined by trivial computation, try
// rematerializing it.
bool IsDefCopy;
if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
return true;
// If we can eliminate the copy without merging the live segments, do so
// now.
if (!CP.isPartial() && !CP.isPhys()) {
bool Changed = adjustCopiesBackFrom(CP, CopyMI);
bool Shrink = false;
if (!Changed)
std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
if (Changed) {
deleteInstr(CopyMI);
if (Shrink) {
unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
LiveInterval &DstLI = LIS->getInterval(DstReg);
shrinkToUses(&DstLI);
LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n');
}
LLVM_DEBUG(dbgs() << "\tTrivial!\n");
return true;
}
}
// Try and see if we can partially eliminate the copy by moving the copy to
// its predecessor.
if (!CP.isPartial() && !CP.isPhys())
if (removePartialRedundancy(CP, *CopyMI))
return true;
// Otherwise, we are unable to join the intervals.
LLVM_DEBUG(dbgs() << "\tInterference!\n");
Again = true; // May be possible to coalesce later.
return false;
}
// Coalescing to a virtual register that is of a sub-register class of the
// other. Make sure the resulting register is set to the right register class.
if (CP.isCrossClass()) {
++numCrossRCs;
MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
}
// Removing sub-register copies can ease the register class constraints.
// Make sure we attempt to inflate the register class of DstReg.
if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
InflateRegs.push_back(CP.getDstReg());
// CopyMI has been erased by joinIntervals at this point. Remove it from
// ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
// to the work list. This keeps ErasedInstrs from growing needlessly.
ErasedInstrs.erase(CopyMI);
// Rewrite all SrcReg operands to DstReg.
// Also update DstReg operands to include DstIdx if it is set.
if (CP.getDstIdx())
updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
// Shrink subregister ranges if necessary.
if (ShrinkMask.any()) {
LiveInterval &LI = LIS->getInterval(CP.getDstReg());
for (LiveInterval::SubRange &S : LI.subranges()) {
if ((S.LaneMask & ShrinkMask).none())
continue;
LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
<< ")\n");
LIS->shrinkToUses(S, LI.reg());
}
LI.removeEmptySubRanges();
}
// CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
// interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
// is not up-to-date, need to update the merged live interval here.
if (ToBeUpdated.count(CP.getSrcReg()))
ShrinkMainRange = true;
if (ShrinkMainRange) {
LiveInterval &LI = LIS->getInterval(CP.getDstReg());
shrinkToUses(&LI);
}
// SrcReg is guaranteed to be the register whose live interval that is
// being merged.
LIS->removeInterval(CP.getSrcReg());
// Update regalloc hint.
TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
LLVM_DEBUG({
dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
<< " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
dbgs() << "\tResult = ";
if (CP.isPhys())
dbgs() << printReg(CP.getDstReg(), TRI);
else
dbgs() << LIS->getInterval(CP.getDstReg());
dbgs() << '\n';
});
++numJoins;
return true;
}
bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
unsigned DstReg = CP.getDstReg();
unsigned SrcReg = CP.getSrcReg();
assert(CP.isPhys() && "Must be a physreg copy");
assert(MRI->isReserved(DstReg) && "Not a reserved register");
LiveInterval &RHS = LIS->getInterval(SrcReg);
LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
assert(RHS.containsOneValue() && "Invalid join with reserved register");
// Optimization for reserved registers like ESP. We can only merge with a
// reserved physreg if RHS has a single value that is a copy of DstReg.
// The live range of the reserved register will look like a set of dead defs
// - we don't properly track the live range of reserved registers.
// Deny any overlapping intervals. This depends on all the reserved
// register live ranges to look like dead defs.
if (!MRI->isConstantPhysReg(DstReg)) {
for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
// Abort if not all the regunits are reserved.
for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
if (!MRI->isReserved(*RI))
return false;
}
if (RHS.overlaps(LIS->getRegUnit(*UI))) {
LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
<< '\n');
return false;
}
}
// We must also check for overlaps with regmask clobbers.
BitVector RegMaskUsable;
if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
!RegMaskUsable.test(DstReg)) {
LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
return false;
}
}
// Skip any value computations, we are not adding new values to the
// reserved register. Also skip merging the live ranges, the reserved
// register live range doesn't need to be accurate as long as all the
// defs are there.
// Delete the identity copy.
MachineInstr *CopyMI;
if (CP.isFlipped()) {
// Physreg is copied into vreg
// %y = COPY %physreg_x
// ... //< no other def of %physreg_x here
// use %y
// =>
// ...
// use %physreg_x
CopyMI = MRI->getVRegDef(SrcReg);
} else {
// VReg is copied into physreg:
// %y = def
// ... //< no other def or use of %physreg_x here
// %physreg_x = COPY %y
// =>
// %physreg_x = def
// ...
if (!MRI->hasOneNonDBGUse(SrcReg)) {
LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
return false;
}
if (!LIS->intervalIsInOneMBB(RHS)) {
LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
return false;
}
MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
if (!MRI->isConstantPhysReg(DstReg)) {
// We checked above that there are no interfering defs of the physical
// register. However, for this case, where we intend to move up the def of
// the physical register, we also need to check for interfering uses.
SlotIndexes *Indexes = LIS->getSlotIndexes();
for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
MachineInstr *MI = LIS->getInstructionFromIndex(SI);
if (MI->readsRegister(DstReg, TRI)) {
LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
return false;
}
}
}
// We're going to remove the copy which defines a physical reserved
// register, so remove its valno, etc.
LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
<< printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
// Create a new dead def at the new def location.
for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
LiveRange &LR = LIS->getRegUnit(*UI);
LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
}
}
deleteInstr(CopyMI);
// We don't track kills for reserved registers.
MRI->clearKillFlags(CP.getSrcReg());
return true;
}
//===----------------------------------------------------------------------===//
// Interference checking and interval joining
//===----------------------------------------------------------------------===//
//
// In the easiest case, the two live ranges being joined are disjoint, and
// there is no interference to consider. It is quite common, though, to have
// overlapping live ranges, and we need to check if the interference can be
// resolved.
//
// The live range of a single SSA value forms a sub-tree of the dominator tree.
// This means that two SSA values overlap if and only if the def of one value
// is contained in the live range of the other value. As a special case, the
// overlapping values can be defined at the same index.
//
// The interference from an overlapping def can be resolved in these cases:
//
// 1. Coalescable copies. The value is defined by a copy that would become an
// identity copy after joining SrcReg and DstReg. The copy instruction will
// be removed, and the value will be merged with the source value.
//
// There can be several copies back and forth, causing many values to be
// merged into one. We compute a list of ultimate values in the joined live
// range as well as a mappings from the old value numbers.
//
// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
// predecessors have a live out value. It doesn't cause real interference,
// and can be merged into the value it overlaps. Like a coalescable copy, it
// can be erased after joining.
//
// 3. Copy of external value. The overlapping def may be a copy of a value that
// is already in the other register. This is like a coalescable copy, but
// the live range of the source register must be trimmed after erasing the
// copy instruction:
//
// %src = COPY %ext
// %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
//
// 4. Clobbering undefined lanes. Vector registers are sometimes built by
// defining one lane at a time:
//
// %dst:ssub0<def,read-undef> = FOO
// %src = BAR
// %dst:ssub1 = COPY %src
//
// The live range of %src overlaps the %dst value defined by FOO, but
// merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
// which was undef anyway.
//
// The value mapping is more complicated in this case. The final live range
// will have different value numbers for both FOO and BAR, but there is no
// simple mapping from old to new values. It may even be necessary to add
// new PHI values.
//
// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
// is live, but never read. This can happen because we don't compute
// individual live ranges per lane.
//
// %dst = FOO
// %src = BAR
// %dst:ssub1 = COPY %src
//
// This kind of interference is only resolved locally. If the clobbered
// lane value escapes the block, the join is aborted.
namespace {
/// Track information about values in a single virtual register about to be
/// joined. Objects of this class are always created in pairs - one for each
/// side of the CoalescerPair (or one for each lane of a side of the coalescer
/// pair)
class JoinVals {
/// Live range we work on.
LiveRange &LR;
/// (Main) register we work on.
const unsigned Reg;
/// Reg (and therefore the values in this liverange) will end up as
/// subregister SubIdx in the coalesced register. Either CP.DstIdx or
/// CP.SrcIdx.
const unsigned SubIdx;
/// The LaneMask that this liverange will occupy the coalesced register. May
/// be smaller than the lanemask produced by SubIdx when merging subranges.
const LaneBitmask LaneMask;
/// This is true when joining sub register ranges, false when joining main
/// ranges.
const bool SubRangeJoin;
/// Whether the current LiveInterval tracks subregister liveness.
const bool TrackSubRegLiveness;
/// Values that will be present in the final live range.
SmallVectorImpl<VNInfo*> &NewVNInfo;
const CoalescerPair &CP;
LiveIntervals *LIS;
SlotIndexes *Indexes;
const TargetRegisterInfo *TRI;
/// Value number assignments. Maps value numbers in LI to entries in
/// NewVNInfo. This is suitable for passing to LiveInterval::join().
SmallVector<int, 8> Assignments;
public:
/// Conflict resolution for overlapping values.
enum ConflictResolution {
/// No overlap, simply keep this value.
CR_Keep,
/// Merge this value into OtherVNI and erase the defining instruction.
/// Used for IMPLICIT_DEF, coalescable copies, and copies from external
/// values.
CR_Erase,
/// Merge this value into OtherVNI but keep the defining instruction.
/// This is for the special case where OtherVNI is defined by the same
/// instruction.
CR_Merge,
/// Keep this value, and have it replace OtherVNI where possible. This
/// complicates value mapping since OtherVNI maps to two different values
/// before and after this def.
/// Used when clobbering undefined or dead lanes.
CR_Replace,
/// Unresolved conflict. Visit later when all values have been mapped.
CR_Unresolved,
/// Unresolvable conflict. Abort the join.
CR_Impossible
};
private:
/// Per-value info for LI. The lane bit masks are all relative to the final
/// joined register, so they can be compared directly between SrcReg and
/// DstReg.
struct Val {
ConflictResolution Resolution = CR_Keep;
/// Lanes written by this def, 0 for unanalyzed values.
LaneBitmask WriteLanes;
/// Lanes with defined values in this register. Other lanes are undef and
/// safe to clobber.
LaneBitmask ValidLanes;
/// Value in LI being redefined by this def.
VNInfo *RedefVNI = nullptr;
/// Value in the other live range that overlaps this def, if any.
VNInfo *OtherVNI = nullptr;
/// Is this value an IMPLICIT_DEF that can be erased?
///
/// IMPLICIT_DEF values should only exist at the end of a basic block that
/// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
/// safely erased if they are overlapping a live value in the other live
/// interval.
///
/// Weird control flow graphs and incomplete PHI handling in
/// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
/// longer live ranges. Such IMPLICIT_DEF values should be treated like
/// normal values.
bool ErasableImplicitDef = false;
/// True when the live range of this value will be pruned because of an
/// overlapping CR_Replace value in the other live range.
bool Pruned = false;
/// True once Pruned above has been computed.
bool PrunedComputed = false;
/// True if this value is determined to be identical to OtherVNI
/// (in valuesIdentical). This is used with CR_Erase where the erased
/// copy is redundant, i.e. the source value is already the same as
/// the destination. In such cases the subranges need to be updated
/// properly. See comment at pruneSubRegValues for more info.
bool Identical = false;
Val() = default;
bool isAnalyzed() const { return WriteLanes.any(); }
};
/// One entry per value number in LI.
SmallVector<Val, 8> Vals;
/// Compute the bitmask of lanes actually written by DefMI.
/// Set Redef if there are any partial register definitions that depend on the
/// previous value of the register.
LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
/// Find the ultimate value that VNI was copied from.
std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
/// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
/// Return a conflict resolution when possible, but leave the hard cases as
/// CR_Unresolved.
/// Recursively calls computeAssignment() on this and Other, guaranteeing that
/// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
/// The recursion always goes upwards in the dominator tree, making loops
/// impossible.
ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
/// Compute the value assignment for ValNo in RI.
/// This may be called recursively by analyzeValue(), but never for a ValNo on
/// the stack.
void computeAssignment(unsigned ValNo, JoinVals &Other);
/// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
/// the extent of the tainted lanes in the block.
///
/// Multiple values in Other.LR can be affected since partial redefinitions
/// can preserve previously tainted lanes.
///
/// 1 %dst = VLOAD <-- Define all lanes in %dst
/// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
/// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
/// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
///
/// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
/// entry to TaintedVals.
///
/// Returns false if the tainted lanes extend beyond the basic block.
bool
taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
/// Return true if MI uses any of the given Lanes from Reg.
/// This does not include partial redefinitions of Reg.
bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
/// Determine if ValNo is a copy of a value number in LR or Other.LR that will
/// be pruned:
///
/// %dst = COPY %src
/// %src = COPY %dst <-- This value to be pruned.
/// %dst = COPY %src <-- This value is a copy of a pruned value.
bool isPrunedValue(unsigned ValNo, JoinVals &Other);
public:
JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
bool TrackSubRegLiveness)
: LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
/// Analyze defs in LR and compute a value mapping in NewVNInfo.
/// Returns false if any conflicts were impossible to resolve.
bool mapValues(JoinVals &Other);
/// Try to resolve conflicts that require all values to be mapped.
/// Returns false if any conflicts were impossible to resolve.
bool resolveConflicts(JoinVals &Other);
/// Prune the live range of values in Other.LR where they would conflict with
/// CR_Replace values in LR. Collect end points for restoring the live range
/// after joining.
void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
bool changeInstrs);
/// Removes subranges starting at copies that get removed. This sometimes
/// happens when undefined subranges are copied around. These ranges contain
/// no useful information and can be removed.
void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
/// Pruning values in subranges can lead to removing segments in these
/// subranges started by IMPLICIT_DEFs. The corresponding segments in
/// the main range also need to be removed. This function will mark
/// the corresponding values in the main range as pruned, so that
/// eraseInstrs can do the final cleanup.
/// The parameter @p LI must be the interval whose main range is the
/// live range LR.
void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
/// Erase any machine instructions that have been coalesced away.
/// Add erased instructions to ErasedInstrs.
/// Add foreign virtual registers to ShrinkRegs if their live range ended at
/// the erased instrs.
void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
SmallVectorImpl<Register> &ShrinkRegs,
LiveInterval *LI = nullptr);
/// Remove liverange defs at places where implicit defs will be removed.
void removeImplicitDefs();
/// Get the value assignments suitable for passing to LiveInterval::join.
const int *getAssignments() const { return Assignments.data(); }
/// Get the conflict resolution for a value number.
ConflictResolution getResolution(unsigned Num) const {
return Vals[Num].Resolution;
}
};
} // end anonymous namespace
LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
const {
LaneBitmask L;
for (const MachineOperand &MO : DefMI->operands()) {
if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
continue;
L |= TRI->getSubRegIndexLaneMask(
TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
if (MO.readsReg())
Redef = true;
}
return L;
}
std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
const VNInfo *VNI) const {
unsigned TrackReg = Reg;
while (!VNI->isPHIDef()) {
SlotIndex Def = VNI->def;
MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
assert(MI && "No defining instruction");
if (!MI->isFullCopy())
return std::make_pair(VNI, TrackReg);
Register SrcReg = MI->getOperand(1).getReg();
if (!Register::isVirtualRegister(SrcReg))
return std::make_pair(VNI, TrackReg);
const LiveInterval &LI = LIS->getInterval(SrcReg);
const VNInfo *ValueIn;
// No subrange involved.
if (!SubRangeJoin || !LI.hasSubRanges()) {
LiveQueryResult LRQ = LI.Query(Def);
ValueIn = LRQ.valueIn();
} else {
// Query subranges. Ensure that all matching ones take us to the same def
// (allowing some of them to be undef).
ValueIn = nullptr;
for (const LiveInterval::SubRange &S : LI.subranges()) {
// Transform lanemask to a mask in the joined live interval.
LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
if ((SMask & LaneMask).none())
continue;
LiveQueryResult LRQ = S.Query(Def);
if (!ValueIn) {
ValueIn = LRQ.valueIn();
continue;
}
if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
return std::make_pair(VNI, TrackReg);
}
}
if (ValueIn == nullptr) {
// Reaching an undefined value is legitimate, for example:
//
// 1 undef %0.sub1 = ... ;; %0.sub0 == undef
// 2 %1 = COPY %0 ;; %1 is defined here.
// 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
// ;; but it's equivalent to "undef".
return std::make_pair(nullptr, SrcReg);
}
VNI = ValueIn;
TrackReg = SrcReg;
}
return std::make_pair(VNI, TrackReg);
}
bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
const JoinVals &Other) const {
const VNInfo *Orig0;
unsigned Reg0;
std::tie(Orig0, Reg0) = followCopyChain(Value0);
if (Orig0 == Value1 && Reg0 == Other.Reg)
return true;
const VNInfo *Orig1;
unsigned Reg1;
std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
// If both values are undefined, and the source registers are the same
// register, the values are identical. Filter out cases where only one
// value is defined.
if (Orig0 == nullptr || Orig1 == nullptr)
return Orig0 == Orig1 && Reg0 == Reg1;
// The values are equal if they are defined at the same place and use the
// same register. Note that we cannot compare VNInfos directly as some of
// them might be from a copy created in mergeSubRangeInto() while the other
// is from the original LiveInterval.
return Orig0->def == Orig1->def && Reg0 == Reg1;
}
JoinVals::ConflictResolution
JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
Val &V = Vals[ValNo];
assert(!V.isAnalyzed() && "Value has already been analyzed!");
VNInfo *VNI = LR.getValNumInfo(ValNo);
if (VNI->isUnused()) {
V.WriteLanes = LaneBitmask::getAll();
return CR_Keep;
}
// Get the instruction defining this value, compute the lanes written.
const MachineInstr *DefMI = nullptr;
if (VNI->isPHIDef()) {
// Conservatively assume that all lanes in a PHI are valid.
LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
: TRI->getSubRegIndexLaneMask(SubIdx);
V.ValidLanes = V.WriteLanes = Lanes;
} else {
DefMI = Indexes->getInstructionFromIndex(VNI->def);
assert(DefMI != nullptr);
if (SubRangeJoin) {
// We don't care about the lanes when joining subregister ranges.
V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
if (DefMI->isImplicitDef()) {
V.ValidLanes = LaneBitmask::getNone();
V.ErasableImplicitDef = true;
}
} else {
bool Redef = false;
V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
// If this is a read-modify-write instruction, there may be more valid
// lanes than the ones written by this instruction.
// This only covers partial redef operands. DefMI may have normal use
// operands reading the register. They don't contribute valid lanes.
//
// This adds ssub1 to the set of valid lanes in %src:
//
// %src:ssub1 = FOO
//
// This leaves only ssub1 valid, making any other lanes undef:
//
// %src:ssub1<def,read-undef> = FOO %src:ssub2
//
// The <read-undef> flag on the def operand means that old lane values are
// not important.
if (Redef) {
V.RedefVNI = LR.Query(VNI->def).valueIn();
assert((TrackSubRegLiveness || V.RedefVNI) &&
"Instruction is reading nonexistent value");
if (V.RedefVNI != nullptr) {
computeAssignment(V.RedefVNI->id, Other);
V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
}
}
// An IMPLICIT_DEF writes undef values.
if (DefMI->isImplicitDef()) {
// We normally expect IMPLICIT_DEF values to be live only until the end
// of their block. If the value is really live longer and gets pruned in
// another block, this flag is cleared again.
//
// Clearing the valid lanes is deferred until it is sure this can be
// erased.
V.ErasableImplicitDef = true;
}
}
}
// Find the value in Other that overlaps VNI->def, if any.
LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
// It is possible that both values are defined by the same instruction, or
// the values are PHIs defined in the same block. When that happens, the two
// values should be merged into one, but not into any preceding value.
// The first value defined or visited gets CR_Keep, the other gets CR_Merge.
if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
// One value stays, the other is merged. Keep the earlier one, or the first
// one we see.
if (OtherVNI->def < VNI->def)
Other.computeAssignment(OtherVNI->id, *this);
else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
// This is an early-clobber def overlapping a live-in value in the other
// register. Not mergeable.
V.OtherVNI = OtherLRQ.valueIn();
return CR_Impossible;
}
V.OtherVNI = OtherVNI;
Val &OtherV = Other.Vals[OtherVNI->id];
// Keep this value, check for conflicts when analyzing OtherVNI.
if (!OtherV.isAnalyzed())
return CR_Keep;
// Both sides have been analyzed now.
// Allow overlapping PHI values. Any real interference would show up in a
// predecessor, the PHI itself can't introduce any conflicts.
if (VNI->isPHIDef())
return CR_Merge;
if ((V.ValidLanes & OtherV.ValidLanes).any())
// Overlapping lanes can't be resolved.
return CR_Impossible;
else
return CR_Merge;
}
// No simultaneous def. Is Other live at the def?
V.OtherVNI = OtherLRQ.valueIn();
if (!V.OtherVNI)
// No overlap, no conflict.
return CR_Keep;
assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
// We have overlapping values, or possibly a kill of Other.
// Recursively compute assignments up the dominator tree.
Other.computeAssignment(V.OtherVNI->id, *this);
Val &OtherV = Other.Vals[V.OtherVNI->id];
if (OtherV.ErasableImplicitDef) {
// Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
// This shouldn't normally happen, but ProcessImplicitDefs can leave such
// IMPLICIT_DEF instructions behind, and there is nothing wrong with it
// technically.
//
// When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
// to erase the IMPLICIT_DEF instruction.
if (DefMI &&
DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
<< " extends into "
<< printMBBReference(*DefMI->getParent())
<< ", keeping it.\n");
OtherV.ErasableImplicitDef = false;
} else {
// We deferred clearing these lanes in case we needed to save them
OtherV.ValidLanes &= ~OtherV.WriteLanes;
}
}
// Allow overlapping PHI values. Any real interference would show up in a
// predecessor, the PHI itself can't introduce any conflicts.
if (VNI->isPHIDef())
return CR_Replace;
// Check for simple erasable conflicts.
if (DefMI->isImplicitDef())
return CR_Erase;
// Include the non-conflict where DefMI is a coalescable copy that kills
// OtherVNI. We still want the copy erased and value numbers merged.
if (CP.isCoalescable(DefMI)) {
// Some of the lanes copied from OtherVNI may be undef, making them undef
// here too.
V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
return CR_Erase;
}
// This may not be a real conflict if DefMI simply kills Other and defines
// VNI.
if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
return CR_Keep;
// Handle the case where VNI and OtherVNI can be proven to be identical:
//
// %other = COPY %ext
// %this = COPY %ext <-- Erase this copy
//
if (DefMI->isFullCopy() && !CP.isPartial() &&
valuesIdentical(VNI, V.OtherVNI, Other)) {
V.Identical = true;
return CR_Erase;
}
// The remaining checks apply to the lanes, which aren't tracked here. This
// was already decided to be OK via the following CR_Replace condition.
// CR_Replace.
if (SubRangeJoin)
return CR_Replace;
// If the lanes written by this instruction were all undef in OtherVNI, it is
// still safe to join the live ranges. This can't be done with a simple value
// mapping, though - OtherVNI will map to multiple values:
//
// 1 %dst:ssub0 = FOO <-- OtherVNI
// 2 %src = BAR <-- VNI
// 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
// 4 BAZ killed %dst
// 5 QUUX killed %src
//
// Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
// handles this complex value mapping.
if ((V.WriteLanes & OtherV.ValidLanes).none())
return CR_Replace;
// If the other live range is killed by DefMI and the live ranges are still
// overlapping, it must be because we're looking at an early clobber def:
//
// %dst<def,early-clobber> = ASM killed %src
//
// In this case, it is illegal to merge the two live ranges since the early
// clobber def would clobber %src before it was read.
if (OtherLRQ.isKill()) {
// This case where the def doesn't overlap the kill is handled above.
assert(VNI->def.isEarlyClobber() &&
"Only early clobber defs can overlap a kill");
return CR_Impossible;
}
// VNI is clobbering live lanes in OtherVNI, but there is still the
// possibility that no instructions actually read the clobbered lanes.
// If we're clobbering all the lanes in OtherVNI, at least one must be read.
// Otherwise Other.RI wouldn't be live here.
if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
return CR_Impossible;
// We need to verify that no instructions are reading the clobbered lanes. To
// save compile time, we'll only check that locally. Don't allow the tainted
// value to escape the basic block.
MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
return CR_Impossible;
// There are still some things that could go wrong besides clobbered lanes
// being read, for example OtherVNI may be only partially redefined in MBB,
// and some clobbered lanes could escape the block. Save this analysis for
// resolveConflicts() when all values have been mapped. We need to know
// RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
// that now - the recursive analyzeValue() calls must go upwards in the
// dominator tree.
return CR_Unresolved;
}
void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
Val &V = Vals[ValNo];
if (V.isAnalyzed()) {
// Recursion should always move up the dominator tree, so ValNo is not
// supposed to reappear before it has been assigned.
assert(Assignments[ValNo] != -1 && "Bad recursion?");
return;
}
switch ((V.Resolution = analyzeValue(ValNo, Other))) {
case CR_Erase:
case CR_Merge:
// Merge this ValNo into OtherVNI.
assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
<< LR.getValNumInfo(ValNo)->def << " into "
<< printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
<< V.OtherVNI->def << " --> @"
<< NewVNInfo[Assignments[ValNo]]->def << '\n');
break;
case CR_Replace:
case CR_Unresolved: {
// The other value is going to be pruned if this join is successful.
assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
Val &OtherV = Other.Vals[V.OtherVNI->id];
// We cannot erase an IMPLICIT_DEF if we don't have valid values for all
// its lanes.
if (OtherV.ErasableImplicitDef &&
TrackSubRegLiveness &&
(OtherV.WriteLanes & ~V.ValidLanes).any()) {
LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
OtherV.ErasableImplicitDef = false;
// The valid lanes written by the implicit_def were speculatively cleared
// before, so make this more conservative. It may be better to track this,
// I haven't found a testcase where it matters.
OtherV.ValidLanes = LaneBitmask::getAll();
}
OtherV.Pruned = true;
LLVM_FALLTHROUGH;
}
default:
// This value number needs to go in the final joined live range.
Assignments[ValNo] = NewVNInfo.size();
NewVNInfo.push_back(LR.getValNumInfo(ValNo));
break;
}
}
bool JoinVals::mapValues(JoinVals &Other) {
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
computeAssignment(i, Other);
if (Vals[i].Resolution == CR_Impossible) {
LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
<< '@' << LR.getValNumInfo(i)->def << '\n');
return false;
}
}
return true;
}
bool JoinVals::
taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
VNInfo *VNI = LR.getValNumInfo(ValNo);
MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
// Scan Other.LR from VNI.def to MBBEnd.
LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
assert(OtherI != Other.LR.end() && "No conflict?");
do {
// OtherI is pointing to a tainted value. Abort the join if the tainted
// lanes escape the block.
SlotIndex End = OtherI->end;
if (End >= MBBEnd) {
LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
<< OtherI->valno->id << '@' << OtherI->start << '\n');
return false;
}
LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
<< OtherI->valno->id << '@' << OtherI->start << " to "
<< End << '\n');
// A dead def is not a problem.
if (End.isDead())
break;
TaintExtent.push_back(std::make_pair(End, TaintedLanes));
// Check for another def in the MBB.
if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
break;
// Lanes written by the new def are no longer tainted.
const Val &OV = Other.Vals[OtherI->valno->id];
TaintedLanes &= ~OV.WriteLanes;
if (!OV.RedefVNI)
break;
} while (TaintedLanes.any());
return true;
}
bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
LaneBitmask Lanes) const {
if (MI.isDebugInstr())
return false;
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
continue;
if (!MO.readsReg())
continue;
unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
return true;
}
return false;
}
bool JoinVals::resolveConflicts(JoinVals &Other) {
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
Val &V = Vals[i];
assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
if (V.Resolution != CR_Unresolved)
continue;
LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
<< LR.getValNumInfo(i)->def
<< ' ' << PrintLaneMask(LaneMask) << '\n');
if (SubRangeJoin)
return false;
++NumLaneConflicts;
assert(V.OtherVNI && "Inconsistent conflict resolution.");
VNInfo *VNI = LR.getValNumInfo(i);
const Val &OtherV = Other.Vals[V.OtherVNI->id];
// VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
// join, those lanes will be tainted with a wrong value. Get the extent of
// the tainted lanes.
LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
// Tainted lanes would extend beyond the basic block.
return false;
assert(!TaintExtent.empty() && "There should be at least one conflict.");
// Now look at the instructions from VNI->def to TaintExtent (inclusive).
MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
MachineBasicBlock::iterator MI = MBB->begin();
if (!VNI->isPHIDef()) {
MI = Indexes->getInstructionFromIndex(VNI->def);
// No need to check the instruction defining VNI for reads.
++MI;
}
assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
"Interference ends on VNI->def. Should have been handled earlier");
MachineInstr *LastMI =
Indexes->getInstructionFromIndex(TaintExtent.front().first);
assert(LastMI && "Range must end at a proper instruction");
unsigned TaintNum = 0;
while (true) {
assert(MI != MBB->end() && "Bad LastMI");
if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
return false;
}
// LastMI is the last instruction to use the current value.
if (&*MI == LastMI) {
if (++TaintNum == TaintExtent.size())
break;
LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
assert(LastMI && "Range must end at a proper instruction");
TaintedLanes = TaintExtent[TaintNum].second;
}
++MI;
}
// The tainted lanes are unused.
V.Resolution = CR_Replace;
++NumLaneResolves;
}
return true;
}
bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
Val &V = Vals[ValNo];
if (V.Pruned || V.PrunedComputed)
return V.Pruned;
if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
return V.Pruned;
// Follow copies up the dominator tree and check if any intermediate value
// has been pruned.
V.PrunedComputed = true;
V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
return V.Pruned;
}
void JoinVals::pruneValues(JoinVals &Other,
SmallVectorImpl<SlotIndex> &EndPoints,
bool changeInstrs) {
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
SlotIndex Def = LR.getValNumInfo(i)->def;
switch (Vals[i].Resolution) {
case CR_Keep:
break;
case CR_Replace: {
// This value takes precedence over the value in Other.LR.
LIS->pruneValue(Other.LR, Def, &EndPoints);
// Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
// instructions are only inserted to provide a live-out value for PHI
// predecessors, so the instruction should simply go away once its value
// has been replaced.
Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
bool EraseImpDef = OtherV.ErasableImplicitDef &&
OtherV.Resolution == CR_Keep;
if (!Def.isBlock()) {
if (changeInstrs) {
// Remove <def,read-undef> flags. This def is now a partial redef.
// Also remove dead flags since the joined live range will
// continue past this instruction.
for (MachineOperand &MO :
Indexes->getInstructionFromIndex(Def)->operands()) {
if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
MO.setIsUndef(false);
MO.setIsDead(false);
}
}
}
// This value will reach instructions below, but we need to make sure
// the live range also reaches the instruction at Def.
if (!EraseImpDef)
EndPoints.push_back(Def);
}
LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
<< ": " << Other.LR << '\n');
break;
}
case CR_Erase:
case CR_Merge:
if (isPrunedValue(i, Other)) {
// This value is ultimately a copy of a pruned value in LR or Other.LR.
// We can no longer trust the value mapping computed by
// computeAssignment(), the value that was originally copied could have
// been replaced.
LIS->pruneValue(LR, Def, &EndPoints);
LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
<< Def << ": " << LR << '\n');
}
break;
case CR_Unresolved:
case CR_Impossible:
llvm_unreachable("Unresolved conflicts");
}
}
}
/// Consider the following situation when coalescing the copy between
/// %31 and %45 at 800. (The vertical lines represent live range segments.)
///
/// Main range Subrange 0004 (sub2)
/// %31 %45 %31 %45
/// 544 %45 = COPY %28 + +
/// | v1 | v1
/// 560B bb.1: + +
/// 624 = %45.sub2 | v2 | v2
/// 800 %31 = COPY %45 + + + +
/// | v0 | v0
/// 816 %31.sub1 = ... + |
/// 880 %30 = COPY %31 | v1 +
/// 928 %45 = COPY %30 | + +
/// | | v0 | v0 <--+
/// 992B ; backedge -> bb.1 | + + |
/// 1040 = %31.sub0 + |
/// This value must remain
/// live-out!
///
/// Assuming that %31 is coalesced into %45, the copy at 928 becomes
/// redundant, since it copies the value from %45 back into it. The
/// conflict resolution for the main range determines that %45.v0 is
/// to be erased, which is ok since %31.v1 is identical to it.
/// The problem happens with the subrange for sub2: it has to be live
/// on exit from the block, but since 928 was actually a point of
/// definition of %45.sub2, %45.sub2 was not live immediately prior
/// to that definition. As a result, when 928 was erased, the value v0
/// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
/// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
/// providing an incorrect value to the use at 624.
///
/// Since the main-range values %31.v1 and %45.v0 were proved to be
/// identical, the corresponding values in subranges must also be the
/// same. A redundant copy is removed because it's not needed, and not
/// because it copied an undefined value, so any liveness that originated
/// from that copy cannot disappear. When pruning a value that started
/// at the removed copy, the corresponding identical value must be
/// extended to replace it.
void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
// Look for values being erased.
bool DidPrune = false;
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
Val &V = Vals[i];
// We should trigger in all cases in which eraseInstrs() does something.
// match what eraseInstrs() is doing, print a message so
if (V.Resolution != CR_Erase &&
(V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
continue;
// Check subranges at the point where the copy will be removed.
SlotIndex Def = LR.getValNumInfo(i)->def;
SlotIndex OtherDef;
if (V.Identical)
OtherDef = V.OtherVNI->def;
// Print message so mismatches with eraseInstrs() can be diagnosed.
LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
<< '\n');
for (LiveInterval::SubRange &S : LI.subranges()) {
LiveQueryResult Q = S.Query(Def);
// If a subrange starts at the copy then an undefined value has been
// copied and we must remove that subrange value as well.
VNInfo *ValueOut = Q.valueOutOrDead();
if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
(V.Identical && V.Resolution == CR_Erase &&
ValueOut->def == Def))) {
LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
<< " at " << Def << "\n");
SmallVector<SlotIndex,8> EndPoints;
LIS->pruneValue(S, Def, &EndPoints);
DidPrune = true;
// Mark value number as unused.
ValueOut->markUnused();
if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
// If V is identical to V.OtherVNI (and S was live at OtherDef),
// then we can't simply prune V from S. V needs to be replaced
// with V.OtherVNI.
LIS->extendToIndices(S, EndPoints);
}
continue;
}
// If a subrange ends at the copy, then a value was copied but only
// partially used later. Shrink the subregister range appropriately.
if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
<< PrintLaneMask(S.LaneMask) << " at " << Def
<< "\n");
ShrinkMask |= S.LaneMask;
}
}
}
if (DidPrune)
LI.removeEmptySubRanges();
}
/// Check if any of the subranges of @p LI contain a definition at @p Def.
static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
for (LiveInterval::SubRange &SR : LI.subranges()) {
if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
if (VNI->def == Def)
return true;
}
return false;
}
void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
assert(&static_cast<LiveRange&>(LI) == &LR);
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
if (Vals[i].Resolution != CR_Keep)
continue;
VNInfo *VNI = LR.getValNumInfo(i);
if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
continue;
Vals[i].Pruned = true;
ShrinkMainRange = true;
}
}
void JoinVals::removeImplicitDefs() {
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
Val &V = Vals[i];
if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
continue;
VNInfo *VNI = LR.getValNumInfo(i);
VNI->markUnused();
LR.removeValNo(VNI);
}
}
void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
SmallVectorImpl<Register> &ShrinkRegs,
LiveInterval *LI) {
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
// Get the def location before markUnused() below invalidates it.
VNInfo *VNI = LR.getValNumInfo(i);
SlotIndex Def = VNI->def;
switch (Vals[i].Resolution) {
case CR_Keep: {
// If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
// longer. The IMPLICIT_DEF instructions are only inserted by
// PHIElimination to guarantee that all PHI predecessors have a value.
if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
break;
// Remove value number i from LR.
// For intervals with subranges, removing a segment from the main range
// may require extending the previous segment: for each definition of
// a subregister, there will be a corresponding def in the main range.
// That def may fall in the middle of a segment from another subrange.
// In such cases, removing this def from the main range must be
// complemented by extending the main range to account for the liveness
// of the other subrange.
// The new end point of the main range segment to be extended.
SlotIndex NewEnd;
if (LI != nullptr) {
LiveRange::iterator I = LR.FindSegmentContaining(Def);
assert(I != LR.end());
// Do not extend beyond the end of the segment being removed.
// The segment may have been pruned in preparation for joining
// live ranges.
NewEnd = I->end;
}
LR.removeValNo(VNI);
// Note that this VNInfo is reused and still referenced in NewVNInfo,
// make it appear like an unused value number.
VNI->markUnused();
if (LI != nullptr && LI->hasSubRanges()) {
assert(static_cast<LiveRange*>(LI) == &LR);
// Determine the end point based on the subrange information:
// minimum of (earliest def of next segment,
// latest end point of containing segment)
SlotIndex ED, LE;
for (LiveInterval::SubRange &SR : LI->subranges()) {
LiveRange::iterator I = SR.find(Def);
if (I == SR.end())
continue;
if (I->start > Def)
ED = ED.isValid() ? std::min(ED, I->start) : I->start;
else
LE = LE.isValid() ? std::max(LE, I->end) : I->end;
}
if (LE.isValid())
NewEnd = std::min(NewEnd, LE);
if (ED.isValid())
NewEnd = std::min(NewEnd, ED);
// We only want to do the extension if there was a subrange that
// was live across Def.
if (LE.isValid()) {
LiveRange::iterator S = LR.find(Def);
if (S != LR.begin())
std::prev(S)->end = NewEnd;
}
}
LLVM_DEBUG({
dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
if (LI != nullptr)
dbgs() << "\t\t LHS = " << *LI << '\n';
});
LLVM_FALLTHROUGH;
}
case CR_Erase: {
MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
assert(MI && "No instruction to erase");
if (MI->isCopy()) {
Register Reg = MI->getOperand(1).getReg();
if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
Reg != CP.getDstReg())
ShrinkRegs.push_back(Reg);
}
ErasedInstrs.insert(MI);
LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
LIS->RemoveMachineInstrFromMaps(*MI);
MI->eraseFromParent();
break;
}
default:
break;
}
}
}
void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
LaneBitmask LaneMask,
const CoalescerPair &CP) {
SmallVector<VNInfo*, 16> NewVNInfo;
JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
NewVNInfo, CP, LIS, TRI, true, true);
JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
NewVNInfo, CP, LIS, TRI, true, true);
// Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
// We should be able to resolve all conflicts here as we could successfully do
// it on the mainrange already. There is however a problem when multiple
// ranges get mapped to the "overflow" lane mask bit which creates unexpected
// interferences.
if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
// We already determined that it is legal to merge the intervals, so this
// should never fail.
llvm_unreachable("*** Couldn't join subrange!\n");
}
if (!LHSVals.resolveConflicts(RHSVals) ||
!RHSVals.resolveConflicts(LHSVals)) {
// We already determined that it is legal to merge the intervals, so this
// should never fail.
llvm_unreachable("*** Couldn't join subrange!\n");
}
// The merging algorithm in LiveInterval::join() can't handle conflicting
// value mappings, so we need to remove any live ranges that overlap a
// CR_Replace resolution. Collect a set of end points that can be used to
// restore the live range after joining.
SmallVector<SlotIndex, 8> EndPoints;
LHSVals.pruneValues(RHSVals, EndPoints, false);
RHSVals.pruneValues(LHSVals, EndPoints, false);
LHSVals.removeImplicitDefs();
RHSVals.removeImplicitDefs();
LRange.verify();
RRange.verify();
// Join RRange into LHS.
LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
NewVNInfo);
LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
<< ' ' << LRange << "\n");
if (EndPoints.empty())
return;
// Recompute the parts of the live range we had to remove because of
// CR_Replace conflicts.
LLVM_DEBUG({
dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
dbgs() << EndPoints[i];
if (i != n-1)
dbgs() << ',';
}
dbgs() << ": " << LRange << '\n';
});
LIS->extendToIndices(LRange, EndPoints);
}
void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
const LiveRange &ToMerge,
LaneBitmask LaneMask,
CoalescerPair &CP,
unsigned ComposeSubRegIdx) {
BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
LI.refineSubRanges(
Allocator, LaneMask,
[this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
if (SR.empty()) {
SR.assign(ToMerge, Allocator);
} else {
// joinSubRegRange() destroys the merged range, so we need a copy.
LiveRange RangeCopy(ToMerge, Allocator);
joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
}
},
*LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
}
bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
if (LI.valnos.size() < LargeIntervalSizeThreshold)
return false;
auto &Counter = LargeLIVisitCounter[LI.reg()];
if (Counter < LargeIntervalFreqThreshold) {
Counter++;
return false;
}
return true;
}
bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
SmallVector<VNInfo*, 16> NewVNInfo;
LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
return false;
// First compute NewVNInfo and the simple value mappings.
// Detect impossible conflicts early.
if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
return false;
// Some conflicts can only be resolved after all values have been mapped.
if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
return false;
// All clear, the live ranges can be merged.
if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
// Transform lanemasks from the LHS to masks in the coalesced register and
// create initial subranges if necessary.
unsigned DstIdx = CP.getDstIdx();
if (!LHS.hasSubRanges()) {
LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
: TRI->getSubRegIndexLaneMask(DstIdx);
// LHS must support subregs or we wouldn't be in this codepath.
assert(Mask.any());
LHS.createSubRangeFrom(Allocator, Mask, LHS);
} else if (DstIdx != 0) {
// Transform LHS lanemasks to new register class if necessary.
for (LiveInterval::SubRange &R : LHS.subranges()) {
LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
R.LaneMask = Mask;
}
}
LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
<< '\n');
// Determine lanemasks of RHS in the coalesced register and merge subranges.
unsigned SrcIdx = CP.getSrcIdx();
if (!RHS.hasSubRanges()) {
LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
: TRI->getSubRegIndexLaneMask(SrcIdx);
mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
} else {
// Pair up subranges and merge.
for (LiveInterval::SubRange &R : RHS.subranges()) {
LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
}
}
LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
// Pruning implicit defs from subranges may result in the main range
// having stale segments.
LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
LHSVals.pruneSubRegValues(LHS, ShrinkMask);
RHSVals.pruneSubRegValues(LHS, ShrinkMask);
}
// The merging algorithm in LiveInterval::join() can't handle conflicting
// value mappings, so we need to remove any live ranges that overlap a
// CR_Replace resolution. Collect a set of end points that can be used to
// restore the live range after joining.
SmallVector<SlotIndex, 8> EndPoints;
LHSVals.pruneValues(RHSVals, EndPoints, true);
RHSVals.pruneValues(LHSVals, EndPoints, true);
// Erase COPY and IMPLICIT_DEF instructions. This may cause some external
// registers to require trimming.
SmallVector<Register, 8> ShrinkRegs;
LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
while (!ShrinkRegs.empty())
shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
// Scan and mark undef any DBG_VALUEs that would refer to a different value.
checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
// Join RHS into LHS.
LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
// Kill flags are going to be wrong if the live ranges were overlapping.
// Eventually, we should simply clear all kill flags when computing live
// ranges. They are reinserted after register allocation.
MRI->clearKillFlags(LHS.reg());
MRI->clearKillFlags(RHS.reg());
if (!EndPoints.empty()) {
// Recompute the parts of the live range we had to remove because of
// CR_Replace conflicts.
LLVM_DEBUG({
dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
dbgs() << EndPoints[i];
if (i != n-1)
dbgs() << ',';
}
dbgs() << ": " << LHS << '\n';
});
LIS->extendToIndices((LiveRange&)LHS, EndPoints);
}
return true;
}
bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
}
void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
{
const SlotIndexes &Slots = *LIS->getSlotIndexes();
SmallVector<MachineInstr *, 8> ToInsert;
// After collecting a block of DBG_VALUEs into ToInsert, enter them into the
// vreg => DbgValueLoc map.
auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
for (auto *X : ToInsert)
DbgVRegToValues[X->getDebugOperand(0).getReg()].push_back({Slot, X});
ToInsert.clear();
};
// Iterate over all instructions, collecting them into the ToInsert vector.
// Once a non-debug instruction is found, record the slot index of the
// collected DBG_VALUEs.
for (auto &MBB : MF) {
SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
for (auto &MI : MBB) {
if (MI.isDebugValue() && MI.getDebugOperand(0).isReg() &&
MI.getDebugOperand(0).getReg().isVirtual()) {
ToInsert.push_back(&MI);
} else if (!MI.isDebugInstr()) {
CurrentSlot = Slots.getInstructionIndex(MI);
CloseNewDVRange(CurrentSlot);
}
}
// Close range of DBG_VALUEs at the end of blocks.
CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
}
// Sort all DBG_VALUEs we've seen by slot number.
for (auto &Pair : DbgVRegToValues)
llvm::sort(Pair.second);
}
void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
LiveRange &LHS,
JoinVals &LHSVals,
LiveRange &RHS,
JoinVals &RHSVals) {
auto ScanForDstReg = [&](unsigned Reg) {
checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
};
auto ScanForSrcReg = [&](unsigned Reg) {
checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
};
// Scan for potentially unsound DBG_VALUEs: examine first the register number
// Reg, and then any other vregs that may have been merged into it.
auto PerformScan = [this](unsigned Reg, std::function<void(unsigned)> Func) {
Func(Reg);
if (DbgMergedVRegNums.count(Reg))
for (unsigned X : DbgMergedVRegNums[Reg])
Func(X);
};
// Scan for unsound updates of both the source and destination register.
PerformScan(CP.getSrcReg(), ScanForSrcReg);
PerformScan(CP.getDstReg(), ScanForDstReg);
}
void RegisterCoalescer::checkMergingChangesDbgValuesImpl(unsigned Reg,
LiveRange &OtherLR,
LiveRange &RegLR,
JoinVals &RegVals) {
// Are there any DBG_VALUEs to examine?
auto VRegMapIt = DbgVRegToValues.find(Reg);
if (VRegMapIt == DbgVRegToValues.end())
return;
auto &DbgValueSet = VRegMapIt->second;
auto DbgValueSetIt = DbgValueSet.begin();
auto SegmentIt = OtherLR.begin();
bool LastUndefResult = false;
SlotIndex LastUndefIdx;
// If the "Other" register is live at a slot Idx, test whether Reg can
// safely be merged with it, or should be marked undef.
auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
&LastUndefIdx](SlotIndex Idx) -> bool {
// Our worst-case performance typically happens with asan, causing very
// many DBG_VALUEs of the same location. Cache a copy of the most recent
// result for this edge-case.
if (LastUndefIdx == Idx)
return LastUndefResult;
// If the other range was live, and Reg's was not, the register coalescer
// will not have tried to resolve any conflicts. We don't know whether
// the DBG_VALUE will refer to the same value number, so it must be made
// undef.
auto OtherIt = RegLR.find(Idx);
if (OtherIt == RegLR.end())
return true;
// Both the registers were live: examine the conflict resolution record for
// the value number Reg refers to. CR_Keep meant that this value number
// "won" and the merged register definitely refers to that value. CR_Erase
// means the value number was a redundant copy of the other value, which
// was coalesced and Reg deleted. It's safe to refer to the other register
// (which will be the source of the copy).
auto Resolution = RegVals.getResolution(OtherIt->valno->id);
LastUndefResult = Resolution != JoinVals::CR_Keep &&
Resolution != JoinVals::CR_Erase;
LastUndefIdx = Idx;
return LastUndefResult;
};
// Iterate over both the live-range of the "Other" register, and the set of
// DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
// slot index. This relies on the DbgValueSet being ordered.
while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
if (DbgValueSetIt->first < SegmentIt->end) {
// "Other" is live and there is a DBG_VALUE of Reg: test if we should
// set it undef.
if (DbgValueSetIt->first >= SegmentIt->start &&
DbgValueSetIt->second->getDebugOperand(0).getReg() != 0 &&
ShouldUndef(DbgValueSetIt->first)) {
// Mark undef, erase record of this DBG_VALUE to avoid revisiting.
DbgValueSetIt->second->setDebugValueUndef();
continue;
}
++DbgValueSetIt;
} else {
++SegmentIt;
}
}
}
namespace {
/// Information concerning MBB coalescing priority.
struct MBBPriorityInfo {
MachineBasicBlock *MBB;
unsigned Depth;
bool IsSplit;
MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
: MBB(mbb), Depth(depth), IsSplit(issplit) {}
};
} // end anonymous namespace
/// C-style comparator that sorts first based on the loop depth of the basic
/// block (the unsigned), and then on the MBB number.
///
/// EnableGlobalCopies assumes that the primary sort key is loop depth.
static int compareMBBPriority(const MBBPriorityInfo *LHS,
const MBBPriorityInfo *RHS) {
// Deeper loops first
if (LHS->Depth != RHS->Depth)
return LHS->Depth > RHS->Depth ? -1 : 1;
// Try to unsplit critical edges next.
if (LHS->IsSplit != RHS->IsSplit)
return LHS->IsSplit ? -1 : 1;
// Prefer blocks that are more connected in the CFG. This takes care of
// the most difficult copies first while intervals are short.
unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
if (cl != cr)
return cl > cr ? -1 : 1;
// As a last resort, sort by block number.
return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
}
/// \returns true if the given copy uses or defines a local live range.
static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
if (!Copy->isCopy())
return false;
if (Copy->getOperand(1).isUndef())
return false;
Register SrcReg = Copy->getOperand(1).getReg();
Register DstReg = Copy->getOperand(0).getReg();
if (Register::isPhysicalRegister(SrcReg) ||
Register::isPhysicalRegister(DstReg))
return false;
return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
|| LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
}
void RegisterCoalescer::lateLiveIntervalUpdate() {
for (unsigned reg : ToBeUpdated) {
if (!LIS->hasInterval(reg))
continue;
LiveInterval &LI = LIS->getInterval(reg);
shrinkToUses(&LI, &DeadDefs);
if (!DeadDefs.empty())
eliminateDeadDefs();
}
ToBeUpdated.clear();
}
bool RegisterCoalescer::
copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
bool Progress = false;
for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
if (!CurrList[i])
continue;
// Skip instruction pointers that have already been erased, for example by
// dead code elimination.
if (ErasedInstrs.count(CurrList[i])) {
CurrList[i] = nullptr;
continue;
}
bool Again = false;
bool Success = joinCopy(CurrList[i], Again);
Progress |= Success;
if (Success || !Again)
CurrList[i] = nullptr;
}
return Progress;
}
/// Check if DstReg is a terminal node.
/// I.e., it does not have any affinity other than \p Copy.
static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
const MachineRegisterInfo *MRI) {
assert(Copy.isCopyLike());
// Check if the destination of this copy as any other affinity.
for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
if (&MI != &Copy && MI.isCopyLike())
return false;
return true;
}
bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
assert(Copy.isCopyLike());
if (!UseTerminalRule)
return false;
unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
return false;
// Check if the destination of this copy has any other affinity.
if (Register::isPhysicalRegister(DstReg) ||
// If SrcReg is a physical register, the copy won't be coalesced.
// Ignoring it may have other side effect (like missing
// rematerialization). So keep it.
Register::isPhysicalRegister(SrcReg) || !isTerminalReg(DstReg, Copy, MRI))
return false;
// DstReg is a terminal node. Check if it interferes with any other
// copy involving SrcReg.
const MachineBasicBlock *OrigBB = Copy.getParent();
const LiveInterval &DstLI = LIS->getInterval(DstReg);
for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
// Technically we should check if the weight of the new copy is
// interesting compared to the other one and update the weight
// of the copies accordingly. However, this would only work if
// we would gather all the copies first then coalesce, whereas
// right now we interleave both actions.
// For now, just consider the copies that are in the same block.
if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
continue;
unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
OtherSubReg))
return false;
if (OtherReg == SrcReg)
OtherReg = OtherSrcReg;
// Check if OtherReg is a non-terminal.
if (Register::isPhysicalRegister(OtherReg) ||
isTerminalReg(OtherReg, MI, MRI))
continue;
// Check that OtherReg interfere with DstReg.
if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
<< '\n');
return true;
}
}
return false;
}
void
RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
// Collect all copy-like instructions in MBB. Don't start coalescing anything
// yet, it might invalidate the iterator.
const unsigned PrevSize = WorkList.size();
if (JoinGlobalCopies) {
SmallVector<MachineInstr*, 2> LocalTerminals;
SmallVector<MachineInstr*, 2> GlobalTerminals;
// Coalesce copies bottom-up to coalesce local defs before local uses. They
// are not inherently easier to resolve, but slightly preferable until we
// have local live range splitting. In particular this is required by
// cmp+jmp macro fusion.
for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
MII != E; ++MII) {
if (!MII->isCopyLike())
continue;
bool ApplyTerminalRule = applyTerminalRule(*MII);
if (isLocalCopy(&(*MII), LIS)) {
if (ApplyTerminalRule)
LocalTerminals.push_back(&(*MII));
else
LocalWorkList.push_back(&(*MII));
} else {
if (ApplyTerminalRule)
GlobalTerminals.push_back(&(*MII));
else
WorkList.push_back(&(*MII));
}
}
// Append the copies evicted by the terminal rule at the end of the list.
LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
}
else {
SmallVector<MachineInstr*, 2> Terminals;
for (MachineInstr &MII : *MBB)
if (MII.isCopyLike()) {
if (applyTerminalRule(MII))
Terminals.push_back(&MII);
else
WorkList.push_back(&MII);
}
// Append the copies evicted by the terminal rule at the end of the list.
WorkList.append(Terminals.begin(), Terminals.end());
}
// Try coalescing the collected copies immediately, and remove the nulls.
// This prevents the WorkList from getting too large since most copies are
// joinable on the first attempt.
MutableArrayRef<MachineInstr*>
CurrList(WorkList.begin() + PrevSize, WorkList.end());
if (copyCoalesceWorkList(CurrList))
WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
nullptr), WorkList.end());
}
void RegisterCoalescer::coalesceLocals() {
copyCoalesceWorkList(LocalWorkList);
for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
if (LocalWorkList[j])
WorkList.push_back(LocalWorkList[j]);
}
LocalWorkList.clear();
}
void RegisterCoalescer::joinAllIntervals() {
LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
std::vector<MBBPriorityInfo> MBBs;
MBBs.reserve(MF->size());
for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
MachineBasicBlock *MBB = &*I;
MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
JoinSplitEdges && isSplitEdge(MBB)));
}
array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
// Coalesce intervals in MBB priority order.
unsigned CurrDepth = std::numeric_limits<unsigned>::max();
for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
// Try coalescing the collected local copies for deeper loops.
if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
coalesceLocals();
CurrDepth = MBBs[i].Depth;
}
copyCoalesceInMBB(MBBs[i].MBB);
}
lateLiveIntervalUpdate();
coalesceLocals();
// Joining intervals can allow other intervals to be joined. Iteratively join
// until we make no progress.
while (copyCoalesceWorkList(WorkList))
/* empty */ ;
lateLiveIntervalUpdate();
}
void RegisterCoalescer::releaseMemory() {
ErasedInstrs.clear();
WorkList.clear();
DeadDefs.clear();
InflateRegs.clear();
LargeLIVisitCounter.clear();
}
bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
<< "********** Function: " << fn.getName() << '\n');
// Variables changed between a setjmp and a longjump can have undefined value
// after the longjmp. This behaviour can be observed if such a variable is
// spilled, so longjmp won't restore the value in the spill slot.
// RegisterCoalescer should not run in functions with a setjmp to avoid
// merging such undefined variables with predictable ones.
//
// TODO: Could specifically disable coalescing registers live across setjmp
// calls
if (fn.exposesReturnsTwice()) {
LLVM_DEBUG(
dbgs() << "* Skipped as it exposes funcions that returns twice.\n");
return false;
}
MF = &fn;
MRI = &fn.getRegInfo();
const TargetSubtargetInfo &STI = fn.getSubtarget();
TRI = STI.getRegisterInfo();
TII = STI.getInstrInfo();
LIS = &getAnalysis<LiveIntervals>();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
Loops = &getAnalysis<MachineLoopInfo>();
if (EnableGlobalCopies == cl::BOU_UNSET)
JoinGlobalCopies = STI.enableJoinGlobalCopies();
else
JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
// The MachineScheduler does not currently require JoinSplitEdges. This will
// either be enabled unconditionally or replaced by a more general live range
// splitting optimization.
JoinSplitEdges = EnableJoinSplits;
if (VerifyCoalescing)
MF->verify(this, "Before register coalescing");
DbgVRegToValues.clear();
DbgMergedVRegNums.clear();
buildVRegToDbgValueMap(fn);
RegClassInfo.runOnMachineFunction(fn);
// Join (coalesce) intervals if requested.
if (EnableJoining)
joinAllIntervals();
// After deleting a lot of copies, register classes may be less constrained.
// Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
// DPR inflation.
array_pod_sort(InflateRegs.begin(), InflateRegs.end());
InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
InflateRegs.end());
LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
<< " regs.\n");
for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
unsigned Reg = InflateRegs[i];
if (MRI->reg_nodbg_empty(Reg))
continue;
if (MRI->recomputeRegClass(Reg)) {
LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
<< TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
++NumInflated;
LiveInterval &LI = LIS->getInterval(Reg);
if (LI.hasSubRanges()) {
// If the inflated register class does not support subregisters anymore
// remove the subranges.
if (!MRI->shouldTrackSubRegLiveness(Reg)) {
LI.clearSubRanges();
} else {
#ifndef NDEBUG
LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
// If subranges are still supported, then the same subregs
// should still be supported.
for (LiveInterval::SubRange &S : LI.subranges()) {
assert((S.LaneMask & ~MaxMask).none());
}
#endif
}
}
}
}
LLVM_DEBUG(dump());
if (VerifyCoalescing)
MF->verify(this, "After register coalescing");
return true;
}
void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
LIS->print(O, m);
}