ScheduleDAG.cpp 21.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
//===- ScheduleDAG.cpp - Implement the ScheduleDAG class ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Implements the ScheduleDAG class, which is a base class used by
/// scheduling implementation classes.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <limits>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "pre-RA-sched"

STATISTIC(NumNewPredsAdded, "Number of times a  single predecessor was added");
STATISTIC(NumTopoInits,
          "Number of times the topological order has been recomputed");

#ifndef NDEBUG
static cl::opt<bool> StressSchedOpt(
  "stress-sched", cl::Hidden, cl::init(false),
  cl::desc("Stress test instruction scheduling"));
#endif

void SchedulingPriorityQueue::anchor() {}

ScheduleDAG::ScheduleDAG(MachineFunction &mf)
    : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()),
      TRI(mf.getSubtarget().getRegisterInfo()), MF(mf),
      MRI(mf.getRegInfo()) {
#ifndef NDEBUG
  StressSched = StressSchedOpt;
#endif
}

ScheduleDAG::~ScheduleDAG() = default;

void ScheduleDAG::clearDAG() {
  SUnits.clear();
  EntrySU = SUnit();
  ExitSU = SUnit();
}

const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
  if (!Node || !Node->isMachineOpcode()) return nullptr;
  return &TII->get(Node->getMachineOpcode());
}

LLVM_DUMP_METHOD void SDep::dump(const TargetRegisterInfo *TRI) const {
  switch (getKind()) {
  case Data:   dbgs() << "Data"; break;
  case Anti:   dbgs() << "Anti"; break;
  case Output: dbgs() << "Out "; break;
  case Order:  dbgs() << "Ord "; break;
  }

  switch (getKind()) {
  case Data:
    dbgs() << " Latency=" << getLatency();
    if (TRI && isAssignedRegDep())
      dbgs() << " Reg=" << printReg(getReg(), TRI);
    break;
  case Anti:
  case Output:
    dbgs() << " Latency=" << getLatency();
    break;
  case Order:
    dbgs() << " Latency=" << getLatency();
    switch(Contents.OrdKind) {
    case Barrier:      dbgs() << " Barrier"; break;
    case MayAliasMem:
    case MustAliasMem: dbgs() << " Memory"; break;
    case Artificial:   dbgs() << " Artificial"; break;
    case Weak:         dbgs() << " Weak"; break;
    case Cluster:      dbgs() << " Cluster"; break;
    }
    break;
  }
}

bool SUnit::addPred(const SDep &D, bool Required) {
  // If this node already has this dependence, don't add a redundant one.
  for (SDep &PredDep : Preds) {
    // Zero-latency weak edges may be added purely for heuristic ordering. Don't
    // add them if another kind of edge already exists.
    if (!Required && PredDep.getSUnit() == D.getSUnit())
      return false;
    if (PredDep.overlaps(D)) {
      // Extend the latency if needed. Equivalent to
      // removePred(PredDep) + addPred(D).
      if (PredDep.getLatency() < D.getLatency()) {
        SUnit *PredSU = PredDep.getSUnit();
        // Find the corresponding successor in N.
        SDep ForwardD = PredDep;
        ForwardD.setSUnit(this);
        for (SDep &SuccDep : PredSU->Succs) {
          if (SuccDep == ForwardD) {
            SuccDep.setLatency(D.getLatency());
            break;
          }
        }
        PredDep.setLatency(D.getLatency());
      }
      return false;
    }
  }
  // Now add a corresponding succ to N.
  SDep P = D;
  P.setSUnit(this);
  SUnit *N = D.getSUnit();
  // Update the bookkeeping.
  if (D.getKind() == SDep::Data) {
    assert(NumPreds < std::numeric_limits<unsigned>::max() &&
           "NumPreds will overflow!");
    assert(N->NumSuccs < std::numeric_limits<unsigned>::max() &&
           "NumSuccs will overflow!");
    ++NumPreds;
    ++N->NumSuccs;
  }
  if (!N->isScheduled) {
    if (D.isWeak()) {
      ++WeakPredsLeft;
    }
    else {
      assert(NumPredsLeft < std::numeric_limits<unsigned>::max() &&
             "NumPredsLeft will overflow!");
      ++NumPredsLeft;
    }
  }
  if (!isScheduled) {
    if (D.isWeak()) {
      ++N->WeakSuccsLeft;
    }
    else {
      assert(N->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&
             "NumSuccsLeft will overflow!");
      ++N->NumSuccsLeft;
    }
  }
  Preds.push_back(D);
  N->Succs.push_back(P);
  if (P.getLatency() != 0) {
    this->setDepthDirty();
    N->setHeightDirty();
  }
  return true;
}

void SUnit::removePred(const SDep &D) {
  // Find the matching predecessor.
  SmallVectorImpl<SDep>::iterator I = llvm::find(Preds, D);
  if (I == Preds.end())
    return;
  // Find the corresponding successor in N.
  SDep P = D;
  P.setSUnit(this);
  SUnit *N = D.getSUnit();
  SmallVectorImpl<SDep>::iterator Succ = llvm::find(N->Succs, P);
  assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!");
  N->Succs.erase(Succ);
  Preds.erase(I);
  // Update the bookkeeping.
  if (P.getKind() == SDep::Data) {
    assert(NumPreds > 0 && "NumPreds will underflow!");
    assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
    --NumPreds;
    --N->NumSuccs;
  }
  if (!N->isScheduled) {
    if (D.isWeak())
      --WeakPredsLeft;
    else {
      assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
      --NumPredsLeft;
    }
  }
  if (!isScheduled) {
    if (D.isWeak())
      --N->WeakSuccsLeft;
    else {
      assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
      --N->NumSuccsLeft;
    }
  }
  if (P.getLatency() != 0) {
    this->setDepthDirty();
    N->setHeightDirty();
  }
}

void SUnit::setDepthDirty() {
  if (!isDepthCurrent) return;
  SmallVector<SUnit*, 8> WorkList;
  WorkList.push_back(this);
  do {
    SUnit *SU = WorkList.pop_back_val();
    SU->isDepthCurrent = false;
    for (SDep &SuccDep : SU->Succs) {
      SUnit *SuccSU = SuccDep.getSUnit();
      if (SuccSU->isDepthCurrent)
        WorkList.push_back(SuccSU);
    }
  } while (!WorkList.empty());
}

void SUnit::setHeightDirty() {
  if (!isHeightCurrent) return;
  SmallVector<SUnit*, 8> WorkList;
  WorkList.push_back(this);
  do {
    SUnit *SU = WorkList.pop_back_val();
    SU->isHeightCurrent = false;
    for (SDep &PredDep : SU->Preds) {
      SUnit *PredSU = PredDep.getSUnit();
      if (PredSU->isHeightCurrent)
        WorkList.push_back(PredSU);
    }
  } while (!WorkList.empty());
}

void SUnit::setDepthToAtLeast(unsigned NewDepth) {
  if (NewDepth <= getDepth())
    return;
  setDepthDirty();
  Depth = NewDepth;
  isDepthCurrent = true;
}

void SUnit::setHeightToAtLeast(unsigned NewHeight) {
  if (NewHeight <= getHeight())
    return;
  setHeightDirty();
  Height = NewHeight;
  isHeightCurrent = true;
}

/// Calculates the maximal path from the node to the exit.
void SUnit::ComputeDepth() {
  SmallVector<SUnit*, 8> WorkList;
  WorkList.push_back(this);
  do {
    SUnit *Cur = WorkList.back();

    bool Done = true;
    unsigned MaxPredDepth = 0;
    for (const SDep &PredDep : Cur->Preds) {
      SUnit *PredSU = PredDep.getSUnit();
      if (PredSU->isDepthCurrent)
        MaxPredDepth = std::max(MaxPredDepth,
                                PredSU->Depth + PredDep.getLatency());
      else {
        Done = false;
        WorkList.push_back(PredSU);
      }
    }

    if (Done) {
      WorkList.pop_back();
      if (MaxPredDepth != Cur->Depth) {
        Cur->setDepthDirty();
        Cur->Depth = MaxPredDepth;
      }
      Cur->isDepthCurrent = true;
    }
  } while (!WorkList.empty());
}

/// Calculates the maximal path from the node to the entry.
void SUnit::ComputeHeight() {
  SmallVector<SUnit*, 8> WorkList;
  WorkList.push_back(this);
  do {
    SUnit *Cur = WorkList.back();

    bool Done = true;
    unsigned MaxSuccHeight = 0;
    for (const SDep &SuccDep : Cur->Succs) {
      SUnit *SuccSU = SuccDep.getSUnit();
      if (SuccSU->isHeightCurrent)
        MaxSuccHeight = std::max(MaxSuccHeight,
                                 SuccSU->Height + SuccDep.getLatency());
      else {
        Done = false;
        WorkList.push_back(SuccSU);
      }
    }

    if (Done) {
      WorkList.pop_back();
      if (MaxSuccHeight != Cur->Height) {
        Cur->setHeightDirty();
        Cur->Height = MaxSuccHeight;
      }
      Cur->isHeightCurrent = true;
    }
  } while (!WorkList.empty());
}

void SUnit::biasCriticalPath() {
  if (NumPreds < 2)
    return;

  SUnit::pred_iterator BestI = Preds.begin();
  unsigned MaxDepth = BestI->getSUnit()->getDepth();
  for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E;
       ++I) {
    if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth)
      BestI = I;
  }
  if (BestI != Preds.begin())
    std::swap(*Preds.begin(), *BestI);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void SUnit::dumpAttributes() const {
  dbgs() << "  # preds left       : " << NumPredsLeft << "\n";
  dbgs() << "  # succs left       : " << NumSuccsLeft << "\n";
  if (WeakPredsLeft)
    dbgs() << "  # weak preds left  : " << WeakPredsLeft << "\n";
  if (WeakSuccsLeft)
    dbgs() << "  # weak succs left  : " << WeakSuccsLeft << "\n";
  dbgs() << "  # rdefs left       : " << NumRegDefsLeft << "\n";
  dbgs() << "  Latency            : " << Latency << "\n";
  dbgs() << "  Depth              : " << getDepth() << "\n";
  dbgs() << "  Height             : " << getHeight() << "\n";
}

LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeName(const SUnit &SU) const {
  if (&SU == &EntrySU)
    dbgs() << "EntrySU";
  else if (&SU == &ExitSU)
    dbgs() << "ExitSU";
  else
    dbgs() << "SU(" << SU.NodeNum << ")";
}

LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeAll(const SUnit &SU) const {
  dumpNode(SU);
  SU.dumpAttributes();
  if (SU.Preds.size() > 0) {
    dbgs() << "  Predecessors:\n";
    for (const SDep &Dep : SU.Preds) {
      dbgs() << "    ";
      dumpNodeName(*Dep.getSUnit());
      dbgs() << ": ";
      Dep.dump(TRI);
      dbgs() << '\n';
    }
  }
  if (SU.Succs.size() > 0) {
    dbgs() << "  Successors:\n";
    for (const SDep &Dep : SU.Succs) {
      dbgs() << "    ";
      dumpNodeName(*Dep.getSUnit());
      dbgs() << ": ";
      Dep.dump(TRI);
      dbgs() << '\n';
    }
  }
}
#endif

#ifndef NDEBUG
unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
  bool AnyNotSched = false;
  unsigned DeadNodes = 0;
  for (const SUnit &SUnit : SUnits) {
    if (!SUnit.isScheduled) {
      if (SUnit.NumPreds == 0 && SUnit.NumSuccs == 0) {
        ++DeadNodes;
        continue;
      }
      if (!AnyNotSched)
        dbgs() << "*** Scheduling failed! ***\n";
      dumpNode(SUnit);
      dbgs() << "has not been scheduled!\n";
      AnyNotSched = true;
    }
    if (SUnit.isScheduled &&
        (isBottomUp ? SUnit.getHeight() : SUnit.getDepth()) >
          unsigned(std::numeric_limits<int>::max())) {
      if (!AnyNotSched)
        dbgs() << "*** Scheduling failed! ***\n";
      dumpNode(SUnit);
      dbgs() << "has an unexpected "
           << (isBottomUp ? "Height" : "Depth") << " value!\n";
      AnyNotSched = true;
    }
    if (isBottomUp) {
      if (SUnit.NumSuccsLeft != 0) {
        if (!AnyNotSched)
          dbgs() << "*** Scheduling failed! ***\n";
        dumpNode(SUnit);
        dbgs() << "has successors left!\n";
        AnyNotSched = true;
      }
    } else {
      if (SUnit.NumPredsLeft != 0) {
        if (!AnyNotSched)
          dbgs() << "*** Scheduling failed! ***\n";
        dumpNode(SUnit);
        dbgs() << "has predecessors left!\n";
        AnyNotSched = true;
      }
    }
  }
  assert(!AnyNotSched);
  return SUnits.size() - DeadNodes;
}
#endif

void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
  // The idea of the algorithm is taken from
  // "Online algorithms for managing the topological order of
  // a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
  // This is the MNR algorithm, which was first introduced by
  // A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
  // "Maintaining a topological order under edge insertions".
  //
  // Short description of the algorithm:
  //
  // Topological ordering, ord, of a DAG maps each node to a topological
  // index so that for all edges X->Y it is the case that ord(X) < ord(Y).
  //
  // This means that if there is a path from the node X to the node Z,
  // then ord(X) < ord(Z).
  //
  // This property can be used to check for reachability of nodes:
  // if Z is reachable from X, then an insertion of the edge Z->X would
  // create a cycle.
  //
  // The algorithm first computes a topological ordering for the DAG by
  // initializing the Index2Node and Node2Index arrays and then tries to keep
  // the ordering up-to-date after edge insertions by reordering the DAG.
  //
  // On insertion of the edge X->Y, the algorithm first marks by calling DFS
  // the nodes reachable from Y, and then shifts them using Shift to lie
  // immediately after X in Index2Node.

  // Cancel pending updates, mark as valid.
  Dirty = false;
  Updates.clear();

  unsigned DAGSize = SUnits.size();
  std::vector<SUnit*> WorkList;
  WorkList.reserve(DAGSize);

  Index2Node.resize(DAGSize);
  Node2Index.resize(DAGSize);

  // Initialize the data structures.
  if (ExitSU)
    WorkList.push_back(ExitSU);
  for (SUnit &SU : SUnits) {
    int NodeNum = SU.NodeNum;
    unsigned Degree = SU.Succs.size();
    // Temporarily use the Node2Index array as scratch space for degree counts.
    Node2Index[NodeNum] = Degree;

    // Is it a node without dependencies?
    if (Degree == 0) {
      assert(SU.Succs.empty() && "SUnit should have no successors");
      // Collect leaf nodes.
      WorkList.push_back(&SU);
    }
  }

  int Id = DAGSize;
  while (!WorkList.empty()) {
    SUnit *SU = WorkList.back();
    WorkList.pop_back();
    if (SU->NodeNum < DAGSize)
      Allocate(SU->NodeNum, --Id);
    for (const SDep &PredDep : SU->Preds) {
      SUnit *SU = PredDep.getSUnit();
      if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum])
        // If all dependencies of the node are processed already,
        // then the node can be computed now.
        WorkList.push_back(SU);
    }
  }

  Visited.resize(DAGSize);
  NumTopoInits++;

#ifndef NDEBUG
  // Check correctness of the ordering
  for (SUnit &SU : SUnits)  {
    for (const SDep &PD : SU.Preds) {
      assert(Node2Index[SU.NodeNum] > Node2Index[PD.getSUnit()->NodeNum] &&
      "Wrong topological sorting");
    }
  }
#endif
}

void ScheduleDAGTopologicalSort::FixOrder() {
  // Recompute from scratch after new nodes have been added.
  if (Dirty) {
    InitDAGTopologicalSorting();
    return;
  }

  // Otherwise apply updates one-by-one.
  for (auto &U : Updates)
    AddPred(U.first, U.second);
  Updates.clear();
}

void ScheduleDAGTopologicalSort::AddPredQueued(SUnit *Y, SUnit *X) {
  // Recomputing the order from scratch is likely more efficient than applying
  // updates one-by-one for too many updates. The current cut-off is arbitrarily
  // chosen.
  Dirty = Dirty || Updates.size() > 10;

  if (Dirty)
    return;

  Updates.emplace_back(Y, X);
}

void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
  int UpperBound, LowerBound;
  LowerBound = Node2Index[Y->NodeNum];
  UpperBound = Node2Index[X->NodeNum];
  bool HasLoop = false;
  // Is Ord(X) < Ord(Y) ?
  if (LowerBound < UpperBound) {
    // Update the topological order.
    Visited.reset();
    DFS(Y, UpperBound, HasLoop);
    assert(!HasLoop && "Inserted edge creates a loop!");
    // Recompute topological indexes.
    Shift(Visited, LowerBound, UpperBound);
  }

  NumNewPredsAdded++;
}

void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
  // InitDAGTopologicalSorting();
}

void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
                                     bool &HasLoop) {
  std::vector<const SUnit*> WorkList;
  WorkList.reserve(SUnits.size());

  WorkList.push_back(SU);
  do {
    SU = WorkList.back();
    WorkList.pop_back();
    Visited.set(SU->NodeNum);
    for (const SDep &SuccDep
         : make_range(SU->Succs.rbegin(), SU->Succs.rend())) {
      unsigned s = SuccDep.getSUnit()->NodeNum;
      // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
      if (s >= Node2Index.size())
        continue;
      if (Node2Index[s] == UpperBound) {
        HasLoop = true;
        return;
      }
      // Visit successors if not already and in affected region.
      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
        WorkList.push_back(SuccDep.getSUnit());
      }
    }
  } while (!WorkList.empty());
}

std::vector<int> ScheduleDAGTopologicalSort::GetSubGraph(const SUnit &StartSU,
                                                         const SUnit &TargetSU,
                                                         bool &Success) {
  std::vector<const SUnit*> WorkList;
  int LowerBound = Node2Index[StartSU.NodeNum];
  int UpperBound = Node2Index[TargetSU.NodeNum];
  bool Found = false;
  BitVector VisitedBack;
  std::vector<int> Nodes;

  if (LowerBound > UpperBound) {
    Success = false;
    return Nodes;
  }

  WorkList.reserve(SUnits.size());
  Visited.reset();

  // Starting from StartSU, visit all successors up
  // to UpperBound.
  WorkList.push_back(&StartSU);
  do {
    const SUnit *SU = WorkList.back();
    WorkList.pop_back();
    for (int I = SU->Succs.size()-1; I >= 0; --I) {
      const SUnit *Succ = SU->Succs[I].getSUnit();
      unsigned s = Succ->NodeNum;
      // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
      if (Succ->isBoundaryNode())
        continue;
      if (Node2Index[s] == UpperBound) {
        Found = true;
        continue;
      }
      // Visit successors if not already and in affected region.
      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
        Visited.set(s);
        WorkList.push_back(Succ);
      }
    }
  } while (!WorkList.empty());

  if (!Found) {
    Success = false;
    return Nodes;
  }

  WorkList.clear();
  VisitedBack.resize(SUnits.size());
  Found = false;

  // Starting from TargetSU, visit all predecessors up
  // to LowerBound. SUs that are visited by the two
  // passes are added to Nodes.
  WorkList.push_back(&TargetSU);
  do {
    const SUnit *SU = WorkList.back();
    WorkList.pop_back();
    for (int I = SU->Preds.size()-1; I >= 0; --I) {
      const SUnit *Pred = SU->Preds[I].getSUnit();
      unsigned s = Pred->NodeNum;
      // Edges to non-SUnits are allowed but ignored (e.g. EntrySU).
      if (Pred->isBoundaryNode())
        continue;
      if (Node2Index[s] == LowerBound) {
        Found = true;
        continue;
      }
      if (!VisitedBack.test(s) && Visited.test(s)) {
        VisitedBack.set(s);
        WorkList.push_back(Pred);
        Nodes.push_back(s);
      }
    }
  } while (!WorkList.empty());

  assert(Found && "Error in SUnit Graph!");
  Success = true;
  return Nodes;
}

void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
                                       int UpperBound) {
  std::vector<int> L;
  int shift = 0;
  int i;

  for (i = LowerBound; i <= UpperBound; ++i) {
    // w is node at topological index i.
    int w = Index2Node[i];
    if (Visited.test(w)) {
      // Unmark.
      Visited.reset(w);
      L.push_back(w);
      shift = shift + 1;
    } else {
      Allocate(w, i - shift);
    }
  }

  for (unsigned LI : L) {
    Allocate(LI, i - shift);
    i = i + 1;
  }
}

bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) {
  FixOrder();
  // Is SU reachable from TargetSU via successor edges?
  if (IsReachable(SU, TargetSU))
    return true;
  for (const SDep &PredDep : TargetSU->Preds)
    if (PredDep.isAssignedRegDep() &&
        IsReachable(SU, PredDep.getSUnit()))
      return true;
  return false;
}

void ScheduleDAGTopologicalSort::AddSUnitWithoutPredecessors(const SUnit *SU) {
  assert(SU->NodeNum == Index2Node.size() && "Node cannot be added at the end");
  assert(SU->NumPreds == 0 && "Can only add SU's with no predecessors");
  Node2Index.push_back(Index2Node.size());
  Index2Node.push_back(SU->NodeNum);
  Visited.resize(Node2Index.size());
}

bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
                                             const SUnit *TargetSU) {
  FixOrder();
  // If insertion of the edge SU->TargetSU would create a cycle
  // then there is a path from TargetSU to SU.
  int UpperBound, LowerBound;
  LowerBound = Node2Index[TargetSU->NodeNum];
  UpperBound = Node2Index[SU->NodeNum];
  bool HasLoop = false;
  // Is Ord(TargetSU) < Ord(SU) ?
  if (LowerBound < UpperBound) {
    Visited.reset();
    // There may be a path from TargetSU to SU. Check for it.
    DFS(TargetSU, UpperBound, HasLoop);
  }
  return HasLoop;
}

void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
  Node2Index[n] = index;
  Index2Node[index] = n;
}

ScheduleDAGTopologicalSort::
ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu)
  : SUnits(sunits), ExitSU(exitsu) {}

ScheduleHazardRecognizer::~ScheduleHazardRecognizer() = default;