DAGCombiner.cpp 856 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328
//===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
// both before and after the DAG is legalized.
//
// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
// primarily intended to handle simplification opportunities that are implicit
// in the LLVM IR and exposed by the various codegen lowering phases.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <iterator>
#include <string>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "dagcombine"

STATISTIC(NodesCombined   , "Number of dag nodes combined");
STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
STATISTIC(SlicedLoads, "Number of load sliced");
STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops");

static cl::opt<bool>
CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
                 cl::desc("Enable DAG combiner's use of IR alias analysis"));

static cl::opt<bool>
UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
        cl::desc("Enable DAG combiner's use of TBAA"));

#ifndef NDEBUG
static cl::opt<std::string>
CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
                   cl::desc("Only use DAG-combiner alias analysis in this"
                            " function"));
#endif

/// Hidden option to stress test load slicing, i.e., when this option
/// is enabled, load slicing bypasses most of its profitability guards.
static cl::opt<bool>
StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
                  cl::desc("Bypass the profitability model of load slicing"),
                  cl::init(false));

static cl::opt<bool>
  MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
                    cl::desc("DAG combiner may split indexing from loads"));

static cl::opt<bool>
    EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true),
                       cl::desc("DAG combiner enable merging multiple stores "
                                "into a wider store"));

static cl::opt<unsigned> TokenFactorInlineLimit(
    "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048),
    cl::desc("Limit the number of operands to inline for Token Factors"));

static cl::opt<unsigned> StoreMergeDependenceLimit(
    "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10),
    cl::desc("Limit the number of times for the same StoreNode and RootNode "
             "to bail out in store merging dependence check"));

static cl::opt<bool> EnableReduceLoadOpStoreWidth(
    "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true),
    cl::desc("DAG cominber enable reducing the width of load/op/store "
             "sequence"));

static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore(
    "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true),
    cl::desc("DAG cominber enable load/<replace bytes>/store with "
             "a narrower store"));

namespace {

  class DAGCombiner {
    SelectionDAG &DAG;
    const TargetLowering &TLI;
    const SelectionDAGTargetInfo *STI;
    CombineLevel Level;
    CodeGenOpt::Level OptLevel;
    bool LegalDAG = false;
    bool LegalOperations = false;
    bool LegalTypes = false;
    bool ForCodeSize;
    bool DisableGenericCombines;

    /// Worklist of all of the nodes that need to be simplified.
    ///
    /// This must behave as a stack -- new nodes to process are pushed onto the
    /// back and when processing we pop off of the back.
    ///
    /// The worklist will not contain duplicates but may contain null entries
    /// due to nodes being deleted from the underlying DAG.
    SmallVector<SDNode *, 64> Worklist;

    /// Mapping from an SDNode to its position on the worklist.
    ///
    /// This is used to find and remove nodes from the worklist (by nulling
    /// them) when they are deleted from the underlying DAG. It relies on
    /// stable indices of nodes within the worklist.
    DenseMap<SDNode *, unsigned> WorklistMap;
    /// This records all nodes attempted to add to the worklist since we
    /// considered a new worklist entry. As we keep do not add duplicate nodes
    /// in the worklist, this is different from the tail of the worklist.
    SmallSetVector<SDNode *, 32> PruningList;

    /// Set of nodes which have been combined (at least once).
    ///
    /// This is used to allow us to reliably add any operands of a DAG node
    /// which have not yet been combined to the worklist.
    SmallPtrSet<SDNode *, 32> CombinedNodes;

    /// Map from candidate StoreNode to the pair of RootNode and count.
    /// The count is used to track how many times we have seen the StoreNode
    /// with the same RootNode bail out in dependence check. If we have seen
    /// the bail out for the same pair many times over a limit, we won't
    /// consider the StoreNode with the same RootNode as store merging
    /// candidate again.
    DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap;

    // AA - Used for DAG load/store alias analysis.
    AliasAnalysis *AA;

    /// When an instruction is simplified, add all users of the instruction to
    /// the work lists because they might get more simplified now.
    void AddUsersToWorklist(SDNode *N) {
      for (SDNode *Node : N->uses())
        AddToWorklist(Node);
    }

    /// Convenient shorthand to add a node and all of its user to the worklist.
    void AddToWorklistWithUsers(SDNode *N) {
      AddUsersToWorklist(N);
      AddToWorklist(N);
    }

    // Prune potentially dangling nodes. This is called after
    // any visit to a node, but should also be called during a visit after any
    // failed combine which may have created a DAG node.
    void clearAddedDanglingWorklistEntries() {
      // Check any nodes added to the worklist to see if they are prunable.
      while (!PruningList.empty()) {
        auto *N = PruningList.pop_back_val();
        if (N->use_empty())
          recursivelyDeleteUnusedNodes(N);
      }
    }

    SDNode *getNextWorklistEntry() {
      // Before we do any work, remove nodes that are not in use.
      clearAddedDanglingWorklistEntries();
      SDNode *N = nullptr;
      // The Worklist holds the SDNodes in order, but it may contain null
      // entries.
      while (!N && !Worklist.empty()) {
        N = Worklist.pop_back_val();
      }

      if (N) {
        bool GoodWorklistEntry = WorklistMap.erase(N);
        (void)GoodWorklistEntry;
        assert(GoodWorklistEntry &&
               "Found a worklist entry without a corresponding map entry!");
      }
      return N;
    }

    /// Call the node-specific routine that folds each particular type of node.
    SDValue visit(SDNode *N);

  public:
    DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL)
        : DAG(D), TLI(D.getTargetLoweringInfo()),
          STI(D.getSubtarget().getSelectionDAGInfo()),
          Level(BeforeLegalizeTypes), OptLevel(OL), AA(AA) {
      ForCodeSize = DAG.shouldOptForSize();
      DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel);

      MaximumLegalStoreInBits = 0;
      // We use the minimum store size here, since that's all we can guarantee
      // for the scalable vector types.
      for (MVT VT : MVT::all_valuetypes())
        if (EVT(VT).isSimple() && VT != MVT::Other &&
            TLI.isTypeLegal(EVT(VT)) &&
            VT.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits)
          MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinSize();
    }

    void ConsiderForPruning(SDNode *N) {
      // Mark this for potential pruning.
      PruningList.insert(N);
    }

    /// Add to the worklist making sure its instance is at the back (next to be
    /// processed.)
    void AddToWorklist(SDNode *N) {
      assert(N->getOpcode() != ISD::DELETED_NODE &&
             "Deleted Node added to Worklist");

      // Skip handle nodes as they can't usefully be combined and confuse the
      // zero-use deletion strategy.
      if (N->getOpcode() == ISD::HANDLENODE)
        return;

      ConsiderForPruning(N);

      if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
        Worklist.push_back(N);
    }

    /// Remove all instances of N from the worklist.
    void removeFromWorklist(SDNode *N) {
      CombinedNodes.erase(N);
      PruningList.remove(N);
      StoreRootCountMap.erase(N);

      auto It = WorklistMap.find(N);
      if (It == WorklistMap.end())
        return; // Not in the worklist.

      // Null out the entry rather than erasing it to avoid a linear operation.
      Worklist[It->second] = nullptr;
      WorklistMap.erase(It);
    }

    void deleteAndRecombine(SDNode *N);
    bool recursivelyDeleteUnusedNodes(SDNode *N);

    /// Replaces all uses of the results of one DAG node with new values.
    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
                      bool AddTo = true);

    /// Replaces all uses of the results of one DAG node with new values.
    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
      return CombineTo(N, &Res, 1, AddTo);
    }

    /// Replaces all uses of the results of one DAG node with new values.
    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
                      bool AddTo = true) {
      SDValue To[] = { Res0, Res1 };
      return CombineTo(N, To, 2, AddTo);
    }

    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);

  private:
    unsigned MaximumLegalStoreInBits;

    /// Check the specified integer node value to see if it can be simplified or
    /// if things it uses can be simplified by bit propagation.
    /// If so, return true.
    bool SimplifyDemandedBits(SDValue Op) {
      unsigned BitWidth = Op.getScalarValueSizeInBits();
      APInt DemandedBits = APInt::getAllOnesValue(BitWidth);
      return SimplifyDemandedBits(Op, DemandedBits);
    }

    bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) {
      TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
      KnownBits Known;
      if (!TLI.SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, false))
        return false;

      // Revisit the node.
      AddToWorklist(Op.getNode());

      CommitTargetLoweringOpt(TLO);
      return true;
    }

    /// Check the specified vector node value to see if it can be simplified or
    /// if things it uses can be simplified as it only uses some of the
    /// elements. If so, return true.
    bool SimplifyDemandedVectorElts(SDValue Op) {
      // TODO: For now just pretend it cannot be simplified.
      if (Op.getValueType().isScalableVector())
        return false;

      unsigned NumElts = Op.getValueType().getVectorNumElements();
      APInt DemandedElts = APInt::getAllOnesValue(NumElts);
      return SimplifyDemandedVectorElts(Op, DemandedElts);
    }

    bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
                              const APInt &DemandedElts,
                              bool AssumeSingleUse = false);
    bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
                                    bool AssumeSingleUse = false);

    bool CombineToPreIndexedLoadStore(SDNode *N);
    bool CombineToPostIndexedLoadStore(SDNode *N);
    SDValue SplitIndexingFromLoad(LoadSDNode *LD);
    bool SliceUpLoad(SDNode *N);

    // Scalars have size 0 to distinguish from singleton vectors.
    SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD);
    bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val);
    bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val);

    /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
    ///   load.
    ///
    /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
    /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
    /// \param EltNo index of the vector element to load.
    /// \param OriginalLoad load that EVE came from to be replaced.
    /// \returns EVE on success SDValue() on failure.
    SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
                                         SDValue EltNo,
                                         LoadSDNode *OriginalLoad);
    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
    SDValue PromoteIntBinOp(SDValue Op);
    SDValue PromoteIntShiftOp(SDValue Op);
    SDValue PromoteExtend(SDValue Op);
    bool PromoteLoad(SDValue Op);

    /// Call the node-specific routine that knows how to fold each
    /// particular type of node. If that doesn't do anything, try the
    /// target-specific DAG combines.
    SDValue combine(SDNode *N);

    // Visitation implementation - Implement dag node combining for different
    // node types.  The semantics are as follows:
    // Return Value:
    //   SDValue.getNode() == 0 - No change was made
    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
    //   otherwise              - N should be replaced by the returned Operand.
    //
    SDValue visitTokenFactor(SDNode *N);
    SDValue visitMERGE_VALUES(SDNode *N);
    SDValue visitADD(SDNode *N);
    SDValue visitADDLike(SDNode *N);
    SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference);
    SDValue visitSUB(SDNode *N);
    SDValue visitADDSAT(SDNode *N);
    SDValue visitSUBSAT(SDNode *N);
    SDValue visitADDC(SDNode *N);
    SDValue visitADDO(SDNode *N);
    SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N);
    SDValue visitSUBC(SDNode *N);
    SDValue visitSUBO(SDNode *N);
    SDValue visitADDE(SDNode *N);
    SDValue visitADDCARRY(SDNode *N);
    SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N);
    SDValue visitSUBE(SDNode *N);
    SDValue visitSUBCARRY(SDNode *N);
    SDValue visitMUL(SDNode *N);
    SDValue visitMULFIX(SDNode *N);
    SDValue useDivRem(SDNode *N);
    SDValue visitSDIV(SDNode *N);
    SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N);
    SDValue visitUDIV(SDNode *N);
    SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N);
    SDValue visitREM(SDNode *N);
    SDValue visitMULHU(SDNode *N);
    SDValue visitMULHS(SDNode *N);
    SDValue visitSMUL_LOHI(SDNode *N);
    SDValue visitUMUL_LOHI(SDNode *N);
    SDValue visitMULO(SDNode *N);
    SDValue visitIMINMAX(SDNode *N);
    SDValue visitAND(SDNode *N);
    SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N);
    SDValue visitOR(SDNode *N);
    SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N);
    SDValue visitXOR(SDNode *N);
    SDValue SimplifyVBinOp(SDNode *N);
    SDValue visitSHL(SDNode *N);
    SDValue visitSRA(SDNode *N);
    SDValue visitSRL(SDNode *N);
    SDValue visitFunnelShift(SDNode *N);
    SDValue visitRotate(SDNode *N);
    SDValue visitABS(SDNode *N);
    SDValue visitBSWAP(SDNode *N);
    SDValue visitBITREVERSE(SDNode *N);
    SDValue visitCTLZ(SDNode *N);
    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
    SDValue visitCTTZ(SDNode *N);
    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
    SDValue visitCTPOP(SDNode *N);
    SDValue visitSELECT(SDNode *N);
    SDValue visitVSELECT(SDNode *N);
    SDValue visitSELECT_CC(SDNode *N);
    SDValue visitSETCC(SDNode *N);
    SDValue visitSETCCCARRY(SDNode *N);
    SDValue visitSIGN_EXTEND(SDNode *N);
    SDValue visitZERO_EXTEND(SDNode *N);
    SDValue visitANY_EXTEND(SDNode *N);
    SDValue visitAssertExt(SDNode *N);
    SDValue visitAssertAlign(SDNode *N);
    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
    SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N);
    SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N);
    SDValue visitTRUNCATE(SDNode *N);
    SDValue visitBITCAST(SDNode *N);
    SDValue visitFREEZE(SDNode *N);
    SDValue visitBUILD_PAIR(SDNode *N);
    SDValue visitFADD(SDNode *N);
    SDValue visitSTRICT_FADD(SDNode *N);
    SDValue visitFSUB(SDNode *N);
    SDValue visitFMUL(SDNode *N);
    SDValue visitFMA(SDNode *N);
    SDValue visitFDIV(SDNode *N);
    SDValue visitFREM(SDNode *N);
    SDValue visitFSQRT(SDNode *N);
    SDValue visitFCOPYSIGN(SDNode *N);
    SDValue visitFPOW(SDNode *N);
    SDValue visitSINT_TO_FP(SDNode *N);
    SDValue visitUINT_TO_FP(SDNode *N);
    SDValue visitFP_TO_SINT(SDNode *N);
    SDValue visitFP_TO_UINT(SDNode *N);
    SDValue visitFP_ROUND(SDNode *N);
    SDValue visitFP_EXTEND(SDNode *N);
    SDValue visitFNEG(SDNode *N);
    SDValue visitFABS(SDNode *N);
    SDValue visitFCEIL(SDNode *N);
    SDValue visitFTRUNC(SDNode *N);
    SDValue visitFFLOOR(SDNode *N);
    SDValue visitFMINNUM(SDNode *N);
    SDValue visitFMAXNUM(SDNode *N);
    SDValue visitFMINIMUM(SDNode *N);
    SDValue visitFMAXIMUM(SDNode *N);
    SDValue visitBRCOND(SDNode *N);
    SDValue visitBR_CC(SDNode *N);
    SDValue visitLOAD(SDNode *N);

    SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
    SDValue replaceStoreOfFPConstant(StoreSDNode *ST);

    SDValue visitSTORE(SDNode *N);
    SDValue visitLIFETIME_END(SDNode *N);
    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
    SDValue visitBUILD_VECTOR(SDNode *N);
    SDValue visitCONCAT_VECTORS(SDNode *N);
    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
    SDValue visitVECTOR_SHUFFLE(SDNode *N);
    SDValue visitSCALAR_TO_VECTOR(SDNode *N);
    SDValue visitINSERT_SUBVECTOR(SDNode *N);
    SDValue visitMLOAD(SDNode *N);
    SDValue visitMSTORE(SDNode *N);
    SDValue visitMGATHER(SDNode *N);
    SDValue visitMSCATTER(SDNode *N);
    SDValue visitFP_TO_FP16(SDNode *N);
    SDValue visitFP16_TO_FP(SDNode *N);
    SDValue visitVECREDUCE(SDNode *N);

    SDValue visitFADDForFMACombine(SDNode *N);
    SDValue visitFSUBForFMACombine(SDNode *N);
    SDValue visitFMULForFMADistributiveCombine(SDNode *N);

    SDValue XformToShuffleWithZero(SDNode *N);
    bool reassociationCanBreakAddressingModePattern(unsigned Opc,
                                                    const SDLoc &DL, SDValue N0,
                                                    SDValue N1);
    SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0,
                                      SDValue N1);
    SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
                           SDValue N1, SDNodeFlags Flags);

    SDValue visitShiftByConstant(SDNode *N);

    SDValue foldSelectOfConstants(SDNode *N);
    SDValue foldVSelectOfConstants(SDNode *N);
    SDValue foldBinOpIntoSelect(SDNode *BO);
    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
    SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N);
    SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
    SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
                             SDValue N2, SDValue N3, ISD::CondCode CC,
                             bool NotExtCompare = false);
    SDValue convertSelectOfFPConstantsToLoadOffset(
        const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
        ISD::CondCode CC);
    SDValue foldSignChangeInBitcast(SDNode *N);
    SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
                                   SDValue N2, SDValue N3, ISD::CondCode CC);
    SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
                              const SDLoc &DL);
    SDValue unfoldMaskedMerge(SDNode *N);
    SDValue unfoldExtremeBitClearingToShifts(SDNode *N);
    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
                          const SDLoc &DL, bool foldBooleans);
    SDValue rebuildSetCC(SDValue N);

    bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
                           SDValue &CC, bool MatchStrict = false) const;
    bool isOneUseSetCC(SDValue N) const;

    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
                                         unsigned HiOp);
    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
    SDValue CombineExtLoad(SDNode *N);
    SDValue CombineZExtLogicopShiftLoad(SDNode *N);
    SDValue combineRepeatedFPDivisors(SDNode *N);
    SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex);
    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
    SDValue BuildSDIV(SDNode *N);
    SDValue BuildSDIVPow2(SDNode *N);
    SDValue BuildUDIV(SDNode *N);
    SDValue BuildLogBase2(SDValue V, const SDLoc &DL);
    SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags);
    SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags);
    SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags);
    SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip);
    SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations,
                                SDNodeFlags Flags, bool Reciprocal);
    SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations,
                                SDNodeFlags Flags, bool Reciprocal);
    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
                               bool DemandHighBits = true);
    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
    SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
                              SDValue InnerPos, SDValue InnerNeg,
                              unsigned PosOpcode, unsigned NegOpcode,
                              const SDLoc &DL);
    SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg,
                              SDValue InnerPos, SDValue InnerNeg,
                              unsigned PosOpcode, unsigned NegOpcode,
                              const SDLoc &DL);
    SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL);
    SDValue MatchLoadCombine(SDNode *N);
    SDValue mergeTruncStores(StoreSDNode *N);
    SDValue ReduceLoadWidth(SDNode *N);
    SDValue ReduceLoadOpStoreWidth(SDNode *N);
    SDValue splitMergedValStore(StoreSDNode *ST);
    SDValue TransformFPLoadStorePair(SDNode *N);
    SDValue convertBuildVecZextToZext(SDNode *N);
    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
    SDValue reduceBuildVecTruncToBitCast(SDNode *N);
    SDValue reduceBuildVecToShuffle(SDNode *N);
    SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
                                  ArrayRef<int> VectorMask, SDValue VecIn1,
                                  SDValue VecIn2, unsigned LeftIdx,
                                  bool DidSplitVec);
    SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast);

    /// Walk up chain skipping non-aliasing memory nodes,
    /// looking for aliasing nodes and adding them to the Aliases vector.
    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
                          SmallVectorImpl<SDValue> &Aliases);

    /// Return true if there is any possibility that the two addresses overlap.
    bool isAlias(SDNode *Op0, SDNode *Op1) const;

    /// Walk up chain skipping non-aliasing memory nodes, looking for a better
    /// chain (aliasing node.)
    SDValue FindBetterChain(SDNode *N, SDValue Chain);

    /// Try to replace a store and any possibly adjacent stores on
    /// consecutive chains with better chains. Return true only if St is
    /// replaced.
    ///
    /// Notice that other chains may still be replaced even if the function
    /// returns false.
    bool findBetterNeighborChains(StoreSDNode *St);

    // Helper for findBetterNeighborChains. Walk up store chain add additional
    // chained stores that do not overlap and can be parallelized.
    bool parallelizeChainedStores(StoreSDNode *St);

    /// Holds a pointer to an LSBaseSDNode as well as information on where it
    /// is located in a sequence of memory operations connected by a chain.
    struct MemOpLink {
      // Ptr to the mem node.
      LSBaseSDNode *MemNode;

      // Offset from the base ptr.
      int64_t OffsetFromBase;

      MemOpLink(LSBaseSDNode *N, int64_t Offset)
          : MemNode(N), OffsetFromBase(Offset) {}
    };

    // Classify the origin of a stored value.
    enum class StoreSource { Unknown, Constant, Extract, Load };
    StoreSource getStoreSource(SDValue StoreVal) {
      switch (StoreVal.getOpcode()) {
      case ISD::Constant:
      case ISD::ConstantFP:
        return StoreSource::Constant;
      case ISD::EXTRACT_VECTOR_ELT:
      case ISD::EXTRACT_SUBVECTOR:
        return StoreSource::Extract;
      case ISD::LOAD:
        return StoreSource::Load;
      default:
        return StoreSource::Unknown;
      }
    }

    /// This is a helper function for visitMUL to check the profitability
    /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
    /// MulNode is the original multiply, AddNode is (add x, c1),
    /// and ConstNode is c2.
    bool isMulAddWithConstProfitable(SDNode *MulNode,
                                     SDValue &AddNode,
                                     SDValue &ConstNode);

    /// This is a helper function for visitAND and visitZERO_EXTEND.  Returns
    /// true if the (and (load x) c) pattern matches an extload.  ExtVT returns
    /// the type of the loaded value to be extended.
    bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
                          EVT LoadResultTy, EVT &ExtVT);

    /// Helper function to calculate whether the given Load/Store can have its
    /// width reduced to ExtVT.
    bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType,
                           EVT &MemVT, unsigned ShAmt = 0);

    /// Used by BackwardsPropagateMask to find suitable loads.
    bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads,
                           SmallPtrSetImpl<SDNode*> &NodesWithConsts,
                           ConstantSDNode *Mask, SDNode *&NodeToMask);
    /// Attempt to propagate a given AND node back to load leaves so that they
    /// can be combined into narrow loads.
    bool BackwardsPropagateMask(SDNode *N);

    /// Helper function for mergeConsecutiveStores which merges the component
    /// store chains.
    SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
                                unsigned NumStores);

    /// This is a helper function for mergeConsecutiveStores. When the source
    /// elements of the consecutive stores are all constants or all extracted
    /// vector elements, try to merge them into one larger store introducing
    /// bitcasts if necessary.  \return True if a merged store was created.
    bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
                                         EVT MemVT, unsigned NumStores,
                                         bool IsConstantSrc, bool UseVector,
                                         bool UseTrunc);

    /// This is a helper function for mergeConsecutiveStores. Stores that
    /// potentially may be merged with St are placed in StoreNodes. RootNode is
    /// a chain predecessor to all store candidates.
    void getStoreMergeCandidates(StoreSDNode *St,
                                 SmallVectorImpl<MemOpLink> &StoreNodes,
                                 SDNode *&Root);

    /// Helper function for mergeConsecutiveStores. Checks if candidate stores
    /// have indirect dependency through their operands. RootNode is the
    /// predecessor to all stores calculated by getStoreMergeCandidates and is
    /// used to prune the dependency check. \return True if safe to merge.
    bool checkMergeStoreCandidatesForDependencies(
        SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
        SDNode *RootNode);

    /// This is a helper function for mergeConsecutiveStores. Given a list of
    /// store candidates, find the first N that are consecutive in memory.
    /// Returns 0 if there are not at least 2 consecutive stores to try merging.
    unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes,
                                  int64_t ElementSizeBytes) const;

    /// This is a helper function for mergeConsecutiveStores. It is used for
    /// store chains that are composed entirely of constant values.
    bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes,
                                  unsigned NumConsecutiveStores,
                                  EVT MemVT, SDNode *Root, bool AllowVectors);

    /// This is a helper function for mergeConsecutiveStores. It is used for
    /// store chains that are composed entirely of extracted vector elements.
    /// When extracting multiple vector elements, try to store them in one
    /// vector store rather than a sequence of scalar stores.
    bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes,
                                 unsigned NumConsecutiveStores, EVT MemVT,
                                 SDNode *Root);

    /// This is a helper function for mergeConsecutiveStores. It is used for
    /// store chains that are composed entirely of loaded values.
    bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes,
                              unsigned NumConsecutiveStores, EVT MemVT,
                              SDNode *Root, bool AllowVectors,
                              bool IsNonTemporalStore, bool IsNonTemporalLoad);

    /// Merge consecutive store operations into a wide store.
    /// This optimization uses wide integers or vectors when possible.
    /// \return true if stores were merged.
    bool mergeConsecutiveStores(StoreSDNode *St);

    /// Try to transform a truncation where C is a constant:
    ///     (trunc (and X, C)) -> (and (trunc X), (trunc C))
    ///
    /// \p N needs to be a truncation and its first operand an AND. Other
    /// requirements are checked by the function (e.g. that trunc is
    /// single-use) and if missed an empty SDValue is returned.
    SDValue distributeTruncateThroughAnd(SDNode *N);

    /// Helper function to determine whether the target supports operation
    /// given by \p Opcode for type \p VT, that is, whether the operation
    /// is legal or custom before legalizing operations, and whether is
    /// legal (but not custom) after legalization.
    bool hasOperation(unsigned Opcode, EVT VT) {
      return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations);
    }

  public:
    /// Runs the dag combiner on all nodes in the work list
    void Run(CombineLevel AtLevel);

    SelectionDAG &getDAG() const { return DAG; }

    /// Returns a type large enough to hold any valid shift amount - before type
    /// legalization these can be huge.
    EVT getShiftAmountTy(EVT LHSTy) {
      assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
      return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes);
    }

    /// This method returns true if we are running before type legalization or
    /// if the specified VT is legal.
    bool isTypeLegal(const EVT &VT) {
      if (!LegalTypes) return true;
      return TLI.isTypeLegal(VT);
    }

    /// Convenience wrapper around TargetLowering::getSetCCResultType
    EVT getSetCCResultType(EVT VT) const {
      return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
    }

    void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
                         SDValue OrigLoad, SDValue ExtLoad,
                         ISD::NodeType ExtType);
  };

/// This class is a DAGUpdateListener that removes any deleted
/// nodes from the worklist.
class WorklistRemover : public SelectionDAG::DAGUpdateListener {
  DAGCombiner &DC;

public:
  explicit WorklistRemover(DAGCombiner &dc)
    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}

  void NodeDeleted(SDNode *N, SDNode *E) override {
    DC.removeFromWorklist(N);
  }
};

class WorklistInserter : public SelectionDAG::DAGUpdateListener {
  DAGCombiner &DC;

public:
  explicit WorklistInserter(DAGCombiner &dc)
      : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}

  // FIXME: Ideally we could add N to the worklist, but this causes exponential
  //        compile time costs in large DAGs, e.g. Halide.
  void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); }
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
//  TargetLowering::DAGCombinerInfo implementation
//===----------------------------------------------------------------------===//

void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
  ((DAGCombiner*)DC)->AddToWorklist(N);
}

SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
}

SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, SDValue Res, bool AddTo) {
  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
}

SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
}

bool TargetLowering::DAGCombinerInfo::
recursivelyDeleteUnusedNodes(SDNode *N) {
  return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N);
}

void TargetLowering::DAGCombinerInfo::
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
}

//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//

void DAGCombiner::deleteAndRecombine(SDNode *N) {
  removeFromWorklist(N);

  // If the operands of this node are only used by the node, they will now be
  // dead. Make sure to re-visit them and recursively delete dead nodes.
  for (const SDValue &Op : N->ops())
    // For an operand generating multiple values, one of the values may
    // become dead allowing further simplification (e.g. split index
    // arithmetic from an indexed load).
    if (Op->hasOneUse() || Op->getNumValues() > 1)
      AddToWorklist(Op.getNode());

  DAG.DeleteNode(N);
}

// APInts must be the same size for most operations, this helper
// function zero extends the shorter of the pair so that they match.
// We provide an Offset so that we can create bitwidths that won't overflow.
static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
  unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
  LHS = LHS.zextOrSelf(Bits);
  RHS = RHS.zextOrSelf(Bits);
}

// Return true if this node is a setcc, or is a select_cc
// that selects between the target values used for true and false, making it
// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
// the appropriate nodes based on the type of node we are checking. This
// simplifies life a bit for the callers.
bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
                                    SDValue &CC, bool MatchStrict) const {
  if (N.getOpcode() == ISD::SETCC) {
    LHS = N.getOperand(0);
    RHS = N.getOperand(1);
    CC  = N.getOperand(2);
    return true;
  }

  if (MatchStrict &&
      (N.getOpcode() == ISD::STRICT_FSETCC ||
       N.getOpcode() == ISD::STRICT_FSETCCS)) {
    LHS = N.getOperand(1);
    RHS = N.getOperand(2);
    CC  = N.getOperand(3);
    return true;
  }

  if (N.getOpcode() != ISD::SELECT_CC ||
      !TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
      !TLI.isConstFalseVal(N.getOperand(3).getNode()))
    return false;

  if (TLI.getBooleanContents(N.getValueType()) ==
      TargetLowering::UndefinedBooleanContent)
    return false;

  LHS = N.getOperand(0);
  RHS = N.getOperand(1);
  CC  = N.getOperand(4);
  return true;
}

/// Return true if this is a SetCC-equivalent operation with only one use.
/// If this is true, it allows the users to invert the operation for free when
/// it is profitable to do so.
bool DAGCombiner::isOneUseSetCC(SDValue N) const {
  SDValue N0, N1, N2;
  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
    return true;
  return false;
}

// Returns the SDNode if it is a constant float BuildVector
// or constant float.
static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) {
  if (isa<ConstantFPSDNode>(N))
    return N.getNode();
  if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
    return N.getNode();
  return nullptr;
}

// Determines if it is a constant integer or a build vector of constant
// integers (and undefs).
// Do not permit build vector implicit truncation.
static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
  if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N))
    return !(Const->isOpaque() && NoOpaques);
  if (N.getOpcode() != ISD::BUILD_VECTOR)
    return false;
  unsigned BitWidth = N.getScalarValueSizeInBits();
  for (const SDValue &Op : N->op_values()) {
    if (Op.isUndef())
      continue;
    ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op);
    if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
        (Const->isOpaque() && NoOpaques))
      return false;
  }
  return true;
}

// Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
// undef's.
static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) {
  if (V.getOpcode() != ISD::BUILD_VECTOR)
    return false;
  return isConstantOrConstantVector(V, NoOpaques) ||
         ISD::isBuildVectorOfConstantFPSDNodes(V.getNode());
}

// Determine if this an indexed load with an opaque target constant index.
static bool canSplitIdx(LoadSDNode *LD) {
  return MaySplitLoadIndex &&
         (LD->getOperand(2).getOpcode() != ISD::TargetConstant ||
          !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque());
}

bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc,
                                                             const SDLoc &DL,
                                                             SDValue N0,
                                                             SDValue N1) {
  // Currently this only tries to ensure we don't undo the GEP splits done by
  // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
  // we check if the following transformation would be problematic:
  // (load/store (add, (add, x, offset1), offset2)) ->
  // (load/store (add, x, offset1+offset2)).

  if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD)
    return false;

  if (N0.hasOneUse())
    return false;

  auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
  auto *C2 = dyn_cast<ConstantSDNode>(N1);
  if (!C1 || !C2)
    return false;

  const APInt &C1APIntVal = C1->getAPIntValue();
  const APInt &C2APIntVal = C2->getAPIntValue();
  if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64)
    return false;

  const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal;
  if (CombinedValueIntVal.getBitWidth() > 64)
    return false;
  const int64_t CombinedValue = CombinedValueIntVal.getSExtValue();

  for (SDNode *Node : N0->uses()) {
    auto LoadStore = dyn_cast<MemSDNode>(Node);
    if (LoadStore) {
      // Is x[offset2] already not a legal addressing mode? If so then
      // reassociating the constants breaks nothing (we test offset2 because
      // that's the one we hope to fold into the load or store).
      TargetLoweringBase::AddrMode AM;
      AM.HasBaseReg = true;
      AM.BaseOffs = C2APIntVal.getSExtValue();
      EVT VT = LoadStore->getMemoryVT();
      unsigned AS = LoadStore->getAddressSpace();
      Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
      if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
        continue;

      // Would x[offset1+offset2] still be a legal addressing mode?
      AM.BaseOffs = CombinedValue;
      if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
        return true;
    }
  }

  return false;
}

// Helper for DAGCombiner::reassociateOps. Try to reassociate an expression
// such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc.
SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL,
                                               SDValue N0, SDValue N1) {
  EVT VT = N0.getValueType();

  if (N0.getOpcode() != Opc)
    return SDValue();

  if (DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
    if (DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
      // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
      if (SDValue OpNode =
              DAG.FoldConstantArithmetic(Opc, DL, VT, {N0.getOperand(1), N1}))
        return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
      return SDValue();
    }
    if (N0.hasOneUse()) {
      // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
      //              iff (op x, c1) has one use
      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
      if (!OpNode.getNode())
        return SDValue();
      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
    }
  }
  return SDValue();
}

// Try to reassociate commutative binops.
SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
                                    SDValue N1, SDNodeFlags Flags) {
  assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative.");

  // Floating-point reassociation is not allowed without loose FP math.
  if (N0.getValueType().isFloatingPoint() ||
      N1.getValueType().isFloatingPoint())
    if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros())
      return SDValue();

  if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1))
    return Combined;
  if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0))
    return Combined;
  return SDValue();
}

SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
                               bool AddTo) {
  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
  ++NodesCombined;
  LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: ";
             To[0].getNode()->dump(&DAG);
             dbgs() << " and " << NumTo - 1 << " other values\n");
  for (unsigned i = 0, e = NumTo; i != e; ++i)
    assert((!To[i].getNode() ||
            N->getValueType(i) == To[i].getValueType()) &&
           "Cannot combine value to value of different type!");

  WorklistRemover DeadNodes(*this);
  DAG.ReplaceAllUsesWith(N, To);
  if (AddTo) {
    // Push the new nodes and any users onto the worklist
    for (unsigned i = 0, e = NumTo; i != e; ++i) {
      if (To[i].getNode()) {
        AddToWorklist(To[i].getNode());
        AddUsersToWorklist(To[i].getNode());
      }
    }
  }

  // Finally, if the node is now dead, remove it from the graph.  The node
  // may not be dead if the replacement process recursively simplified to
  // something else needing this node.
  if (N->use_empty())
    deleteAndRecombine(N);
  return SDValue(N, 0);
}

void DAGCombiner::
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
  // Replace the old value with the new one.
  ++NodesCombined;
  LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
             dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
             dbgs() << '\n');

  // Replace all uses.  If any nodes become isomorphic to other nodes and
  // are deleted, make sure to remove them from our worklist.
  WorklistRemover DeadNodes(*this);
  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);

  // Push the new node and any (possibly new) users onto the worklist.
  AddToWorklistWithUsers(TLO.New.getNode());

  // Finally, if the node is now dead, remove it from the graph.  The node
  // may not be dead if the replacement process recursively simplified to
  // something else needing this node.
  if (TLO.Old.getNode()->use_empty())
    deleteAndRecombine(TLO.Old.getNode());
}

/// Check the specified integer node value to see if it can be simplified or if
/// things it uses can be simplified by bit propagation. If so, return true.
bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
                                       const APInt &DemandedElts,
                                       bool AssumeSingleUse) {
  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
  KnownBits Known;
  if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0,
                                AssumeSingleUse))
    return false;

  // Revisit the node.
  AddToWorklist(Op.getNode());

  CommitTargetLoweringOpt(TLO);
  return true;
}

/// Check the specified vector node value to see if it can be simplified or
/// if things it uses can be simplified as it only uses some of the elements.
/// If so, return true.
bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op,
                                             const APInt &DemandedElts,
                                             bool AssumeSingleUse) {
  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
  APInt KnownUndef, KnownZero;
  if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero,
                                      TLO, 0, AssumeSingleUse))
    return false;

  // Revisit the node.
  AddToWorklist(Op.getNode());

  CommitTargetLoweringOpt(TLO);
  return true;
}

void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
  SDLoc DL(Load);
  EVT VT = Load->getValueType(0);
  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));

  LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: ";
             Trunc.getNode()->dump(&DAG); dbgs() << '\n');
  WorklistRemover DeadNodes(*this);
  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
  deleteAndRecombine(Load);
  AddToWorklist(Trunc.getNode());
}

SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
  Replace = false;
  SDLoc DL(Op);
  if (ISD::isUNINDEXEDLoad(Op.getNode())) {
    LoadSDNode *LD = cast<LoadSDNode>(Op);
    EVT MemVT = LD->getMemoryVT();
    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
                                                      : LD->getExtensionType();
    Replace = true;
    return DAG.getExtLoad(ExtType, DL, PVT,
                          LD->getChain(), LD->getBasePtr(),
                          MemVT, LD->getMemOperand());
  }

  unsigned Opc = Op.getOpcode();
  switch (Opc) {
  default: break;
  case ISD::AssertSext:
    if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT))
      return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1));
    break;
  case ISD::AssertZext:
    if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT))
      return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1));
    break;
  case ISD::Constant: {
    unsigned ExtOpc =
      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
    return DAG.getNode(ExtOpc, DL, PVT, Op);
  }
  }

  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
    return SDValue();
  return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
}

SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
    return SDValue();
  EVT OldVT = Op.getValueType();
  SDLoc DL(Op);
  bool Replace = false;
  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
  if (!NewOp.getNode())
    return SDValue();
  AddToWorklist(NewOp.getNode());

  if (Replace)
    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
  return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
                     DAG.getValueType(OldVT));
}

SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
  EVT OldVT = Op.getValueType();
  SDLoc DL(Op);
  bool Replace = false;
  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
  if (!NewOp.getNode())
    return SDValue();
  AddToWorklist(NewOp.getNode());

  if (Replace)
    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
  return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
}

/// Promote the specified integer binary operation if the target indicates it is
/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
/// i32 since i16 instructions are longer.
SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
  if (!LegalOperations)
    return SDValue();

  EVT VT = Op.getValueType();
  if (VT.isVector() || !VT.isInteger())
    return SDValue();

  // If operation type is 'undesirable', e.g. i16 on x86, consider
  // promoting it.
  unsigned Opc = Op.getOpcode();
  if (TLI.isTypeDesirableForOp(Opc, VT))
    return SDValue();

  EVT PVT = VT;
  // Consult target whether it is a good idea to promote this operation and
  // what's the right type to promote it to.
  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
    assert(PVT != VT && "Don't know what type to promote to!");

    LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));

    bool Replace0 = false;
    SDValue N0 = Op.getOperand(0);
    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);

    bool Replace1 = false;
    SDValue N1 = Op.getOperand(1);
    SDValue NN1 = PromoteOperand(N1, PVT, Replace1);
    SDLoc DL(Op);

    SDValue RV =
        DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1));

    // We are always replacing N0/N1's use in N and only need additional
    // replacements if there are additional uses.
    // Note: We are checking uses of the *nodes* (SDNode) rather than values
    //       (SDValue) here because the node may reference multiple values
    //       (for example, the chain value of a load node).
    Replace0 &= !N0->hasOneUse();
    Replace1 &= (N0 != N1) && !N1->hasOneUse();

    // Combine Op here so it is preserved past replacements.
    CombineTo(Op.getNode(), RV);

    // If operands have a use ordering, make sure we deal with
    // predecessor first.
    if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) {
      std::swap(N0, N1);
      std::swap(NN0, NN1);
    }

    if (Replace0) {
      AddToWorklist(NN0.getNode());
      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
    }
    if (Replace1) {
      AddToWorklist(NN1.getNode());
      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
    }
    return Op;
  }
  return SDValue();
}

/// Promote the specified integer shift operation if the target indicates it is
/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
/// i32 since i16 instructions are longer.
SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
  if (!LegalOperations)
    return SDValue();

  EVT VT = Op.getValueType();
  if (VT.isVector() || !VT.isInteger())
    return SDValue();

  // If operation type is 'undesirable', e.g. i16 on x86, consider
  // promoting it.
  unsigned Opc = Op.getOpcode();
  if (TLI.isTypeDesirableForOp(Opc, VT))
    return SDValue();

  EVT PVT = VT;
  // Consult target whether it is a good idea to promote this operation and
  // what's the right type to promote it to.
  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
    assert(PVT != VT && "Don't know what type to promote to!");

    LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));

    bool Replace = false;
    SDValue N0 = Op.getOperand(0);
    SDValue N1 = Op.getOperand(1);
    if (Opc == ISD::SRA)
      N0 = SExtPromoteOperand(N0, PVT);
    else if (Opc == ISD::SRL)
      N0 = ZExtPromoteOperand(N0, PVT);
    else
      N0 = PromoteOperand(N0, PVT, Replace);

    if (!N0.getNode())
      return SDValue();

    SDLoc DL(Op);
    SDValue RV =
        DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1));

    if (Replace)
      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());

    // Deal with Op being deleted.
    if (Op && Op.getOpcode() != ISD::DELETED_NODE)
      return RV;
  }
  return SDValue();
}

SDValue DAGCombiner::PromoteExtend(SDValue Op) {
  if (!LegalOperations)
    return SDValue();

  EVT VT = Op.getValueType();
  if (VT.isVector() || !VT.isInteger())
    return SDValue();

  // If operation type is 'undesirable', e.g. i16 on x86, consider
  // promoting it.
  unsigned Opc = Op.getOpcode();
  if (TLI.isTypeDesirableForOp(Opc, VT))
    return SDValue();

  EVT PVT = VT;
  // Consult target whether it is a good idea to promote this operation and
  // what's the right type to promote it to.
  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
    assert(PVT != VT && "Don't know what type to promote to!");
    // fold (aext (aext x)) -> (aext x)
    // fold (aext (zext x)) -> (zext x)
    // fold (aext (sext x)) -> (sext x)
    LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
    return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
  }
  return SDValue();
}

bool DAGCombiner::PromoteLoad(SDValue Op) {
  if (!LegalOperations)
    return false;

  if (!ISD::isUNINDEXEDLoad(Op.getNode()))
    return false;

  EVT VT = Op.getValueType();
  if (VT.isVector() || !VT.isInteger())
    return false;

  // If operation type is 'undesirable', e.g. i16 on x86, consider
  // promoting it.
  unsigned Opc = Op.getOpcode();
  if (TLI.isTypeDesirableForOp(Opc, VT))
    return false;

  EVT PVT = VT;
  // Consult target whether it is a good idea to promote this operation and
  // what's the right type to promote it to.
  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
    assert(PVT != VT && "Don't know what type to promote to!");

    SDLoc DL(Op);
    SDNode *N = Op.getNode();
    LoadSDNode *LD = cast<LoadSDNode>(N);
    EVT MemVT = LD->getMemoryVT();
    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
                                                      : LD->getExtensionType();
    SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
                                   LD->getChain(), LD->getBasePtr(),
                                   MemVT, LD->getMemOperand());
    SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);

    LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: ";
               Result.getNode()->dump(&DAG); dbgs() << '\n');
    WorklistRemover DeadNodes(*this);
    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
    deleteAndRecombine(N);
    AddToWorklist(Result.getNode());
    return true;
  }
  return false;
}

/// Recursively delete a node which has no uses and any operands for
/// which it is the only use.
///
/// Note that this both deletes the nodes and removes them from the worklist.
/// It also adds any nodes who have had a user deleted to the worklist as they
/// may now have only one use and subject to other combines.
bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
  if (!N->use_empty())
    return false;

  SmallSetVector<SDNode *, 16> Nodes;
  Nodes.insert(N);
  do {
    N = Nodes.pop_back_val();
    if (!N)
      continue;

    if (N->use_empty()) {
      for (const SDValue &ChildN : N->op_values())
        Nodes.insert(ChildN.getNode());

      removeFromWorklist(N);
      DAG.DeleteNode(N);
    } else {
      AddToWorklist(N);
    }
  } while (!Nodes.empty());
  return true;
}

//===----------------------------------------------------------------------===//
//  Main DAG Combiner implementation
//===----------------------------------------------------------------------===//

void DAGCombiner::Run(CombineLevel AtLevel) {
  // set the instance variables, so that the various visit routines may use it.
  Level = AtLevel;
  LegalDAG = Level >= AfterLegalizeDAG;
  LegalOperations = Level >= AfterLegalizeVectorOps;
  LegalTypes = Level >= AfterLegalizeTypes;

  WorklistInserter AddNodes(*this);

  // Add all the dag nodes to the worklist.
  for (SDNode &Node : DAG.allnodes())
    AddToWorklist(&Node);

  // Create a dummy node (which is not added to allnodes), that adds a reference
  // to the root node, preventing it from being deleted, and tracking any
  // changes of the root.
  HandleSDNode Dummy(DAG.getRoot());

  // While we have a valid worklist entry node, try to combine it.
  while (SDNode *N = getNextWorklistEntry()) {
    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
    // N is deleted from the DAG, since they too may now be dead or may have a
    // reduced number of uses, allowing other xforms.
    if (recursivelyDeleteUnusedNodes(N))
      continue;

    WorklistRemover DeadNodes(*this);

    // If this combine is running after legalizing the DAG, re-legalize any
    // nodes pulled off the worklist.
    if (LegalDAG) {
      SmallSetVector<SDNode *, 16> UpdatedNodes;
      bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);

      for (SDNode *LN : UpdatedNodes)
        AddToWorklistWithUsers(LN);

      if (!NIsValid)
        continue;
    }

    LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));

    // Add any operands of the new node which have not yet been combined to the
    // worklist as well. Because the worklist uniques things already, this
    // won't repeatedly process the same operand.
    CombinedNodes.insert(N);
    for (const SDValue &ChildN : N->op_values())
      if (!CombinedNodes.count(ChildN.getNode()))
        AddToWorklist(ChildN.getNode());

    SDValue RV = combine(N);

    if (!RV.getNode())
      continue;

    ++NodesCombined;

    // If we get back the same node we passed in, rather than a new node or
    // zero, we know that the node must have defined multiple values and
    // CombineTo was used.  Since CombineTo takes care of the worklist
    // mechanics for us, we have no work to do in this case.
    if (RV.getNode() == N)
      continue;

    assert(N->getOpcode() != ISD::DELETED_NODE &&
           RV.getOpcode() != ISD::DELETED_NODE &&
           "Node was deleted but visit returned new node!");

    LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG));

    if (N->getNumValues() == RV.getNode()->getNumValues())
      DAG.ReplaceAllUsesWith(N, RV.getNode());
    else {
      assert(N->getValueType(0) == RV.getValueType() &&
             N->getNumValues() == 1 && "Type mismatch");
      DAG.ReplaceAllUsesWith(N, &RV);
    }

    // Push the new node and any users onto the worklist.  Omit this if the
    // new node is the EntryToken (e.g. if a store managed to get optimized
    // out), because re-visiting the EntryToken and its users will not uncover
    // any additional opportunities, but there may be a large number of such
    // users, potentially causing compile time explosion.
    if (RV.getOpcode() != ISD::EntryToken) {
      AddToWorklist(RV.getNode());
      AddUsersToWorklist(RV.getNode());
    }

    // Finally, if the node is now dead, remove it from the graph.  The node
    // may not be dead if the replacement process recursively simplified to
    // something else needing this node. This will also take care of adding any
    // operands which have lost a user to the worklist.
    recursivelyDeleteUnusedNodes(N);
  }

  // If the root changed (e.g. it was a dead load, update the root).
  DAG.setRoot(Dummy.getValue());
  DAG.RemoveDeadNodes();
}

SDValue DAGCombiner::visit(SDNode *N) {
  switch (N->getOpcode()) {
  default: break;
  case ISD::TokenFactor:        return visitTokenFactor(N);
  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
  case ISD::ADD:                return visitADD(N);
  case ISD::SUB:                return visitSUB(N);
  case ISD::SADDSAT:
  case ISD::UADDSAT:            return visitADDSAT(N);
  case ISD::SSUBSAT:
  case ISD::USUBSAT:            return visitSUBSAT(N);
  case ISD::ADDC:               return visitADDC(N);
  case ISD::SADDO:
  case ISD::UADDO:              return visitADDO(N);
  case ISD::SUBC:               return visitSUBC(N);
  case ISD::SSUBO:
  case ISD::USUBO:              return visitSUBO(N);
  case ISD::ADDE:               return visitADDE(N);
  case ISD::ADDCARRY:           return visitADDCARRY(N);
  case ISD::SUBE:               return visitSUBE(N);
  case ISD::SUBCARRY:           return visitSUBCARRY(N);
  case ISD::SMULFIX:
  case ISD::SMULFIXSAT:
  case ISD::UMULFIX:
  case ISD::UMULFIXSAT:         return visitMULFIX(N);
  case ISD::MUL:                return visitMUL(N);
  case ISD::SDIV:               return visitSDIV(N);
  case ISD::UDIV:               return visitUDIV(N);
  case ISD::SREM:
  case ISD::UREM:               return visitREM(N);
  case ISD::MULHU:              return visitMULHU(N);
  case ISD::MULHS:              return visitMULHS(N);
  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
  case ISD::SMULO:
  case ISD::UMULO:              return visitMULO(N);
  case ISD::SMIN:
  case ISD::SMAX:
  case ISD::UMIN:
  case ISD::UMAX:               return visitIMINMAX(N);
  case ISD::AND:                return visitAND(N);
  case ISD::OR:                 return visitOR(N);
  case ISD::XOR:                return visitXOR(N);
  case ISD::SHL:                return visitSHL(N);
  case ISD::SRA:                return visitSRA(N);
  case ISD::SRL:                return visitSRL(N);
  case ISD::ROTR:
  case ISD::ROTL:               return visitRotate(N);
  case ISD::FSHL:
  case ISD::FSHR:               return visitFunnelShift(N);
  case ISD::ABS:                return visitABS(N);
  case ISD::BSWAP:              return visitBSWAP(N);
  case ISD::BITREVERSE:         return visitBITREVERSE(N);
  case ISD::CTLZ:               return visitCTLZ(N);
  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
  case ISD::CTTZ:               return visitCTTZ(N);
  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
  case ISD::CTPOP:              return visitCTPOP(N);
  case ISD::SELECT:             return visitSELECT(N);
  case ISD::VSELECT:            return visitVSELECT(N);
  case ISD::SELECT_CC:          return visitSELECT_CC(N);
  case ISD::SETCC:              return visitSETCC(N);
  case ISD::SETCCCARRY:         return visitSETCCCARRY(N);
  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
  case ISD::AssertSext:
  case ISD::AssertZext:         return visitAssertExt(N);
  case ISD::AssertAlign:        return visitAssertAlign(N);
  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
  case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N);
  case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N);
  case ISD::TRUNCATE:           return visitTRUNCATE(N);
  case ISD::BITCAST:            return visitBITCAST(N);
  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
  case ISD::FADD:               return visitFADD(N);
  case ISD::STRICT_FADD:        return visitSTRICT_FADD(N);
  case ISD::FSUB:               return visitFSUB(N);
  case ISD::FMUL:               return visitFMUL(N);
  case ISD::FMA:                return visitFMA(N);
  case ISD::FDIV:               return visitFDIV(N);
  case ISD::FREM:               return visitFREM(N);
  case ISD::FSQRT:              return visitFSQRT(N);
  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
  case ISD::FPOW:               return visitFPOW(N);
  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
  case ISD::FP_ROUND:           return visitFP_ROUND(N);
  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
  case ISD::FNEG:               return visitFNEG(N);
  case ISD::FABS:               return visitFABS(N);
  case ISD::FFLOOR:             return visitFFLOOR(N);
  case ISD::FMINNUM:            return visitFMINNUM(N);
  case ISD::FMAXNUM:            return visitFMAXNUM(N);
  case ISD::FMINIMUM:           return visitFMINIMUM(N);
  case ISD::FMAXIMUM:           return visitFMAXIMUM(N);
  case ISD::FCEIL:              return visitFCEIL(N);
  case ISD::FTRUNC:             return visitFTRUNC(N);
  case ISD::BRCOND:             return visitBRCOND(N);
  case ISD::BR_CC:              return visitBR_CC(N);
  case ISD::LOAD:               return visitLOAD(N);
  case ISD::STORE:              return visitSTORE(N);
  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
  case ISD::SCALAR_TO_VECTOR:   return visitSCALAR_TO_VECTOR(N);
  case ISD::INSERT_SUBVECTOR:   return visitINSERT_SUBVECTOR(N);
  case ISD::MGATHER:            return visitMGATHER(N);
  case ISD::MLOAD:              return visitMLOAD(N);
  case ISD::MSCATTER:           return visitMSCATTER(N);
  case ISD::MSTORE:             return visitMSTORE(N);
  case ISD::LIFETIME_END:       return visitLIFETIME_END(N);
  case ISD::FP_TO_FP16:         return visitFP_TO_FP16(N);
  case ISD::FP16_TO_FP:         return visitFP16_TO_FP(N);
  case ISD::FREEZE:             return visitFREEZE(N);
  case ISD::VECREDUCE_FADD:
  case ISD::VECREDUCE_FMUL:
  case ISD::VECREDUCE_ADD:
  case ISD::VECREDUCE_MUL:
  case ISD::VECREDUCE_AND:
  case ISD::VECREDUCE_OR:
  case ISD::VECREDUCE_XOR:
  case ISD::VECREDUCE_SMAX:
  case ISD::VECREDUCE_SMIN:
  case ISD::VECREDUCE_UMAX:
  case ISD::VECREDUCE_UMIN:
  case ISD::VECREDUCE_FMAX:
  case ISD::VECREDUCE_FMIN:     return visitVECREDUCE(N);
  }
  return SDValue();
}

SDValue DAGCombiner::combine(SDNode *N) {
  SDValue RV;
  if (!DisableGenericCombines)
    RV = visit(N);

  // If nothing happened, try a target-specific DAG combine.
  if (!RV.getNode()) {
    assert(N->getOpcode() != ISD::DELETED_NODE &&
           "Node was deleted but visit returned NULL!");

    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {

      // Expose the DAG combiner to the target combiner impls.
      TargetLowering::DAGCombinerInfo
        DagCombineInfo(DAG, Level, false, this);

      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
    }
  }

  // If nothing happened still, try promoting the operation.
  if (!RV.getNode()) {
    switch (N->getOpcode()) {
    default: break;
    case ISD::ADD:
    case ISD::SUB:
    case ISD::MUL:
    case ISD::AND:
    case ISD::OR:
    case ISD::XOR:
      RV = PromoteIntBinOp(SDValue(N, 0));
      break;
    case ISD::SHL:
    case ISD::SRA:
    case ISD::SRL:
      RV = PromoteIntShiftOp(SDValue(N, 0));
      break;
    case ISD::SIGN_EXTEND:
    case ISD::ZERO_EXTEND:
    case ISD::ANY_EXTEND:
      RV = PromoteExtend(SDValue(N, 0));
      break;
    case ISD::LOAD:
      if (PromoteLoad(SDValue(N, 0)))
        RV = SDValue(N, 0);
      break;
    }
  }

  // If N is a commutative binary node, try to eliminate it if the commuted
  // version is already present in the DAG.
  if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) &&
      N->getNumValues() == 1) {
    SDValue N0 = N->getOperand(0);
    SDValue N1 = N->getOperand(1);

    // Constant operands are canonicalized to RHS.
    if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) {
      SDValue Ops[] = {N1, N0};
      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
                                            N->getFlags());
      if (CSENode)
        return SDValue(CSENode, 0);
    }
  }

  return RV;
}

/// Given a node, return its input chain if it has one, otherwise return a null
/// sd operand.
static SDValue getInputChainForNode(SDNode *N) {
  if (unsigned NumOps = N->getNumOperands()) {
    if (N->getOperand(0).getValueType() == MVT::Other)
      return N->getOperand(0);
    if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
      return N->getOperand(NumOps-1);
    for (unsigned i = 1; i < NumOps-1; ++i)
      if (N->getOperand(i).getValueType() == MVT::Other)
        return N->getOperand(i);
  }
  return SDValue();
}

SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
  // If N has two operands, where one has an input chain equal to the other,
  // the 'other' chain is redundant.
  if (N->getNumOperands() == 2) {
    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
      return N->getOperand(0);
    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
      return N->getOperand(1);
  }

  // Don't simplify token factors if optnone.
  if (OptLevel == CodeGenOpt::None)
    return SDValue();

  // Don't simplify the token factor if the node itself has too many operands.
  if (N->getNumOperands() > TokenFactorInlineLimit)
    return SDValue();

  // If the sole user is a token factor, we should make sure we have a
  // chance to merge them together. This prevents TF chains from inhibiting
  // optimizations.
  if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor)
    AddToWorklist(*(N->use_begin()));

  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
  SmallVector<SDValue, 8> Ops;      // Ops for replacing token factor.
  SmallPtrSet<SDNode*, 16> SeenOps;
  bool Changed = false;             // If we should replace this token factor.

  // Start out with this token factor.
  TFs.push_back(N);

  // Iterate through token factors.  The TFs grows when new token factors are
  // encountered.
  for (unsigned i = 0; i < TFs.size(); ++i) {
    // Limit number of nodes to inline, to avoid quadratic compile times.
    // We have to add the outstanding Token Factors to Ops, otherwise we might
    // drop Ops from the resulting Token Factors.
    if (Ops.size() > TokenFactorInlineLimit) {
      for (unsigned j = i; j < TFs.size(); j++)
        Ops.emplace_back(TFs[j], 0);
      // Drop unprocessed Token Factors from TFs, so we do not add them to the
      // combiner worklist later.
      TFs.resize(i);
      break;
    }

    SDNode *TF = TFs[i];
    // Check each of the operands.
    for (const SDValue &Op : TF->op_values()) {
      switch (Op.getOpcode()) {
      case ISD::EntryToken:
        // Entry tokens don't need to be added to the list. They are
        // redundant.
        Changed = true;
        break;

      case ISD::TokenFactor:
        if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
          // Queue up for processing.
          TFs.push_back(Op.getNode());
          Changed = true;
          break;
        }
        LLVM_FALLTHROUGH;

      default:
        // Only add if it isn't already in the list.
        if (SeenOps.insert(Op.getNode()).second)
          Ops.push_back(Op);
        else
          Changed = true;
        break;
      }
    }
  }

  // Re-visit inlined Token Factors, to clean them up in case they have been
  // removed. Skip the first Token Factor, as this is the current node.
  for (unsigned i = 1, e = TFs.size(); i < e; i++)
    AddToWorklist(TFs[i]);

  // Remove Nodes that are chained to another node in the list. Do so
  // by walking up chains breath-first stopping when we've seen
  // another operand. In general we must climb to the EntryNode, but we can exit
  // early if we find all remaining work is associated with just one operand as
  // no further pruning is possible.

  // List of nodes to search through and original Ops from which they originate.
  SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist;
  SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op.
  SmallPtrSet<SDNode *, 16> SeenChains;
  bool DidPruneOps = false;

  unsigned NumLeftToConsider = 0;
  for (const SDValue &Op : Ops) {
    Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++));
    OpWorkCount.push_back(1);
  }

  auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) {
    // If this is an Op, we can remove the op from the list. Remark any
    // search associated with it as from the current OpNumber.
    if (SeenOps.count(Op) != 0) {
      Changed = true;
      DidPruneOps = true;
      unsigned OrigOpNumber = 0;
      while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op)
        OrigOpNumber++;
      assert((OrigOpNumber != Ops.size()) &&
             "expected to find TokenFactor Operand");
      // Re-mark worklist from OrigOpNumber to OpNumber
      for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) {
        if (Worklist[i].second == OrigOpNumber) {
          Worklist[i].second = OpNumber;
        }
      }
      OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber];
      OpWorkCount[OrigOpNumber] = 0;
      NumLeftToConsider--;
    }
    // Add if it's a new chain
    if (SeenChains.insert(Op).second) {
      OpWorkCount[OpNumber]++;
      Worklist.push_back(std::make_pair(Op, OpNumber));
    }
  };

  for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) {
    // We need at least be consider at least 2 Ops to prune.
    if (NumLeftToConsider <= 1)
      break;
    auto CurNode = Worklist[i].first;
    auto CurOpNumber = Worklist[i].second;
    assert((OpWorkCount[CurOpNumber] > 0) &&
           "Node should not appear in worklist");
    switch (CurNode->getOpcode()) {
    case ISD::EntryToken:
      // Hitting EntryToken is the only way for the search to terminate without
      // hitting
      // another operand's search. Prevent us from marking this operand
      // considered.
      NumLeftToConsider++;
      break;
    case ISD::TokenFactor:
      for (const SDValue &Op : CurNode->op_values())
        AddToWorklist(i, Op.getNode(), CurOpNumber);
      break;
    case ISD::LIFETIME_START:
    case ISD::LIFETIME_END:
    case ISD::CopyFromReg:
    case ISD::CopyToReg:
      AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber);
      break;
    default:
      if (auto *MemNode = dyn_cast<MemSDNode>(CurNode))
        AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber);
      break;
    }
    OpWorkCount[CurOpNumber]--;
    if (OpWorkCount[CurOpNumber] == 0)
      NumLeftToConsider--;
  }

  // If we've changed things around then replace token factor.
  if (Changed) {
    SDValue Result;
    if (Ops.empty()) {
      // The entry token is the only possible outcome.
      Result = DAG.getEntryNode();
    } else {
      if (DidPruneOps) {
        SmallVector<SDValue, 8> PrunedOps;
        //
        for (const SDValue &Op : Ops) {
          if (SeenChains.count(Op.getNode()) == 0)
            PrunedOps.push_back(Op);
        }
        Result = DAG.getTokenFactor(SDLoc(N), PrunedOps);
      } else {
        Result = DAG.getTokenFactor(SDLoc(N), Ops);
      }
    }
    return Result;
  }
  return SDValue();
}

/// MERGE_VALUES can always be eliminated.
SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
  WorklistRemover DeadNodes(*this);
  // Replacing results may cause a different MERGE_VALUES to suddenly
  // be CSE'd with N, and carry its uses with it. Iterate until no
  // uses remain, to ensure that the node can be safely deleted.
  // First add the users of this node to the work list so that they
  // can be tried again once they have new operands.
  AddUsersToWorklist(N);
  do {
    // Do as a single replacement to avoid rewalking use lists.
    SmallVector<SDValue, 8> Ops;
    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
      Ops.push_back(N->getOperand(i));
    DAG.ReplaceAllUsesWith(N, Ops.data());
  } while (!N->use_empty());
  deleteAndRecombine(N);
  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
}

/// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
/// ConstantSDNode pointer else nullptr.
static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
  ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
  return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
}

SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) {
  assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 &&
         "Unexpected binary operator");

  // Don't do this unless the old select is going away. We want to eliminate the
  // binary operator, not replace a binop with a select.
  // TODO: Handle ISD::SELECT_CC.
  unsigned SelOpNo = 0;
  SDValue Sel = BO->getOperand(0);
  if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
    SelOpNo = 1;
    Sel = BO->getOperand(1);
  }

  if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
    return SDValue();

  SDValue CT = Sel.getOperand(1);
  if (!isConstantOrConstantVector(CT, true) &&
      !isConstantFPBuildVectorOrConstantFP(CT))
    return SDValue();

  SDValue CF = Sel.getOperand(2);
  if (!isConstantOrConstantVector(CF, true) &&
      !isConstantFPBuildVectorOrConstantFP(CF))
    return SDValue();

  // Bail out if any constants are opaque because we can't constant fold those.
  // The exception is "and" and "or" with either 0 or -1 in which case we can
  // propagate non constant operands into select. I.e.:
  // and (select Cond, 0, -1), X --> select Cond, 0, X
  // or X, (select Cond, -1, 0) --> select Cond, -1, X
  auto BinOpcode = BO->getOpcode();
  bool CanFoldNonConst =
      (BinOpcode == ISD::AND || BinOpcode == ISD::OR) &&
      (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) &&
      (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF));

  SDValue CBO = BO->getOperand(SelOpNo ^ 1);
  if (!CanFoldNonConst &&
      !isConstantOrConstantVector(CBO, true) &&
      !isConstantFPBuildVectorOrConstantFP(CBO))
    return SDValue();

  EVT VT = Sel.getValueType();

  // In case of shift value and shift amount may have different VT. For instance
  // on x86 shift amount is i8 regardles of LHS type. Bail out if we have
  // swapped operands and value types do not match. NB: x86 is fine if operands
  // are not swapped with shift amount VT being not bigger than shifted value.
  // TODO: that is possible to check for a shift operation, correct VTs and
  // still perform optimization on x86 if needed.
  if (SelOpNo && VT != CBO.getValueType())
    return SDValue();

  // We have a select-of-constants followed by a binary operator with a
  // constant. Eliminate the binop by pulling the constant math into the select.
  // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
  SDLoc DL(Sel);
  SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT)
                          : DAG.getNode(BinOpcode, DL, VT, CT, CBO);
  if (!CanFoldNonConst && !NewCT.isUndef() &&
      !isConstantOrConstantVector(NewCT, true) &&
      !isConstantFPBuildVectorOrConstantFP(NewCT))
    return SDValue();

  SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF)
                          : DAG.getNode(BinOpcode, DL, VT, CF, CBO);
  if (!CanFoldNonConst && !NewCF.isUndef() &&
      !isConstantOrConstantVector(NewCF, true) &&
      !isConstantFPBuildVectorOrConstantFP(NewCF))
    return SDValue();

  SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF);
  SelectOp->setFlags(BO->getFlags());
  return SelectOp;
}

static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) {
  assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
         "Expecting add or sub");

  // Match a constant operand and a zext operand for the math instruction:
  // add Z, C
  // sub C, Z
  bool IsAdd = N->getOpcode() == ISD::ADD;
  SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0);
  SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1);
  auto *CN = dyn_cast<ConstantSDNode>(C);
  if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND)
    return SDValue();

  // Match the zext operand as a setcc of a boolean.
  if (Z.getOperand(0).getOpcode() != ISD::SETCC ||
      Z.getOperand(0).getValueType() != MVT::i1)
    return SDValue();

  // Match the compare as: setcc (X & 1), 0, eq.
  SDValue SetCC = Z.getOperand(0);
  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
  if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) ||
      SetCC.getOperand(0).getOpcode() != ISD::AND ||
      !isOneConstant(SetCC.getOperand(0).getOperand(1)))
    return SDValue();

  // We are adding/subtracting a constant and an inverted low bit. Turn that
  // into a subtract/add of the low bit with incremented/decremented constant:
  // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
  // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
  EVT VT = C.getValueType();
  SDLoc DL(N);
  SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT);
  SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) :
                       DAG.getConstant(CN->getAPIntValue() - 1, DL, VT);
  return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit);
}

/// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
/// a shift and add with a different constant.
static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) {
  assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
         "Expecting add or sub");

  // We need a constant operand for the add/sub, and the other operand is a
  // logical shift right: add (srl), C or sub C, (srl).
  bool IsAdd = N->getOpcode() == ISD::ADD;
  SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0);
  SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1);
  if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) ||
      ShiftOp.getOpcode() != ISD::SRL)
    return SDValue();

  // The shift must be of a 'not' value.
  SDValue Not = ShiftOp.getOperand(0);
  if (!Not.hasOneUse() || !isBitwiseNot(Not))
    return SDValue();

  // The shift must be moving the sign bit to the least-significant-bit.
  EVT VT = ShiftOp.getValueType();
  SDValue ShAmt = ShiftOp.getOperand(1);
  ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
  if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1))
    return SDValue();

  // Eliminate the 'not' by adjusting the shift and add/sub constant:
  // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
  // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
  SDLoc DL(N);
  auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL;
  SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt);
  if (SDValue NewC =
          DAG.FoldConstantArithmetic(IsAdd ? ISD::ADD : ISD::SUB, DL, VT,
                                     {ConstantOp, DAG.getConstant(1, DL, VT)}))
    return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC);
  return SDValue();
}

/// Try to fold a node that behaves like an ADD (note that N isn't necessarily
/// an ISD::ADD here, it could for example be an ISD::OR if we know that there
/// are no common bits set in the operands).
SDValue DAGCombiner::visitADDLike(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N0.getValueType();
  SDLoc DL(N);

  // fold vector ops
  if (VT.isVector()) {
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;

    // fold (add x, 0) -> x, vector edition
    if (ISD::isBuildVectorAllZeros(N1.getNode()))
      return N0;
    if (ISD::isBuildVectorAllZeros(N0.getNode()))
      return N1;
  }

  // fold (add x, undef) -> undef
  if (N0.isUndef())
    return N0;

  if (N1.isUndef())
    return N1;

  if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
    // canonicalize constant to RHS
    if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
      return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
    // fold (add c1, c2) -> c1+c2
    return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1});
  }

  // fold (add x, 0) -> x
  if (isNullConstant(N1))
    return N0;

  if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) {
    // fold ((A-c1)+c2) -> (A+(c2-c1))
    if (N0.getOpcode() == ISD::SUB &&
        isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) {
      SDValue Sub =
          DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N0.getOperand(1)});
      assert(Sub && "Constant folding failed");
      return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub);
    }

    // fold ((c1-A)+c2) -> (c1+c2)-A
    if (N0.getOpcode() == ISD::SUB &&
        isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) {
      SDValue Add =
          DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N0.getOperand(0)});
      assert(Add && "Constant folding failed");
      return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
    }

    // add (sext i1 X), 1 -> zext (not i1 X)
    // We don't transform this pattern:
    //   add (zext i1 X), -1 -> sext (not i1 X)
    // because most (?) targets generate better code for the zext form.
    if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() &&
        isOneOrOneSplat(N1)) {
      SDValue X = N0.getOperand(0);
      if ((!LegalOperations ||
           (TLI.isOperationLegal(ISD::XOR, X.getValueType()) &&
            TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) &&
          X.getScalarValueSizeInBits() == 1) {
        SDValue Not = DAG.getNOT(DL, X, X.getValueType());
        return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not);
      }
    }

    // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is
    // equivalent to (add x, c0).
    if (N0.getOpcode() == ISD::OR &&
        isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) &&
        DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) {
      if (SDValue Add0 = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT,
                                                    {N1, N0.getOperand(1)}))
        return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0);
    }
  }

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  // reassociate add
  if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) {
    if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags()))
      return RADD;
  }
  // fold ((0-A) + B) -> B-A
  if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0)))
    return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));

  // fold (A + (0-B)) -> A-B
  if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
    return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1));

  // fold (A+(B-A)) -> B
  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
    return N1.getOperand(0);

  // fold ((B-A)+A) -> B
  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
    return N0.getOperand(0);

  // fold ((A-B)+(C-A)) -> (C-B)
  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
      N0.getOperand(0) == N1.getOperand(1))
    return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
                       N0.getOperand(1));

  // fold ((A-B)+(B-C)) -> (A-C)
  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
      N0.getOperand(1) == N1.getOperand(0))
    return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
                       N1.getOperand(1));

  // fold (A+(B-(A+C))) to (B-C)
  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
      N0 == N1.getOperand(1).getOperand(0))
    return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
                       N1.getOperand(1).getOperand(1));

  // fold (A+(B-(C+A))) to (B-C)
  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
      N0 == N1.getOperand(1).getOperand(1))
    return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
                       N1.getOperand(1).getOperand(0));

  // fold (A+((B-A)+or-C)) to (B+or-C)
  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
      N1.getOperand(0).getOpcode() == ISD::SUB &&
      N0 == N1.getOperand(0).getOperand(1))
    return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0),
                       N1.getOperand(1));

  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
    SDValue N00 = N0.getOperand(0);
    SDValue N01 = N0.getOperand(1);
    SDValue N10 = N1.getOperand(0);
    SDValue N11 = N1.getOperand(1);

    if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10))
      return DAG.getNode(ISD::SUB, DL, VT,
                         DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
                         DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
  }

  // fold (add (umax X, C), -C) --> (usubsat X, C)
  if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) {
    auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) {
      return (!Max && !Op) ||
             (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue()));
    };
    if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT,
                                  /*AllowUndefs*/ true))
      return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0),
                         N0.getOperand(1));
  }

  if (SimplifyDemandedBits(SDValue(N, 0)))
    return SDValue(N, 0);

  if (isOneOrOneSplat(N1)) {
    // fold (add (xor a, -1), 1) -> (sub 0, a)
    if (isBitwiseNot(N0))
      return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
                         N0.getOperand(0));

    // fold (add (add (xor a, -1), b), 1) -> (sub b, a)
    if (N0.getOpcode() == ISD::ADD ||
        N0.getOpcode() == ISD::UADDO ||
        N0.getOpcode() == ISD::SADDO) {
      SDValue A, Xor;

      if (isBitwiseNot(N0.getOperand(0))) {
        A = N0.getOperand(1);
        Xor = N0.getOperand(0);
      } else if (isBitwiseNot(N0.getOperand(1))) {
        A = N0.getOperand(0);
        Xor = N0.getOperand(1);
      }

      if (Xor)
        return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0));
    }

    // Look for:
    //   add (add x, y), 1
    // And if the target does not like this form then turn into:
    //   sub y, (xor x, -1)
    if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
        N0.getOpcode() == ISD::ADD) {
      SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
                                DAG.getAllOnesConstant(DL, VT));
      return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not);
    }
  }

  // (x - y) + -1  ->  add (xor y, -1), x
  if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
      isAllOnesOrAllOnesSplat(N1)) {
    SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1);
    return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
  }

  if (SDValue Combined = visitADDLikeCommutative(N0, N1, N))
    return Combined;

  if (SDValue Combined = visitADDLikeCommutative(N1, N0, N))
    return Combined;

  return SDValue();
}

SDValue DAGCombiner::visitADD(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N0.getValueType();
  SDLoc DL(N);

  if (SDValue Combined = visitADDLike(N))
    return Combined;

  if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
    return V;

  if (SDValue V = foldAddSubOfSignBit(N, DAG))
    return V;

  // fold (a+b) -> (a|b) iff a and b share no bits.
  if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
      DAG.haveNoCommonBitsSet(N0, N1))
    return DAG.getNode(ISD::OR, DL, VT, N0, N1);

  // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
  if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) {
    APInt C0 = N0->getConstantOperandAPInt(0);
    APInt C1 = N1->getConstantOperandAPInt(0);
    return DAG.getVScale(DL, VT, C0 + C1);
  }

  // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2)
  if ((N0.getOpcode() == ISD::ADD) &&
      (N0.getOperand(1).getOpcode() == ISD::VSCALE) &&
      (N1.getOpcode() == ISD::VSCALE)) {
    auto VS0 = N0.getOperand(1)->getConstantOperandAPInt(0);
    auto VS1 = N1->getConstantOperandAPInt(0);
    auto VS = DAG.getVScale(DL, VT, VS0 + VS1);
    return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS);
  }

  return SDValue();
}

SDValue DAGCombiner::visitADDSAT(SDNode *N) {
  unsigned Opcode = N->getOpcode();
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N0.getValueType();
  SDLoc DL(N);

  // fold vector ops
  if (VT.isVector()) {
    // TODO SimplifyVBinOp

    // fold (add_sat x, 0) -> x, vector edition
    if (ISD::isBuildVectorAllZeros(N1.getNode()))
      return N0;
    if (ISD::isBuildVectorAllZeros(N0.getNode()))
      return N1;
  }

  // fold (add_sat x, undef) -> -1
  if (N0.isUndef() || N1.isUndef())
    return DAG.getAllOnesConstant(DL, VT);

  if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
    // canonicalize constant to RHS
    if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
      return DAG.getNode(Opcode, DL, VT, N1, N0);
    // fold (add_sat c1, c2) -> c3
    return DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1});
  }

  // fold (add_sat x, 0) -> x
  if (isNullConstant(N1))
    return N0;

  // If it cannot overflow, transform into an add.
  if (Opcode == ISD::UADDSAT)
    if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
      return DAG.getNode(ISD::ADD, DL, VT, N0, N1);

  return SDValue();
}

static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) {
  bool Masked = false;

  // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
  while (true) {
    if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) {
      V = V.getOperand(0);
      continue;
    }

    if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) {
      Masked = true;
      V = V.getOperand(0);
      continue;
    }

    break;
  }

  // If this is not a carry, return.
  if (V.getResNo() != 1)
    return SDValue();

  if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY &&
      V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO)
    return SDValue();

  EVT VT = V.getNode()->getValueType(0);
  if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT))
    return SDValue();

  // If the result is masked, then no matter what kind of bool it is we can
  // return. If it isn't, then we need to make sure the bool type is either 0 or
  // 1 and not other values.
  if (Masked ||
      TLI.getBooleanContents(V.getValueType()) ==
          TargetLoweringBase::ZeroOrOneBooleanContent)
    return V;

  return SDValue();
}

/// Given the operands of an add/sub operation, see if the 2nd operand is a
/// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
/// the opcode and bypass the mask operation.
static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1,
                                 SelectionDAG &DAG, const SDLoc &DL) {
  if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1)))
    return SDValue();

  EVT VT = N0.getValueType();
  if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits())
    return SDValue();

  // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
  // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
  return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0));
}

/// Helper for doing combines based on N0 and N1 being added to each other.
SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1,
                                          SDNode *LocReference) {
  EVT VT = N0.getValueType();
  SDLoc DL(LocReference);

  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
  if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
      isNullOrNullSplat(N1.getOperand(0).getOperand(0)))
    return DAG.getNode(ISD::SUB, DL, VT, N0,
                       DAG.getNode(ISD::SHL, DL, VT,
                                   N1.getOperand(0).getOperand(1),
                                   N1.getOperand(1)));

  if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL))
    return V;

  // Look for:
  //   add (add x, 1), y
  // And if the target does not like this form then turn into:
  //   sub y, (xor x, -1)
  if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
      N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) {
    SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
                              DAG.getAllOnesConstant(DL, VT));
    return DAG.getNode(ISD::SUB, DL, VT, N1, Not);
  }

  // Hoist one-use subtraction by non-opaque constant:
  //   (x - C) + y  ->  (x + y) - C
  // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
  if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
      isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
    SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1);
    return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
  }
  // Hoist one-use subtraction from non-opaque constant:
  //   (C - x) + y  ->  (y - x) + C
  if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
      isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
    SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
    return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0));
  }

  // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
  // rather than 'add 0/-1' (the zext should get folded).
  // add (sext i1 Y), X --> sub X, (zext i1 Y)
  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
      N0.getOperand(0).getScalarValueSizeInBits() == 1 &&
      TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) {
    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
  }

  // add X, (sextinreg Y i1) -> sub X, (and Y 1)
  if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
    VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
    if (TN->getVT() == MVT::i1) {
      SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
                                 DAG.getConstant(1, DL, VT));
      return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
    }
  }

  // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
  if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) &&
      N1.getResNo() == 0)
    return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(),
                       N0, N1.getOperand(0), N1.getOperand(2));

  // (add X, Carry) -> (addcarry X, 0, Carry)
  if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
    if (SDValue Carry = getAsCarry(TLI, N1))
      return DAG.getNode(ISD::ADDCARRY, DL,
                         DAG.getVTList(VT, Carry.getValueType()), N0,
                         DAG.getConstant(0, DL, VT), Carry);

  return SDValue();
}

SDValue DAGCombiner::visitADDC(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N0.getValueType();
  SDLoc DL(N);

  // If the flag result is dead, turn this into an ADD.
  if (!N->hasAnyUseOfValue(1))
    return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
                     DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));

  // canonicalize constant to RHS.
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  if (N0C && !N1C)
    return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0);

  // fold (addc x, 0) -> x + no carry out
  if (isNullConstant(N1))
    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
                                        DL, MVT::Glue));

  // If it cannot overflow, transform into an add.
  if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
    return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
                     DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));

  return SDValue();
}

static SDValue flipBoolean(SDValue V, const SDLoc &DL,
                           SelectionDAG &DAG, const TargetLowering &TLI) {
  EVT VT = V.getValueType();

  SDValue Cst;
  switch (TLI.getBooleanContents(VT)) {
  case TargetLowering::ZeroOrOneBooleanContent:
  case TargetLowering::UndefinedBooleanContent:
    Cst = DAG.getConstant(1, DL, VT);
    break;
  case TargetLowering::ZeroOrNegativeOneBooleanContent:
    Cst = DAG.getAllOnesConstant(DL, VT);
    break;
  }

  return DAG.getNode(ISD::XOR, DL, VT, V, Cst);
}

/**
 * Flips a boolean if it is cheaper to compute. If the Force parameters is set,
 * then the flip also occurs if computing the inverse is the same cost.
 * This function returns an empty SDValue in case it cannot flip the boolean
 * without increasing the cost of the computation. If you want to flip a boolean
 * no matter what, use flipBoolean.
 */
static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG,
                                  const TargetLowering &TLI,
                                  bool Force) {
  if (Force && isa<ConstantSDNode>(V))
    return flipBoolean(V, SDLoc(V), DAG, TLI);

  if (V.getOpcode() != ISD::XOR)
    return SDValue();

  ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false);
  if (!Const)
    return SDValue();

  EVT VT = V.getValueType();

  bool IsFlip = false;
  switch(TLI.getBooleanContents(VT)) {
    case TargetLowering::ZeroOrOneBooleanContent:
      IsFlip = Const->isOne();
      break;
    case TargetLowering::ZeroOrNegativeOneBooleanContent:
      IsFlip = Const->isAllOnesValue();
      break;
    case TargetLowering::UndefinedBooleanContent:
      IsFlip = (Const->getAPIntValue() & 0x01) == 1;
      break;
  }

  if (IsFlip)
    return V.getOperand(0);
  if (Force)
    return flipBoolean(V, SDLoc(V), DAG, TLI);
  return SDValue();
}

SDValue DAGCombiner::visitADDO(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N0.getValueType();
  bool IsSigned = (ISD::SADDO == N->getOpcode());

  EVT CarryVT = N->getValueType(1);
  SDLoc DL(N);

  // If the flag result is dead, turn this into an ADD.
  if (!N->hasAnyUseOfValue(1))
    return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
                     DAG.getUNDEF(CarryVT));

  // canonicalize constant to RHS.
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
    return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);

  // fold (addo x, 0) -> x + no carry out
  if (isNullOrNullSplat(N1))
    return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));

  if (!IsSigned) {
    // If it cannot overflow, transform into an add.
    if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
      return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
                       DAG.getConstant(0, DL, CarryVT));

    // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
    if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) {
      SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(),
                                DAG.getConstant(0, DL, VT), N0.getOperand(0));
      return CombineTo(N, Sub,
                       flipBoolean(Sub.getValue(1), DL, DAG, TLI));
    }

    if (SDValue Combined = visitUADDOLike(N0, N1, N))
      return Combined;

    if (SDValue Combined = visitUADDOLike(N1, N0, N))
      return Combined;
  }

  return SDValue();
}

SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) {
  EVT VT = N0.getValueType();
  if (VT.isVector())
    return SDValue();

  // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
  // If Y + 1 cannot overflow.
  if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) {
    SDValue Y = N1.getOperand(0);
    SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType());
    if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never)
      return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y,
                         N1.getOperand(2));
  }

  // (uaddo X, Carry) -> (addcarry X, 0, Carry)
  if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
    if (SDValue Carry = getAsCarry(TLI, N1))
      return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0,
                         DAG.getConstant(0, SDLoc(N), VT), Carry);

  return SDValue();
}

SDValue DAGCombiner::visitADDE(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue CarryIn = N->getOperand(2);

  // canonicalize constant to RHS
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  if (N0C && !N1C)
    return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
                       N1, N0, CarryIn);

  // fold (adde x, y, false) -> (addc x, y)
  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);

  return SDValue();
}

SDValue DAGCombiner::visitADDCARRY(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue CarryIn = N->getOperand(2);
  SDLoc DL(N);

  // canonicalize constant to RHS
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  if (N0C && !N1C)
    return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn);

  // fold (addcarry x, y, false) -> (uaddo x, y)
  if (isNullConstant(CarryIn)) {
    if (!LegalOperations ||
        TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0)))
      return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1);
  }

  // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
  if (isNullConstant(N0) && isNullConstant(N1)) {
    EVT VT = N0.getValueType();
    EVT CarryVT = CarryIn.getValueType();
    SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT);
    AddToWorklist(CarryExt.getNode());
    return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt,
                                    DAG.getConstant(1, DL, VT)),
                     DAG.getConstant(0, DL, CarryVT));
  }

  if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N))
    return Combined;

  if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N))
    return Combined;

  return SDValue();
}

/**
 * If we are facing some sort of diamond carry propapagtion pattern try to
 * break it up to generate something like:
 *   (addcarry X, 0, (addcarry A, B, Z):Carry)
 *
 * The end result is usually an increase in operation required, but because the
 * carry is now linearized, other tranforms can kick in and optimize the DAG.
 *
 * Patterns typically look something like
 *            (uaddo A, B)
 *             /       \
 *          Carry      Sum
 *            |          \
 *            | (addcarry *, 0, Z)
 *            |       /
 *             \   Carry
 *              |   /
 * (addcarry X, *, *)
 *
 * But numerous variation exist. Our goal is to identify A, B, X and Z and
 * produce a combine with a single path for carry propagation.
 */
static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG,
                                      SDValue X, SDValue Carry0, SDValue Carry1,
                                      SDNode *N) {
  if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1)
    return SDValue();
  if (Carry1.getOpcode() != ISD::UADDO)
    return SDValue();

  SDValue Z;

  /**
   * First look for a suitable Z. It will present itself in the form of
   * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
   */
  if (Carry0.getOpcode() == ISD::ADDCARRY &&
      isNullConstant(Carry0.getOperand(1))) {
    Z = Carry0.getOperand(2);
  } else if (Carry0.getOpcode() == ISD::UADDO &&
             isOneConstant(Carry0.getOperand(1))) {
    EVT VT = Combiner.getSetCCResultType(Carry0.getValueType());
    Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT);
  } else {
    // We couldn't find a suitable Z.
    return SDValue();
  }


  auto cancelDiamond = [&](SDValue A,SDValue B) {
    SDLoc DL(N);
    SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z);
    Combiner.AddToWorklist(NewY.getNode());
    return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X,
                       DAG.getConstant(0, DL, X.getValueType()),
                       NewY.getValue(1));
  };

  /**
   *      (uaddo A, B)
   *           |
   *          Sum
   *           |
   * (addcarry *, 0, Z)
   */
  if (Carry0.getOperand(0) == Carry1.getValue(0)) {
    return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1));
  }

  /**
   * (addcarry A, 0, Z)
   *         |
   *        Sum
   *         |
   *  (uaddo *, B)
   */
  if (Carry1.getOperand(0) == Carry0.getValue(0)) {
    return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1));
  }

  if (Carry1.getOperand(1) == Carry0.getValue(0)) {
    return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0));
  }

  return SDValue();
}

// If we are facing some sort of diamond carry/borrow in/out pattern try to
// match patterns like:
//
//          (uaddo A, B)            CarryIn
//            |  \                     |
//            |   \                    |
//    PartialSum   PartialCarryOutX   /
//            |        |             /
//            |    ____|____________/
//            |   /    |
//     (uaddo *, *)    \________
//       |  \                   \
//       |   \                   |
//       |    PartialCarryOutY   |
//       |        \              |
//       |         \            /
//   AddCarrySum    |    ______/
//                  |   /
//   CarryOut = (or *, *)
//
// And generate ADDCARRY (or SUBCARRY) with two result values:
//
//    {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn)
//
// Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with
// a single path for carry/borrow out propagation:
static SDValue combineCarryDiamond(DAGCombiner &Combiner, SelectionDAG &DAG,
                                   const TargetLowering &TLI, SDValue Carry0,
                                   SDValue Carry1, SDNode *N) {
  if (Carry0.getResNo() != 1 || Carry1.getResNo() != 1)
    return SDValue();
  unsigned Opcode = Carry0.getOpcode();
  if (Opcode != Carry1.getOpcode())
    return SDValue();
  if (Opcode != ISD::UADDO && Opcode != ISD::USUBO)
    return SDValue();

  // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the
  // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in
  // the above ASCII art.)
  if (Carry1.getOperand(0) != Carry0.getValue(0) &&
      Carry1.getOperand(1) != Carry0.getValue(0))
    std::swap(Carry0, Carry1);
  if (Carry1.getOperand(0) != Carry0.getValue(0) &&
      Carry1.getOperand(1) != Carry0.getValue(0))
    return SDValue();

  // The carry in value must be on the righthand side for subtraction.
  unsigned CarryInOperandNum =
      Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0;
  if (Opcode == ISD::USUBO && CarryInOperandNum != 1)
    return SDValue();
  SDValue CarryIn = Carry1.getOperand(CarryInOperandNum);

  unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY;
  if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType()))
    return SDValue();

  // Verify that the carry/borrow in is plausibly a carry/borrow bit.
  // TODO: make getAsCarry() aware of how partial carries are merged.
  if (CarryIn.getOpcode() != ISD::ZERO_EXTEND)
    return SDValue();
  CarryIn = CarryIn.getOperand(0);
  if (CarryIn.getValueType() != MVT::i1)
    return SDValue();

  SDLoc DL(N);
  SDValue Merged =
      DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0),
                  Carry0.getOperand(1), CarryIn);

  // Please note that because we have proven that the result of the UADDO/USUBO
  // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can
  // therefore prove that if the first UADDO/USUBO overflows, the second
  // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the
  // maximum value.
  //
  //   0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry
  //   0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow)
  //
  // This is important because it means that OR and XOR can be used to merge
  // carry flags; and that AND can return a constant zero.
  //
  // TODO: match other operations that can merge flags (ADD, etc)
  DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0));
  if (N->getOpcode() == ISD::AND)
    return DAG.getConstant(0, DL, MVT::i1);
  return Merged.getValue(1);
}

SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
                                       SDNode *N) {
  // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry.
  if (isBitwiseNot(N0))
    if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) {
      SDLoc DL(N);
      SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1,
                                N0.getOperand(0), NotC);
      return CombineTo(N, Sub,
                       flipBoolean(Sub.getValue(1), DL, DAG, TLI));
    }

  // Iff the flag result is dead:
  // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
  // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
  // or the dependency between the instructions.
  if ((N0.getOpcode() == ISD::ADD ||
       (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 &&
        N0.getValue(1) != CarryIn)) &&
      isNullConstant(N1) && !N->hasAnyUseOfValue(1))
    return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(),
                       N0.getOperand(0), N0.getOperand(1), CarryIn);

  /**
   * When one of the addcarry argument is itself a carry, we may be facing
   * a diamond carry propagation. In which case we try to transform the DAG
   * to ensure linear carry propagation if that is possible.
   */
  if (auto Y = getAsCarry(TLI, N1)) {
    // Because both are carries, Y and Z can be swapped.
    if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N))
      return R;
    if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N))
      return R;
  }

  return SDValue();
}

// Since it may not be valid to emit a fold to zero for vector initializers
// check if we can before folding.
static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
                             SelectionDAG &DAG, bool LegalOperations) {
  if (!VT.isVector())
    return DAG.getConstant(0, DL, VT);
  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
    return DAG.getConstant(0, DL, VT);
  return SDValue();
}

SDValue DAGCombiner::visitSUB(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N0.getValueType();
  SDLoc DL(N);

  // fold vector ops
  if (VT.isVector()) {
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;

    // fold (sub x, 0) -> x, vector edition
    if (ISD::isBuildVectorAllZeros(N1.getNode()))
      return N0;
  }

  // fold (sub x, x) -> 0
  // FIXME: Refactor this and xor and other similar operations together.
  if (N0 == N1)
    return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);

  // fold (sub c1, c2) -> c3
  if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1}))
    return C;

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);

  // fold (sub x, c) -> (add x, -c)
  if (N1C) {
    return DAG.getNode(ISD::ADD, DL, VT, N0,
                       DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
  }

  if (isNullOrNullSplat(N0)) {
    unsigned BitWidth = VT.getScalarSizeInBits();
    // Right-shifting everything out but the sign bit followed by negation is
    // the same as flipping arithmetic/logical shift type without the negation:
    // -(X >>u 31) -> (X >>s 31)
    // -(X >>s 31) -> (X >>u 31)
    if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
      ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
      if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) {
        auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
        if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
          return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
      }
    }

    // 0 - X --> 0 if the sub is NUW.
    if (N->getFlags().hasNoUnsignedWrap())
      return N0;

    if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) {
      // N1 is either 0 or the minimum signed value. If the sub is NSW, then
      // N1 must be 0 because negating the minimum signed value is undefined.
      if (N->getFlags().hasNoSignedWrap())
        return N0;

      // 0 - X --> X if X is 0 or the minimum signed value.
      return N1;
    }
  }

  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
  if (isAllOnesOrAllOnesSplat(N0))
    return DAG.getNode(ISD::XOR, DL, VT, N1, N0);

  // fold (A - (0-B)) -> A+B
  if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
    return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1));

  // fold A-(A-B) -> B
  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
    return N1.getOperand(1);

  // fold (A+B)-A -> B
  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
    return N0.getOperand(1);

  // fold (A+B)-B -> A
  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
    return N0.getOperand(0);

  // fold (A+C1)-C2 -> A+(C1-C2)
  if (N0.getOpcode() == ISD::ADD &&
      isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
      isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
    SDValue NewC =
        DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(1), N1});
    assert(NewC && "Constant folding failed");
    return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC);
  }

  // fold C2-(A+C1) -> (C2-C1)-A
  if (N1.getOpcode() == ISD::ADD) {
    SDValue N11 = N1.getOperand(1);
    if (isConstantOrConstantVector(N0, /* NoOpaques */ true) &&
        isConstantOrConstantVector(N11, /* NoOpaques */ true)) {
      SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11});
      assert(NewC && "Constant folding failed");
      return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
    }
  }

  // fold (A-C1)-C2 -> A-(C1+C2)
  if (N0.getOpcode() == ISD::SUB &&
      isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
      isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
    SDValue NewC =
        DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0.getOperand(1), N1});
    assert(NewC && "Constant folding failed");
    return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC);
  }

  // fold (c1-A)-c2 -> (c1-c2)-A
  if (N0.getOpcode() == ISD::SUB &&
      isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
      isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) {
    SDValue NewC =
        DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(0), N1});
    assert(NewC && "Constant folding failed");
    return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1));
  }

  // fold ((A+(B+or-C))-B) -> A+or-C
  if (N0.getOpcode() == ISD::ADD &&
      (N0.getOperand(1).getOpcode() == ISD::SUB ||
       N0.getOperand(1).getOpcode() == ISD::ADD) &&
      N0.getOperand(1).getOperand(0) == N1)
    return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0),
                       N0.getOperand(1).getOperand(1));

  // fold ((A+(C+B))-B) -> A+C
  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD &&
      N0.getOperand(1).getOperand(1) == N1)
    return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0),
                       N0.getOperand(1).getOperand(0));

  // fold ((A-(B-C))-C) -> A-B
  if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB &&
      N0.getOperand(1).getOperand(1) == N1)
    return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
                       N0.getOperand(1).getOperand(0));

  // fold (A-(B-C)) -> A+(C-B)
  if (N1.getOpcode() == ISD::SUB && N1.hasOneUse())
    return DAG.getNode(ISD::ADD, DL, VT, N0,
                       DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1),
                                   N1.getOperand(0)));

  // A - (A & B)  ->  A & (~B)
  if (N1.getOpcode() == ISD::AND) {
    SDValue A = N1.getOperand(0);
    SDValue B = N1.getOperand(1);
    if (A != N0)
      std::swap(A, B);
    if (A == N0 &&
        (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) {
      SDValue InvB =
          DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT));
      return DAG.getNode(ISD::AND, DL, VT, A, InvB);
    }
  }

  // fold (X - (-Y * Z)) -> (X + (Y * Z))
  if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) {
    if (N1.getOperand(0).getOpcode() == ISD::SUB &&
        isNullOrNullSplat(N1.getOperand(0).getOperand(0))) {
      SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
                                N1.getOperand(0).getOperand(1),
                                N1.getOperand(1));
      return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
    }
    if (N1.getOperand(1).getOpcode() == ISD::SUB &&
        isNullOrNullSplat(N1.getOperand(1).getOperand(0))) {
      SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
                                N1.getOperand(0),
                                N1.getOperand(1).getOperand(1));
      return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
    }
  }

  // If either operand of a sub is undef, the result is undef
  if (N0.isUndef())
    return N0;
  if (N1.isUndef())
    return N1;

  if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
    return V;

  if (SDValue V = foldAddSubOfSignBit(N, DAG))
    return V;

  if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N)))
    return V;

  // (x - y) - 1  ->  add (xor y, -1), x
  if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) {
    SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1),
                              DAG.getAllOnesConstant(DL, VT));
    return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
  }

  // Look for:
  //   sub y, (xor x, -1)
  // And if the target does not like this form then turn into:
  //   add (add x, y), 1
  if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) {
    SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0));
    return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT));
  }

  // Hoist one-use addition by non-opaque constant:
  //   (x + C) - y  ->  (x - y) + C
  if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD &&
      isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
    SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
    return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1));
  }
  // y - (x + C)  ->  (y - x) - C
  if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD &&
      isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) {
    SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0));
    return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1));
  }
  // (x - C) - y  ->  (x - y) - C
  // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
  if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
      isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
    SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
    return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1));
  }
  // (C - x) - y  ->  C - (x + y)
  if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
      isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
    SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1);
    return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add);
  }

  // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
  // rather than 'sub 0/1' (the sext should get folded).
  // sub X, (zext i1 Y) --> add X, (sext i1 Y)
  if (N1.getOpcode() == ISD::ZERO_EXTEND &&
      N1.getOperand(0).getScalarValueSizeInBits() == 1 &&
      TLI.getBooleanContents(VT) ==
          TargetLowering::ZeroOrNegativeOneBooleanContent) {
    SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0));
    return DAG.getNode(ISD::ADD, DL, VT, N0, SExt);
  }

  // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
  if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
    if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) {
      SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1);
      SDValue S0 = N1.getOperand(0);
      if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) {
        unsigned OpSizeInBits = VT.getScalarSizeInBits();
        if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1)))
          if (C->getAPIntValue() == (OpSizeInBits - 1))
            return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0);
      }
    }
  }

  // If the relocation model supports it, consider symbol offsets.
  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
      // fold (sub Sym, c) -> Sym-c
      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
        return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
                                    GA->getOffset() -
                                        (uint64_t)N1C->getSExtValue());
      // fold (sub Sym+c1, Sym+c2) -> c1-c2
      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
        if (GA->getGlobal() == GB->getGlobal())
          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
                                 DL, VT);
    }

  // sub X, (sextinreg Y i1) -> add X, (and Y 1)
  if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
    VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
    if (TN->getVT() == MVT::i1) {
      SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
                                 DAG.getConstant(1, DL, VT));
      return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
    }
  }

  // canonicalize (sub X, (vscale * C)) to (add X,  (vscale * -C))
  if (N1.getOpcode() == ISD::VSCALE) {
    APInt IntVal = N1.getConstantOperandAPInt(0);
    return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal));
  }

  // Prefer an add for more folding potential and possibly better codegen:
  // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
  if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) {
    SDValue ShAmt = N1.getOperand(1);
    ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
    if (ShAmtC &&
        ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) {
      SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt);
      return DAG.getNode(ISD::ADD, DL, VT, N0, SRA);
    }
  }

  if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) {
    // (sub Carry, X)  ->  (addcarry (sub 0, X), 0, Carry)
    if (SDValue Carry = getAsCarry(TLI, N0)) {
      SDValue X = N1;
      SDValue Zero = DAG.getConstant(0, DL, VT);
      SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X);
      return DAG.getNode(ISD::ADDCARRY, DL,
                         DAG.getVTList(VT, Carry.getValueType()), NegX, Zero,
                         Carry);
    }
  }

  return SDValue();
}

SDValue DAGCombiner::visitSUBSAT(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N0.getValueType();
  SDLoc DL(N);

  // fold vector ops
  if (VT.isVector()) {
    // TODO SimplifyVBinOp

    // fold (sub_sat x, 0) -> x, vector edition
    if (ISD::isBuildVectorAllZeros(N1.getNode()))
      return N0;
  }

  // fold (sub_sat x, undef) -> 0
  if (N0.isUndef() || N1.isUndef())
    return DAG.getConstant(0, DL, VT);

  // fold (sub_sat x, x) -> 0
  if (N0 == N1)
    return DAG.getConstant(0, DL, VT);

  // fold (sub_sat c1, c2) -> c3
  if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1}))
    return C;

  // fold (sub_sat x, 0) -> x
  if (isNullConstant(N1))
    return N0;

  return SDValue();
}

SDValue DAGCombiner::visitSUBC(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N0.getValueType();
  SDLoc DL(N);

  // If the flag result is dead, turn this into an SUB.
  if (!N->hasAnyUseOfValue(1))
    return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
                     DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));

  // fold (subc x, x) -> 0 + no borrow
  if (N0 == N1)
    return CombineTo(N, DAG.getConstant(0, DL, VT),
                     DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));

  // fold (subc x, 0) -> x + no borrow
  if (isNullConstant(N1))
    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));

  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
  if (isAllOnesConstant(N0))
    return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
                     DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));

  return SDValue();
}

SDValue DAGCombiner::visitSUBO(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N0.getValueType();
  bool IsSigned = (ISD::SSUBO == N->getOpcode());

  EVT CarryVT = N->getValueType(1);
  SDLoc DL(N);

  // If the flag result is dead, turn this into an SUB.
  if (!N->hasAnyUseOfValue(1))
    return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
                     DAG.getUNDEF(CarryVT));

  // fold (subo x, x) -> 0 + no borrow
  if (N0 == N1)
    return CombineTo(N, DAG.getConstant(0, DL, VT),
                     DAG.getConstant(0, DL, CarryVT));

  ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);

  // fold (subox, c) -> (addo x, -c)
  if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) {
    return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0,
                       DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
  }

  // fold (subo x, 0) -> x + no borrow
  if (isNullOrNullSplat(N1))
    return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));

  // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
  if (!IsSigned && isAllOnesOrAllOnesSplat(N0))
    return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
                     DAG.getConstant(0, DL, CarryVT));

  return SDValue();
}

SDValue DAGCombiner::visitSUBE(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue CarryIn = N->getOperand(2);

  // fold (sube x, y, false) -> (subc x, y)
  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
    return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);

  return SDValue();
}

SDValue DAGCombiner::visitSUBCARRY(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue CarryIn = N->getOperand(2);

  // fold (subcarry x, y, false) -> (usubo x, y)
  if (isNullConstant(CarryIn)) {
    if (!LegalOperations ||
        TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0)))
      return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1);
  }

  return SDValue();
}

// Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and
// UMULFIXSAT here.
SDValue DAGCombiner::visitMULFIX(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue Scale = N->getOperand(2);
  EVT VT = N0.getValueType();

  // fold (mulfix x, undef, scale) -> 0
  if (N0.isUndef() || N1.isUndef())
    return DAG.getConstant(0, SDLoc(N), VT);

  // Canonicalize constant to RHS (vector doesn't have to splat)
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
     !DAG.isConstantIntBuildVectorOrConstantInt(N1))
    return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale);

  // fold (mulfix x, 0, scale) -> 0
  if (isNullConstant(N1))
    return DAG.getConstant(0, SDLoc(N), VT);

  return SDValue();
}

SDValue DAGCombiner::visitMUL(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N0.getValueType();

  // fold (mul x, undef) -> 0
  if (N0.isUndef() || N1.isUndef())
    return DAG.getConstant(0, SDLoc(N), VT);

  bool N1IsConst = false;
  bool N1IsOpaqueConst = false;
  APInt ConstValue1;

  // fold vector ops
  if (VT.isVector()) {
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;

    N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
    assert((!N1IsConst ||
            ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) &&
           "Splat APInt should be element width");
  } else {
    N1IsConst = isa<ConstantSDNode>(N1);
    if (N1IsConst) {
      ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
      N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
    }
  }

  // fold (mul c1, c2) -> c1*c2
  if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, {N0, N1}))
    return C;

  // canonicalize constant to RHS (vector doesn't have to splat)
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
     !DAG.isConstantIntBuildVectorOrConstantInt(N1))
    return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);

  // fold (mul x, 0) -> 0
  if (N1IsConst && ConstValue1.isNullValue())
    return N1;

  // fold (mul x, 1) -> x
  if (N1IsConst && ConstValue1.isOneValue())
    return N0;

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  // fold (mul x, -1) -> 0-x
  if (N1IsConst && ConstValue1.isAllOnesValue()) {
    SDLoc DL(N);
    return DAG.getNode(ISD::SUB, DL, VT,
                       DAG.getConstant(0, DL, VT), N0);
  }

  // fold (mul x, (1 << c)) -> x << c
  if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
      DAG.isKnownToBeAPowerOfTwo(N1) &&
      (!VT.isVector() || Level <= AfterLegalizeVectorOps)) {
    SDLoc DL(N);
    SDValue LogBase2 = BuildLogBase2(N1, DL);
    EVT ShiftVT = getShiftAmountTy(N0.getValueType());
    SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
    return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc);
  }

  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
  if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) {
    unsigned Log2Val = (-ConstValue1).logBase2();
    SDLoc DL(N);
    // FIXME: If the input is something that is easily negated (e.g. a
    // single-use add), we should put the negate there.
    return DAG.getNode(ISD::SUB, DL, VT,
                       DAG.getConstant(0, DL, VT),
                       DAG.getNode(ISD::SHL, DL, VT, N0,
                            DAG.getConstant(Log2Val, DL,
                                      getShiftAmountTy(N0.getValueType()))));
  }

  // Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub.
  // mul x, (2^N + 1) --> add (shl x, N), x
  // mul x, (2^N - 1) --> sub (shl x, N), x
  // Examples: x * 33 --> (x << 5) + x
  //           x * 15 --> (x << 4) - x
  //           x * -33 --> -((x << 5) + x)
  //           x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
  if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) {
    // TODO: We could handle more general decomposition of any constant by
    //       having the target set a limit on number of ops and making a
    //       callback to determine that sequence (similar to sqrt expansion).
    unsigned MathOp = ISD::DELETED_NODE;
    APInt MulC = ConstValue1.abs();
    if ((MulC - 1).isPowerOf2())
      MathOp = ISD::ADD;
    else if ((MulC + 1).isPowerOf2())
      MathOp = ISD::SUB;

    if (MathOp != ISD::DELETED_NODE) {
      unsigned ShAmt =
          MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2();
      assert(ShAmt < VT.getScalarSizeInBits() &&
             "multiply-by-constant generated out of bounds shift");
      SDLoc DL(N);
      SDValue Shl =
          DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT));
      SDValue R = DAG.getNode(MathOp, DL, VT, Shl, N0);
      if (ConstValue1.isNegative())
        R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R);
      return R;
    }
  }

  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
  if (N0.getOpcode() == ISD::SHL &&
      isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
      isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
    SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1));
    if (isConstantOrConstantVector(C3))
      return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3);
  }

  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
  // use.
  {
    SDValue Sh(nullptr, 0), Y(nullptr, 0);

    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
    if (N0.getOpcode() == ISD::SHL &&
        isConstantOrConstantVector(N0.getOperand(1)) &&
        N0.getNode()->hasOneUse()) {
      Sh = N0; Y = N1;
    } else if (N1.getOpcode() == ISD::SHL &&
               isConstantOrConstantVector(N1.getOperand(1)) &&
               N1.getNode()->hasOneUse()) {
      Sh = N1; Y = N0;
    }

    if (Sh.getNode()) {
      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y);
      return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1));
    }
  }

  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
  if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
      N0.getOpcode() == ISD::ADD &&
      DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
      isMulAddWithConstProfitable(N, N0, N1))
      return DAG.getNode(ISD::ADD, SDLoc(N), VT,
                         DAG.getNode(ISD::MUL, SDLoc(N0), VT,
                                     N0.getOperand(0), N1),
                         DAG.getNode(ISD::MUL, SDLoc(N1), VT,
                                     N0.getOperand(1), N1));

  // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)).
  if (N0.getOpcode() == ISD::VSCALE)
    if (ConstantSDNode *NC1 = isConstOrConstSplat(N1)) {
      APInt C0 = N0.getConstantOperandAPInt(0);
      APInt C1 = NC1->getAPIntValue();
      return DAG.getVScale(SDLoc(N), VT, C0 * C1);
    }

  // Fold ((mul x, 0/undef) -> 0,
  //       (mul x, 1) -> x) -> x)
  // -> and(x, mask)
  // We can replace vectors with '0' and '1' factors with a clearing mask.
  if (VT.isFixedLengthVector()) {
    unsigned NumElts = VT.getVectorNumElements();
    SmallBitVector ClearMask;
    ClearMask.reserve(NumElts);
    auto IsClearMask = [&ClearMask](ConstantSDNode *V) {
      if (!V || V->isNullValue()) {
        ClearMask.push_back(true);
        return true;
      }
      ClearMask.push_back(false);
      return V->isOne();
    };
    if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) &&
        ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) {
      assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector");
      SDLoc DL(N);
      EVT LegalSVT = N1.getOperand(0).getValueType();
      SDValue Zero = DAG.getConstant(0, DL, LegalSVT);
      SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT);
      SmallVector<SDValue, 16> Mask(NumElts, AllOnes);
      for (unsigned I = 0; I != NumElts; ++I)
        if (ClearMask[I])
          Mask[I] = Zero;
      return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask));
    }
  }

  // reassociate mul
  if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags()))
    return RMUL;

  return SDValue();
}

/// Return true if divmod libcall is available.
static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
                                     const TargetLowering &TLI) {
  RTLIB::Libcall LC;
  EVT NodeType = Node->getValueType(0);
  if (!NodeType.isSimple())
    return false;
  switch (NodeType.getSimpleVT().SimpleTy) {
  default: return false; // No libcall for vector types.
  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
  }

  return TLI.getLibcallName(LC) != nullptr;
}

/// Issue divrem if both quotient and remainder are needed.
SDValue DAGCombiner::useDivRem(SDNode *Node) {
  if (Node->use_empty())
    return SDValue(); // This is a dead node, leave it alone.

  unsigned Opcode = Node->getOpcode();
  bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
  unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;

  // DivMod lib calls can still work on non-legal types if using lib-calls.
  EVT VT = Node->getValueType(0);
  if (VT.isVector() || !VT.isInteger())
    return SDValue();

  if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
    return SDValue();

  // If DIVREM is going to get expanded into a libcall,
  // but there is no libcall available, then don't combine.
  if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
      !isDivRemLibcallAvailable(Node, isSigned, TLI))
    return SDValue();

  // If div is legal, it's better to do the normal expansion
  unsigned OtherOpcode = 0;
  if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
    OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
    if (TLI.isOperationLegalOrCustom(Opcode, VT))
      return SDValue();
  } else {
    OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
    if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
      return SDValue();
  }

  SDValue Op0 = Node->getOperand(0);
  SDValue Op1 = Node->getOperand(1);
  SDValue combined;
  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
    SDNode *User = *UI;
    if (User == Node || User->getOpcode() == ISD::DELETED_NODE ||
        User->use_empty())
      continue;
    // Convert the other matching node(s), too;
    // otherwise, the DIVREM may get target-legalized into something
    // target-specific that we won't be able to recognize.
    unsigned UserOpc = User->getOpcode();
    if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
        User->getOperand(0) == Op0 &&
        User->getOperand(1) == Op1) {
      if (!combined) {
        if (UserOpc == OtherOpcode) {
          SDVTList VTs = DAG.getVTList(VT, VT);
          combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
        } else if (UserOpc == DivRemOpc) {
          combined = SDValue(User, 0);
        } else {
          assert(UserOpc == Opcode);
          continue;
        }
      }
      if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
        CombineTo(User, combined);
      else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
        CombineTo(User, combined.getValue(1));
    }
  }
  return combined;
}

static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N->getValueType(0);
  SDLoc DL(N);

  unsigned Opc = N->getOpcode();
  bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc);
  ConstantSDNode *N1C = isConstOrConstSplat(N1);

  // X / undef -> undef
  // X % undef -> undef
  // X / 0 -> undef
  // X % 0 -> undef
  // NOTE: This includes vectors where any divisor element is zero/undef.
  if (DAG.isUndef(Opc, {N0, N1}))
    return DAG.getUNDEF(VT);

  // undef / X -> 0
  // undef % X -> 0
  if (N0.isUndef())
    return DAG.getConstant(0, DL, VT);

  // 0 / X -> 0
  // 0 % X -> 0
  ConstantSDNode *N0C = isConstOrConstSplat(N0);
  if (N0C && N0C->isNullValue())
    return N0;

  // X / X -> 1
  // X % X -> 0
  if (N0 == N1)
    return DAG.getConstant(IsDiv ? 1 : 0, DL, VT);

  // X / 1 -> X
  // X % 1 -> 0
  // If this is a boolean op (single-bit element type), we can't have
  // division-by-zero or remainder-by-zero, so assume the divisor is 1.
  // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
  // it's a 1.
  if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1))
    return IsDiv ? N0 : DAG.getConstant(0, DL, VT);

  return SDValue();
}

SDValue DAGCombiner::visitSDIV(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N->getValueType(0);
  EVT CCVT = getSetCCResultType(VT);

  // fold vector ops
  if (VT.isVector())
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;

  SDLoc DL(N);

  // fold (sdiv c1, c2) -> c1/c2
  ConstantSDNode *N1C = isConstOrConstSplat(N1);
  if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1}))
    return C;

  // fold (sdiv X, -1) -> 0-X
  if (N1C && N1C->isAllOnesValue())
    return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0);

  // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
  if (N1C && N1C->getAPIntValue().isMinSignedValue())
    return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
                         DAG.getConstant(1, DL, VT),
                         DAG.getConstant(0, DL, VT));

  if (SDValue V = simplifyDivRem(N, DAG))
    return V;

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  // If we know the sign bits of both operands are zero, strength reduce to a
  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
  if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
    return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);

  if (SDValue V = visitSDIVLike(N0, N1, N)) {
    // If the corresponding remainder node exists, update its users with
    // (Dividend - (Quotient * Divisor).
    if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(),
                                              { N0, N1 })) {
      SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
      SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
      AddToWorklist(Mul.getNode());
      AddToWorklist(Sub.getNode());
      CombineTo(RemNode, Sub);
    }
    return V;
  }

  // sdiv, srem -> sdivrem
  // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
  // true.  Otherwise, we break the simplification logic in visitREM().
  AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
  if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
    if (SDValue DivRem = useDivRem(N))
        return DivRem;

  return SDValue();
}

SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) {
  SDLoc DL(N);
  EVT VT = N->getValueType(0);
  EVT CCVT = getSetCCResultType(VT);
  unsigned BitWidth = VT.getScalarSizeInBits();

  // Helper for determining whether a value is a power-2 constant scalar or a
  // vector of such elements.
  auto IsPowerOfTwo = [](ConstantSDNode *C) {
    if (C->isNullValue() || C->isOpaque())
      return false;
    if (C->getAPIntValue().isPowerOf2())
      return true;
    if ((-C->getAPIntValue()).isPowerOf2())
      return true;
    return false;
  };

  // fold (sdiv X, pow2) -> simple ops after legalize
  // FIXME: We check for the exact bit here because the generic lowering gives
  // better results in that case. The target-specific lowering should learn how
  // to handle exact sdivs efficiently.
  if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) {
    // Target-specific implementation of sdiv x, pow2.
    if (SDValue Res = BuildSDIVPow2(N))
      return Res;

    // Create constants that are functions of the shift amount value.
    EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
    SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy);
    SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1);
    C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy);
    SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1);
    if (!isConstantOrConstantVector(Inexact))
      return SDValue();

    // Splat the sign bit into the register
    SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0,
                               DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy));
    AddToWorklist(Sign.getNode());

    // Add (N0 < 0) ? abs2 - 1 : 0;
    SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact);
    AddToWorklist(Srl.getNode());
    SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl);
    AddToWorklist(Add.getNode());
    SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1);
    AddToWorklist(Sra.getNode());

    // Special case: (sdiv X, 1) -> X
    // Special Case: (sdiv X, -1) -> 0-X
    SDValue One = DAG.getConstant(1, DL, VT);
    SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
    SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ);
    SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ);
    SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes);
    Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra);

    // If dividing by a positive value, we're done. Otherwise, the result must
    // be negated.
    SDValue Zero = DAG.getConstant(0, DL, VT);
    SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra);

    // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
    SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT);
    SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra);
    return Res;
  }

  // If integer divide is expensive and we satisfy the requirements, emit an
  // alternate sequence.  Targets may check function attributes for size/speed
  // trade-offs.
  AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
  if (isConstantOrConstantVector(N1) &&
      !TLI.isIntDivCheap(N->getValueType(0), Attr))
    if (SDValue Op = BuildSDIV(N))
      return Op;

  return SDValue();
}

SDValue DAGCombiner::visitUDIV(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N->getValueType(0);
  EVT CCVT = getSetCCResultType(VT);

  // fold vector ops
  if (VT.isVector())
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;

  SDLoc DL(N);

  // fold (udiv c1, c2) -> c1/c2
  ConstantSDNode *N1C = isConstOrConstSplat(N1);
  if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1}))
    return C;

  // fold (udiv X, -1) -> select(X == -1, 1, 0)
  if (N1C && N1C->getAPIntValue().isAllOnesValue())
    return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
                         DAG.getConstant(1, DL, VT),
                         DAG.getConstant(0, DL, VT));

  if (SDValue V = simplifyDivRem(N, DAG))
    return V;

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  if (SDValue V = visitUDIVLike(N0, N1, N)) {
    // If the corresponding remainder node exists, update its users with
    // (Dividend - (Quotient * Divisor).
    if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(),
                                              { N0, N1 })) {
      SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
      SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
      AddToWorklist(Mul.getNode());
      AddToWorklist(Sub.getNode());
      CombineTo(RemNode, Sub);
    }
    return V;
  }

  // sdiv, srem -> sdivrem
  // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
  // true.  Otherwise, we break the simplification logic in visitREM().
  AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
  if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
    if (SDValue DivRem = useDivRem(N))
        return DivRem;

  return SDValue();
}

SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) {
  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  // fold (udiv x, (1 << c)) -> x >>u c
  if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
      DAG.isKnownToBeAPowerOfTwo(N1)) {
    SDValue LogBase2 = BuildLogBase2(N1, DL);
    AddToWorklist(LogBase2.getNode());

    EVT ShiftVT = getShiftAmountTy(N0.getValueType());
    SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
    AddToWorklist(Trunc.getNode());
    return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
  }

  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
  if (N1.getOpcode() == ISD::SHL) {
    SDValue N10 = N1.getOperand(0);
    if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) &&
        DAG.isKnownToBeAPowerOfTwo(N10)) {
      SDValue LogBase2 = BuildLogBase2(N10, DL);
      AddToWorklist(LogBase2.getNode());

      EVT ADDVT = N1.getOperand(1).getValueType();
      SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
      AddToWorklist(Trunc.getNode());
      SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
      AddToWorklist(Add.getNode());
      return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
    }
  }

  // fold (udiv x, c) -> alternate
  AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
  if (isConstantOrConstantVector(N1) &&
      !TLI.isIntDivCheap(N->getValueType(0), Attr))
    if (SDValue Op = BuildUDIV(N))
      return Op;

  return SDValue();
}

// handles ISD::SREM and ISD::UREM
SDValue DAGCombiner::visitREM(SDNode *N) {
  unsigned Opcode = N->getOpcode();
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N->getValueType(0);
  EVT CCVT = getSetCCResultType(VT);

  bool isSigned = (Opcode == ISD::SREM);
  SDLoc DL(N);

  // fold (rem c1, c2) -> c1%c2
  ConstantSDNode *N1C = isConstOrConstSplat(N1);
  if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
    return C;

  // fold (urem X, -1) -> select(X == -1, 0, x)
  if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue())
    return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
                         DAG.getConstant(0, DL, VT), N0);

  if (SDValue V = simplifyDivRem(N, DAG))
    return V;

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  if (isSigned) {
    // If we know the sign bits of both operands are zero, strength reduce to a
    // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
      return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
  } else {
    SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
    if (DAG.isKnownToBeAPowerOfTwo(N1)) {
      // fold (urem x, pow2) -> (and x, pow2-1)
      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
      AddToWorklist(Add.getNode());
      return DAG.getNode(ISD::AND, DL, VT, N0, Add);
    }
    if (N1.getOpcode() == ISD::SHL &&
        DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) {
      // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
      AddToWorklist(Add.getNode());
      return DAG.getNode(ISD::AND, DL, VT, N0, Add);
    }
  }

  AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();

  // If X/C can be simplified by the division-by-constant logic, lower
  // X%C to the equivalent of X-X/C*C.
  // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
  // speculative DIV must not cause a DIVREM conversion.  We guard against this
  // by skipping the simplification if isIntDivCheap().  When div is not cheap,
  // combine will not return a DIVREM.  Regardless, checking cheapness here
  // makes sense since the simplification results in fatter code.
  if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) {
    SDValue OptimizedDiv =
        isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N);
    if (OptimizedDiv.getNode()) {
      // If the equivalent Div node also exists, update its users.
      unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
      if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(),
                                                { N0, N1 }))
        CombineTo(DivNode, OptimizedDiv);
      SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
      SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
      AddToWorklist(OptimizedDiv.getNode());
      AddToWorklist(Mul.getNode());
      return Sub;
    }
  }

  // sdiv, srem -> sdivrem
  if (SDValue DivRem = useDivRem(N))
    return DivRem.getValue(1);

  return SDValue();
}

SDValue DAGCombiner::visitMULHS(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N->getValueType(0);
  SDLoc DL(N);

  if (VT.isVector()) {
    // fold (mulhs x, 0) -> 0
    // do not return N0/N1, because undef node may exist.
    if (ISD::isBuildVectorAllZeros(N0.getNode()) ||
        ISD::isBuildVectorAllZeros(N1.getNode()))
      return DAG.getConstant(0, DL, VT);
  }

  // fold (mulhs x, 0) -> 0
  if (isNullConstant(N1))
    return N1;
  // fold (mulhs x, 1) -> (sra x, size(x)-1)
  if (isOneConstant(N1))
    return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
                       DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL,
                                       getShiftAmountTy(N0.getValueType())));

  // fold (mulhs x, undef) -> 0
  if (N0.isUndef() || N1.isUndef())
    return DAG.getConstant(0, DL, VT);

  // If the type twice as wide is legal, transform the mulhs to a wider multiply
  // plus a shift.
  if (!TLI.isMulhCheaperThanMulShift(VT) && VT.isSimple() && !VT.isVector()) {
    MVT Simple = VT.getSimpleVT();
    unsigned SimpleSize = Simple.getSizeInBits();
    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
            DAG.getConstant(SimpleSize, DL,
                            getShiftAmountTy(N1.getValueType())));
      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
    }
  }

  return SDValue();
}

SDValue DAGCombiner::visitMULHU(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N->getValueType(0);
  SDLoc DL(N);

  if (VT.isVector()) {
    // fold (mulhu x, 0) -> 0
    // do not return N0/N1, because undef node may exist.
    if (ISD::isBuildVectorAllZeros(N0.getNode()) ||
        ISD::isBuildVectorAllZeros(N1.getNode()))
      return DAG.getConstant(0, DL, VT);
  }

  // fold (mulhu x, 0) -> 0
  if (isNullConstant(N1))
    return N1;
  // fold (mulhu x, 1) -> 0
  if (isOneConstant(N1))
    return DAG.getConstant(0, DL, N0.getValueType());
  // fold (mulhu x, undef) -> 0
  if (N0.isUndef() || N1.isUndef())
    return DAG.getConstant(0, DL, VT);

  // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
  if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
      DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) {
    unsigned NumEltBits = VT.getScalarSizeInBits();
    SDValue LogBase2 = BuildLogBase2(N1, DL);
    SDValue SRLAmt = DAG.getNode(
        ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2);
    EVT ShiftVT = getShiftAmountTy(N0.getValueType());
    SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT);
    return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
  }

  // If the type twice as wide is legal, transform the mulhu to a wider multiply
  // plus a shift.
  if (!TLI.isMulhCheaperThanMulShift(VT) && VT.isSimple() && !VT.isVector()) {
    MVT Simple = VT.getSimpleVT();
    unsigned SimpleSize = Simple.getSizeInBits();
    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
            DAG.getConstant(SimpleSize, DL,
                            getShiftAmountTy(N1.getValueType())));
      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
    }
  }

  return SDValue();
}

/// Perform optimizations common to nodes that compute two values. LoOp and HiOp
/// give the opcodes for the two computations that are being performed. Return
/// true if a simplification was made.
SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
                                                unsigned HiOp) {
  // If the high half is not needed, just compute the low half.
  bool HiExists = N->hasAnyUseOfValue(1);
  if (!HiExists && (!LegalOperations ||
                    TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
    SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
    return CombineTo(N, Res, Res);
  }

  // If the low half is not needed, just compute the high half.
  bool LoExists = N->hasAnyUseOfValue(0);
  if (!LoExists && (!LegalOperations ||
                    TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) {
    SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
    return CombineTo(N, Res, Res);
  }

  // If both halves are used, return as it is.
  if (LoExists && HiExists)
    return SDValue();

  // If the two computed results can be simplified separately, separate them.
  if (LoExists) {
    SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
    AddToWorklist(Lo.getNode());
    SDValue LoOpt = combine(Lo.getNode());
    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
        (!LegalOperations ||
         TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType())))
      return CombineTo(N, LoOpt, LoOpt);
  }

  if (HiExists) {
    SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
    AddToWorklist(Hi.getNode());
    SDValue HiOpt = combine(Hi.getNode());
    if (HiOpt.getNode() && HiOpt != Hi &&
        (!LegalOperations ||
         TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType())))
      return CombineTo(N, HiOpt, HiOpt);
  }

  return SDValue();
}

SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
  if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
    return Res;

  EVT VT = N->getValueType(0);
  SDLoc DL(N);

  // If the type is twice as wide is legal, transform the mulhu to a wider
  // multiply plus a shift.
  if (VT.isSimple() && !VT.isVector()) {
    MVT Simple = VT.getSimpleVT();
    unsigned SimpleSize = Simple.getSizeInBits();
    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
      // Compute the high part as N1.
      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
            DAG.getConstant(SimpleSize, DL,
                            getShiftAmountTy(Lo.getValueType())));
      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
      // Compute the low part as N0.
      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
      return CombineTo(N, Lo, Hi);
    }
  }

  return SDValue();
}

SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
  if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
    return Res;

  EVT VT = N->getValueType(0);
  SDLoc DL(N);

  // (umul_lohi N0, 0) -> (0, 0)
  if (isNullConstant(N->getOperand(1))) {
    SDValue Zero = DAG.getConstant(0, DL, VT);
    return CombineTo(N, Zero, Zero);
  }

  // (umul_lohi N0, 1) -> (N0, 0)
  if (isOneConstant(N->getOperand(1))) {
    SDValue Zero = DAG.getConstant(0, DL, VT);
    return CombineTo(N, N->getOperand(0), Zero);
  }

  // If the type is twice as wide is legal, transform the mulhu to a wider
  // multiply plus a shift.
  if (VT.isSimple() && !VT.isVector()) {
    MVT Simple = VT.getSimpleVT();
    unsigned SimpleSize = Simple.getSizeInBits();
    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
      // Compute the high part as N1.
      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
            DAG.getConstant(SimpleSize, DL,
                            getShiftAmountTy(Lo.getValueType())));
      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
      // Compute the low part as N0.
      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
      return CombineTo(N, Lo, Hi);
    }
  }

  return SDValue();
}

SDValue DAGCombiner::visitMULO(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N0.getValueType();
  bool IsSigned = (ISD::SMULO == N->getOpcode());

  EVT CarryVT = N->getValueType(1);
  SDLoc DL(N);

  // canonicalize constant to RHS.
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
    return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);

  // fold (mulo x, 0) -> 0 + no carry out
  if (isNullOrNullSplat(N1))
    return CombineTo(N, DAG.getConstant(0, DL, VT),
                     DAG.getConstant(0, DL, CarryVT));

  // (mulo x, 2) -> (addo x, x)
  if (ConstantSDNode *C2 = isConstOrConstSplat(N1))
    if (C2->getAPIntValue() == 2)
      return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL,
                         N->getVTList(), N0, N0);

  return SDValue();
}

SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N0.getValueType();
  unsigned Opcode = N->getOpcode();

  // fold vector ops
  if (VT.isVector())
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;

  // fold operation with constant operands.
  if (SDValue C = DAG.FoldConstantArithmetic(Opcode, SDLoc(N), VT, {N0, N1}))
    return C;

  // canonicalize constant to RHS
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
    return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);

  // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
  // Only do this if the current op isn't legal and the flipped is.
  if (!TLI.isOperationLegal(Opcode, VT) &&
      (N0.isUndef() || DAG.SignBitIsZero(N0)) &&
      (N1.isUndef() || DAG.SignBitIsZero(N1))) {
    unsigned AltOpcode;
    switch (Opcode) {
    case ISD::SMIN: AltOpcode = ISD::UMIN; break;
    case ISD::SMAX: AltOpcode = ISD::UMAX; break;
    case ISD::UMIN: AltOpcode = ISD::SMIN; break;
    case ISD::UMAX: AltOpcode = ISD::SMAX; break;
    default: llvm_unreachable("Unknown MINMAX opcode");
    }
    if (TLI.isOperationLegal(AltOpcode, VT))
      return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1);
  }

  return SDValue();
}

/// If this is a bitwise logic instruction and both operands have the same
/// opcode, try to sink the other opcode after the logic instruction.
SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) {
  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
  EVT VT = N0.getValueType();
  unsigned LogicOpcode = N->getOpcode();
  unsigned HandOpcode = N0.getOpcode();
  assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR ||
          LogicOpcode == ISD::XOR) && "Expected logic opcode");
  assert(HandOpcode == N1.getOpcode() && "Bad input!");

  // Bail early if none of these transforms apply.
  if (N0.getNumOperands() == 0)
    return SDValue();

  // FIXME: We should check number of uses of the operands to not increase
  //        the instruction count for all transforms.

  // Handle size-changing casts.
  SDValue X = N0.getOperand(0);
  SDValue Y = N1.getOperand(0);
  EVT XVT = X.getValueType();
  SDLoc DL(N);
  if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND ||
      HandOpcode == ISD::SIGN_EXTEND) {
    // If both operands have other uses, this transform would create extra
    // instructions without eliminating anything.
    if (!N0.hasOneUse() && !N1.hasOneUse())
      return SDValue();
    // We need matching integer source types.
    if (XVT != Y.getValueType())
      return SDValue();
    // Don't create an illegal op during or after legalization. Don't ever
    // create an unsupported vector op.
    if ((VT.isVector() || LegalOperations) &&
        !TLI.isOperationLegalOrCustom(LogicOpcode, XVT))
      return SDValue();
    // Avoid infinite looping with PromoteIntBinOp.
    // TODO: Should we apply desirable/legal constraints to all opcodes?
    if (HandOpcode == ISD::ANY_EXTEND && LegalTypes &&
        !TLI.isTypeDesirableForOp(LogicOpcode, XVT))
      return SDValue();
    // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
    SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
    return DAG.getNode(HandOpcode, DL, VT, Logic);
  }

  // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
  if (HandOpcode == ISD::TRUNCATE) {
    // If both operands have other uses, this transform would create extra
    // instructions without eliminating anything.
    if (!N0.hasOneUse() && !N1.hasOneUse())
      return SDValue();
    // We need matching source types.
    if (XVT != Y.getValueType())
      return SDValue();
    // Don't create an illegal op during or after legalization.
    if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT))
      return SDValue();
    // Be extra careful sinking truncate. If it's free, there's no benefit in
    // widening a binop. Also, don't create a logic op on an illegal type.
    if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT))
      return SDValue();
    if (!TLI.isTypeLegal(XVT))
      return SDValue();
    SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
    return DAG.getNode(HandOpcode, DL, VT, Logic);
  }

  // For binops SHL/SRL/SRA/AND:
  //   logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
  if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL ||
       HandOpcode == ISD::SRA || HandOpcode == ISD::AND) &&
      N0.getOperand(1) == N1.getOperand(1)) {
    // If either operand has other uses, this transform is not an improvement.
    if (!N0.hasOneUse() || !N1.hasOneUse())
      return SDValue();
    SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
    return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
  }

  // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
  if (HandOpcode == ISD::BSWAP) {
    // If either operand has other uses, this transform is not an improvement.
    if (!N0.hasOneUse() || !N1.hasOneUse())
      return SDValue();
    SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
    return DAG.getNode(HandOpcode, DL, VT, Logic);
  }

  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
  // Only perform this optimization up until type legalization, before
  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
  // we don't want to undo this promotion.
  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
  // on scalars.
  if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) &&
       Level <= AfterLegalizeTypes) {
    // Input types must be integer and the same.
    if (XVT.isInteger() && XVT == Y.getValueType() &&
        !(VT.isVector() && TLI.isTypeLegal(VT) &&
          !XVT.isVector() && !TLI.isTypeLegal(XVT))) {
      SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
      return DAG.getNode(HandOpcode, DL, VT, Logic);
    }
  }

  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
  // If both shuffles use the same mask, and both shuffle within a single
  // vector, then it is worthwhile to move the swizzle after the operation.
  // The type-legalizer generates this pattern when loading illegal
  // vector types from memory. In many cases this allows additional shuffle
  // optimizations.
  // There are other cases where moving the shuffle after the xor/and/or
  // is profitable even if shuffles don't perform a swizzle.
  // If both shuffles use the same mask, and both shuffles have the same first
  // or second operand, then it might still be profitable to move the shuffle
  // after the xor/and/or operation.
  if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
    auto *SVN0 = cast<ShuffleVectorSDNode>(N0);
    auto *SVN1 = cast<ShuffleVectorSDNode>(N1);
    assert(X.getValueType() == Y.getValueType() &&
           "Inputs to shuffles are not the same type");

    // Check that both shuffles use the same mask. The masks are known to be of
    // the same length because the result vector type is the same.
    // Check also that shuffles have only one use to avoid introducing extra
    // instructions.
    if (!SVN0->hasOneUse() || !SVN1->hasOneUse() ||
        !SVN0->getMask().equals(SVN1->getMask()))
      return SDValue();

    // Don't try to fold this node if it requires introducing a
    // build vector of all zeros that might be illegal at this stage.
    SDValue ShOp = N0.getOperand(1);
    if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
      ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);

    // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
    if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
      SDValue Logic = DAG.getNode(LogicOpcode, DL, VT,
                                  N0.getOperand(0), N1.getOperand(0));
      return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask());
    }

    // Don't try to fold this node if it requires introducing a
    // build vector of all zeros that might be illegal at this stage.
    ShOp = N0.getOperand(0);
    if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
      ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);

    // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
    if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) {
      SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1),
                                  N1.getOperand(1));
      return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask());
    }
  }

  return SDValue();
}

/// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
                                       const SDLoc &DL) {
  SDValue LL, LR, RL, RR, N0CC, N1CC;
  if (!isSetCCEquivalent(N0, LL, LR, N0CC) ||
      !isSetCCEquivalent(N1, RL, RR, N1CC))
    return SDValue();

  assert(N0.getValueType() == N1.getValueType() &&
         "Unexpected operand types for bitwise logic op");
  assert(LL.getValueType() == LR.getValueType() &&
         RL.getValueType() == RR.getValueType() &&
         "Unexpected operand types for setcc");

  // If we're here post-legalization or the logic op type is not i1, the logic
  // op type must match a setcc result type. Also, all folds require new
  // operations on the left and right operands, so those types must match.
  EVT VT = N0.getValueType();
  EVT OpVT = LL.getValueType();
  if (LegalOperations || VT.getScalarType() != MVT::i1)
    if (VT != getSetCCResultType(OpVT))
      return SDValue();
  if (OpVT != RL.getValueType())
    return SDValue();

  ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get();
  ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get();
  bool IsInteger = OpVT.isInteger();
  if (LR == RR && CC0 == CC1 && IsInteger) {
    bool IsZero = isNullOrNullSplat(LR);
    bool IsNeg1 = isAllOnesOrAllOnesSplat(LR);

    // All bits clear?
    bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero;
    // All sign bits clear?
    bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1;
    // Any bits set?
    bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero;
    // Any sign bits set?
    bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero;

    // (and (seteq X,  0), (seteq Y,  0)) --> (seteq (or X, Y),  0)
    // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
    // (or  (setne X,  0), (setne Y,  0)) --> (setne (or X, Y),  0)
    // (or  (setlt X,  0), (setlt Y,  0)) --> (setlt (or X, Y),  0)
    if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) {
      SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL);
      AddToWorklist(Or.getNode());
      return DAG.getSetCC(DL, VT, Or, LR, CC1);
    }

    // All bits set?
    bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1;
    // All sign bits set?
    bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero;
    // Any bits clear?
    bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1;
    // Any sign bits clear?
    bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1;

    // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
    // (and (setlt X,  0), (setlt Y,  0)) --> (setlt (and X, Y),  0)
    // (or  (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
    // (or  (setgt X, -1), (setgt Y  -1)) --> (setgt (and X, Y), -1)
    if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) {
      SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL);
      AddToWorklist(And.getNode());
      return DAG.getSetCC(DL, VT, And, LR, CC1);
    }
  }

  // TODO: What is the 'or' equivalent of this fold?
  // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
  if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 &&
      IsInteger && CC0 == ISD::SETNE &&
      ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
       (isAllOnesConstant(LR) && isNullConstant(RR)))) {
    SDValue One = DAG.getConstant(1, DL, OpVT);
    SDValue Two = DAG.getConstant(2, DL, OpVT);
    SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One);
    AddToWorklist(Add.getNode());
    return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE);
  }

  // Try more general transforms if the predicates match and the only user of
  // the compares is the 'and' or 'or'.
  if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 &&
      N0.hasOneUse() && N1.hasOneUse()) {
    // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
    // or  (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
    if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) {
      SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR);
      SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR);
      SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR);
      SDValue Zero = DAG.getConstant(0, DL, OpVT);
      return DAG.getSetCC(DL, VT, Or, Zero, CC1);
    }

    // Turn compare of constants whose difference is 1 bit into add+and+setcc.
    // TODO - support non-uniform vector amounts.
    if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) {
      // Match a shared variable operand and 2 non-opaque constant operands.
      ConstantSDNode *C0 = isConstOrConstSplat(LR);
      ConstantSDNode *C1 = isConstOrConstSplat(RR);
      if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) {
        // Canonicalize larger constant as C0.
        if (C1->getAPIntValue().ugt(C0->getAPIntValue()))
          std::swap(C0, C1);

        // The difference of the constants must be a single bit.
        const APInt &C0Val = C0->getAPIntValue();
        const APInt &C1Val = C1->getAPIntValue();
        if ((C0Val - C1Val).isPowerOf2()) {
          // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) -->
          // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq
          SDValue OffsetC = DAG.getConstant(-C1Val, DL, OpVT);
          SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LL, OffsetC);
          SDValue MaskC = DAG.getConstant(~(C0Val - C1Val), DL, OpVT);
          SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Add, MaskC);
          SDValue Zero = DAG.getConstant(0, DL, OpVT);
          return DAG.getSetCC(DL, VT, And, Zero, CC0);
        }
      }
    }
  }

  // Canonicalize equivalent operands to LL == RL.
  if (LL == RR && LR == RL) {
    CC1 = ISD::getSetCCSwappedOperands(CC1);
    std::swap(RL, RR);
  }

  // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
  // (or  (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
  if (LL == RL && LR == RR) {
    ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT)
                                : ISD::getSetCCOrOperation(CC0, CC1, OpVT);
    if (NewCC != ISD::SETCC_INVALID &&
        (!LegalOperations ||
         (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) &&
          TLI.isOperationLegal(ISD::SETCC, OpVT))))
      return DAG.getSetCC(DL, VT, LL, LR, NewCC);
  }

  return SDValue();
}

/// This contains all DAGCombine rules which reduce two values combined by
/// an And operation to a single value. This makes them reusable in the context
/// of visitSELECT(). Rules involving constants are not included as
/// visitSELECT() already handles those cases.
SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) {
  EVT VT = N1.getValueType();
  SDLoc DL(N);

  // fold (and x, undef) -> 0
  if (N0.isUndef() || N1.isUndef())
    return DAG.getConstant(0, DL, VT);

  if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL))
    return V;

  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
      VT.getSizeInBits() <= 64) {
    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
      if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
        // immediate for an add, but it is legal if its top c2 bits are set,
        // transform the ADD so the immediate doesn't need to be materialized
        // in a register.
        APInt ADDC = ADDI->getAPIntValue();
        APInt SRLC = SRLI->getAPIntValue();
        if (ADDC.getMinSignedBits() <= 64 &&
            SRLC.ult(VT.getSizeInBits()) &&
            !TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
                                             SRLC.getZExtValue());
          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
            ADDC |= Mask;
            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
              SDLoc DL0(N0);
              SDValue NewAdd =
                DAG.getNode(ISD::ADD, DL0, VT,
                            N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
              CombineTo(N0.getNode(), NewAdd);
              // Return N so it doesn't get rechecked!
              return SDValue(N, 0);
            }
          }
        }
      }
    }
  }

  // Reduce bit extract of low half of an integer to the narrower type.
  // (and (srl i64:x, K), KMask) ->
  //   (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
    if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) {
      if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
        unsigned Size = VT.getSizeInBits();
        const APInt &AndMask = CAnd->getAPIntValue();
        unsigned ShiftBits = CShift->getZExtValue();

        // Bail out, this node will probably disappear anyway.
        if (ShiftBits == 0)
          return SDValue();

        unsigned MaskBits = AndMask.countTrailingOnes();
        EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2);

        if (AndMask.isMask() &&
            // Required bits must not span the two halves of the integer and
            // must fit in the half size type.
            (ShiftBits + MaskBits <= Size / 2) &&
            TLI.isNarrowingProfitable(VT, HalfVT) &&
            TLI.isTypeDesirableForOp(ISD::AND, HalfVT) &&
            TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) &&
            TLI.isTruncateFree(VT, HalfVT) &&
            TLI.isZExtFree(HalfVT, VT)) {
          // The isNarrowingProfitable is to avoid regressions on PPC and
          // AArch64 which match a few 64-bit bit insert / bit extract patterns
          // on downstream users of this. Those patterns could probably be
          // extended to handle extensions mixed in.

          SDValue SL(N0);
          assert(MaskBits <= Size);

          // Extracting the highest bit of the low half.
          EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout());
          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT,
                                      N0.getOperand(0));

          SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT);
          SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT);
          SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK);
          SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask);
          return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And);
        }
      }
    }
  }

  return SDValue();
}

bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
                                   EVT LoadResultTy, EVT &ExtVT) {
  if (!AndC->getAPIntValue().isMask())
    return false;

  unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes();

  ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
  EVT LoadedVT = LoadN->getMemoryVT();

  if (ExtVT == LoadedVT &&
      (!LegalOperations ||
       TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
    // ZEXTLOAD will match without needing to change the size of the value being
    // loaded.
    return true;
  }

  // Do not change the width of a volatile or atomic loads.
  if (!LoadN->isSimple())
    return false;

  // Do not generate loads of non-round integer types since these can
  // be expensive (and would be wrong if the type is not byte sized).
  if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
    return false;

  if (LegalOperations &&
      !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
    return false;

  if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT))
    return false;

  return true;
}

bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST,
                                    ISD::LoadExtType ExtType, EVT &MemVT,
                                    unsigned ShAmt) {
  if (!LDST)
    return false;
  // Only allow byte offsets.
  if (ShAmt % 8)
    return false;

  // Do not generate loads of non-round integer types since these can
  // be expensive (and would be wrong if the type is not byte sized).
  if (!MemVT.isRound())
    return false;

  // Don't change the width of a volatile or atomic loads.
  if (!LDST->isSimple())
    return false;

  // Verify that we are actually reducing a load width here.
  if (LDST->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits())
    return false;

  // Ensure that this isn't going to produce an unsupported memory access.
  if (ShAmt) {
    assert(ShAmt % 8 == 0 && "ShAmt is byte offset");
    const unsigned ByteShAmt = ShAmt / 8;
    const Align LDSTAlign = LDST->getAlign();
    const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt);
    if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
                                LDST->getAddressSpace(), NarrowAlign,
                                LDST->getMemOperand()->getFlags()))
      return false;
  }

  // It's not possible to generate a constant of extended or untyped type.
  EVT PtrType = LDST->getBasePtr().getValueType();
  if (PtrType == MVT::Untyped || PtrType.isExtended())
    return false;

  if (isa<LoadSDNode>(LDST)) {
    LoadSDNode *Load = cast<LoadSDNode>(LDST);
    // Don't transform one with multiple uses, this would require adding a new
    // load.
    if (!SDValue(Load, 0).hasOneUse())
      return false;

    if (LegalOperations &&
        !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT))
      return false;

    // For the transform to be legal, the load must produce only two values
    // (the value loaded and the chain).  Don't transform a pre-increment
    // load, for example, which produces an extra value.  Otherwise the
    // transformation is not equivalent, and the downstream logic to replace
    // uses gets things wrong.
    if (Load->getNumValues() > 2)
      return false;

    // If the load that we're shrinking is an extload and we're not just
    // discarding the extension we can't simply shrink the load. Bail.
    // TODO: It would be possible to merge the extensions in some cases.
    if (Load->getExtensionType() != ISD::NON_EXTLOAD &&
        Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
      return false;

    if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT))
      return false;
  } else {
    assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode");
    StoreSDNode *Store = cast<StoreSDNode>(LDST);
    // Can't write outside the original store
    if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
      return false;

    if (LegalOperations &&
        !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT))
      return false;
  }
  return true;
}

bool DAGCombiner::SearchForAndLoads(SDNode *N,
                                    SmallVectorImpl<LoadSDNode*> &Loads,
                                    SmallPtrSetImpl<SDNode*> &NodesWithConsts,
                                    ConstantSDNode *Mask,
                                    SDNode *&NodeToMask) {
  // Recursively search for the operands, looking for loads which can be
  // narrowed.
  for (SDValue Op : N->op_values()) {
    if (Op.getValueType().isVector())
      return false;

    // Some constants may need fixing up later if they are too large.
    if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
      if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) &&
          (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue())
        NodesWithConsts.insert(N);
      continue;
    }

    if (!Op.hasOneUse())
      return false;

    switch(Op.getOpcode()) {
    case ISD::LOAD: {
      auto *Load = cast<LoadSDNode>(Op);
      EVT ExtVT;
      if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) &&
          isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) {

        // ZEXTLOAD is already small enough.
        if (Load->getExtensionType() == ISD::ZEXTLOAD &&
            ExtVT.bitsGE(Load->getMemoryVT()))
          continue;

        // Use LE to convert equal sized loads to zext.
        if (ExtVT.bitsLE(Load->getMemoryVT()))
          Loads.push_back(Load);

        continue;
      }
      return false;
    }
    case ISD::ZERO_EXTEND:
    case ISD::AssertZext: {
      unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes();
      EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
      EVT VT = Op.getOpcode() == ISD::AssertZext ?
        cast<VTSDNode>(Op.getOperand(1))->getVT() :
        Op.getOperand(0).getValueType();

      // We can accept extending nodes if the mask is wider or an equal
      // width to the original type.
      if (ExtVT.bitsGE(VT))
        continue;
      break;
    }
    case ISD::OR:
    case ISD::XOR:
    case ISD::AND:
      if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask,
                             NodeToMask))
        return false;
      continue;
    }

    // Allow one node which will masked along with any loads found.
    if (NodeToMask)
      return false;

    // Also ensure that the node to be masked only produces one data result.
    NodeToMask = Op.getNode();
    if (NodeToMask->getNumValues() > 1) {
      bool HasValue = false;
      for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) {
        MVT VT = SDValue(NodeToMask, i).getSimpleValueType();
        if (VT != MVT::Glue && VT != MVT::Other) {
          if (HasValue) {
            NodeToMask = nullptr;
            return false;
          }
          HasValue = true;
        }
      }
      assert(HasValue && "Node to be masked has no data result?");
    }
  }
  return true;
}

bool DAGCombiner::BackwardsPropagateMask(SDNode *N) {
  auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
  if (!Mask)
    return false;

  if (!Mask->getAPIntValue().isMask())
    return false;

  // No need to do anything if the and directly uses a load.
  if (isa<LoadSDNode>(N->getOperand(0)))
    return false;

  SmallVector<LoadSDNode*, 8> Loads;
  SmallPtrSet<SDNode*, 2> NodesWithConsts;
  SDNode *FixupNode = nullptr;
  if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) {
    if (Loads.size() == 0)
      return false;

    LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump());
    SDValue MaskOp = N->getOperand(1);

    // If it exists, fixup the single node we allow in the tree that needs
    // masking.
    if (FixupNode) {
      LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump());
      SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode),
                                FixupNode->getValueType(0),
                                SDValue(FixupNode, 0), MaskOp);
      DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And);
      if (And.getOpcode() == ISD ::AND)
        DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp);
    }

    // Narrow any constants that need it.
    for (auto *LogicN : NodesWithConsts) {
      SDValue Op0 = LogicN->getOperand(0);
      SDValue Op1 = LogicN->getOperand(1);

      if (isa<ConstantSDNode>(Op0))
          std::swap(Op0, Op1);

      SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(),
                                Op1, MaskOp);

      DAG.UpdateNodeOperands(LogicN, Op0, And);
    }

    // Create narrow loads.
    for (auto *Load : Loads) {
      LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump());
      SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0),
                                SDValue(Load, 0), MaskOp);
      DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And);
      if (And.getOpcode() == ISD ::AND)
        And = SDValue(
            DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0);
      SDValue NewLoad = ReduceLoadWidth(And.getNode());
      assert(NewLoad &&
             "Shouldn't be masking the load if it can't be narrowed");
      CombineTo(Load, NewLoad, NewLoad.getValue(1));
    }
    DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode());
    return true;
  }
  return false;
}

// Unfold
//    x &  (-1 'logical shift' y)
// To
//    (x 'opposite logical shift' y) 'logical shift' y
// if it is better for performance.
SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) {
  assert(N->getOpcode() == ISD::AND);

  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);

  // Do we actually prefer shifts over mask?
  if (!TLI.shouldFoldMaskToVariableShiftPair(N0))
    return SDValue();

  // Try to match  (-1 '[outer] logical shift' y)
  unsigned OuterShift;
  unsigned InnerShift; // The opposite direction to the OuterShift.
  SDValue Y;           // Shift amount.
  auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool {
    if (!M.hasOneUse())
      return false;
    OuterShift = M->getOpcode();
    if (OuterShift == ISD::SHL)
      InnerShift = ISD::SRL;
    else if (OuterShift == ISD::SRL)
      InnerShift = ISD::SHL;
    else
      return false;
    if (!isAllOnesConstant(M->getOperand(0)))
      return false;
    Y = M->getOperand(1);
    return true;
  };

  SDValue X;
  if (matchMask(N1))
    X = N0;
  else if (matchMask(N0))
    X = N1;
  else
    return SDValue();

  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  //     tmp = x   'opposite logical shift' y
  SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y);
  //     ret = tmp 'logical shift' y
  SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y);

  return T1;
}

/// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
/// For a target with a bit test, this is expected to become test + set and save
/// at least 1 instruction.
static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) {
  assert(And->getOpcode() == ISD::AND && "Expected an 'and' op");

  // This is probably not worthwhile without a supported type.
  EVT VT = And->getValueType(0);
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  if (!TLI.isTypeLegal(VT))
    return SDValue();

  // Look through an optional extension and find a 'not'.
  // TODO: Should we favor test+set even without the 'not' op?
  SDValue Not = And->getOperand(0), And1 = And->getOperand(1);
  if (Not.getOpcode() == ISD::ANY_EXTEND)
    Not = Not.getOperand(0);
  if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1))
    return SDValue();

  // Look though an optional truncation. The source operand may not be the same
  // type as the original 'and', but that is ok because we are masking off
  // everything but the low bit.
  SDValue Srl = Not.getOperand(0);
  if (Srl.getOpcode() == ISD::TRUNCATE)
    Srl = Srl.getOperand(0);

  // Match a shift-right by constant.
  if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() ||
      !isa<ConstantSDNode>(Srl.getOperand(1)))
    return SDValue();

  // We might have looked through casts that make this transform invalid.
  // TODO: If the source type is wider than the result type, do the mask and
  //       compare in the source type.
  const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1);
  unsigned VTBitWidth = VT.getSizeInBits();
  if (ShiftAmt.uge(VTBitWidth))
    return SDValue();

  // Turn this into a bit-test pattern using mask op + setcc:
  // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
  SDLoc DL(And);
  SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT);
  EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
  SDValue Mask = DAG.getConstant(
      APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT);
  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask);
  SDValue Zero = DAG.getConstant(0, DL, VT);
  SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ);
  return DAG.getZExtOrTrunc(Setcc, DL, VT);
}

SDValue DAGCombiner::visitAND(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N1.getValueType();

  // x & x --> x
  if (N0 == N1)
    return N0;

  // fold vector ops
  if (VT.isVector()) {
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;

    // fold (and x, 0) -> 0, vector edition
    if (ISD::isBuildVectorAllZeros(N0.getNode()))
      // do not return N0, because undef node may exist in N0
      return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()),
                             SDLoc(N), N0.getValueType());
    if (ISD::isBuildVectorAllZeros(N1.getNode()))
      // do not return N1, because undef node may exist in N1
      return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()),
                             SDLoc(N), N1.getValueType());

    // fold (and x, -1) -> x, vector edition
    if (ISD::isBuildVectorAllOnes(N0.getNode()))
      return N1;
    if (ISD::isBuildVectorAllOnes(N1.getNode()))
      return N0;

    // fold (and (masked_load) (build_vec (x, ...))) to zext_masked_load
    auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0);
    auto *BVec = dyn_cast<BuildVectorSDNode>(N1);
    if (MLoad && BVec && MLoad->getExtensionType() == ISD::EXTLOAD &&
        N0.hasOneUse() && N1.hasOneUse()) {
      EVT LoadVT = MLoad->getMemoryVT();
      EVT ExtVT = VT;
      if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) {
        // For this AND to be a zero extension of the masked load the elements
        // of the BuildVec must mask the bottom bits of the extended element
        // type
        if (ConstantSDNode *Splat = BVec->getConstantSplatNode()) {
          uint64_t ElementSize =
              LoadVT.getVectorElementType().getScalarSizeInBits();
          if (Splat->getAPIntValue().isMask(ElementSize)) {
            return DAG.getMaskedLoad(
                ExtVT, SDLoc(N), MLoad->getChain(), MLoad->getBasePtr(),
                MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(),
                LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(),
                ISD::ZEXTLOAD, MLoad->isExpandingLoad());
          }
        }
      }
    }
  }

  // fold (and c1, c2) -> c1&c2
  ConstantSDNode *N1C = isConstOrConstSplat(N1);
  if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1}))
    return C;

  // canonicalize constant to RHS
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
      !DAG.isConstantIntBuildVectorOrConstantInt(N1))
    return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);

  // fold (and x, -1) -> x
  if (isAllOnesConstant(N1))
    return N0;

  // if (and x, c) is known to be zero, return 0
  unsigned BitWidth = VT.getScalarSizeInBits();
  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
                                   APInt::getAllOnesValue(BitWidth)))
    return DAG.getConstant(0, SDLoc(N), VT);

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  // reassociate and
  if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags()))
    return RAND;

  // Try to convert a constant mask AND into a shuffle clear mask.
  if (VT.isVector())
    if (SDValue Shuffle = XformToShuffleWithZero(N))
      return Shuffle;

  if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N))
    return Combined;

  // fold (and (or x, C), D) -> D if (C & D) == D
  auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
    return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue());
  };
  if (N0.getOpcode() == ISD::OR &&
      ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset))
    return N1;
  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
    SDValue N0Op0 = N0.getOperand(0);
    APInt Mask = ~N1C->getAPIntValue();
    Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits());
    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
                                 N0.getValueType(), N0Op0);

      // Replace uses of the AND with uses of the Zero extend node.
      CombineTo(N, Zext);

      // We actually want to replace all uses of the any_extend with the
      // zero_extend, to avoid duplicating things.  This will later cause this
      // AND to be folded.
      CombineTo(N0.getNode(), Zext);
      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
    }
  }

  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
  // already be zero by virtue of the width of the base type of the load.
  //
  // the 'X' node here can either be nothing or an extract_vector_elt to catch
  // more cases.
  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
       N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
       N0.getOperand(0).getOpcode() == ISD::LOAD &&
       N0.getOperand(0).getResNo() == 0) ||
      (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
                                         N0 : N0.getOperand(0) );

    // Get the constant (if applicable) the zero'th operand is being ANDed with.
    // This can be a pure constant or a vector splat, in which case we treat the
    // vector as a scalar and use the splat value.
    APInt Constant = APInt::getNullValue(1);
    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
      Constant = C->getAPIntValue();
    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
      APInt SplatValue, SplatUndef;
      unsigned SplatBitSize;
      bool HasAnyUndefs;
      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
                                             SplatBitSize, HasAnyUndefs);
      if (IsSplat) {
        // Undef bits can contribute to a possible optimisation if set, so
        // set them.
        SplatValue |= SplatUndef;

        // The splat value may be something like "0x00FFFFFF", which means 0 for
        // the first vector value and FF for the rest, repeating. We need a mask
        // that will apply equally to all members of the vector, so AND all the
        // lanes of the constant together.
        unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits();

        // If the splat value has been compressed to a bitlength lower
        // than the size of the vector lane, we need to re-expand it to
        // the lane size.
        if (EltBitWidth > SplatBitSize)
          for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth);
               SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2)
            SplatValue |= SplatValue.shl(SplatBitSize);

        // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
        // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
        if ((SplatBitSize % EltBitWidth) == 0) {
          Constant = APInt::getAllOnesValue(EltBitWidth);
          for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i)
            Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth);
        }
      }
    }

    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
    // actually legal and isn't going to get expanded, else this is a false
    // optimisation.
    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
                                                    Load->getValueType(0),
                                                    Load->getMemoryVT());

    // Resize the constant to the same size as the original memory access before
    // extension. If it is still the AllOnesValue then this AND is completely
    // unneeded.
    Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());

    bool B;
    switch (Load->getExtensionType()) {
    default: B = false; break;
    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
    case ISD::ZEXTLOAD:
    case ISD::NON_EXTLOAD: B = true; break;
    }

    if (B && Constant.isAllOnesValue()) {
      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
      // preserve semantics once we get rid of the AND.
      SDValue NewLoad(Load, 0);

      // Fold the AND away. NewLoad may get replaced immediately.
      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);

      if (Load->getExtensionType() == ISD::EXTLOAD) {
        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
                              Load->getValueType(0), SDLoc(Load),
                              Load->getChain(), Load->getBasePtr(),
                              Load->getOffset(), Load->getMemoryVT(),
                              Load->getMemOperand());
        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
        if (Load->getNumValues() == 3) {
          // PRE/POST_INC loads have 3 values.
          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
                           NewLoad.getValue(2) };
          CombineTo(Load, To, 3, true);
        } else {
          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
        }
      }

      return SDValue(N, 0); // Return N so it doesn't get rechecked!
    }
  }

  // fold (and (load x), 255) -> (zextload x, i8)
  // fold (and (extload x, i16), 255) -> (zextload x, i8)
  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
  if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD ||
                                (N0.getOpcode() == ISD::ANY_EXTEND &&
                                 N0.getOperand(0).getOpcode() == ISD::LOAD))) {
    if (SDValue Res = ReduceLoadWidth(N)) {
      LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND
        ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0);
      AddToWorklist(N);
      DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res);
      return SDValue(N, 0);
    }
  }

  if (LegalTypes) {
    // Attempt to propagate the AND back up to the leaves which, if they're
    // loads, can be combined to narrow loads and the AND node can be removed.
    // Perform after legalization so that extend nodes will already be
    // combined into the loads.
    if (BackwardsPropagateMask(N))
      return SDValue(N, 0);
  }

  if (SDValue Combined = visitANDLike(N0, N1, N))
    return Combined;

  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
  if (N0.getOpcode() == N1.getOpcode())
    if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
      return V;

  // Masking the negated extension of a boolean is just the zero-extended
  // boolean:
  // and (sub 0, zext(bool X)), 1 --> zext(bool X)
  // and (sub 0, sext(bool X)), 1 --> zext(bool X)
  //
  // Note: the SimplifyDemandedBits fold below can make an information-losing
  // transform, and then we have no way to find this better fold.
  if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) {
    if (isNullOrNullSplat(N0.getOperand(0))) {
      SDValue SubRHS = N0.getOperand(1);
      if (SubRHS.getOpcode() == ISD::ZERO_EXTEND &&
          SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
        return SubRHS;
      if (SubRHS.getOpcode() == ISD::SIGN_EXTEND &&
          SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0));
    }
  }

  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
  // fold (and (sra)) -> (and (srl)) when possible.
  if (SimplifyDemandedBits(SDValue(N, 0)))
    return SDValue(N, 0);

  // fold (zext_inreg (extload x)) -> (zextload x)
  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
  if (ISD::isUNINDEXEDLoad(N0.getNode()) &&
      (ISD::isEXTLoad(N0.getNode()) ||
       (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) {
    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
    EVT MemVT = LN0->getMemoryVT();
    // If we zero all the possible extended bits, then we can turn this into
    // a zextload if we are running before legalize or the operation is legal.
    unsigned ExtBitSize = N1.getScalarValueSizeInBits();
    unsigned MemBitSize = MemVT.getScalarSizeInBits();
    APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize);
    if (DAG.MaskedValueIsZero(N1, ExtBits) &&
        ((!LegalOperations && LN0->isSimple()) ||
         TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
      SDValue ExtLoad =
          DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(),
                         LN0->getBasePtr(), MemVT, LN0->getMemOperand());
      AddToWorklist(N);
      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
      return SDValue(N, 0); // Return N so it doesn't get rechecked!
    }
  }

  // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
  if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
    if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
                                           N0.getOperand(1), false))
      return BSwap;
  }

  if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N))
    return Shifts;

  if (TLI.hasBitTest(N0, N1))
    if (SDValue V = combineShiftAnd1ToBitTest(N, DAG))
      return V;

  return SDValue();
}

/// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
                                        bool DemandHighBits) {
  if (!LegalOperations)
    return SDValue();

  EVT VT = N->getValueType(0);
  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
    return SDValue();
  if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
    return SDValue();

  // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
  bool LookPassAnd0 = false;
  bool LookPassAnd1 = false;
  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
      std::swap(N0, N1);
  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
      std::swap(N0, N1);
  if (N0.getOpcode() == ISD::AND) {
    if (!N0.getNode()->hasOneUse())
      return SDValue();
    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
    // Also handle 0xffff since the LHS is guaranteed to have zeros there.
    // This is needed for X86.
    if (!N01C || (N01C->getZExtValue() != 0xFF00 &&
                  N01C->getZExtValue() != 0xFFFF))
      return SDValue();
    N0 = N0.getOperand(0);
    LookPassAnd0 = true;
  }

  if (N1.getOpcode() == ISD::AND) {
    if (!N1.getNode()->hasOneUse())
      return SDValue();
    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
    if (!N11C || N11C->getZExtValue() != 0xFF)
      return SDValue();
    N1 = N1.getOperand(0);
    LookPassAnd1 = true;
  }

  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
    std::swap(N0, N1);
  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
    return SDValue();
  if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse())
    return SDValue();

  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
  if (!N01C || !N11C)
    return SDValue();
  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
    return SDValue();

  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
  SDValue N00 = N0->getOperand(0);
  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
    if (!N00.getNode()->hasOneUse())
      return SDValue();
    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
    if (!N001C || N001C->getZExtValue() != 0xFF)
      return SDValue();
    N00 = N00.getOperand(0);
    LookPassAnd0 = true;
  }

  SDValue N10 = N1->getOperand(0);
  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
    if (!N10.getNode()->hasOneUse())
      return SDValue();
    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
    // Also allow 0xFFFF since the bits will be shifted out. This is needed
    // for X86.
    if (!N101C || (N101C->getZExtValue() != 0xFF00 &&
                   N101C->getZExtValue() != 0xFFFF))
      return SDValue();
    N10 = N10.getOperand(0);
    LookPassAnd1 = true;
  }

  if (N00 != N10)
    return SDValue();

  // Make sure everything beyond the low halfword gets set to zero since the SRL
  // 16 will clear the top bits.
  unsigned OpSizeInBits = VT.getSizeInBits();
  if (DemandHighBits && OpSizeInBits > 16) {
    // If the left-shift isn't masked out then the only way this is a bswap is
    // if all bits beyond the low 8 are 0. In that case the entire pattern
    // reduces to a left shift anyway: leave it for other parts of the combiner.
    if (!LookPassAnd0)
      return SDValue();

    // However, if the right shift isn't masked out then it might be because
    // it's not needed. See if we can spot that too.
    if (!LookPassAnd1 &&
        !DAG.MaskedValueIsZero(
            N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
      return SDValue();
  }

  SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
  if (OpSizeInBits > 16) {
    SDLoc DL(N);
    Res = DAG.getNode(ISD::SRL, DL, VT, Res,
                      DAG.getConstant(OpSizeInBits - 16, DL,
                                      getShiftAmountTy(VT)));
  }
  return Res;
}

/// Return true if the specified node is an element that makes up a 32-bit
/// packed halfword byteswap.
/// ((x & 0x000000ff) << 8) |
/// ((x & 0x0000ff00) >> 8) |
/// ((x & 0x00ff0000) << 8) |
/// ((x & 0xff000000) >> 8)
static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
  if (!N.getNode()->hasOneUse())
    return false;

  unsigned Opc = N.getOpcode();
  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
    return false;

  SDValue N0 = N.getOperand(0);
  unsigned Opc0 = N0.getOpcode();
  if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL)
    return false;

  ConstantSDNode *N1C = nullptr;
  // SHL or SRL: look upstream for AND mask operand
  if (Opc == ISD::AND)
    N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
  else if (Opc0 == ISD::AND)
    N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
  if (!N1C)
    return false;

  unsigned MaskByteOffset;
  switch (N1C->getZExtValue()) {
  default:
    return false;
  case 0xFF:       MaskByteOffset = 0; break;
  case 0xFF00:     MaskByteOffset = 1; break;
  case 0xFFFF:
    // In case demanded bits didn't clear the bits that will be shifted out.
    // This is needed for X86.
    if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) {
      MaskByteOffset = 1;
      break;
    }
    return false;
  case 0xFF0000:   MaskByteOffset = 2; break;
  case 0xFF000000: MaskByteOffset = 3; break;
  }

  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
  if (Opc == ISD::AND) {
    if (MaskByteOffset == 0 || MaskByteOffset == 2) {
      // (x >> 8) & 0xff
      // (x >> 8) & 0xff0000
      if (Opc0 != ISD::SRL)
        return false;
      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
      if (!C || C->getZExtValue() != 8)
        return false;
    } else {
      // (x << 8) & 0xff00
      // (x << 8) & 0xff000000
      if (Opc0 != ISD::SHL)
        return false;
      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
      if (!C || C->getZExtValue() != 8)
        return false;
    }
  } else if (Opc == ISD::SHL) {
    // (x & 0xff) << 8
    // (x & 0xff0000) << 8
    if (MaskByteOffset != 0 && MaskByteOffset != 2)
      return false;
    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
    if (!C || C->getZExtValue() != 8)
      return false;
  } else { // Opc == ISD::SRL
    // (x & 0xff00) >> 8
    // (x & 0xff000000) >> 8
    if (MaskByteOffset != 1 && MaskByteOffset != 3)
      return false;
    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
    if (!C || C->getZExtValue() != 8)
      return false;
  }

  if (Parts[MaskByteOffset])
    return false;

  Parts[MaskByteOffset] = N0.getOperand(0).getNode();
  return true;
}

// Match 2 elements of a packed halfword bswap.
static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) {
  if (N.getOpcode() == ISD::OR)
    return isBSwapHWordElement(N.getOperand(0), Parts) &&
           isBSwapHWordElement(N.getOperand(1), Parts);

  if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) {
    ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1));
    if (!C || C->getAPIntValue() != 16)
      return false;
    Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode();
    return true;
  }

  return false;
}

// Match this pattern:
//   (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff))
// And rewrite this to:
//   (rotr (bswap A), 16)
static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI,
                                       SelectionDAG &DAG, SDNode *N, SDValue N0,
                                       SDValue N1, EVT VT, EVT ShiftAmountTy) {
  assert(N->getOpcode() == ISD::OR && VT == MVT::i32 &&
         "MatchBSwapHWordOrAndAnd: expecting i32");
  if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
    return SDValue();
  if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND)
    return SDValue();
  // TODO: this is too restrictive; lifting this restriction requires more tests
  if (!N0->hasOneUse() || !N1->hasOneUse())
    return SDValue();
  ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1));
  ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1));
  if (!Mask0 || !Mask1)
    return SDValue();
  if (Mask0->getAPIntValue() != 0xff00ff00 ||
      Mask1->getAPIntValue() != 0x00ff00ff)
    return SDValue();
  SDValue Shift0 = N0.getOperand(0);
  SDValue Shift1 = N1.getOperand(0);
  if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL)
    return SDValue();
  ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1));
  ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1));
  if (!ShiftAmt0 || !ShiftAmt1)
    return SDValue();
  if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8)
    return SDValue();
  if (Shift0.getOperand(0) != Shift1.getOperand(0))
    return SDValue();

  SDLoc DL(N);
  SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0));
  SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy);
  return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
}

/// Match a 32-bit packed halfword bswap. That is
/// ((x & 0x000000ff) << 8) |
/// ((x & 0x0000ff00) >> 8) |
/// ((x & 0x00ff0000) << 8) |
/// ((x & 0xff000000) >> 8)
/// => (rotl (bswap x), 16)
SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
  if (!LegalOperations)
    return SDValue();

  EVT VT = N->getValueType(0);
  if (VT != MVT::i32)
    return SDValue();
  if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
    return SDValue();

  if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT,
                                              getShiftAmountTy(VT)))
  return BSwap;

  // Try again with commuted operands.
  if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT,
                                              getShiftAmountTy(VT)))
  return BSwap;


  // Look for either
  // (or (bswaphpair), (bswaphpair))
  // (or (or (bswaphpair), (and)), (and))
  // (or (or (and), (bswaphpair)), (and))
  SDNode *Parts[4] = {};

  if (isBSwapHWordPair(N0, Parts)) {
    // (or (or (and), (and)), (or (and), (and)))
    if (!isBSwapHWordPair(N1, Parts))
      return SDValue();
  } else if (N0.getOpcode() == ISD::OR) {
    // (or (or (or (and), (and)), (and)), (and))
    if (!isBSwapHWordElement(N1, Parts))
      return SDValue();
    SDValue N00 = N0.getOperand(0);
    SDValue N01 = N0.getOperand(1);
    if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) &&
        !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts)))
      return SDValue();
  } else
    return SDValue();

  // Make sure the parts are all coming from the same node.
  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
    return SDValue();

  SDLoc DL(N);
  SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
                              SDValue(Parts[0], 0));

  // Result of the bswap should be rotated by 16. If it's not legal, then
  // do  (x << 16) | (x >> 16).
  SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
    return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
    return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
  return DAG.getNode(ISD::OR, DL, VT,
                     DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
                     DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
}

/// This contains all DAGCombine rules which reduce two values combined by
/// an Or operation to a single value \see visitANDLike().
SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) {
  EVT VT = N1.getValueType();
  SDLoc DL(N);

  // fold (or x, undef) -> -1
  if (!LegalOperations && (N0.isUndef() || N1.isUndef()))
    return DAG.getAllOnesConstant(DL, VT);

  if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL))
    return V;

  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
  if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
      // Don't increase # computations.
      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
    // We can only do this xform if we know that bits from X that are set in C2
    // but not in C1 are already zero.  Likewise for Y.
    if (const ConstantSDNode *N0O1C =
        getAsNonOpaqueConstant(N0.getOperand(1))) {
      if (const ConstantSDNode *N1O1C =
          getAsNonOpaqueConstant(N1.getOperand(1))) {
        // We can only do this xform if we know that bits from X that are set in
        // C2 but not in C1 are already zero.  Likewise for Y.
        const APInt &LHSMask = N0O1C->getAPIntValue();
        const APInt &RHSMask = N1O1C->getAPIntValue();

        if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
            DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
          SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
                                  N0.getOperand(0), N1.getOperand(0));
          return DAG.getNode(ISD::AND, DL, VT, X,
                             DAG.getConstant(LHSMask | RHSMask, DL, VT));
        }
      }
    }
  }

  // (or (and X, M), (and X, N)) -> (and X, (or M, N))
  if (N0.getOpcode() == ISD::AND &&
      N1.getOpcode() == ISD::AND &&
      N0.getOperand(0) == N1.getOperand(0) &&
      // Don't increase # computations.
      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
    SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
                            N0.getOperand(1), N1.getOperand(1));
    return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X);
  }

  return SDValue();
}

/// OR combines for which the commuted variant will be tried as well.
static SDValue visitORCommutative(
    SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) {
  EVT VT = N0.getValueType();
  if (N0.getOpcode() == ISD::AND) {
    // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
    if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1)
      return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1);

    // fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
    if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1)
      return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1);
  }

  return SDValue();
}

SDValue DAGCombiner::visitOR(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N1.getValueType();

  // x | x --> x
  if (N0 == N1)
    return N0;

  // fold vector ops
  if (VT.isVector()) {
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;

    // fold (or x, 0) -> x, vector edition
    if (ISD::isBuildVectorAllZeros(N0.getNode()))
      return N1;
    if (ISD::isBuildVectorAllZeros(N1.getNode()))
      return N0;

    // fold (or x, -1) -> -1, vector edition
    if (ISD::isBuildVectorAllOnes(N0.getNode()))
      // do not return N0, because undef node may exist in N0
      return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType());
    if (ISD::isBuildVectorAllOnes(N1.getNode()))
      // do not return N1, because undef node may exist in N1
      return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType());

    // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
    // Do this only if the resulting shuffle is legal.
    if (isa<ShuffleVectorSDNode>(N0) &&
        isa<ShuffleVectorSDNode>(N1) &&
        // Avoid folding a node with illegal type.
        TLI.isTypeLegal(VT)) {
      bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
      bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
      bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
      bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
      // Ensure both shuffles have a zero input.
      if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) {
        assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!");
        assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!");
        const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
        const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
        bool CanFold = true;
        int NumElts = VT.getVectorNumElements();
        SmallVector<int, 4> Mask(NumElts);

        for (int i = 0; i != NumElts; ++i) {
          int M0 = SV0->getMaskElt(i);
          int M1 = SV1->getMaskElt(i);

          // Determine if either index is pointing to a zero vector.
          bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
          bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));

          // If one element is zero and the otherside is undef, keep undef.
          // This also handles the case that both are undef.
          if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) {
            Mask[i] = -1;
            continue;
          }

          // Make sure only one of the elements is zero.
          if (M0Zero == M1Zero) {
            CanFold = false;
            break;
          }

          assert((M0 >= 0 || M1 >= 0) && "Undef index!");

          // We have a zero and non-zero element. If the non-zero came from
          // SV0 make the index a LHS index. If it came from SV1, make it
          // a RHS index. We need to mod by NumElts because we don't care
          // which operand it came from in the original shuffles.
          Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
        }

        if (CanFold) {
          SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
          SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);

          SDValue LegalShuffle =
              TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS,
                                          Mask, DAG);
          if (LegalShuffle)
            return LegalShuffle;
        }
      }
    }
  }

  // fold (or c1, c2) -> c1|c2
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1}))
    return C;

  // canonicalize constant to RHS
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
     !DAG.isConstantIntBuildVectorOrConstantInt(N1))
    return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);

  // fold (or x, 0) -> x
  if (isNullConstant(N1))
    return N0;

  // fold (or x, -1) -> -1
  if (isAllOnesConstant(N1))
    return N1;

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  // fold (or x, c) -> c iff (x & ~c) == 0
  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
    return N1;

  if (SDValue Combined = visitORLike(N0, N1, N))
    return Combined;

  if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N))
    return Combined;

  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
  if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
    return BSwap;
  if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
    return BSwap;

  // reassociate or
  if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags()))
    return ROR;

  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
  // iff (c1 & c2) != 0 or c1/c2 are undef.
  auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) {
    return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue());
  };
  if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
      ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) {
    if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT,
                                                 {N1, N0.getOperand(1)})) {
      SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1);
      AddToWorklist(IOR.getNode());
      return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR);
    }
  }

  if (SDValue Combined = visitORCommutative(DAG, N0, N1, N))
    return Combined;
  if (SDValue Combined = visitORCommutative(DAG, N1, N0, N))
    return Combined;

  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
  if (N0.getOpcode() == N1.getOpcode())
    if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
      return V;

  // See if this is some rotate idiom.
  if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N)))
    return Rot;

  if (SDValue Load = MatchLoadCombine(N))
    return Load;

  // Simplify the operands using demanded-bits information.
  if (SimplifyDemandedBits(SDValue(N, 0)))
    return SDValue(N, 0);

  // If OR can be rewritten into ADD, try combines based on ADD.
  if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
      DAG.haveNoCommonBitsSet(N0, N1))
    if (SDValue Combined = visitADDLike(N))
      return Combined;

  return SDValue();
}

static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) {
  if (Op.getOpcode() == ISD::AND &&
      DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
    Mask = Op.getOperand(1);
    return Op.getOperand(0);
  }
  return Op;
}

/// Match "(X shl/srl V1) & V2" where V2 may not be present.
static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift,
                            SDValue &Mask) {
  Op = stripConstantMask(DAG, Op, Mask);
  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
    Shift = Op;
    return true;
  }
  return false;
}

/// Helper function for visitOR to extract the needed side of a rotate idiom
/// from a shl/srl/mul/udiv.  This is meant to handle cases where
/// InstCombine merged some outside op with one of the shifts from
/// the rotate pattern.
/// \returns An empty \c SDValue if the needed shift couldn't be extracted.
/// Otherwise, returns an expansion of \p ExtractFrom based on the following
/// patterns:
///
///   (or (add v v) (shrl v bitwidth-1)):
///     expands (add v v) -> (shl v 1)
///
///   (or (mul v c0) (shrl (mul v c1) c2)):
///     expands (mul v c0) -> (shl (mul v c1) c3)
///
///   (or (udiv v c0) (shl (udiv v c1) c2)):
///     expands (udiv v c0) -> (shrl (udiv v c1) c3)
///
///   (or (shl v c0) (shrl (shl v c1) c2)):
///     expands (shl v c0) -> (shl (shl v c1) c3)
///
///   (or (shrl v c0) (shl (shrl v c1) c2)):
///     expands (shrl v c0) -> (shrl (shrl v c1) c3)
///
/// Such that in all cases, c3+c2==bitwidth(op v c1).
static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift,
                                     SDValue ExtractFrom, SDValue &Mask,
                                     const SDLoc &DL) {
  assert(OppShift && ExtractFrom && "Empty SDValue");
  assert(
      (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) &&
      "Existing shift must be valid as a rotate half");

  ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask);

  // Value and Type of the shift.
  SDValue OppShiftLHS = OppShift.getOperand(0);
  EVT ShiftedVT = OppShiftLHS.getValueType();

  // Amount of the existing shift.
  ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1));

  // (add v v) -> (shl v 1)
  // TODO: Should this be a general DAG canonicalization?
  if (OppShift.getOpcode() == ISD::SRL && OppShiftCst &&
      ExtractFrom.getOpcode() == ISD::ADD &&
      ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) &&
      ExtractFrom.getOperand(0) == OppShiftLHS &&
      OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1)
    return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS,
                       DAG.getShiftAmountConstant(1, ShiftedVT, DL));

  // Preconditions:
  //    (or (op0 v c0) (shiftl/r (op0 v c1) c2))
  //
  // Find opcode of the needed shift to be extracted from (op0 v c0).
  unsigned Opcode = ISD::DELETED_NODE;
  bool IsMulOrDiv = false;
  // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
  // opcode or its arithmetic (mul or udiv) variant.
  auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) {
    IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant;
    if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift)
      return false;
    Opcode = NeededShift;
    return true;
  };
  // op0 must be either the needed shift opcode or the mul/udiv equivalent
  // that the needed shift can be extracted from.
  if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) &&
      (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV)))
    return SDValue();

  // op0 must be the same opcode on both sides, have the same LHS argument,
  // and produce the same value type.
  if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() ||
      OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) ||
      ShiftedVT != ExtractFrom.getValueType())
    return SDValue();

  // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
  ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1));
  // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
  ConstantSDNode *ExtractFromCst =
      isConstOrConstSplat(ExtractFrom.getOperand(1));
  // TODO: We should be able to handle non-uniform constant vectors for these values
  // Check that we have constant values.
  if (!OppShiftCst || !OppShiftCst->getAPIntValue() ||
      !OppLHSCst || !OppLHSCst->getAPIntValue() ||
      !ExtractFromCst || !ExtractFromCst->getAPIntValue())
    return SDValue();

  // Compute the shift amount we need to extract to complete the rotate.
  const unsigned VTWidth = ShiftedVT.getScalarSizeInBits();
  if (OppShiftCst->getAPIntValue().ugt(VTWidth))
    return SDValue();
  APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue();
  // Normalize the bitwidth of the two mul/udiv/shift constant operands.
  APInt ExtractFromAmt = ExtractFromCst->getAPIntValue();
  APInt OppLHSAmt = OppLHSCst->getAPIntValue();
  zeroExtendToMatch(ExtractFromAmt, OppLHSAmt);

  // Now try extract the needed shift from the ExtractFrom op and see if the
  // result matches up with the existing shift's LHS op.
  if (IsMulOrDiv) {
    // Op to extract from is a mul or udiv by a constant.
    // Check:
    //     c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
    //     c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
    const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(),
                                                 NeededShiftAmt.getZExtValue());
    APInt ResultAmt;
    APInt Rem;
    APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem);
    if (Rem != 0 || ResultAmt != OppLHSAmt)
      return SDValue();
  } else {
    // Op to extract from is a shift by a constant.
    // Check:
    //      c2 - (bitwidth(op0 v c0) - c1) == c0
    if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc(
                                          ExtractFromAmt.getBitWidth()))
      return SDValue();
  }

  // Return the expanded shift op that should allow a rotate to be formed.
  EVT ShiftVT = OppShift.getOperand(1).getValueType();
  EVT ResVT = ExtractFrom.getValueType();
  SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT);
  return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode);
}

// Return true if we can prove that, whenever Neg and Pos are both in the
// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos).  This means that
// for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
//
//     (or (shift1 X, Neg), (shift2 X, Pos))
//
// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
// in direction shift1 by Neg.  The range [0, EltSize) means that we only need
// to consider shift amounts with defined behavior.
static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize,
                           SelectionDAG &DAG) {
  // If EltSize is a power of 2 then:
  //
  //  (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
  //  (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
  //
  // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
  // for the stronger condition:
  //
  //     Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1)    [A]
  //
  // for all Neg and Pos.  Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
  // we can just replace Neg with Neg' for the rest of the function.
  //
  // In other cases we check for the even stronger condition:
  //
  //     Neg == EltSize - Pos                                    [B]
  //
  // for all Neg and Pos.  Note that the (or ...) then invokes undefined
  // behavior if Pos == 0 (and consequently Neg == EltSize).
  //
  // We could actually use [A] whenever EltSize is a power of 2, but the
  // only extra cases that it would match are those uninteresting ones
  // where Neg and Pos are never in range at the same time.  E.g. for
  // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
  // as well as (sub 32, Pos), but:
  //
  //     (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
  //
  // always invokes undefined behavior for 32-bit X.
  //
  // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
  unsigned MaskLoBits = 0;
  if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) {
    if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) {
      KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0));
      unsigned Bits = Log2_64(EltSize);
      if (NegC->getAPIntValue().getActiveBits() <= Bits &&
          ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) {
        Neg = Neg.getOperand(0);
        MaskLoBits = Bits;
      }
    }
  }

  // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
  if (Neg.getOpcode() != ISD::SUB)
    return false;
  ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
  if (!NegC)
    return false;
  SDValue NegOp1 = Neg.getOperand(1);

  // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
  // Pos'.  The truncation is redundant for the purpose of the equality.
  if (MaskLoBits && Pos.getOpcode() == ISD::AND) {
    if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) {
      KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0));
      if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits &&
          ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >=
           MaskLoBits))
        Pos = Pos.getOperand(0);
    }
  }

  // The condition we need is now:
  //
  //     (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
  //
  // If NegOp1 == Pos then we need:
  //
  //              EltSize & Mask == NegC & Mask
  //
  // (because "x & Mask" is a truncation and distributes through subtraction).
  //
  // We also need to account for a potential truncation of NegOp1 if the amount
  // has already been legalized to a shift amount type.
  APInt Width;
  if ((Pos == NegOp1) ||
      (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0)))
    Width = NegC->getAPIntValue();

  // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
  // Then the condition we want to prove becomes:
  //
  //     (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
  //
  // which, again because "x & Mask" is a truncation, becomes:
  //
  //                NegC & Mask == (EltSize - PosC) & Mask
  //             EltSize & Mask == (NegC + PosC) & Mask
  else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
    if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
      Width = PosC->getAPIntValue() + NegC->getAPIntValue();
    else
      return false;
  } else
    return false;

  // Now we just need to check that EltSize & Mask == Width & Mask.
  if (MaskLoBits)
    // EltSize & Mask is 0 since Mask is EltSize - 1.
    return Width.getLoBits(MaskLoBits) == 0;
  return Width == EltSize;
}

// A subroutine of MatchRotate used once we have found an OR of two opposite
// shifts of Shifted.  If Neg == <operand size> - Pos then the OR reduces
// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
// former being preferred if supported.  InnerPos and InnerNeg are Pos and
// Neg with outer conversions stripped away.
SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
                                       SDValue Neg, SDValue InnerPos,
                                       SDValue InnerNeg, unsigned PosOpcode,
                                       unsigned NegOpcode, const SDLoc &DL) {
  // fold (or (shl x, (*ext y)),
  //          (srl x, (*ext (sub 32, y)))) ->
  //   (rotl x, y) or (rotr x, (sub 32, y))
  //
  // fold (or (shl x, (*ext (sub 32, y))),
  //          (srl x, (*ext y))) ->
  //   (rotr x, y) or (rotl x, (sub 32, y))
  EVT VT = Shifted.getValueType();
  if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) {
    bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
    return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
                       HasPos ? Pos : Neg);
  }

  return SDValue();
}

// A subroutine of MatchRotate used once we have found an OR of two opposite
// shifts of N0 + N1.  If Neg == <operand size> - Pos then the OR reduces
// to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the
// former being preferred if supported.  InnerPos and InnerNeg are Pos and
// Neg with outer conversions stripped away.
// TODO: Merge with MatchRotatePosNeg.
SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos,
                                       SDValue Neg, SDValue InnerPos,
                                       SDValue InnerNeg, unsigned PosOpcode,
                                       unsigned NegOpcode, const SDLoc &DL) {
  EVT VT = N0.getValueType();
  unsigned EltBits = VT.getScalarSizeInBits();

  // fold (or (shl x0, (*ext y)),
  //          (srl x1, (*ext (sub 32, y)))) ->
  //   (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y))
  //
  // fold (or (shl x0, (*ext (sub 32, y))),
  //          (srl x1, (*ext y))) ->
  //   (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y))
  if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG)) {
    bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
    return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1,
                       HasPos ? Pos : Neg);
  }

  // Matching the shift+xor cases, we can't easily use the xor'd shift amount
  // so for now just use the PosOpcode case if its legal.
  // TODO: When can we use the NegOpcode case?
  if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) {
    auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) {
      if (Op.getOpcode() != BinOpc)
        return false;
      ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1));
      return Cst && (Cst->getAPIntValue() == Imm);
    };

    // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31)))
    //   -> (fshl x0, x1, y)
    if (IsBinOpImm(N1, ISD::SRL, 1) &&
        IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) &&
        InnerPos == InnerNeg.getOperand(0) &&
        TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) {
      return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos);
    }

    // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y))
    //   -> (fshr x0, x1, y)
    if (IsBinOpImm(N0, ISD::SHL, 1) &&
        IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) &&
        InnerNeg == InnerPos.getOperand(0) &&
        TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) {
      return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg);
    }

    // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y))
    //   -> (fshr x0, x1, y)
    // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization?
    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) &&
        IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) &&
        InnerNeg == InnerPos.getOperand(0) &&
        TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) {
      return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg);
    }
  }

  return SDValue();
}

// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
// idioms for rotate, and if the target supports rotation instructions, generate
// a rot[lr]. This also matches funnel shift patterns, similar to rotation but
// with different shifted sources.
SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) {
  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
  EVT VT = LHS.getValueType();
  if (!TLI.isTypeLegal(VT))
    return SDValue();

  // The target must have at least one rotate/funnel flavor.
  bool HasROTL = hasOperation(ISD::ROTL, VT);
  bool HasROTR = hasOperation(ISD::ROTR, VT);
  bool HasFSHL = hasOperation(ISD::FSHL, VT);
  bool HasFSHR = hasOperation(ISD::FSHR, VT);
  if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR)
    return SDValue();

  // Check for truncated rotate.
  if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE &&
      LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) {
    assert(LHS.getValueType() == RHS.getValueType());
    if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) {
      return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot);
    }
  }

  // Match "(X shl/srl V1) & V2" where V2 may not be present.
  SDValue LHSShift;   // The shift.
  SDValue LHSMask;    // AND value if any.
  matchRotateHalf(DAG, LHS, LHSShift, LHSMask);

  SDValue RHSShift;   // The shift.
  SDValue RHSMask;    // AND value if any.
  matchRotateHalf(DAG, RHS, RHSShift, RHSMask);

  // If neither side matched a rotate half, bail
  if (!LHSShift && !RHSShift)
    return SDValue();

  // InstCombine may have combined a constant shl, srl, mul, or udiv with one
  // side of the rotate, so try to handle that here. In all cases we need to
  // pass the matched shift from the opposite side to compute the opcode and
  // needed shift amount to extract.  We still want to do this if both sides
  // matched a rotate half because one half may be a potential overshift that
  // can be broken down (ie if InstCombine merged two shl or srl ops into a
  // single one).

  // Have LHS side of the rotate, try to extract the needed shift from the RHS.
  if (LHSShift)
    if (SDValue NewRHSShift =
            extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL))
      RHSShift = NewRHSShift;
  // Have RHS side of the rotate, try to extract the needed shift from the LHS.
  if (RHSShift)
    if (SDValue NewLHSShift =
            extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL))
      LHSShift = NewLHSShift;

  // If a side is still missing, nothing else we can do.
  if (!RHSShift || !LHSShift)
    return SDValue();

  // At this point we've matched or extracted a shift op on each side.

  if (LHSShift.getOpcode() == RHSShift.getOpcode())
    return SDValue(); // Shifts must disagree.

  bool IsRotate = LHSShift.getOperand(0) == RHSShift.getOperand(0);
  if (!IsRotate && !(HasFSHL || HasFSHR))
    return SDValue(); // Requires funnel shift support.

  // Canonicalize shl to left side in a shl/srl pair.
  if (RHSShift.getOpcode() == ISD::SHL) {
    std::swap(LHS, RHS);
    std::swap(LHSShift, RHSShift);
    std::swap(LHSMask, RHSMask);
  }

  unsigned EltSizeInBits = VT.getScalarSizeInBits();
  SDValue LHSShiftArg = LHSShift.getOperand(0);
  SDValue LHSShiftAmt = LHSShift.getOperand(1);
  SDValue RHSShiftArg = RHSShift.getOperand(0);
  SDValue RHSShiftAmt = RHSShift.getOperand(1);

  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
  // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1)
  // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2)
  // iff C1+C2 == EltSizeInBits
  auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS,
                                        ConstantSDNode *RHS) {
    return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits;
  };
  if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
    SDValue Res;
    if (IsRotate && (HasROTL || HasROTR))
      Res = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
                        HasROTL ? LHSShiftAmt : RHSShiftAmt);
    else
      Res = DAG.getNode(HasFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg,
                        RHSShiftArg, HasFSHL ? LHSShiftAmt : RHSShiftAmt);

    // If there is an AND of either shifted operand, apply it to the result.
    if (LHSMask.getNode() || RHSMask.getNode()) {
      SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
      SDValue Mask = AllOnes;

      if (LHSMask.getNode()) {
        SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt);
        Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
                           DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits));
      }
      if (RHSMask.getNode()) {
        SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt);
        Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
                           DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits));
      }

      Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask);
    }

    return Res;
  }

  // If there is a mask here, and we have a variable shift, we can't be sure
  // that we're masking out the right stuff.
  if (LHSMask.getNode() || RHSMask.getNode())
    return SDValue();

  // If the shift amount is sign/zext/any-extended just peel it off.
  SDValue LExtOp0 = LHSShiftAmt;
  SDValue RExtOp0 = RHSShiftAmt;
  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
    LExtOp0 = LHSShiftAmt.getOperand(0);
    RExtOp0 = RHSShiftAmt.getOperand(0);
  }

  if (IsRotate && (HasROTL || HasROTR)) {
    SDValue TryL =
        MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0,
                          RExtOp0, ISD::ROTL, ISD::ROTR, DL);
    if (TryL)
      return TryL;

    SDValue TryR =
        MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0,
                          LExtOp0, ISD::ROTR, ISD::ROTL, DL);
    if (TryR)
      return TryR;
  }

  SDValue TryL =
      MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt,
                        LExtOp0, RExtOp0, ISD::FSHL, ISD::FSHR, DL);
  if (TryL)
    return TryL;

  SDValue TryR =
      MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
                        RExtOp0, LExtOp0, ISD::FSHR, ISD::FSHL, DL);
  if (TryR)
    return TryR;

  return SDValue();
}

namespace {

/// Represents known origin of an individual byte in load combine pattern. The
/// value of the byte is either constant zero or comes from memory.
struct ByteProvider {
  // For constant zero providers Load is set to nullptr. For memory providers
  // Load represents the node which loads the byte from memory.
  // ByteOffset is the offset of the byte in the value produced by the load.
  LoadSDNode *Load = nullptr;
  unsigned ByteOffset = 0;

  ByteProvider() = default;

  static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) {
    return ByteProvider(Load, ByteOffset);
  }

  static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); }

  bool isConstantZero() const { return !Load; }
  bool isMemory() const { return Load; }

  bool operator==(const ByteProvider &Other) const {
    return Other.Load == Load && Other.ByteOffset == ByteOffset;
  }

private:
  ByteProvider(LoadSDNode *Load, unsigned ByteOffset)
      : Load(Load), ByteOffset(ByteOffset) {}
};

} // end anonymous namespace

/// Recursively traverses the expression calculating the origin of the requested
/// byte of the given value. Returns None if the provider can't be calculated.
///
/// For all the values except the root of the expression verifies that the value
/// has exactly one use and if it's not true return None. This way if the origin
/// of the byte is returned it's guaranteed that the values which contribute to
/// the byte are not used outside of this expression.
///
/// Because the parts of the expression are not allowed to have more than one
/// use this function iterates over trees, not DAGs. So it never visits the same
/// node more than once.
static const Optional<ByteProvider>
calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth,
                      bool Root = false) {
  // Typical i64 by i8 pattern requires recursion up to 8 calls depth
  if (Depth == 10)
    return None;

  if (!Root && !Op.hasOneUse())
    return None;

  assert(Op.getValueType().isScalarInteger() && "can't handle other types");
  unsigned BitWidth = Op.getValueSizeInBits();
  if (BitWidth % 8 != 0)
    return None;
  unsigned ByteWidth = BitWidth / 8;
  assert(Index < ByteWidth && "invalid index requested");
  (void) ByteWidth;

  switch (Op.getOpcode()) {
  case ISD::OR: {
    auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1);
    if (!LHS)
      return None;
    auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1);
    if (!RHS)
      return None;

    if (LHS->isConstantZero())
      return RHS;
    if (RHS->isConstantZero())
      return LHS;
    return None;
  }
  case ISD::SHL: {
    auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
    if (!ShiftOp)
      return None;

    uint64_t BitShift = ShiftOp->getZExtValue();
    if (BitShift % 8 != 0)
      return None;
    uint64_t ByteShift = BitShift / 8;

    return Index < ByteShift
               ? ByteProvider::getConstantZero()
               : calculateByteProvider(Op->getOperand(0), Index - ByteShift,
                                       Depth + 1);
  }
  case ISD::ANY_EXTEND:
  case ISD::SIGN_EXTEND:
  case ISD::ZERO_EXTEND: {
    SDValue NarrowOp = Op->getOperand(0);
    unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
    if (NarrowBitWidth % 8 != 0)
      return None;
    uint64_t NarrowByteWidth = NarrowBitWidth / 8;

    if (Index >= NarrowByteWidth)
      return Op.getOpcode() == ISD::ZERO_EXTEND
                 ? Optional<ByteProvider>(ByteProvider::getConstantZero())
                 : None;
    return calculateByteProvider(NarrowOp, Index, Depth + 1);
  }
  case ISD::BSWAP:
    return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1,
                                 Depth + 1);
  case ISD::LOAD: {
    auto L = cast<LoadSDNode>(Op.getNode());
    if (!L->isSimple() || L->isIndexed())
      return None;

    unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
    if (NarrowBitWidth % 8 != 0)
      return None;
    uint64_t NarrowByteWidth = NarrowBitWidth / 8;

    if (Index >= NarrowByteWidth)
      return L->getExtensionType() == ISD::ZEXTLOAD
                 ? Optional<ByteProvider>(ByteProvider::getConstantZero())
                 : None;
    return ByteProvider::getMemory(L, Index);
  }
  }

  return None;
}

static unsigned littleEndianByteAt(unsigned BW, unsigned i) {
  return i;
}

static unsigned bigEndianByteAt(unsigned BW, unsigned i) {
  return BW - i - 1;
}

// Check if the bytes offsets we are looking at match with either big or
// little endian value loaded. Return true for big endian, false for little
// endian, and None if match failed.
static Optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets,
                                  int64_t FirstOffset) {
  // The endian can be decided only when it is 2 bytes at least.
  unsigned Width = ByteOffsets.size();
  if (Width < 2)
    return None;

  bool BigEndian = true, LittleEndian = true;
  for (unsigned i = 0; i < Width; i++) {
    int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset;
    LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i);
    BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i);
    if (!BigEndian && !LittleEndian)
      return None;
  }

  assert((BigEndian != LittleEndian) && "It should be either big endian or"
                                        "little endian");
  return BigEndian;
}

static SDValue stripTruncAndExt(SDValue Value) {
  switch (Value.getOpcode()) {
  case ISD::TRUNCATE:
  case ISD::ZERO_EXTEND:
  case ISD::SIGN_EXTEND:
  case ISD::ANY_EXTEND:
    return stripTruncAndExt(Value.getOperand(0));
  }
  return Value;
}

/// Match a pattern where a wide type scalar value is stored by several narrow
/// stores. Fold it into a single store or a BSWAP and a store if the targets
/// supports it.
///
/// Assuming little endian target:
///  i8 *p = ...
///  i32 val = ...
///  p[0] = (val >> 0) & 0xFF;
///  p[1] = (val >> 8) & 0xFF;
///  p[2] = (val >> 16) & 0xFF;
///  p[3] = (val >> 24) & 0xFF;
/// =>
///  *((i32)p) = val;
///
///  i8 *p = ...
///  i32 val = ...
///  p[0] = (val >> 24) & 0xFF;
///  p[1] = (val >> 16) & 0xFF;
///  p[2] = (val >> 8) & 0xFF;
///  p[3] = (val >> 0) & 0xFF;
/// =>
///  *((i32)p) = BSWAP(val);
SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) {
  // The matching looks for "store (trunc x)" patterns that appear early but are
  // likely to be replaced by truncating store nodes during combining.
  // TODO: If there is evidence that running this later would help, this
  //       limitation could be removed. Legality checks may need to be added
  //       for the created store and optional bswap/rotate.
  if (LegalOperations)
    return SDValue();

  // Collect all the stores in the chain.
  SDValue Chain;
  SmallVector<StoreSDNode *, 8> Stores;
  for (StoreSDNode *Store = N; Store; Store = dyn_cast<StoreSDNode>(Chain)) {
    // TODO: Allow unordered atomics when wider type is legal (see D66309)
    EVT MemVT = Store->getMemoryVT();
    if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) ||
        !Store->isSimple() || Store->isIndexed())
      return SDValue();
    Stores.push_back(Store);
    Chain = Store->getChain();
  }
  // There is no reason to continue if we do not have at least a pair of stores.
  if (Stores.size() < 2)
    return SDValue();

  // Handle simple types only.
  LLVMContext &Context = *DAG.getContext();
  unsigned NumStores = Stores.size();
  unsigned NarrowNumBits = N->getMemoryVT().getSizeInBits();
  unsigned WideNumBits = NumStores * NarrowNumBits;
  EVT WideVT = EVT::getIntegerVT(Context, WideNumBits);
  if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64)
    return SDValue();

  // Check if all bytes of the source value that we are looking at are stored
  // to the same base address. Collect offsets from Base address into OffsetMap.
  SDValue SourceValue;
  SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX);
  int64_t FirstOffset = INT64_MAX;
  StoreSDNode *FirstStore = nullptr;
  Optional<BaseIndexOffset> Base;
  for (auto Store : Stores) {
    // All the stores store different parts of the CombinedValue. A truncate is
    // required to get the partial value.
    SDValue Trunc = Store->getValue();
    if (Trunc.getOpcode() != ISD::TRUNCATE)
      return SDValue();
    // Other than the first/last part, a shift operation is required to get the
    // offset.
    int64_t Offset = 0;
    SDValue WideVal = Trunc.getOperand(0);
    if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) &&
        isa<ConstantSDNode>(WideVal.getOperand(1))) {
      // The shift amount must be a constant multiple of the narrow type.
      // It is translated to the offset address in the wide source value "y".
      //
      // x = srl y, ShiftAmtC
      // i8 z = trunc x
      // store z, ...
      uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1);
      if (ShiftAmtC % NarrowNumBits != 0)
        return SDValue();

      Offset = ShiftAmtC / NarrowNumBits;
      WideVal = WideVal.getOperand(0);
    }

    // Stores must share the same source value with different offsets.
    // Truncate and extends should be stripped to get the single source value.
    if (!SourceValue)
      SourceValue = WideVal;
    else if (stripTruncAndExt(SourceValue) != stripTruncAndExt(WideVal))
      return SDValue();
    else if (SourceValue.getValueType() != WideVT) {
      if (WideVal.getValueType() == WideVT ||
          WideVal.getValueSizeInBits() > SourceValue.getValueSizeInBits())
        SourceValue = WideVal;
      // Give up if the source value type is smaller than the store size.
      if (SourceValue.getValueSizeInBits() < WideVT.getSizeInBits())
        return SDValue();
    }

    // Stores must share the same base address.
    BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG);
    int64_t ByteOffsetFromBase = 0;
    if (!Base)
      Base = Ptr;
    else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
      return SDValue();

    // Remember the first store.
    if (ByteOffsetFromBase < FirstOffset) {
      FirstStore = Store;
      FirstOffset = ByteOffsetFromBase;
    }
    // Map the offset in the store and the offset in the combined value, and
    // early return if it has been set before.
    if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX)
      return SDValue();
    OffsetMap[Offset] = ByteOffsetFromBase;
  }

  assert(FirstOffset != INT64_MAX && "First byte offset must be set");
  assert(FirstStore && "First store must be set");

  // Check that a store of the wide type is both allowed and fast on the target
  const DataLayout &Layout = DAG.getDataLayout();
  bool Fast = false;
  bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT,
                                        *FirstStore->getMemOperand(), &Fast);
  if (!Allowed || !Fast)
    return SDValue();

  // Check if the pieces of the value are going to the expected places in memory
  // to merge the stores.
  auto checkOffsets = [&](bool MatchLittleEndian) {
    if (MatchLittleEndian) {
      for (unsigned i = 0; i != NumStores; ++i)
        if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset)
          return false;
    } else { // MatchBigEndian by reversing loop counter.
      for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j)
        if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset)
          return false;
    }
    return true;
  };

  // Check if the offsets line up for the native data layout of this target.
  bool NeedBswap = false;
  bool NeedRotate = false;
  if (!checkOffsets(Layout.isLittleEndian())) {
    // Special-case: check if byte offsets line up for the opposite endian.
    if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian()))
      NeedBswap = true;
    else if (NumStores == 2 && checkOffsets(Layout.isBigEndian()))
      NeedRotate = true;
    else
      return SDValue();
  }

  SDLoc DL(N);
  if (WideVT != SourceValue.getValueType()) {
    assert(SourceValue.getValueType().getSizeInBits() > WideNumBits &&
           "Unexpected store value to merge");
    SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue);
  }

  // Before legalize we can introduce illegal bswaps/rotates which will be later
  // converted to an explicit bswap sequence. This way we end up with a single
  // store and byte shuffling instead of several stores and byte shuffling.
  if (NeedBswap) {
    SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue);
  } else if (NeedRotate) {
    assert(WideNumBits % 2 == 0 && "Unexpected type for rotate");
    SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT);
    SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt);
  }

  SDValue NewStore =
      DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(),
                   FirstStore->getPointerInfo(), FirstStore->getAlign());

  // Rely on other DAG combine rules to remove the other individual stores.
  DAG.ReplaceAllUsesWith(N, NewStore.getNode());
  return NewStore;
}

/// Match a pattern where a wide type scalar value is loaded by several narrow
/// loads and combined by shifts and ors. Fold it into a single load or a load
/// and a BSWAP if the targets supports it.
///
/// Assuming little endian target:
///  i8 *a = ...
///  i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
/// =>
///  i32 val = *((i32)a)
///
///  i8 *a = ...
///  i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
/// =>
///  i32 val = BSWAP(*((i32)a))
///
/// TODO: This rule matches complex patterns with OR node roots and doesn't
/// interact well with the worklist mechanism. When a part of the pattern is
/// updated (e.g. one of the loads) its direct users are put into the worklist,
/// but the root node of the pattern which triggers the load combine is not
/// necessarily a direct user of the changed node. For example, once the address
/// of t28 load is reassociated load combine won't be triggered:
///             t25: i32 = add t4, Constant:i32<2>
///           t26: i64 = sign_extend t25
///        t27: i64 = add t2, t26
///       t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
///     t29: i32 = zero_extend t28
///   t32: i32 = shl t29, Constant:i8<8>
/// t33: i32 = or t23, t32
/// As a possible fix visitLoad can check if the load can be a part of a load
/// combine pattern and add corresponding OR roots to the worklist.
SDValue DAGCombiner::MatchLoadCombine(SDNode *N) {
  assert(N->getOpcode() == ISD::OR &&
         "Can only match load combining against OR nodes");

  // Handles simple types only
  EVT VT = N->getValueType(0);
  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
    return SDValue();
  unsigned ByteWidth = VT.getSizeInBits() / 8;

  bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian();
  auto MemoryByteOffset = [&] (ByteProvider P) {
    assert(P.isMemory() && "Must be a memory byte provider");
    unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits();
    assert(LoadBitWidth % 8 == 0 &&
           "can only analyze providers for individual bytes not bit");
    unsigned LoadByteWidth = LoadBitWidth / 8;
    return IsBigEndianTarget
            ? bigEndianByteAt(LoadByteWidth, P.ByteOffset)
            : littleEndianByteAt(LoadByteWidth, P.ByteOffset);
  };

  Optional<BaseIndexOffset> Base;
  SDValue Chain;

  SmallPtrSet<LoadSDNode *, 8> Loads;
  Optional<ByteProvider> FirstByteProvider;
  int64_t FirstOffset = INT64_MAX;

  // Check if all the bytes of the OR we are looking at are loaded from the same
  // base address. Collect bytes offsets from Base address in ByteOffsets.
  SmallVector<int64_t, 8> ByteOffsets(ByteWidth);
  unsigned ZeroExtendedBytes = 0;
  for (int i = ByteWidth - 1; i >= 0; --i) {
    auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true);
    if (!P)
      return SDValue();

    if (P->isConstantZero()) {
      // It's OK for the N most significant bytes to be 0, we can just
      // zero-extend the load.
      if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i)))
        return SDValue();
      continue;
    }
    assert(P->isMemory() && "provenance should either be memory or zero");

    LoadSDNode *L = P->Load;
    assert(L->hasNUsesOfValue(1, 0) && L->isSimple() &&
           !L->isIndexed() &&
           "Must be enforced by calculateByteProvider");
    assert(L->getOffset().isUndef() && "Unindexed load must have undef offset");

    // All loads must share the same chain
    SDValue LChain = L->getChain();
    if (!Chain)
      Chain = LChain;
    else if (Chain != LChain)
      return SDValue();

    // Loads must share the same base address
    BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG);
    int64_t ByteOffsetFromBase = 0;
    if (!Base)
      Base = Ptr;
    else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
      return SDValue();

    // Calculate the offset of the current byte from the base address
    ByteOffsetFromBase += MemoryByteOffset(*P);
    ByteOffsets[i] = ByteOffsetFromBase;

    // Remember the first byte load
    if (ByteOffsetFromBase < FirstOffset) {
      FirstByteProvider = P;
      FirstOffset = ByteOffsetFromBase;
    }

    Loads.insert(L);
  }
  assert(!Loads.empty() && "All the bytes of the value must be loaded from "
         "memory, so there must be at least one load which produces the value");
  assert(Base && "Base address of the accessed memory location must be set");
  assert(FirstOffset != INT64_MAX && "First byte offset must be set");

  bool NeedsZext = ZeroExtendedBytes > 0;

  EVT MemVT =
      EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8);

  if (!MemVT.isSimple())
    return SDValue();

  // Before legalize we can introduce too wide illegal loads which will be later
  // split into legal sized loads. This enables us to combine i64 load by i8
  // patterns to a couple of i32 loads on 32 bit targets.
  if (LegalOperations &&
      !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD,
                            MemVT))
    return SDValue();

  // Check if the bytes of the OR we are looking at match with either big or
  // little endian value load
  Optional<bool> IsBigEndian = isBigEndian(
      makeArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset);
  if (!IsBigEndian.hasValue())
    return SDValue();

  assert(FirstByteProvider && "must be set");

  // Ensure that the first byte is loaded from zero offset of the first load.
  // So the combined value can be loaded from the first load address.
  if (MemoryByteOffset(*FirstByteProvider) != 0)
    return SDValue();
  LoadSDNode *FirstLoad = FirstByteProvider->Load;

  // The node we are looking at matches with the pattern, check if we can
  // replace it with a single (possibly zero-extended) load and bswap + shift if
  // needed.

  // If the load needs byte swap check if the target supports it
  bool NeedsBswap = IsBigEndianTarget != *IsBigEndian;

  // Before legalize we can introduce illegal bswaps which will be later
  // converted to an explicit bswap sequence. This way we end up with a single
  // load and byte shuffling instead of several loads and byte shuffling.
  // We do not introduce illegal bswaps when zero-extending as this tends to
  // introduce too many arithmetic instructions.
  if (NeedsBswap && (LegalOperations || NeedsZext) &&
      !TLI.isOperationLegal(ISD::BSWAP, VT))
    return SDValue();

  // If we need to bswap and zero extend, we have to insert a shift. Check that
  // it is legal.
  if (NeedsBswap && NeedsZext && LegalOperations &&
      !TLI.isOperationLegal(ISD::SHL, VT))
    return SDValue();

  // Check that a load of the wide type is both allowed and fast on the target
  bool Fast = false;
  bool Allowed =
      TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
                             *FirstLoad->getMemOperand(), &Fast);
  if (!Allowed || !Fast)
    return SDValue();

  SDValue NewLoad =
      DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT,
                     Chain, FirstLoad->getBasePtr(),
                     FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign());

  // Transfer chain users from old loads to the new load.
  for (LoadSDNode *L : Loads)
    DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1));

  if (!NeedsBswap)
    return NewLoad;

  SDValue ShiftedLoad =
      NeedsZext
          ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad,
                        DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT,
                                                   SDLoc(N), LegalOperations))
          : NewLoad;
  return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad);
}

// If the target has andn, bsl, or a similar bit-select instruction,
// we want to unfold masked merge, with canonical pattern of:
//   |        A  |  |B|
//   ((x ^ y) & m) ^ y
//    |  D  |
// Into:
//   (x & m) | (y & ~m)
// If y is a constant, and the 'andn' does not work with immediates,
// we unfold into a different pattern:
//   ~(~x & m) & (m | y)
// NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
//       the very least that breaks andnpd / andnps patterns, and because those
//       patterns are simplified in IR and shouldn't be created in the DAG
SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) {
  assert(N->getOpcode() == ISD::XOR);

  // Don't touch 'not' (i.e. where y = -1).
  if (isAllOnesOrAllOnesSplat(N->getOperand(1)))
    return SDValue();

  EVT VT = N->getValueType(0);

  // There are 3 commutable operators in the pattern,
  // so we have to deal with 8 possible variants of the basic pattern.
  SDValue X, Y, M;
  auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) {
    if (And.getOpcode() != ISD::AND || !And.hasOneUse())
      return false;
    SDValue Xor = And.getOperand(XorIdx);
    if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
      return false;
    SDValue Xor0 = Xor.getOperand(0);
    SDValue Xor1 = Xor.getOperand(1);
    // Don't touch 'not' (i.e. where y = -1).
    if (isAllOnesOrAllOnesSplat(Xor1))
      return false;
    if (Other == Xor0)
      std::swap(Xor0, Xor1);
    if (Other != Xor1)
      return false;
    X = Xor0;
    Y = Xor1;
    M = And.getOperand(XorIdx ? 0 : 1);
    return true;
  };

  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) &&
      !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0))
    return SDValue();

  // Don't do anything if the mask is constant. This should not be reachable.
  // InstCombine should have already unfolded this pattern, and DAGCombiner
  // probably shouldn't produce it, too.
  if (isa<ConstantSDNode>(M.getNode()))
    return SDValue();

  // We can transform if the target has AndNot
  if (!TLI.hasAndNot(M))
    return SDValue();

  SDLoc DL(N);

  // If Y is a constant, check that 'andn' works with immediates.
  if (!TLI.hasAndNot(Y)) {
    assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable.");
    // If not, we need to do a bit more work to make sure andn is still used.
    SDValue NotX = DAG.getNOT(DL, X, VT);
    SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M);
    SDValue NotLHS = DAG.getNOT(DL, LHS, VT);
    SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y);
    return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS);
  }

  SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M);
  SDValue NotM = DAG.getNOT(DL, M, VT);
  SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM);

  return DAG.getNode(ISD::OR, DL, VT, LHS, RHS);
}

SDValue DAGCombiner::visitXOR(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N0.getValueType();

  // fold vector ops
  if (VT.isVector()) {
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;

    // fold (xor x, 0) -> x, vector edition
    if (ISD::isBuildVectorAllZeros(N0.getNode()))
      return N1;
    if (ISD::isBuildVectorAllZeros(N1.getNode()))
      return N0;
  }

  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
  SDLoc DL(N);
  if (N0.isUndef() && N1.isUndef())
    return DAG.getConstant(0, DL, VT);

  // fold (xor x, undef) -> undef
  if (N0.isUndef())
    return N0;
  if (N1.isUndef())
    return N1;

  // fold (xor c1, c2) -> c1^c2
  if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1}))
    return C;

  // canonicalize constant to RHS
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
     !DAG.isConstantIntBuildVectorOrConstantInt(N1))
    return DAG.getNode(ISD::XOR, DL, VT, N1, N0);

  // fold (xor x, 0) -> x
  if (isNullConstant(N1))
    return N0;

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  // reassociate xor
  if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags()))
    return RXOR;

  // fold !(x cc y) -> (x !cc y)
  unsigned N0Opcode = N0.getOpcode();
  SDValue LHS, RHS, CC;
  if (TLI.isConstTrueVal(N1.getNode()) &&
      isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/true)) {
    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
                                               LHS.getValueType());
    if (!LegalOperations ||
        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
      switch (N0Opcode) {
      default:
        llvm_unreachable("Unhandled SetCC Equivalent!");
      case ISD::SETCC:
        return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC);
      case ISD::SELECT_CC:
        return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2),
                               N0.getOperand(3), NotCC);
      case ISD::STRICT_FSETCC:
      case ISD::STRICT_FSETCCS: {
        if (N0.hasOneUse()) {
          // FIXME Can we handle multiple uses? Could we token factor the chain
          // results from the new/old setcc?
          SDValue SetCC =
              DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC, SDNodeFlags(),
                           N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS);
          CombineTo(N, SetCC);
          DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1));
          recursivelyDeleteUnusedNodes(N0.getNode());
          return SDValue(N, 0); // Return N so it doesn't get rechecked!
        }
        break;
      }
      }
    }
  }

  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
  if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() &&
      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
    SDValue V = N0.getOperand(0);
    SDLoc DL0(N0);
    V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V,
                    DAG.getConstant(1, DL0, V.getValueType()));
    AddToWorklist(V.getNode());
    return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V);
  }

  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
  if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() &&
      (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
    SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
    if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) {
      unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
      N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
      N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
      AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
      return DAG.getNode(NewOpcode, DL, VT, N00, N01);
    }
  }
  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
  if (isAllOnesConstant(N1) && N0.hasOneUse() &&
      (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
    SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
    if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) {
      unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
      N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
      N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
      AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
      return DAG.getNode(NewOpcode, DL, VT, N00, N01);
    }
  }

  // fold (not (neg x)) -> (add X, -1)
  // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
  // Y is a constant or the subtract has a single use.
  if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB &&
      isNullConstant(N0.getOperand(0))) {
    return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1),
                       DAG.getAllOnesConstant(DL, VT));
  }

  // fold (not (add X, -1)) -> (neg X)
  if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD &&
      isAllOnesOrAllOnesSplat(N0.getOperand(1))) {
    return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
                       N0.getOperand(0));
  }

  // fold (xor (and x, y), y) -> (and (not x), y)
  if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) {
    SDValue X = N0.getOperand(0);
    SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
    AddToWorklist(NotX.getNode());
    return DAG.getNode(ISD::AND, DL, VT, NotX, N1);
  }

  if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) {
    ConstantSDNode *XorC = isConstOrConstSplat(N1);
    ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1));
    unsigned BitWidth = VT.getScalarSizeInBits();
    if (XorC && ShiftC) {
      // Don't crash on an oversized shift. We can not guarantee that a bogus
      // shift has been simplified to undef.
      uint64_t ShiftAmt = ShiftC->getLimitedValue();
      if (ShiftAmt < BitWidth) {
        APInt Ones = APInt::getAllOnesValue(BitWidth);
        Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt);
        if (XorC->getAPIntValue() == Ones) {
          // If the xor constant is a shifted -1, do a 'not' before the shift:
          // xor (X << ShiftC), XorC --> (not X) << ShiftC
          // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
          SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
          return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1));
        }
      }
    }
  }

  // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
  if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
    SDValue A = N0Opcode == ISD::ADD ? N0 : N1;
    SDValue S = N0Opcode == ISD::SRA ? N0 : N1;
    if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) {
      SDValue A0 = A.getOperand(0), A1 = A.getOperand(1);
      SDValue S0 = S.getOperand(0);
      if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) {
        unsigned OpSizeInBits = VT.getScalarSizeInBits();
        if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1)))
          if (C->getAPIntValue() == (OpSizeInBits - 1))
            return DAG.getNode(ISD::ABS, DL, VT, S0);
      }
    }
  }

  // fold (xor x, x) -> 0
  if (N0 == N1)
    return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);

  // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
  // Here is a concrete example of this equivalence:
  // i16   x ==  14
  // i16 shl ==   1 << 14  == 16384 == 0b0100000000000000
  // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
  //
  // =>
  //
  // i16     ~1      == 0b1111111111111110
  // i16 rol(~1, 14) == 0b1011111111111111
  //
  // Some additional tips to help conceptualize this transform:
  // - Try to see the operation as placing a single zero in a value of all ones.
  // - There exists no value for x which would allow the result to contain zero.
  // - Values of x larger than the bitwidth are undefined and do not require a
  //   consistent result.
  // - Pushing the zero left requires shifting one bits in from the right.
  // A rotate left of ~1 is a nice way of achieving the desired result.
  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL &&
      isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
    return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
                       N0.getOperand(1));
  }

  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
  if (N0Opcode == N1.getOpcode())
    if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
      return V;

  // Unfold  ((x ^ y) & m) ^ y  into  (x & m) | (y & ~m)  if profitable
  if (SDValue MM = unfoldMaskedMerge(N))
    return MM;

  // Simplify the expression using non-local knowledge.
  if (SimplifyDemandedBits(SDValue(N, 0)))
    return SDValue(N, 0);

  if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N))
    return Combined;

  return SDValue();
}

/// If we have a shift-by-constant of a bitwise logic op that itself has a
/// shift-by-constant operand with identical opcode, we may be able to convert
/// that into 2 independent shifts followed by the logic op. This is a
/// throughput improvement.
static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) {
  // Match a one-use bitwise logic op.
  SDValue LogicOp = Shift->getOperand(0);
  if (!LogicOp.hasOneUse())
    return SDValue();

  unsigned LogicOpcode = LogicOp.getOpcode();
  if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR &&
      LogicOpcode != ISD::XOR)
    return SDValue();

  // Find a matching one-use shift by constant.
  unsigned ShiftOpcode = Shift->getOpcode();
  SDValue C1 = Shift->getOperand(1);
  ConstantSDNode *C1Node = isConstOrConstSplat(C1);
  assert(C1Node && "Expected a shift with constant operand");
  const APInt &C1Val = C1Node->getAPIntValue();
  auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp,
                             const APInt *&ShiftAmtVal) {
    if (V.getOpcode() != ShiftOpcode || !V.hasOneUse())
      return false;

    ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1));
    if (!ShiftCNode)
      return false;

    // Capture the shifted operand and shift amount value.
    ShiftOp = V.getOperand(0);
    ShiftAmtVal = &ShiftCNode->getAPIntValue();

    // Shift amount types do not have to match their operand type, so check that
    // the constants are the same width.
    if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth())
      return false;

    // The fold is not valid if the sum of the shift values exceeds bitwidth.
    if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits()))
      return false;

    return true;
  };

  // Logic ops are commutative, so check each operand for a match.
  SDValue X, Y;
  const APInt *C0Val;
  if (matchFirstShift(LogicOp.getOperand(0), X, C0Val))
    Y = LogicOp.getOperand(1);
  else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val))
    Y = LogicOp.getOperand(0);
  else
    return SDValue();

  // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
  SDLoc DL(Shift);
  EVT VT = Shift->getValueType(0);
  EVT ShiftAmtVT = Shift->getOperand(1).getValueType();
  SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT);
  SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC);
  SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1);
  return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2);
}

/// Handle transforms common to the three shifts, when the shift amount is a
/// constant.
/// We are looking for: (shift being one of shl/sra/srl)
///   shift (binop X, C0), C1
/// And want to transform into:
///   binop (shift X, C1), (shift C0, C1)
SDValue DAGCombiner::visitShiftByConstant(SDNode *N) {
  assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand");

  // Do not turn a 'not' into a regular xor.
  if (isBitwiseNot(N->getOperand(0)))
    return SDValue();

  // The inner binop must be one-use, since we want to replace it.
  SDValue LHS = N->getOperand(0);
  if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level))
    return SDValue();

  // TODO: This is limited to early combining because it may reveal regressions
  //       otherwise. But since we just checked a target hook to see if this is
  //       desirable, that should have filtered out cases where this interferes
  //       with some other pattern matching.
  if (!LegalTypes)
    if (SDValue R = combineShiftOfShiftedLogic(N, DAG))
      return R;

  // We want to pull some binops through shifts, so that we have (and (shift))
  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
  // thing happens with address calculations, so it's important to canonicalize
  // it.
  switch (LHS.getOpcode()) {
  default:
    return SDValue();
  case ISD::OR:
  case ISD::XOR:
  case ISD::AND:
    break;
  case ISD::ADD:
    if (N->getOpcode() != ISD::SHL)
      return SDValue(); // only shl(add) not sr[al](add).
    break;
  }

  // We require the RHS of the binop to be a constant and not opaque as well.
  ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1));
  if (!BinOpCst)
    return SDValue();

  // FIXME: disable this unless the input to the binop is a shift by a constant
  // or is copy/select. Enable this in other cases when figure out it's exactly
  // profitable.
  SDValue BinOpLHSVal = LHS.getOperand(0);
  bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL ||
                            BinOpLHSVal.getOpcode() == ISD::SRA ||
                            BinOpLHSVal.getOpcode() == ISD::SRL) &&
                           isa<ConstantSDNode>(BinOpLHSVal.getOperand(1));
  bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg ||
                        BinOpLHSVal.getOpcode() == ISD::SELECT;

  if (!IsShiftByConstant && !IsCopyOrSelect)
    return SDValue();

  if (IsCopyOrSelect && N->hasOneUse())
    return SDValue();

  // Fold the constants, shifting the binop RHS by the shift amount.
  SDLoc DL(N);
  EVT VT = N->getValueType(0);
  SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1),
                               N->getOperand(1));
  assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");

  SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0),
                                 N->getOperand(1));
  return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS);
}

SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
  assert(N->getOpcode() == ISD::TRUNCATE);
  assert(N->getOperand(0).getOpcode() == ISD::AND);

  // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
  EVT TruncVT = N->getValueType(0);
  if (N->hasOneUse() && N->getOperand(0).hasOneUse() &&
      TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) {
    SDValue N01 = N->getOperand(0).getOperand(1);
    if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
      SDLoc DL(N);
      SDValue N00 = N->getOperand(0).getOperand(0);
      SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
      SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
      AddToWorklist(Trunc00.getNode());
      AddToWorklist(Trunc01.getNode());
      return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
    }
  }

  return SDValue();
}

SDValue DAGCombiner::visitRotate(SDNode *N) {
  SDLoc dl(N);
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N->getValueType(0);
  unsigned Bitsize = VT.getScalarSizeInBits();

  // fold (rot x, 0) -> x
  if (isNullOrNullSplat(N1))
    return N0;

  // fold (rot x, c) -> x iff (c % BitSize) == 0
  if (isPowerOf2_32(Bitsize) && Bitsize > 1) {
    APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1);
    if (DAG.MaskedValueIsZero(N1, ModuloMask))
      return N0;
  }

  // fold (rot x, c) -> (rot x, c % BitSize)
  bool OutOfRange = false;
  auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) {
    OutOfRange |= C->getAPIntValue().uge(Bitsize);
    return true;
  };
  if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) {
    EVT AmtVT = N1.getValueType();
    SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT);
    if (SDValue Amt =
            DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits}))
      return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt);
  }

  // rot i16 X, 8 --> bswap X
  auto *RotAmtC = isConstOrConstSplat(N1);
  if (RotAmtC && RotAmtC->getAPIntValue() == 8 &&
      VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT))
    return DAG.getNode(ISD::BSWAP, dl, VT, N0);

  // Simplify the operands using demanded-bits information.
  if (SimplifyDemandedBits(SDValue(N, 0)))
    return SDValue(N, 0);

  // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
  if (N1.getOpcode() == ISD::TRUNCATE &&
      N1.getOperand(0).getOpcode() == ISD::AND) {
    if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
      return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1);
  }

  unsigned NextOp = N0.getOpcode();
  // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
  if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) {
    SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1);
    SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1));
    if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) {
      EVT ShiftVT = C1->getValueType(0);
      bool SameSide = (N->getOpcode() == NextOp);
      unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB;
      if (SDValue CombinedShift = DAG.FoldConstantArithmetic(
              CombineOp, dl, ShiftVT, {N1, N0.getOperand(1)})) {
        SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT);
        SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic(
            ISD::SREM, dl, ShiftVT, {CombinedShift, BitsizeC});
        return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0),
                           CombinedShiftNorm);
      }
    }
  }
  return SDValue();
}

SDValue DAGCombiner::visitSHL(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  if (SDValue V = DAG.simplifyShift(N0, N1))
    return V;

  EVT VT = N0.getValueType();
  EVT ShiftVT = N1.getValueType();
  unsigned OpSizeInBits = VT.getScalarSizeInBits();

  // fold vector ops
  if (VT.isVector()) {
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;

    BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
    // If setcc produces all-one true value then:
    // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
    if (N1CV && N1CV->isConstant()) {
      if (N0.getOpcode() == ISD::AND) {
        SDValue N00 = N0->getOperand(0);
        SDValue N01 = N0->getOperand(1);
        BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);

        if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
            TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
                TargetLowering::ZeroOrNegativeOneBooleanContent) {
          if (SDValue C =
                  DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1}))
            return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
        }
      }
    }
  }

  ConstantSDNode *N1C = isConstOrConstSplat(N1);

  // fold (shl c1, c2) -> c1<<c2
  if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1}))
    return C;

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  // if (shl x, c) is known to be zero, return 0
  if (DAG.MaskedValueIsZero(SDValue(N, 0),
                            APInt::getAllOnesValue(OpSizeInBits)))
    return DAG.getConstant(0, SDLoc(N), VT);

  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
  if (N1.getOpcode() == ISD::TRUNCATE &&
      N1.getOperand(0).getOpcode() == ISD::AND) {
    if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
  }

  if (SimplifyDemandedBits(SDValue(N, 0)))
    return SDValue(N, 0);

  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
  if (N0.getOpcode() == ISD::SHL) {
    auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
                                          ConstantSDNode *RHS) {
      APInt c1 = LHS->getAPIntValue();
      APInt c2 = RHS->getAPIntValue();
      zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
      return (c1 + c2).uge(OpSizeInBits);
    };
    if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
      return DAG.getConstant(0, SDLoc(N), VT);

    auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
                                       ConstantSDNode *RHS) {
      APInt c1 = LHS->getAPIntValue();
      APInt c2 = RHS->getAPIntValue();
      zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
      return (c1 + c2).ult(OpSizeInBits);
    };
    if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
      SDLoc DL(N);
      SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
      return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum);
    }
  }

  // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
  // For this to be valid, the second form must not preserve any of the bits
  // that are shifted out by the inner shift in the first form.  This means
  // the outer shift size must be >= the number of bits added by the ext.
  // As a corollary, we don't care what kind of ext it is.
  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
       N0.getOpcode() == ISD::ANY_EXTEND ||
       N0.getOpcode() == ISD::SIGN_EXTEND) &&
      N0.getOperand(0).getOpcode() == ISD::SHL) {
    SDValue N0Op0 = N0.getOperand(0);
    SDValue InnerShiftAmt = N0Op0.getOperand(1);
    EVT InnerVT = N0Op0.getValueType();
    uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits();

    auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
                                                         ConstantSDNode *RHS) {
      APInt c1 = LHS->getAPIntValue();
      APInt c2 = RHS->getAPIntValue();
      zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
      return c2.uge(OpSizeInBits - InnerBitwidth) &&
             (c1 + c2).uge(OpSizeInBits);
    };
    if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange,
                                  /*AllowUndefs*/ false,
                                  /*AllowTypeMismatch*/ true))
      return DAG.getConstant(0, SDLoc(N), VT);

    auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
                                                      ConstantSDNode *RHS) {
      APInt c1 = LHS->getAPIntValue();
      APInt c2 = RHS->getAPIntValue();
      zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
      return c2.uge(OpSizeInBits - InnerBitwidth) &&
             (c1 + c2).ult(OpSizeInBits);
    };
    if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange,
                                  /*AllowUndefs*/ false,
                                  /*AllowTypeMismatch*/ true)) {
      SDLoc DL(N);
      SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0));
      SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT);
      Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1);
      return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum);
    }
  }

  // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
  // Only fold this if the inner zext has no other uses to avoid increasing
  // the total number of instructions.
  if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
      N0.getOperand(0).getOpcode() == ISD::SRL) {
    SDValue N0Op0 = N0.getOperand(0);
    SDValue InnerShiftAmt = N0Op0.getOperand(1);

    auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) {
      APInt c1 = LHS->getAPIntValue();
      APInt c2 = RHS->getAPIntValue();
      zeroExtendToMatch(c1, c2);
      return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2);
    };
    if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual,
                                  /*AllowUndefs*/ false,
                                  /*AllowTypeMismatch*/ true)) {
      SDLoc DL(N);
      EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType();
      SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT);
      NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL);
      AddToWorklist(NewSHL.getNode());
      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
    }
  }

  // fold (shl (sr[la] exact X,  C1), C2) -> (shl    X, (C2-C1)) if C1 <= C2
  // fold (shl (sr[la] exact X,  C1), C2) -> (sr[la] X, (C2-C1)) if C1  > C2
  // TODO - support non-uniform vector shift amounts.
  if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) &&
      N0->getFlags().hasExact()) {
    if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
      uint64_t C1 = N0C1->getZExtValue();
      uint64_t C2 = N1C->getZExtValue();
      SDLoc DL(N);
      if (C1 <= C2)
        return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
                           DAG.getConstant(C2 - C1, DL, ShiftVT));
      return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0),
                         DAG.getConstant(C1 - C2, DL, ShiftVT));
    }
  }

  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
  //                               (and (srl x, (sub c1, c2), MASK)
  // Only fold this if the inner shift has no other uses -- if it does, folding
  // this will increase the total number of instructions.
  // TODO - drop hasOneUse requirement if c1 == c2?
  // TODO - support non-uniform vector shift amounts.
  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
      TLI.shouldFoldConstantShiftPairToMask(N, Level)) {
    if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
      if (N0C1->getAPIntValue().ult(OpSizeInBits)) {
        uint64_t c1 = N0C1->getZExtValue();
        uint64_t c2 = N1C->getZExtValue();
        APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
        SDValue Shift;
        if (c2 > c1) {
          Mask <<= c2 - c1;
          SDLoc DL(N);
          Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
                              DAG.getConstant(c2 - c1, DL, ShiftVT));
        } else {
          Mask.lshrInPlace(c1 - c2);
          SDLoc DL(N);
          Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
                              DAG.getConstant(c1 - c2, DL, ShiftVT));
        }
        SDLoc DL(N0);
        return DAG.getNode(ISD::AND, DL, VT, Shift,
                           DAG.getConstant(Mask, DL, VT));
      }
    }
  }

  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
  if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
      isConstantOrConstantVector(N1, /* No Opaques */ true)) {
    SDLoc DL(N);
    SDValue AllBits = DAG.getAllOnesConstant(DL, VT);
    SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
    return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
  }

  // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
  // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
  // Variant of version done on multiply, except mul by a power of 2 is turned
  // into a shift.
  if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) &&
      N0.getNode()->hasOneUse() &&
      isConstantOrConstantVector(N1, /* No Opaques */ true) &&
      isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) &&
      TLI.isDesirableToCommuteWithShift(N, Level)) {
    SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
    SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
    AddToWorklist(Shl0.getNode());
    AddToWorklist(Shl1.getNode());
    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1);
  }

  // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
  if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() &&
      isConstantOrConstantVector(N1, /* No Opaques */ true) &&
      isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) {
    SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
    if (isConstantOrConstantVector(Shl))
      return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl);
  }

  if (N1C && !N1C->isOpaque())
    if (SDValue NewSHL = visitShiftByConstant(N))
      return NewSHL;

  // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)).
  if (N0.getOpcode() == ISD::VSCALE)
    if (ConstantSDNode *NC1 = isConstOrConstSplat(N->getOperand(1))) {
      auto DL = SDLoc(N);
      APInt C0 = N0.getConstantOperandAPInt(0);
      APInt C1 = NC1->getAPIntValue();
      return DAG.getVScale(DL, VT, C0 << C1);
    }

  return SDValue();
}

// Transform a right shift of a multiply into a multiply-high.
// Examples:
// (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b)
// (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b)
static SDValue combineShiftToMULH(SDNode *N, SelectionDAG &DAG,
                                  const TargetLowering &TLI) {
  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
         "SRL or SRA node is required here!");

  // Check the shift amount. Proceed with the transformation if the shift
  // amount is constant.
  ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1));
  if (!ShiftAmtSrc)
    return SDValue();

  SDLoc DL(N);

  // The operation feeding into the shift must be a multiply.
  SDValue ShiftOperand = N->getOperand(0);
  if (ShiftOperand.getOpcode() != ISD::MUL)
    return SDValue();

  // Both operands must be equivalent extend nodes.
  SDValue LeftOp = ShiftOperand.getOperand(0);
  SDValue RightOp = ShiftOperand.getOperand(1);
  bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND;
  bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND;

  if ((!(IsSignExt || IsZeroExt)) || LeftOp.getOpcode() != RightOp.getOpcode())
    return SDValue();

  EVT WideVT1 = LeftOp.getValueType();
  EVT WideVT2 = RightOp.getValueType();
  (void)WideVT2;
  // Proceed with the transformation if the wide types match.
  assert((WideVT1 == WideVT2) &&
         "Cannot have a multiply node with two different operand types.");

  EVT NarrowVT = LeftOp.getOperand(0).getValueType();
  // Check that the two extend nodes are the same type.
  if (NarrowVT !=  RightOp.getOperand(0).getValueType())
    return SDValue();

  // Only transform into mulh if mulh for the narrow type is cheaper than
  // a multiply followed by a shift. This should also check if mulh is
  // legal for NarrowVT on the target.
  if (!TLI.isMulhCheaperThanMulShift(NarrowVT))
      return SDValue();

  // Proceed with the transformation if the wide type is twice as large
  // as the narrow type.
  unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits();
  if (WideVT1.getScalarSizeInBits() != 2 * NarrowVTSize)
    return SDValue();

  // Check the shift amount with the narrow type size.
  // Proceed with the transformation if the shift amount is the width
  // of the narrow type.
  unsigned ShiftAmt = ShiftAmtSrc->getZExtValue();
  if (ShiftAmt != NarrowVTSize)
    return SDValue();

  // If the operation feeding into the MUL is a sign extend (sext),
  // we use mulhs. Othewise, zero extends (zext) use mulhu.
  unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU;

  SDValue Result = DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0),
                               RightOp.getOperand(0));
  return (N->getOpcode() == ISD::SRA ? DAG.getSExtOrTrunc(Result, DL, WideVT1)
                                     : DAG.getZExtOrTrunc(Result, DL, WideVT1));
}

SDValue DAGCombiner::visitSRA(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  if (SDValue V = DAG.simplifyShift(N0, N1))
    return V;

  EVT VT = N0.getValueType();
  unsigned OpSizeInBits = VT.getScalarSizeInBits();

  // Arithmetic shifting an all-sign-bit value is a no-op.
  // fold (sra 0, x) -> 0
  // fold (sra -1, x) -> -1
  if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
    return N0;

  // fold vector ops
  if (VT.isVector())
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;

  ConstantSDNode *N1C = isConstOrConstSplat(N1);

  // fold (sra c1, c2) -> (sra c1, c2)
  if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1}))
    return C;

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
  // sext_inreg.
  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
    if (VT.isVector())
      ExtVT = EVT::getVectorVT(*DAG.getContext(),
                               ExtVT, VT.getVectorNumElements());
    if (!LegalOperations ||
        TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) ==
        TargetLowering::Legal)
      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
                         N0.getOperand(0), DAG.getValueType(ExtVT));
  }

  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
  // clamp (add c1, c2) to max shift.
  if (N0.getOpcode() == ISD::SRA) {
    SDLoc DL(N);
    EVT ShiftVT = N1.getValueType();
    EVT ShiftSVT = ShiftVT.getScalarType();
    SmallVector<SDValue, 16> ShiftValues;

    auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) {
      APInt c1 = LHS->getAPIntValue();
      APInt c2 = RHS->getAPIntValue();
      zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
      APInt Sum = c1 + c2;
      unsigned ShiftSum =
          Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue();
      ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT));
      return true;
    };
    if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) {
      SDValue ShiftValue;
      if (VT.isVector())
        ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues);
      else
        ShiftValue = ShiftValues[0];
      return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue);
    }
  }

  // fold (sra (shl X, m), (sub result_size, n))
  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
  // result_size - n != m.
  // If truncate is free for the target sext(shl) is likely to result in better
  // code.
  if (N0.getOpcode() == ISD::SHL && N1C) {
    // Get the two constanst of the shifts, CN0 = m, CN = n.
    const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
    if (N01C) {
      LLVMContext &Ctx = *DAG.getContext();
      // Determine what the truncate's result bitsize and type would be.
      EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());

      if (VT.isVector())
        TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());

      // Determine the residual right-shift amount.
      int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();

      // If the shift is not a no-op (in which case this should be just a sign
      // extend already), the truncated to type is legal, sign_extend is legal
      // on that type, and the truncate to that type is both legal and free,
      // perform the transform.
      if ((ShiftAmt > 0) &&
          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
          TLI.isTruncateFree(VT, TruncVT)) {
        SDLoc DL(N);
        SDValue Amt = DAG.getConstant(ShiftAmt, DL,
            getShiftAmountTy(N0.getOperand(0).getValueType()));
        SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
                                    N0.getOperand(0), Amt);
        SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
                                    Shift);
        return DAG.getNode(ISD::SIGN_EXTEND, DL,
                           N->getValueType(0), Trunc);
      }
    }
  }

  // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
  //   sra (add (shl X, N1C), AddC), N1C -->
  //   sext (add (trunc X to (width - N1C)), AddC')
  if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C &&
      N0.getOperand(0).getOpcode() == ISD::SHL &&
      N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) {
    if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) {
      SDValue Shl = N0.getOperand(0);
      // Determine what the truncate's type would be and ask the target if that
      // is a free operation.
      LLVMContext &Ctx = *DAG.getContext();
      unsigned ShiftAmt = N1C->getZExtValue();
      EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt);
      if (VT.isVector())
        TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());

      // TODO: The simple type check probably belongs in the default hook
      //       implementation and/or target-specific overrides (because
      //       non-simple types likely require masking when legalized), but that
      //       restriction may conflict with other transforms.
      if (TruncVT.isSimple() && isTypeLegal(TruncVT) &&
          TLI.isTruncateFree(VT, TruncVT)) {
        SDLoc DL(N);
        SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT);
        SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt).
                             trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT);
        SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC);
        return DAG.getSExtOrTrunc(Add, DL, VT);
      }
    }
  }

  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
  if (N1.getOpcode() == ISD::TRUNCATE &&
      N1.getOperand(0).getOpcode() == ISD::AND) {
    if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
  }

  // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
  // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
  //      if c1 is equal to the number of bits the trunc removes
  // TODO - support non-uniform vector shift amounts.
  if (N0.getOpcode() == ISD::TRUNCATE &&
      (N0.getOperand(0).getOpcode() == ISD::SRL ||
       N0.getOperand(0).getOpcode() == ISD::SRA) &&
      N0.getOperand(0).hasOneUse() &&
      N0.getOperand(0).getOperand(1).hasOneUse() && N1C) {
    SDValue N0Op0 = N0.getOperand(0);
    if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
      EVT LargeVT = N0Op0.getValueType();
      unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits;
      if (LargeShift->getAPIntValue() == TruncBits) {
        SDLoc DL(N);
        SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL,
                                      getShiftAmountTy(LargeVT));
        SDValue SRA =
            DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt);
        return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
      }
    }
  }

  // Simplify, based on bits shifted out of the LHS.
  if (SimplifyDemandedBits(SDValue(N, 0)))
    return SDValue(N, 0);

  // If the sign bit is known to be zero, switch this to a SRL.
  if (DAG.SignBitIsZero(N0))
    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);

  if (N1C && !N1C->isOpaque())
    if (SDValue NewSRA = visitShiftByConstant(N))
      return NewSRA;

  // Try to transform this shift into a multiply-high if
  // it matches the appropriate pattern detected in combineShiftToMULH.
  if (SDValue MULH = combineShiftToMULH(N, DAG, TLI))
    return MULH;

  return SDValue();
}

SDValue DAGCombiner::visitSRL(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  if (SDValue V = DAG.simplifyShift(N0, N1))
    return V;

  EVT VT = N0.getValueType();
  unsigned OpSizeInBits = VT.getScalarSizeInBits();

  // fold vector ops
  if (VT.isVector())
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;

  ConstantSDNode *N1C = isConstOrConstSplat(N1);

  // fold (srl c1, c2) -> c1 >>u c2
  if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1}))
    return C;

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  // if (srl x, c) is known to be zero, return 0
  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
                                   APInt::getAllOnesValue(OpSizeInBits)))
    return DAG.getConstant(0, SDLoc(N), VT);

  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
  if (N0.getOpcode() == ISD::SRL) {
    auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
                                          ConstantSDNode *RHS) {
      APInt c1 = LHS->getAPIntValue();
      APInt c2 = RHS->getAPIntValue();
      zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
      return (c1 + c2).uge(OpSizeInBits);
    };
    if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
      return DAG.getConstant(0, SDLoc(N), VT);

    auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
                                       ConstantSDNode *RHS) {
      APInt c1 = LHS->getAPIntValue();
      APInt c2 = RHS->getAPIntValue();
      zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
      return (c1 + c2).ult(OpSizeInBits);
    };
    if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
      SDLoc DL(N);
      EVT ShiftVT = N1.getValueType();
      SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
      return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum);
    }
  }

  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
      N0.getOperand(0).getOpcode() == ISD::SRL) {
    SDValue InnerShift = N0.getOperand(0);
    // TODO - support non-uniform vector shift amounts.
    if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) {
      uint64_t c1 = N001C->getZExtValue();
      uint64_t c2 = N1C->getZExtValue();
      EVT InnerShiftVT = InnerShift.getValueType();
      EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType();
      uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
      // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2)))
      // This is only valid if the OpSizeInBits + c1 = size of inner shift.
      if (c1 + OpSizeInBits == InnerShiftSize) {
        SDLoc DL(N);
        if (c1 + c2 >= InnerShiftSize)
          return DAG.getConstant(0, DL, VT);
        SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
        SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
                                       InnerShift.getOperand(0), NewShiftAmt);
        return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift);
      }
      // In the more general case, we can clear the high bits after the shift:
      // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask)
      if (N0.hasOneUse() && InnerShift.hasOneUse() &&
          c1 + c2 < InnerShiftSize) {
        SDLoc DL(N);
        SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
        SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
                                       InnerShift.getOperand(0), NewShiftAmt);
        SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize,
                                                            OpSizeInBits - c2),
                                       DL, InnerShiftVT);
        SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask);
        return DAG.getNode(ISD::TRUNCATE, DL, VT, And);
      }
    }
  }

  // fold (srl (shl x, c), c) -> (and x, cst2)
  // TODO - (srl (shl x, c1), c2).
  if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
      isConstantOrConstantVector(N1, /* NoOpaques */ true)) {
    SDLoc DL(N);
    SDValue Mask =
        DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1);
    AddToWorklist(Mask.getNode());
    return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask);
  }

  // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
  // TODO - support non-uniform vector shift amounts.
  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
    // Shifting in all undef bits?
    EVT SmallVT = N0.getOperand(0).getValueType();
    unsigned BitSize = SmallVT.getScalarSizeInBits();
    if (N1C->getAPIntValue().uge(BitSize))
      return DAG.getUNDEF(VT);

    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
      uint64_t ShiftAmt = N1C->getZExtValue();
      SDLoc DL0(N0);
      SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
                                       N0.getOperand(0),
                          DAG.getConstant(ShiftAmt, DL0,
                                          getShiftAmountTy(SmallVT)));
      AddToWorklist(SmallShift.getNode());
      APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt);
      SDLoc DL(N);
      return DAG.getNode(ISD::AND, DL, VT,
                         DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
                         DAG.getConstant(Mask, DL, VT));
    }
  }

  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
  // bit, which is unmodified by sra.
  if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) {
    if (N0.getOpcode() == ISD::SRA)
      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
  }

  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
  if (N1C && N0.getOpcode() == ISD::CTLZ &&
      N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
    KnownBits Known = DAG.computeKnownBits(N0.getOperand(0));

    // If any of the input bits are KnownOne, then the input couldn't be all
    // zeros, thus the result of the srl will always be zero.
    if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);

    // If all of the bits input the to ctlz node are known to be zero, then
    // the result of the ctlz is "32" and the result of the shift is one.
    APInt UnknownBits = ~Known.Zero;
    if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);

    // Otherwise, check to see if there is exactly one bit input to the ctlz.
    if (UnknownBits.isPowerOf2()) {
      // Okay, we know that only that the single bit specified by UnknownBits
      // could be set on input to the CTLZ node. If this bit is set, the SRL
      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
      // to an SRL/XOR pair, which is likely to simplify more.
      unsigned ShAmt = UnknownBits.countTrailingZeros();
      SDValue Op = N0.getOperand(0);

      if (ShAmt) {
        SDLoc DL(N0);
        Op = DAG.getNode(ISD::SRL, DL, VT, Op,
                  DAG.getConstant(ShAmt, DL,
                                  getShiftAmountTy(Op.getValueType())));
        AddToWorklist(Op.getNode());
      }

      SDLoc DL(N);
      return DAG.getNode(ISD::XOR, DL, VT,
                         Op, DAG.getConstant(1, DL, VT));
    }
  }

  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
  if (N1.getOpcode() == ISD::TRUNCATE &&
      N1.getOperand(0).getOpcode() == ISD::AND) {
    if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
  }

  // fold operands of srl based on knowledge that the low bits are not
  // demanded.
  if (SimplifyDemandedBits(SDValue(N, 0)))
    return SDValue(N, 0);

  if (N1C && !N1C->isOpaque())
    if (SDValue NewSRL = visitShiftByConstant(N))
      return NewSRL;

  // Attempt to convert a srl of a load into a narrower zero-extending load.
  if (SDValue NarrowLoad = ReduceLoadWidth(N))
    return NarrowLoad;

  // Here is a common situation. We want to optimize:
  //
  //   %a = ...
  //   %b = and i32 %a, 2
  //   %c = srl i32 %b, 1
  //   brcond i32 %c ...
  //
  // into
  //
  //   %a = ...
  //   %b = and %a, 2
  //   %c = setcc eq %b, 0
  //   brcond %c ...
  //
  // However when after the source operand of SRL is optimized into AND, the SRL
  // itself may not be optimized further. Look for it and add the BRCOND into
  // the worklist.
  if (N->hasOneUse()) {
    SDNode *Use = *N->use_begin();
    if (Use->getOpcode() == ISD::BRCOND)
      AddToWorklist(Use);
    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
      // Also look pass the truncate.
      Use = *Use->use_begin();
      if (Use->getOpcode() == ISD::BRCOND)
        AddToWorklist(Use);
    }
  }

  // Try to transform this shift into a multiply-high if
  // it matches the appropriate pattern detected in combineShiftToMULH.
  if (SDValue MULH = combineShiftToMULH(N, DAG, TLI))
    return MULH;

  return SDValue();
}

SDValue DAGCombiner::visitFunnelShift(SDNode *N) {
  EVT VT = N->getValueType(0);
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue N2 = N->getOperand(2);
  bool IsFSHL = N->getOpcode() == ISD::FSHL;
  unsigned BitWidth = VT.getScalarSizeInBits();

  // fold (fshl N0, N1, 0) -> N0
  // fold (fshr N0, N1, 0) -> N1
  if (isPowerOf2_32(BitWidth))
    if (DAG.MaskedValueIsZero(
            N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1)))
      return IsFSHL ? N0 : N1;

  auto IsUndefOrZero = [](SDValue V) {
    return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true);
  };

  // TODO - support non-uniform vector shift amounts.
  if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) {
    EVT ShAmtTy = N2.getValueType();

    // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
    if (Cst->getAPIntValue().uge(BitWidth)) {
      uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth);
      return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1,
                         DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy));
    }

    unsigned ShAmt = Cst->getZExtValue();
    if (ShAmt == 0)
      return IsFSHL ? N0 : N1;

    // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
    // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
    // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
    // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
    if (IsUndefOrZero(N0))
      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1,
                         DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt,
                                         SDLoc(N), ShAmtTy));
    if (IsUndefOrZero(N1))
      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
                         DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt,
                                         SDLoc(N), ShAmtTy));

    // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
    // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
    // TODO - bigendian support once we have test coverage.
    // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine?
    // TODO - permit LHS EXTLOAD if extensions are shifted out.
    if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() &&
        !DAG.getDataLayout().isBigEndian()) {
      auto *LHS = dyn_cast<LoadSDNode>(N0);
      auto *RHS = dyn_cast<LoadSDNode>(N1);
      if (LHS && RHS && LHS->isSimple() && RHS->isSimple() &&
          LHS->getAddressSpace() == RHS->getAddressSpace() &&
          (LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) &&
          ISD::isNON_EXTLoad(LHS)) {
        if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) {
          SDLoc DL(RHS);
          uint64_t PtrOff =
              IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8);
          Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff);
          bool Fast = false;
          if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
                                     RHS->getAddressSpace(), NewAlign,
                                     RHS->getMemOperand()->getFlags(), &Fast) &&
              Fast) {
            SDValue NewPtr = DAG.getMemBasePlusOffset(
                RHS->getBasePtr(), TypeSize::Fixed(PtrOff), DL);
            AddToWorklist(NewPtr.getNode());
            SDValue Load = DAG.getLoad(
                VT, DL, RHS->getChain(), NewPtr,
                RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign,
                RHS->getMemOperand()->getFlags(), RHS->getAAInfo());
            // Replace the old load's chain with the new load's chain.
            WorklistRemover DeadNodes(*this);
            DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1));
            return Load;
          }
        }
      }
    }
  }

  // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
  // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
  // iff We know the shift amount is in range.
  // TODO: when is it worth doing SUB(BW, N2) as well?
  if (isPowerOf2_32(BitWidth)) {
    APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1);
    if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2);
    if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2);
  }

  // fold (fshl N0, N0, N2) -> (rotl N0, N2)
  // fold (fshr N0, N0, N2) -> (rotr N0, N2)
  // TODO: Investigate flipping this rotate if only one is legal, if funnel shift
  // is legal as well we might be better off avoiding non-constant (BW - N2).
  unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR;
  if (N0 == N1 && hasOperation(RotOpc, VT))
    return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2);

  // Simplify, based on bits shifted out of N0/N1.
  if (SimplifyDemandedBits(SDValue(N, 0)))
    return SDValue(N, 0);

  return SDValue();
}

SDValue DAGCombiner::visitABS(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // fold (abs c1) -> c2
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
    return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0);
  // fold (abs (abs x)) -> (abs x)
  if (N0.getOpcode() == ISD::ABS)
    return N0;
  // fold (abs x) -> x iff not-negative
  if (DAG.SignBitIsZero(N0))
    return N0;
  return SDValue();
}

SDValue DAGCombiner::visitBSWAP(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // fold (bswap c1) -> c2
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
    return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
  // fold (bswap (bswap x)) -> x
  if (N0.getOpcode() == ISD::BSWAP)
    return N0->getOperand(0);
  return SDValue();
}

SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // fold (bitreverse c1) -> c2
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
    return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0);
  // fold (bitreverse (bitreverse x)) -> x
  if (N0.getOpcode() == ISD::BITREVERSE)
    return N0.getOperand(0);
  return SDValue();
}

SDValue DAGCombiner::visitCTLZ(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // fold (ctlz c1) -> c2
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
    return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);

  // If the value is known never to be zero, switch to the undef version.
  if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) {
    if (DAG.isKnownNeverZero(N0))
      return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
  }

  return SDValue();
}

SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // fold (ctlz_zero_undef c1) -> c2
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
  return SDValue();
}

SDValue DAGCombiner::visitCTTZ(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // fold (cttz c1) -> c2
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
    return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);

  // If the value is known never to be zero, switch to the undef version.
  if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) {
    if (DAG.isKnownNeverZero(N0))
      return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
  }

  return SDValue();
}

SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // fold (cttz_zero_undef c1) -> c2
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
  return SDValue();
}

SDValue DAGCombiner::visitCTPOP(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // fold (ctpop c1) -> c2
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
    return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
  return SDValue();
}

// FIXME: This should be checking for no signed zeros on individual operands, as
// well as no nans.
static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS,
                                         SDValue RHS,
                                         const TargetLowering &TLI) {
  const TargetOptions &Options = DAG.getTarget().Options;
  EVT VT = LHS.getValueType();

  return Options.NoSignedZerosFPMath && VT.isFloatingPoint() &&
         TLI.isProfitableToCombineMinNumMaxNum(VT) &&
         DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS);
}

/// Generate Min/Max node
static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
                                   SDValue RHS, SDValue True, SDValue False,
                                   ISD::CondCode CC, const TargetLowering &TLI,
                                   SelectionDAG &DAG) {
  if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
    return SDValue();

  EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
  switch (CC) {
  case ISD::SETOLT:
  case ISD::SETOLE:
  case ISD::SETLT:
  case ISD::SETLE:
  case ISD::SETULT:
  case ISD::SETULE: {
    // Since it's known never nan to get here already, either fminnum or
    // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
    // expanded in terms of it.
    unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
    if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
      return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);

    unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
    if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
      return DAG.getNode(Opcode, DL, VT, LHS, RHS);
    return SDValue();
  }
  case ISD::SETOGT:
  case ISD::SETOGE:
  case ISD::SETGT:
  case ISD::SETGE:
  case ISD::SETUGT:
  case ISD::SETUGE: {
    unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
    if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
      return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);

    unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
    if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
      return DAG.getNode(Opcode, DL, VT, LHS, RHS);
    return SDValue();
  }
  default:
    return SDValue();
  }
}

/// If a (v)select has a condition value that is a sign-bit test, try to smear
/// the condition operand sign-bit across the value width and use it as a mask.
static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) {
  SDValue Cond = N->getOperand(0);
  SDValue C1 = N->getOperand(1);
  SDValue C2 = N->getOperand(2);
  assert(isConstantOrConstantVector(C1) && isConstantOrConstantVector(C2) &&
         "Expected select-of-constants");

  EVT VT = N->getValueType(0);
  if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() ||
      VT != Cond.getOperand(0).getValueType())
    return SDValue();

  // The inverted-condition + commuted-select variants of these patterns are
  // canonicalized to these forms in IR.
  SDValue X = Cond.getOperand(0);
  SDValue CondC = Cond.getOperand(1);
  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
  if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) &&
      isAllOnesOrAllOnesSplat(C2)) {
    // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
    SDLoc DL(N);
    SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
    SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
    return DAG.getNode(ISD::OR, DL, VT, Sra, C1);
  }
  if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) {
    // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
    SDLoc DL(N);
    SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
    SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
    return DAG.getNode(ISD::AND, DL, VT, Sra, C1);
  }
  return SDValue();
}

SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
  SDValue Cond = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue N2 = N->getOperand(2);
  EVT VT = N->getValueType(0);
  EVT CondVT = Cond.getValueType();
  SDLoc DL(N);

  if (!VT.isInteger())
    return SDValue();

  auto *C1 = dyn_cast<ConstantSDNode>(N1);
  auto *C2 = dyn_cast<ConstantSDNode>(N2);
  if (!C1 || !C2)
    return SDValue();

  // Only do this before legalization to avoid conflicting with target-specific
  // transforms in the other direction (create a select from a zext/sext). There
  // is also a target-independent combine here in DAGCombiner in the other
  // direction for (select Cond, -1, 0) when the condition is not i1.
  if (CondVT == MVT::i1 && !LegalOperations) {
    if (C1->isNullValue() && C2->isOne()) {
      // select Cond, 0, 1 --> zext (!Cond)
      SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
      if (VT != MVT::i1)
        NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond);
      return NotCond;
    }
    if (C1->isNullValue() && C2->isAllOnesValue()) {
      // select Cond, 0, -1 --> sext (!Cond)
      SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
      if (VT != MVT::i1)
        NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond);
      return NotCond;
    }
    if (C1->isOne() && C2->isNullValue()) {
      // select Cond, 1, 0 --> zext (Cond)
      if (VT != MVT::i1)
        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
      return Cond;
    }
    if (C1->isAllOnesValue() && C2->isNullValue()) {
      // select Cond, -1, 0 --> sext (Cond)
      if (VT != MVT::i1)
        Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
      return Cond;
    }

    // Use a target hook because some targets may prefer to transform in the
    // other direction.
    if (TLI.convertSelectOfConstantsToMath(VT)) {
      // For any constants that differ by 1, we can transform the select into an
      // extend and add.
      const APInt &C1Val = C1->getAPIntValue();
      const APInt &C2Val = C2->getAPIntValue();
      if (C1Val - 1 == C2Val) {
        // select Cond, C1, C1-1 --> add (zext Cond), C1-1
        if (VT != MVT::i1)
          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
        return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
      }
      if (C1Val + 1 == C2Val) {
        // select Cond, C1, C1+1 --> add (sext Cond), C1+1
        if (VT != MVT::i1)
          Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
        return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
      }

      // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
      if (C1Val.isPowerOf2() && C2Val.isNullValue()) {
        if (VT != MVT::i1)
          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
        SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT);
        return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC);
      }

      if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG))
        return V;
    }

    return SDValue();
  }

  // fold (select Cond, 0, 1) -> (xor Cond, 1)
  // We can't do this reliably if integer based booleans have different contents
  // to floating point based booleans. This is because we can't tell whether we
  // have an integer-based boolean or a floating-point-based boolean unless we
  // can find the SETCC that produced it and inspect its operands. This is
  // fairly easy if C is the SETCC node, but it can potentially be
  // undiscoverable (or not reasonably discoverable). For example, it could be
  // in another basic block or it could require searching a complicated
  // expression.
  if (CondVT.isInteger() &&
      TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
          TargetLowering::ZeroOrOneBooleanContent &&
      TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
          TargetLowering::ZeroOrOneBooleanContent &&
      C1->isNullValue() && C2->isOne()) {
    SDValue NotCond =
        DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT));
    if (VT.bitsEq(CondVT))
      return NotCond;
    return DAG.getZExtOrTrunc(NotCond, DL, VT);
  }

  return SDValue();
}

SDValue DAGCombiner::visitSELECT(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue N2 = N->getOperand(2);
  EVT VT = N->getValueType(0);
  EVT VT0 = N0.getValueType();
  SDLoc DL(N);
  SDNodeFlags Flags = N->getFlags();

  if (SDValue V = DAG.simplifySelect(N0, N1, N2))
    return V;

  // fold (select X, X, Y) -> (or X, Y)
  // fold (select X, 1, Y) -> (or C, Y)
  if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1)))
    return DAG.getNode(ISD::OR, DL, VT, N0, N2);

  if (SDValue V = foldSelectOfConstants(N))
    return V;

  // fold (select C, 0, X) -> (and (not C), X)
  if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) {
    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
    AddToWorklist(NOTNode.getNode());
    return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2);
  }
  // fold (select C, X, 1) -> (or (not C), X)
  if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) {
    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
    AddToWorklist(NOTNode.getNode());
    return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1);
  }
  // fold (select X, Y, X) -> (and X, Y)
  // fold (select X, Y, 0) -> (and X, Y)
  if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2)))
    return DAG.getNode(ISD::AND, DL, VT, N0, N1);

  // If we can fold this based on the true/false value, do so.
  if (SimplifySelectOps(N, N1, N2))
    return SDValue(N, 0); // Don't revisit N.

  if (VT0 == MVT::i1) {
    // The code in this block deals with the following 2 equivalences:
    //    select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
    //    select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
    // The target can specify its preferred form with the
    // shouldNormalizeToSelectSequence() callback. However we always transform
    // to the right anyway if we find the inner select exists in the DAG anyway
    // and we always transform to the left side if we know that we can further
    // optimize the combination of the conditions.
    bool normalizeToSequence =
        TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
    // select (and Cond0, Cond1), X, Y
    //   -> select Cond0, (select Cond1, X, Y), Y
    if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
      SDValue Cond0 = N0->getOperand(0);
      SDValue Cond1 = N0->getOperand(1);
      SDValue InnerSelect =
          DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags);
      if (normalizeToSequence || !InnerSelect.use_empty())
        return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0,
                           InnerSelect, N2, Flags);
      // Cleanup on failure.
      if (InnerSelect.use_empty())
        recursivelyDeleteUnusedNodes(InnerSelect.getNode());
    }
    // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
    if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
      SDValue Cond0 = N0->getOperand(0);
      SDValue Cond1 = N0->getOperand(1);
      SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(),
                                        Cond1, N1, N2, Flags);
      if (normalizeToSequence || !InnerSelect.use_empty())
        return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1,
                           InnerSelect, Flags);
      // Cleanup on failure.
      if (InnerSelect.use_empty())
        recursivelyDeleteUnusedNodes(InnerSelect.getNode());
    }

    // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
    if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
      SDValue N1_0 = N1->getOperand(0);
      SDValue N1_1 = N1->getOperand(1);
      SDValue N1_2 = N1->getOperand(2);
      if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
        // Create the actual and node if we can generate good code for it.
        if (!normalizeToSequence) {
          SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0);
          return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1,
                             N2, Flags);
        }
        // Otherwise see if we can optimize the "and" to a better pattern.
        if (SDValue Combined = visitANDLike(N0, N1_0, N)) {
          return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1,
                             N2, Flags);
        }
      }
    }
    // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
    if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
      SDValue N2_0 = N2->getOperand(0);
      SDValue N2_1 = N2->getOperand(1);
      SDValue N2_2 = N2->getOperand(2);
      if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
        // Create the actual or node if we can generate good code for it.
        if (!normalizeToSequence) {
          SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0);
          return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1,
                             N2_2, Flags);
        }
        // Otherwise see if we can optimize to a better pattern.
        if (SDValue Combined = visitORLike(N0, N2_0, N))
          return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1,
                             N2_2, Flags);
      }
    }
  }

  // select (not Cond), N1, N2 -> select Cond, N2, N1
  if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) {
    SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1);
    SelectOp->setFlags(Flags);
    return SelectOp;
  }

  // Fold selects based on a setcc into other things, such as min/max/abs.
  if (N0.getOpcode() == ISD::SETCC) {
    SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1);
    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();

    // select (fcmp lt x, y), x, y -> fminnum x, y
    // select (fcmp gt x, y), x, y -> fmaxnum x, y
    //
    // This is OK if we don't care what happens if either operand is a NaN.
    if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI))
      if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2,
                                                CC, TLI, DAG))
        return FMinMax;

    // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
    // This is conservatively limited to pre-legal-operations to give targets
    // a chance to reverse the transform if they want to do that. Also, it is
    // unlikely that the pattern would be formed late, so it's probably not
    // worth going through the other checks.
    if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) &&
        CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) &&
        N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) {
      auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1));
      auto *NotC = dyn_cast<ConstantSDNode>(Cond1);
      if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) {
        // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
        // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
        //
        // The IR equivalent of this transform would have this form:
        //   %a = add %x, C
        //   %c = icmp ugt %x, ~C
        //   %r = select %c, -1, %a
        //   =>
        //   %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
        //   %u0 = extractvalue %u, 0
        //   %u1 = extractvalue %u, 1
        //   %r = select %u1, -1, %u0
        SDVTList VTs = DAG.getVTList(VT, VT0);
        SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1));
        return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0));
      }
    }

    if (TLI.isOperationLegal(ISD::SELECT_CC, VT) ||
        (!LegalOperations &&
         TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) {
      // Any flags available in a select/setcc fold will be on the setcc as they
      // migrated from fcmp
      Flags = N0.getNode()->getFlags();
      SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1,
                                       N2, N0.getOperand(2));
      SelectNode->setFlags(Flags);
      return SelectNode;
    }

    return SimplifySelect(DL, N0, N1, N2);
  }

  return SDValue();
}

// This function assumes all the vselect's arguments are CONCAT_VECTOR
// nodes and that the condition is a BV of ConstantSDNodes (or undefs).
static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
  SDLoc DL(N);
  SDValue Cond = N->getOperand(0);
  SDValue LHS = N->getOperand(1);
  SDValue RHS = N->getOperand(2);
  EVT VT = N->getValueType(0);
  int NumElems = VT.getVectorNumElements();
  assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
         RHS.getOpcode() == ISD::CONCAT_VECTORS &&
         Cond.getOpcode() == ISD::BUILD_VECTOR);

  // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
  // binary ones here.
  if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
    return SDValue();

  // We're sure we have an even number of elements due to the
  // concat_vectors we have as arguments to vselect.
  // Skip BV elements until we find one that's not an UNDEF
  // After we find an UNDEF element, keep looping until we get to half the
  // length of the BV and see if all the non-undef nodes are the same.
  ConstantSDNode *BottomHalf = nullptr;
  for (int i = 0; i < NumElems / 2; ++i) {
    if (Cond->getOperand(i)->isUndef())
      continue;

    if (BottomHalf == nullptr)
      BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
    else if (Cond->getOperand(i).getNode() != BottomHalf)
      return SDValue();
  }

  // Do the same for the second half of the BuildVector
  ConstantSDNode *TopHalf = nullptr;
  for (int i = NumElems / 2; i < NumElems; ++i) {
    if (Cond->getOperand(i)->isUndef())
      continue;

    if (TopHalf == nullptr)
      TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
    else if (Cond->getOperand(i).getNode() != TopHalf)
      return SDValue();
  }

  assert(TopHalf && BottomHalf &&
         "One half of the selector was all UNDEFs and the other was all the "
         "same value. This should have been addressed before this function.");
  return DAG.getNode(
      ISD::CONCAT_VECTORS, DL, VT,
      BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
      TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
}

SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
  MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
  SDValue Mask = MSC->getMask();
  SDValue Chain = MSC->getChain();
  SDLoc DL(N);

  // Zap scatters with a zero mask.
  if (ISD::isBuildVectorAllZeros(Mask.getNode()))
    return Chain;

  return SDValue();
}

SDValue DAGCombiner::visitMSTORE(SDNode *N) {
  MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
  SDValue Mask = MST->getMask();
  SDValue Chain = MST->getChain();
  SDLoc DL(N);

  // Zap masked stores with a zero mask.
  if (ISD::isBuildVectorAllZeros(Mask.getNode()))
    return Chain;

  // If this is a masked load with an all ones mask, we can use a unmasked load.
  // FIXME: Can we do this for indexed, compressing, or truncating stores?
  if (ISD::isBuildVectorAllOnes(Mask.getNode()) &&
      MST->isUnindexed() && !MST->isCompressingStore() &&
      !MST->isTruncatingStore())
    return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(),
                        MST->getBasePtr(), MST->getMemOperand());

  // Try transforming N to an indexed store.
  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
    return SDValue(N, 0);

  return SDValue();
}

SDValue DAGCombiner::visitMGATHER(SDNode *N) {
  MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N);
  SDValue Mask = MGT->getMask();
  SDLoc DL(N);

  // Zap gathers with a zero mask.
  if (ISD::isBuildVectorAllZeros(Mask.getNode()))
    return CombineTo(N, MGT->getPassThru(), MGT->getChain());

  return SDValue();
}

SDValue DAGCombiner::visitMLOAD(SDNode *N) {
  MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
  SDValue Mask = MLD->getMask();
  SDLoc DL(N);

  // Zap masked loads with a zero mask.
  if (ISD::isBuildVectorAllZeros(Mask.getNode()))
    return CombineTo(N, MLD->getPassThru(), MLD->getChain());

  // If this is a masked load with an all ones mask, we can use a unmasked load.
  // FIXME: Can we do this for indexed, expanding, or extending loads?
  if (ISD::isBuildVectorAllOnes(Mask.getNode()) &&
      MLD->isUnindexed() && !MLD->isExpandingLoad() &&
      MLD->getExtensionType() == ISD::NON_EXTLOAD) {
    SDValue NewLd = DAG.getLoad(N->getValueType(0), SDLoc(N), MLD->getChain(),
                                MLD->getBasePtr(), MLD->getMemOperand());
    return CombineTo(N, NewLd, NewLd.getValue(1));
  }

  // Try transforming N to an indexed load.
  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
    return SDValue(N, 0);

  return SDValue();
}

/// A vector select of 2 constant vectors can be simplified to math/logic to
/// avoid a variable select instruction and possibly avoid constant loads.
SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) {
  SDValue Cond = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue N2 = N->getOperand(2);
  EVT VT = N->getValueType(0);
  if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 ||
      !TLI.convertSelectOfConstantsToMath(VT) ||
      !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) ||
      !ISD::isBuildVectorOfConstantSDNodes(N2.getNode()))
    return SDValue();

  // Check if we can use the condition value to increment/decrement a single
  // constant value. This simplifies a select to an add and removes a constant
  // load/materialization from the general case.
  bool AllAddOne = true;
  bool AllSubOne = true;
  unsigned Elts = VT.getVectorNumElements();
  for (unsigned i = 0; i != Elts; ++i) {
    SDValue N1Elt = N1.getOperand(i);
    SDValue N2Elt = N2.getOperand(i);
    if (N1Elt.isUndef() || N2Elt.isUndef())
      continue;
    if (N1Elt.getValueType() != N2Elt.getValueType())
      continue;

    const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue();
    const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue();
    if (C1 != C2 + 1)
      AllAddOne = false;
    if (C1 != C2 - 1)
      AllSubOne = false;
  }

  // Further simplifications for the extra-special cases where the constants are
  // all 0 or all -1 should be implemented as folds of these patterns.
  SDLoc DL(N);
  if (AllAddOne || AllSubOne) {
    // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
    // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
    auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
    SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond);
    return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2);
  }

  // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C)
  APInt Pow2C;
  if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() &&
      isNullOrNullSplat(N2)) {
    SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT);
    SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT);
    return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC);
  }

  if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG))
    return V;

  // The general case for select-of-constants:
  // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
  // ...but that only makes sense if a vselect is slower than 2 logic ops, so
  // leave that to a machine-specific pass.
  return SDValue();
}

SDValue DAGCombiner::visitVSELECT(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue N2 = N->getOperand(2);
  EVT VT = N->getValueType(0);
  SDLoc DL(N);

  if (SDValue V = DAG.simplifySelect(N0, N1, N2))
    return V;

  // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
  if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false))
    return DAG.getSelect(DL, VT, F, N2, N1);

  // Canonicalize integer abs.
  // vselect (setg[te] X,  0),  X, -X ->
  // vselect (setgt    X, -1),  X, -X ->
  // vselect (setl[te] X,  0), -X,  X ->
  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
  if (N0.getOpcode() == ISD::SETCC) {
    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
    bool isAbs = false;
    bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());

    if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
         (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
        N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
      isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
    else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
             N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
      isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());

    if (isAbs) {
      if (TLI.isOperationLegalOrCustom(ISD::ABS, VT))
        return DAG.getNode(ISD::ABS, DL, VT, LHS);

      SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS,
                                  DAG.getConstant(VT.getScalarSizeInBits() - 1,
                                                  DL, getShiftAmountTy(VT)));
      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
      AddToWorklist(Shift.getNode());
      AddToWorklist(Add.getNode());
      return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
    }

    // vselect x, y (fcmp lt x, y) -> fminnum x, y
    // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
    //
    // This is OK if we don't care about what happens if either operand is a
    // NaN.
    //
    if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) {
      if (SDValue FMinMax =
              combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG))
        return FMinMax;
    }

    // If this select has a condition (setcc) with narrower operands than the
    // select, try to widen the compare to match the select width.
    // TODO: This should be extended to handle any constant.
    // TODO: This could be extended to handle non-loading patterns, but that
    //       requires thorough testing to avoid regressions.
    if (isNullOrNullSplat(RHS)) {
      EVT NarrowVT = LHS.getValueType();
      EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger();
      EVT SetCCVT = getSetCCResultType(LHS.getValueType());
      unsigned SetCCWidth = SetCCVT.getScalarSizeInBits();
      unsigned WideWidth = WideVT.getScalarSizeInBits();
      bool IsSigned = isSignedIntSetCC(CC);
      auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
      if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() &&
          SetCCWidth != 1 && SetCCWidth < WideWidth &&
          TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) &&
          TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) {
        // Both compare operands can be widened for free. The LHS can use an
        // extended load, and the RHS is a constant:
        //   vselect (ext (setcc load(X), C)), N1, N2 -->
        //   vselect (setcc extload(X), C'), N1, N2
        auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
        SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS);
        SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS);
        EVT WideSetCCVT = getSetCCResultType(WideVT);
        SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC);
        return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2);
      }
    }
  }

  if (SimplifySelectOps(N, N1, N2))
    return SDValue(N, 0);  // Don't revisit N.

  // Fold (vselect (build_vector all_ones), N1, N2) -> N1
  if (ISD::isBuildVectorAllOnes(N0.getNode()))
    return N1;
  // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
  if (ISD::isBuildVectorAllZeros(N0.getNode()))
    return N2;

  // The ConvertSelectToConcatVector function is assuming both the above
  // checks for (vselect (build_vector all{ones,zeros) ...) have been made
  // and addressed.
  if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
      N2.getOpcode() == ISD::CONCAT_VECTORS &&
      ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
    if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
      return CV;
  }

  if (SDValue V = foldVSelectOfConstants(N))
    return V;

  return SDValue();
}

SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue N2 = N->getOperand(2);
  SDValue N3 = N->getOperand(3);
  SDValue N4 = N->getOperand(4);
  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();

  // fold select_cc lhs, rhs, x, x, cc -> x
  if (N2 == N3)
    return N2;

  // Determine if the condition we're dealing with is constant
  if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
                                  CC, SDLoc(N), false)) {
    AddToWorklist(SCC.getNode());

    if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
      if (!SCCC->isNullValue())
        return N2;    // cond always true -> true val
      else
        return N3;    // cond always false -> false val
    } else if (SCC->isUndef()) {
      // When the condition is UNDEF, just return the first operand. This is
      // coherent the DAG creation, no setcc node is created in this case
      return N2;
    } else if (SCC.getOpcode() == ISD::SETCC) {
      // Fold to a simpler select_cc
      SDValue SelectOp = DAG.getNode(
          ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0),
          SCC.getOperand(1), N2, N3, SCC.getOperand(2));
      SelectOp->setFlags(SCC->getFlags());
      return SelectOp;
    }
  }

  // If we can fold this based on the true/false value, do so.
  if (SimplifySelectOps(N, N2, N3))
    return SDValue(N, 0);  // Don't revisit N.

  // fold select_cc into other things, such as min/max/abs
  return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
}

SDValue DAGCombiner::visitSETCC(SDNode *N) {
  // setcc is very commonly used as an argument to brcond. This pattern
  // also lend itself to numerous combines and, as a result, it is desired
  // we keep the argument to a brcond as a setcc as much as possible.
  bool PreferSetCC =
      N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND;

  SDValue Combined = SimplifySetCC(
      N->getValueType(0), N->getOperand(0), N->getOperand(1),
      cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC);

  if (!Combined)
    return SDValue();

  // If we prefer to have a setcc, and we don't, we'll try our best to
  // recreate one using rebuildSetCC.
  if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) {
    SDValue NewSetCC = rebuildSetCC(Combined);

    // We don't have anything interesting to combine to.
    if (NewSetCC.getNode() == N)
      return SDValue();

    if (NewSetCC)
      return NewSetCC;
  }

  return Combined;
}

SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) {
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);
  SDValue Carry = N->getOperand(2);
  SDValue Cond = N->getOperand(3);

  // If Carry is false, fold to a regular SETCC.
  if (isNullConstant(Carry))
    return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);

  return SDValue();
}

/// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
/// a build_vector of constants.
/// This function is called by the DAGCombiner when visiting sext/zext/aext
/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
/// Vector extends are not folded if operations are legal; this is to
/// avoid introducing illegal build_vector dag nodes.
static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
                                         SelectionDAG &DAG, bool LegalTypes) {
  unsigned Opcode = N->getOpcode();
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);
  SDLoc DL(N);

  assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
         Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
         Opcode == ISD::ZERO_EXTEND_VECTOR_INREG)
         && "Expected EXTEND dag node in input!");

  // fold (sext c1) -> c1
  // fold (zext c1) -> c1
  // fold (aext c1) -> c1
  if (isa<ConstantSDNode>(N0))
    return DAG.getNode(Opcode, DL, VT, N0);

  // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
  // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
  // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
  if (N0->getOpcode() == ISD::SELECT) {
    SDValue Op1 = N0->getOperand(1);
    SDValue Op2 = N0->getOperand(2);
    if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) &&
        (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) {
      // For any_extend, choose sign extension of the constants to allow a
      // possible further transform to sign_extend_inreg.i.e.
      //
      // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
      // t2: i64 = any_extend t1
      // -->
      // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
      // -->
      // t4: i64 = sign_extend_inreg t3
      unsigned FoldOpc = Opcode;
      if (FoldOpc == ISD::ANY_EXTEND)
        FoldOpc = ISD::SIGN_EXTEND;
      return DAG.getSelect(DL, VT, N0->getOperand(0),
                           DAG.getNode(FoldOpc, DL, VT, Op1),
                           DAG.getNode(FoldOpc, DL, VT, Op2));
    }
  }

  // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
  // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
  // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
  EVT SVT = VT.getScalarType();
  if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) &&
      ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
    return SDValue();

  // We can fold this node into a build_vector.
  unsigned VTBits = SVT.getSizeInBits();
  unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
  SmallVector<SDValue, 8> Elts;
  unsigned NumElts = VT.getVectorNumElements();

  // For zero-extensions, UNDEF elements still guarantee to have the upper
  // bits set to zero.
  bool IsZext =
      Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG;

  for (unsigned i = 0; i != NumElts; ++i) {
    SDValue Op = N0.getOperand(i);
    if (Op.isUndef()) {
      Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT));
      continue;
    }

    SDLoc DL(Op);
    // Get the constant value and if needed trunc it to the size of the type.
    // Nodes like build_vector might have constants wider than the scalar type.
    APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
    if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
      Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
    else
      Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
  }

  return DAG.getBuildVector(VT, DL, Elts);
}

// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
// transformation. Returns true if extension are possible and the above
// mentioned transformation is profitable.
static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0,
                                    unsigned ExtOpc,
                                    SmallVectorImpl<SDNode *> &ExtendNodes,
                                    const TargetLowering &TLI) {
  bool HasCopyToRegUses = false;
  bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType());
  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
                            UE = N0.getNode()->use_end();
       UI != UE; ++UI) {
    SDNode *User = *UI;
    if (User == N)
      continue;
    if (UI.getUse().getResNo() != N0.getResNo())
      continue;
    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
        // Sign bits will be lost after a zext.
        return false;
      bool Add = false;
      for (unsigned i = 0; i != 2; ++i) {
        SDValue UseOp = User->getOperand(i);
        if (UseOp == N0)
          continue;
        if (!isa<ConstantSDNode>(UseOp))
          return false;
        Add = true;
      }
      if (Add)
        ExtendNodes.push_back(User);
      continue;
    }
    // If truncates aren't free and there are users we can't
    // extend, it isn't worthwhile.
    if (!isTruncFree)
      return false;
    // Remember if this value is live-out.
    if (User->getOpcode() == ISD::CopyToReg)
      HasCopyToRegUses = true;
  }

  if (HasCopyToRegUses) {
    bool BothLiveOut = false;
    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
         UI != UE; ++UI) {
      SDUse &Use = UI.getUse();
      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
        BothLiveOut = true;
        break;
      }
    }
    if (BothLiveOut)
      // Both unextended and extended values are live out. There had better be
      // a good reason for the transformation.
      return ExtendNodes.size();
  }
  return true;
}

void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
                                  SDValue OrigLoad, SDValue ExtLoad,
                                  ISD::NodeType ExtType) {
  // Extend SetCC uses if necessary.
  SDLoc DL(ExtLoad);
  for (SDNode *SetCC : SetCCs) {
    SmallVector<SDValue, 4> Ops;

    for (unsigned j = 0; j != 2; ++j) {
      SDValue SOp = SetCC->getOperand(j);
      if (SOp == OrigLoad)
        Ops.push_back(ExtLoad);
      else
        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
    }

    Ops.push_back(SetCC->getOperand(2));
    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
  }
}

// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT DstVT = N->getValueType(0);
  EVT SrcVT = N0.getValueType();

  assert((N->getOpcode() == ISD::SIGN_EXTEND ||
          N->getOpcode() == ISD::ZERO_EXTEND) &&
         "Unexpected node type (not an extend)!");

  // fold (sext (load x)) to multiple smaller sextloads; same for zext.
  // For example, on a target with legal v4i32, but illegal v8i32, turn:
  //   (v8i32 (sext (v8i16 (load x))))
  // into:
  //   (v8i32 (concat_vectors (v4i32 (sextload x)),
  //                          (v4i32 (sextload (x + 16)))))
  // Where uses of the original load, i.e.:
  //   (v8i16 (load x))
  // are replaced with:
  //   (v8i16 (truncate
  //     (v8i32 (concat_vectors (v4i32 (sextload x)),
  //                            (v4i32 (sextload (x + 16)))))))
  //
  // This combine is only applicable to illegal, but splittable, vectors.
  // All legal types, and illegal non-vector types, are handled elsewhere.
  // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
  //
  if (N0->getOpcode() != ISD::LOAD)
    return SDValue();

  LoadSDNode *LN0 = cast<LoadSDNode>(N0);

  if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
      !N0.hasOneUse() || !LN0->isSimple() ||
      !DstVT.isVector() || !DstVT.isPow2VectorType() ||
      !TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
    return SDValue();

  SmallVector<SDNode *, 4> SetCCs;
  if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI))
    return SDValue();

  ISD::LoadExtType ExtType =
      N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;

  // Try to split the vector types to get down to legal types.
  EVT SplitSrcVT = SrcVT;
  EVT SplitDstVT = DstVT;
  while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
         SplitSrcVT.getVectorNumElements() > 1) {
    SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
    SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
  }

  if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
    return SDValue();

  assert(!DstVT.isScalableVector() && "Unexpected scalable vector type");

  SDLoc DL(N);
  const unsigned NumSplits =
      DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
  const unsigned Stride = SplitSrcVT.getStoreSize();
  SmallVector<SDValue, 4> Loads;
  SmallVector<SDValue, 4> Chains;

  SDValue BasePtr = LN0->getBasePtr();
  for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
    const unsigned Offset = Idx * Stride;
    const Align Align = commonAlignment(LN0->getAlign(), Offset);

    SDValue SplitLoad = DAG.getExtLoad(
        ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr,
        LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align,
        LN0->getMemOperand()->getFlags(), LN0->getAAInfo());

    BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::Fixed(Stride), DL);

    Loads.push_back(SplitLoad.getValue(0));
    Chains.push_back(SplitLoad.getValue(1));
  }

  SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
  SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);

  // Simplify TF.
  AddToWorklist(NewChain.getNode());

  CombineTo(N, NewValue);

  // Replace uses of the original load (before extension)
  // with a truncate of the concatenated sextloaded vectors.
  SDValue Trunc =
      DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
  ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode());
  CombineTo(N0.getNode(), Trunc, NewChain);
  return SDValue(N, 0); // Return N so it doesn't get rechecked!
}

// fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
//      (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) {
  assert(N->getOpcode() == ISD::ZERO_EXTEND);
  EVT VT = N->getValueType(0);
  EVT OrigVT = N->getOperand(0).getValueType();
  if (TLI.isZExtFree(OrigVT, VT))
    return SDValue();

  // and/or/xor
  SDValue N0 = N->getOperand(0);
  if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
        N0.getOpcode() == ISD::XOR) ||
      N0.getOperand(1).getOpcode() != ISD::Constant ||
      (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT)))
    return SDValue();

  // shl/shr
  SDValue N1 = N0->getOperand(0);
  if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) ||
      N1.getOperand(1).getOpcode() != ISD::Constant ||
      (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT)))
    return SDValue();

  // load
  if (!isa<LoadSDNode>(N1.getOperand(0)))
    return SDValue();
  LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0));
  EVT MemVT = Load->getMemoryVT();
  if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) ||
      Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed())
    return SDValue();


  // If the shift op is SHL, the logic op must be AND, otherwise the result
  // will be wrong.
  if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND)
    return SDValue();

  if (!N0.hasOneUse() || !N1.hasOneUse())
    return SDValue();

  SmallVector<SDNode*, 4> SetCCs;
  if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0),
                               ISD::ZERO_EXTEND, SetCCs, TLI))
    return SDValue();

  // Actually do the transformation.
  SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT,
                                   Load->getChain(), Load->getBasePtr(),
                                   Load->getMemoryVT(), Load->getMemOperand());

  SDLoc DL1(N1);
  SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad,
                              N1.getOperand(1));

  APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
  SDLoc DL0(N0);
  SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift,
                            DAG.getConstant(Mask, DL0, VT));

  ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
  CombineTo(N, And);
  if (SDValue(Load, 0).hasOneUse()) {
    DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1));
  } else {
    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load),
                                Load->getValueType(0), ExtLoad);
    CombineTo(Load, Trunc, ExtLoad.getValue(1));
  }

  // N0 is dead at this point.
  recursivelyDeleteUnusedNodes(N0.getNode());

  return SDValue(N,0); // Return N so it doesn't get rechecked!
}

/// If we're narrowing or widening the result of a vector select and the final
/// size is the same size as a setcc (compare) feeding the select, then try to
/// apply the cast operation to the select's operands because matching vector
/// sizes for a select condition and other operands should be more efficient.
SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) {
  unsigned CastOpcode = Cast->getOpcode();
  assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND ||
          CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND ||
          CastOpcode == ISD::FP_ROUND) &&
         "Unexpected opcode for vector select narrowing/widening");

  // We only do this transform before legal ops because the pattern may be
  // obfuscated by target-specific operations after legalization. Do not create
  // an illegal select op, however, because that may be difficult to lower.
  EVT VT = Cast->getValueType(0);
  if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
    return SDValue();

  SDValue VSel = Cast->getOperand(0);
  if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() ||
      VSel.getOperand(0).getOpcode() != ISD::SETCC)
    return SDValue();

  // Does the setcc have the same vector size as the casted select?
  SDValue SetCC = VSel.getOperand(0);
  EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType());
  if (SetCCVT.getSizeInBits() != VT.getSizeInBits())
    return SDValue();

  // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
  SDValue A = VSel.getOperand(1);
  SDValue B = VSel.getOperand(2);
  SDValue CastA, CastB;
  SDLoc DL(Cast);
  if (CastOpcode == ISD::FP_ROUND) {
    // FP_ROUND (fptrunc) has an extra flag operand to pass along.
    CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1));
    CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1));
  } else {
    CastA = DAG.getNode(CastOpcode, DL, VT, A);
    CastB = DAG.getNode(CastOpcode, DL, VT, B);
  }
  return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB);
}

// fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
// fold ([s|z]ext (     extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner,
                                     const TargetLowering &TLI, EVT VT,
                                     bool LegalOperations, SDNode *N,
                                     SDValue N0, ISD::LoadExtType ExtLoadType) {
  SDNode *N0Node = N0.getNode();
  bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node)
                                                   : ISD::isZEXTLoad(N0Node);
  if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) ||
      !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse())
    return SDValue();

  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
  EVT MemVT = LN0->getMemoryVT();
  if ((LegalOperations || !LN0->isSimple() ||
       VT.isVector()) &&
      !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT))
    return SDValue();

  SDValue ExtLoad =
      DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
                     LN0->getBasePtr(), MemVT, LN0->getMemOperand());
  Combiner.CombineTo(N, ExtLoad);
  DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
  if (LN0->use_empty())
    Combiner.recursivelyDeleteUnusedNodes(LN0);
  return SDValue(N, 0); // Return N so it doesn't get rechecked!
}

// fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
// Only generate vector extloads when 1) they're legal, and 2) they are
// deemed desirable by the target.
static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner,
                                  const TargetLowering &TLI, EVT VT,
                                  bool LegalOperations, SDNode *N, SDValue N0,
                                  ISD::LoadExtType ExtLoadType,
                                  ISD::NodeType ExtOpc) {
  if (!ISD::isNON_EXTLoad(N0.getNode()) ||
      !ISD::isUNINDEXEDLoad(N0.getNode()) ||
      ((LegalOperations || VT.isVector() ||
        !cast<LoadSDNode>(N0)->isSimple()) &&
       !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType())))
    return {};

  bool DoXform = true;
  SmallVector<SDNode *, 4> SetCCs;
  if (!N0.hasOneUse())
    DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI);
  if (VT.isVector())
    DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
  if (!DoXform)
    return {};

  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
  SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
                                   LN0->getBasePtr(), N0.getValueType(),
                                   LN0->getMemOperand());
  Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc);
  // If the load value is used only by N, replace it via CombineTo N.
  bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse();
  Combiner.CombineTo(N, ExtLoad);
  if (NoReplaceTrunc) {
    DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
    Combiner.recursivelyDeleteUnusedNodes(LN0);
  } else {
    SDValue Trunc =
        DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
    Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1));
  }
  return SDValue(N, 0); // Return N so it doesn't get rechecked!
}

static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG,
                                        const TargetLowering &TLI, EVT VT,
                                        SDNode *N, SDValue N0,
                                        ISD::LoadExtType ExtLoadType,
                                        ISD::NodeType ExtOpc) {
  if (!N0.hasOneUse())
    return SDValue();

  MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0);
  if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD)
    return SDValue();

  if (!TLI.isLoadExtLegal(ExtLoadType, VT, Ld->getValueType(0)))
    return SDValue();

  if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
    return SDValue();

  SDLoc dl(Ld);
  SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru());
  SDValue NewLoad = DAG.getMaskedLoad(
      VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(),
      PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(),
      ExtLoadType, Ld->isExpandingLoad());
  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1));
  return NewLoad;
}

static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG,
                                       bool LegalOperations) {
  assert((N->getOpcode() == ISD::SIGN_EXTEND ||
          N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext");

  SDValue SetCC = N->getOperand(0);
  if (LegalOperations || SetCC.getOpcode() != ISD::SETCC ||
      !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1)
    return SDValue();

  SDValue X = SetCC.getOperand(0);
  SDValue Ones = SetCC.getOperand(1);
  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
  EVT VT = N->getValueType(0);
  EVT XVT = X.getValueType();
  // setge X, C is canonicalized to setgt, so we do not need to match that
  // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
  // not require the 'not' op.
  if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) {
    // Invert and smear/shift the sign bit:
    // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
    // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
    SDLoc DL(N);
    unsigned ShCt = VT.getSizeInBits() - 1;
    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) {
      SDValue NotX = DAG.getNOT(DL, X, VT);
      SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT);
      auto ShiftOpcode =
        N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL;
      return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount);
    }
  }
  return SDValue();
}

SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);
  SDLoc DL(N);

  if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
    return Res;

  // fold (sext (sext x)) -> (sext x)
  // fold (sext (aext x)) -> (sext x)
  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
    return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0));

  if (N0.getOpcode() == ISD::TRUNCATE) {
    // fold (sext (truncate (load x))) -> (sext (smaller load x))
    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
    if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
      SDNode *oye = N0.getOperand(0).getNode();
      if (NarrowLoad.getNode() != N0.getNode()) {
        CombineTo(N0.getNode(), NarrowLoad);
        // CombineTo deleted the truncate, if needed, but not what's under it.
        AddToWorklist(oye);
      }
      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
    }

    // See if the value being truncated is already sign extended.  If so, just
    // eliminate the trunc/sext pair.
    SDValue Op = N0.getOperand(0);
    unsigned OpBits   = Op.getScalarValueSizeInBits();
    unsigned MidBits  = N0.getScalarValueSizeInBits();
    unsigned DestBits = VT.getScalarSizeInBits();
    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);

    if (OpBits == DestBits) {
      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
      // bits, it is already ready.
      if (NumSignBits > DestBits-MidBits)
        return Op;
    } else if (OpBits < DestBits) {
      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
      // bits, just sext from i32.
      if (NumSignBits > OpBits-MidBits)
        return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
    } else {
      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
      // bits, just truncate to i32.
      if (NumSignBits > OpBits-MidBits)
        return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
    }

    // fold (sext (truncate x)) -> (sextinreg x).
    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
                                                 N0.getValueType())) {
      if (OpBits < DestBits)
        Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
      else if (OpBits > DestBits)
        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
      return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op,
                         DAG.getValueType(N0.getValueType()));
    }
  }

  // Try to simplify (sext (load x)).
  if (SDValue foldedExt =
          tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
                             ISD::SEXTLOAD, ISD::SIGN_EXTEND))
    return foldedExt;

  if (SDValue foldedExt =
      tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD,
                               ISD::SIGN_EXTEND))
    return foldedExt;

  // fold (sext (load x)) to multiple smaller sextloads.
  // Only on illegal but splittable vectors.
  if (SDValue ExtLoad = CombineExtLoad(N))
    return ExtLoad;

  // Try to simplify (sext (sextload x)).
  if (SDValue foldedExt = tryToFoldExtOfExtload(
          DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD))
    return foldedExt;

  // fold (sext (and/or/xor (load x), cst)) ->
  //      (and/or/xor (sextload x), (sext cst))
  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
       N0.getOpcode() == ISD::XOR) &&
      isa<LoadSDNode>(N0.getOperand(0)) &&
      N0.getOperand(1).getOpcode() == ISD::Constant &&
      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
    LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
    EVT MemVT = LN00->getMemoryVT();
    if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) &&
      LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) {
      SmallVector<SDNode*, 4> SetCCs;
      bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
                                             ISD::SIGN_EXTEND, SetCCs, TLI);
      if (DoXform) {
        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT,
                                         LN00->getChain(), LN00->getBasePtr(),
                                         LN00->getMemoryVT(),
                                         LN00->getMemOperand());
        APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits());
        SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
                                  ExtLoad, DAG.getConstant(Mask, DL, VT));
        ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND);
        bool NoReplaceTruncAnd = !N0.hasOneUse();
        bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
        CombineTo(N, And);
        // If N0 has multiple uses, change other uses as well.
        if (NoReplaceTruncAnd) {
          SDValue TruncAnd =
              DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
          CombineTo(N0.getNode(), TruncAnd);
        }
        if (NoReplaceTrunc) {
          DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
        } else {
          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
                                      LN00->getValueType(0), ExtLoad);
          CombineTo(LN00, Trunc, ExtLoad.getValue(1));
        }
        return SDValue(N,0); // Return N so it doesn't get rechecked!
      }
    }
  }

  if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
    return V;

  if (N0.getOpcode() == ISD::SETCC) {
    SDValue N00 = N0.getOperand(0);
    SDValue N01 = N0.getOperand(1);
    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
    EVT N00VT = N00.getValueType();

    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
    // Only do this before legalize for now.
    if (VT.isVector() && !LegalOperations &&
        TLI.getBooleanContents(N00VT) ==
            TargetLowering::ZeroOrNegativeOneBooleanContent) {
      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
      // of the same size as the compared operands. Only optimize sext(setcc())
      // if this is the case.
      EVT SVT = getSetCCResultType(N00VT);

      // If we already have the desired type, don't change it.
      if (SVT != N0.getValueType()) {
        // We know that the # elements of the results is the same as the
        // # elements of the compare (and the # elements of the compare result
        // for that matter).  Check to see that they are the same size.  If so,
        // we know that the element size of the sext'd result matches the
        // element size of the compare operands.
        if (VT.getSizeInBits() == SVT.getSizeInBits())
          return DAG.getSetCC(DL, VT, N00, N01, CC);

        // If the desired elements are smaller or larger than the source
        // elements, we can use a matching integer vector type and then
        // truncate/sign extend.
        EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
        if (SVT == MatchingVecType) {
          SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC);
          return DAG.getSExtOrTrunc(VsetCC, DL, VT);
        }
      }
    }

    // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
    // Here, T can be 1 or -1, depending on the type of the setcc and
    // getBooleanContents().
    unsigned SetCCWidth = N0.getScalarValueSizeInBits();

    // To determine the "true" side of the select, we need to know the high bit
    // of the value returned by the setcc if it evaluates to true.
    // If the type of the setcc is i1, then the true case of the select is just
    // sext(i1 1), that is, -1.
    // If the type of the setcc is larger (say, i8) then the value of the high
    // bit depends on getBooleanContents(), so ask TLI for a real "true" value
    // of the appropriate width.
    SDValue ExtTrueVal = (SetCCWidth == 1)
                             ? DAG.getAllOnesConstant(DL, VT)
                             : DAG.getBoolConstant(true, DL, VT, N00VT);
    SDValue Zero = DAG.getConstant(0, DL, VT);
    if (SDValue SCC =
            SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true))
      return SCC;

    if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) {
      EVT SetCCVT = getSetCCResultType(N00VT);
      // Don't do this transform for i1 because there's a select transform
      // that would reverse it.
      // TODO: We should not do this transform at all without a target hook
      // because a sext is likely cheaper than a select?
      if (SetCCVT.getScalarSizeInBits() != 1 &&
          (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) {
        SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC);
        return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero);
      }
    }
  }

  // fold (sext x) -> (zext x) if the sign bit is known zero.
  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
      DAG.SignBitIsZero(N0))
    return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0);

  if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
    return NewVSel;

  // Eliminate this sign extend by doing a negation in the destination type:
  // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
  if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
      isNullOrNullSplat(N0.getOperand(0)) &&
      N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND &&
      TLI.isOperationLegalOrCustom(ISD::SUB, VT)) {
    SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT);
    return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext);
  }
  // Eliminate this sign extend by doing a decrement in the destination type:
  // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
  if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() &&
      isAllOnesOrAllOnesSplat(N0.getOperand(1)) &&
      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
      TLI.isOperationLegalOrCustom(ISD::ADD, VT)) {
    SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT);
    return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
  }

  return SDValue();
}

// isTruncateOf - If N is a truncate of some other value, return true, record
// the value being truncated in Op and which of Op's bits are zero/one in Known.
// This function computes KnownBits to avoid a duplicated call to
// computeKnownBits in the caller.
static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
                         KnownBits &Known) {
  if (N->getOpcode() == ISD::TRUNCATE) {
    Op = N->getOperand(0);
    Known = DAG.computeKnownBits(Op);
    return true;
  }

  if (N.getOpcode() != ISD::SETCC ||
      N.getValueType().getScalarType() != MVT::i1 ||
      cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE)
    return false;

  SDValue Op0 = N->getOperand(0);
  SDValue Op1 = N->getOperand(1);
  assert(Op0.getValueType() == Op1.getValueType());

  if (isNullOrNullSplat(Op0))
    Op = Op1;
  else if (isNullOrNullSplat(Op1))
    Op = Op0;
  else
    return false;

  Known = DAG.computeKnownBits(Op);

  return (Known.Zero | 1).isAllOnesValue();
}

/// Given an extending node with a pop-count operand, if the target does not
/// support a pop-count in the narrow source type but does support it in the
/// destination type, widen the pop-count to the destination type.
static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) {
  assert((Extend->getOpcode() == ISD::ZERO_EXTEND ||
          Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op");

  SDValue CtPop = Extend->getOperand(0);
  if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse())
    return SDValue();

  EVT VT = Extend->getValueType(0);
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) ||
      !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT))
    return SDValue();

  // zext (ctpop X) --> ctpop (zext X)
  SDLoc DL(Extend);
  SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT);
  return DAG.getNode(ISD::CTPOP, DL, VT, NewZext);
}

SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
    return Res;

  // fold (zext (zext x)) -> (zext x)
  // fold (zext (aext x)) -> (zext x)
  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
                       N0.getOperand(0));

  // fold (zext (truncate x)) -> (zext x) or
  //      (zext (truncate x)) -> (truncate x)
  // This is valid when the truncated bits of x are already zero.
  SDValue Op;
  KnownBits Known;
  if (isTruncateOf(DAG, N0, Op, Known)) {
    APInt TruncatedBits =
      (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ?
      APInt(Op.getScalarValueSizeInBits(), 0) :
      APInt::getBitsSet(Op.getScalarValueSizeInBits(),
                        N0.getScalarValueSizeInBits(),
                        std::min(Op.getScalarValueSizeInBits(),
                                 VT.getScalarSizeInBits()));
    if (TruncatedBits.isSubsetOf(Known.Zero))
      return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
  }

  // fold (zext (truncate x)) -> (and x, mask)
  if (N0.getOpcode() == ISD::TRUNCATE) {
    // fold (zext (truncate (load x))) -> (zext (smaller load x))
    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
    if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
      SDNode *oye = N0.getOperand(0).getNode();
      if (NarrowLoad.getNode() != N0.getNode()) {
        CombineTo(N0.getNode(), NarrowLoad);
        // CombineTo deleted the truncate, if needed, but not what's under it.
        AddToWorklist(oye);
      }
      return SDValue(N, 0); // Return N so it doesn't get rechecked!
    }

    EVT SrcVT = N0.getOperand(0).getValueType();
    EVT MinVT = N0.getValueType();

    // Try to mask before the extension to avoid having to generate a larger mask,
    // possibly over several sub-vectors.
    if (SrcVT.bitsLT(VT) && VT.isVector()) {
      if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
                               TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
        SDValue Op = N0.getOperand(0);
        Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT);
        AddToWorklist(Op.getNode());
        SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
        // Transfer the debug info; the new node is equivalent to N0.
        DAG.transferDbgValues(N0, ZExtOrTrunc);
        return ZExtOrTrunc;
      }
    }

    if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
      SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
      AddToWorklist(Op.getNode());
      SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT);
      // We may safely transfer the debug info describing the truncate node over
      // to the equivalent and operation.
      DAG.transferDbgValues(N0, And);
      return And;
    }
  }

  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
  // if either of the casts is not free.
  if (N0.getOpcode() == ISD::AND &&
      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
      N0.getOperand(1).getOpcode() == ISD::Constant &&
      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
                           N0.getValueType()) ||
       !TLI.isZExtFree(N0.getValueType(), VT))) {
    SDValue X = N0.getOperand(0).getOperand(0);
    X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT);
    APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
    SDLoc DL(N);
    return DAG.getNode(ISD::AND, DL, VT,
                       X, DAG.getConstant(Mask, DL, VT));
  }

  // Try to simplify (zext (load x)).
  if (SDValue foldedExt =
          tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
                             ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
    return foldedExt;

  if (SDValue foldedExt =
      tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD,
                               ISD::ZERO_EXTEND))
    return foldedExt;

  // fold (zext (load x)) to multiple smaller zextloads.
  // Only on illegal but splittable vectors.
  if (SDValue ExtLoad = CombineExtLoad(N))
    return ExtLoad;

  // fold (zext (and/or/xor (load x), cst)) ->
  //      (and/or/xor (zextload x), (zext cst))
  // Unless (and (load x) cst) will match as a zextload already and has
  // additional users.
  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
       N0.getOpcode() == ISD::XOR) &&
      isa<LoadSDNode>(N0.getOperand(0)) &&
      N0.getOperand(1).getOpcode() == ISD::Constant &&
      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
    LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
    EVT MemVT = LN00->getMemoryVT();
    if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) &&
        LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) {
      bool DoXform = true;
      SmallVector<SDNode*, 4> SetCCs;
      if (!N0.hasOneUse()) {
        if (N0.getOpcode() == ISD::AND) {
          auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
          EVT LoadResultTy = AndC->getValueType(0);
          EVT ExtVT;
          if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT))
            DoXform = false;
        }
      }
      if (DoXform)
        DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
                                          ISD::ZERO_EXTEND, SetCCs, TLI);
      if (DoXform) {
        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT,
                                         LN00->getChain(), LN00->getBasePtr(),
                                         LN00->getMemoryVT(),
                                         LN00->getMemOperand());
        APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
        SDLoc DL(N);
        SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
                                  ExtLoad, DAG.getConstant(Mask, DL, VT));
        ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
        bool NoReplaceTruncAnd = !N0.hasOneUse();
        bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
        CombineTo(N, And);
        // If N0 has multiple uses, change other uses as well.
        if (NoReplaceTruncAnd) {
          SDValue TruncAnd =
              DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
          CombineTo(N0.getNode(), TruncAnd);
        }
        if (NoReplaceTrunc) {
          DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
        } else {
          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
                                      LN00->getValueType(0), ExtLoad);
          CombineTo(LN00, Trunc, ExtLoad.getValue(1));
        }
        return SDValue(N,0); // Return N so it doesn't get rechecked!
      }
    }
  }

  // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
  //      (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
  if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N))
    return ZExtLoad;

  // Try to simplify (zext (zextload x)).
  if (SDValue foldedExt = tryToFoldExtOfExtload(
          DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD))
    return foldedExt;

  if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
    return V;

  if (N0.getOpcode() == ISD::SETCC) {
    // Only do this before legalize for now.
    if (!LegalOperations && VT.isVector() &&
        N0.getValueType().getVectorElementType() == MVT::i1) {
      EVT N00VT = N0.getOperand(0).getValueType();
      if (getSetCCResultType(N00VT) == N0.getValueType())
        return SDValue();

      // We know that the # elements of the results is the same as the #
      // elements of the compare (and the # elements of the compare result for
      // that matter). Check to see that they are the same size. If so, we know
      // that the element size of the sext'd result matches the element size of
      // the compare operands.
      SDLoc DL(N);
      if (VT.getSizeInBits() == N00VT.getSizeInBits()) {
        // zext(setcc) -> zext_in_reg(vsetcc) for vectors.
        SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0),
                                     N0.getOperand(1), N0.getOperand(2));
        return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType());
      }

      // If the desired elements are smaller or larger than the source
      // elements we can use a matching integer vector type and then
      // truncate/any extend followed by zext_in_reg.
      EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
      SDValue VsetCC =
          DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0),
                      N0.getOperand(1), N0.getOperand(2));
      return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL,
                                    N0.getValueType());
    }

    // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc)
    SDLoc DL(N);
    EVT N0VT = N0.getValueType();
    EVT N00VT = N0.getOperand(0).getValueType();
    if (SDValue SCC = SimplifySelectCC(
            DL, N0.getOperand(0), N0.getOperand(1),
            DAG.getBoolConstant(true, DL, N0VT, N00VT),
            DAG.getBoolConstant(false, DL, N0VT, N00VT),
            cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
      return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC);
  }

  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
      isa<ConstantSDNode>(N0.getOperand(1)) &&
      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
      N0.hasOneUse()) {
    SDValue ShAmt = N0.getOperand(1);
    if (N0.getOpcode() == ISD::SHL) {
      SDValue InnerZExt = N0.getOperand(0);
      // If the original shl may be shifting out bits, do not perform this
      // transformation.
      unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() -
        InnerZExt.getOperand(0).getValueSizeInBits();
      if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits))
        return SDValue();
    }

    SDLoc DL(N);

    // Ensure that the shift amount is wide enough for the shifted value.
    if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits())
      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);

    return DAG.getNode(N0.getOpcode(), DL, VT,
                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
                       ShAmt);
  }

  if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
    return NewVSel;

  if (SDValue NewCtPop = widenCtPop(N, DAG))
    return NewCtPop;

  return SDValue();
}

SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
    return Res;

  // fold (aext (aext x)) -> (aext x)
  // fold (aext (zext x)) -> (zext x)
  // fold (aext (sext x)) -> (sext x)
  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
      N0.getOpcode() == ISD::ZERO_EXTEND ||
      N0.getOpcode() == ISD::SIGN_EXTEND)
    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));

  // fold (aext (truncate (load x))) -> (aext (smaller load x))
  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
  if (N0.getOpcode() == ISD::TRUNCATE) {
    if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
      SDNode *oye = N0.getOperand(0).getNode();
      if (NarrowLoad.getNode() != N0.getNode()) {
        CombineTo(N0.getNode(), NarrowLoad);
        // CombineTo deleted the truncate, if needed, but not what's under it.
        AddToWorklist(oye);
      }
      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
    }
  }

  // fold (aext (truncate x))
  if (N0.getOpcode() == ISD::TRUNCATE)
    return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);

  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
  // if the trunc is not free.
  if (N0.getOpcode() == ISD::AND &&
      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
      N0.getOperand(1).getOpcode() == ISD::Constant &&
      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
                          N0.getValueType())) {
    SDLoc DL(N);
    SDValue X = N0.getOperand(0).getOperand(0);
    X = DAG.getAnyExtOrTrunc(X, DL, VT);
    APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
    return DAG.getNode(ISD::AND, DL, VT,
                       X, DAG.getConstant(Mask, DL, VT));
  }

  // fold (aext (load x)) -> (aext (truncate (extload x)))
  // None of the supported targets knows how to perform load and any_ext
  // on vectors in one instruction, so attempt to fold to zext instead.
  if (VT.isVector()) {
    // Try to simplify (zext (load x)).
    if (SDValue foldedExt =
            tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
                               ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
      return foldedExt;
  } else if (ISD::isNON_EXTLoad(N0.getNode()) &&
             ISD::isUNINDEXEDLoad(N0.getNode()) &&
             TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
    bool DoXform = true;
    SmallVector<SDNode *, 4> SetCCs;
    if (!N0.hasOneUse())
      DoXform =
          ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
    if (DoXform) {
      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
                                       LN0->getChain(), LN0->getBasePtr(),
                                       N0.getValueType(), LN0->getMemOperand());
      ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND);
      // If the load value is used only by N, replace it via CombineTo N.
      bool NoReplaceTrunc = N0.hasOneUse();
      CombineTo(N, ExtLoad);
      if (NoReplaceTrunc) {
        DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
        recursivelyDeleteUnusedNodes(LN0);
      } else {
        SDValue Trunc =
            DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
        CombineTo(LN0, Trunc, ExtLoad.getValue(1));
      }
      return SDValue(N, 0); // Return N so it doesn't get rechecked!
    }
  }

  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
  if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) &&
      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
    ISD::LoadExtType ExtType = LN0->getExtensionType();
    EVT MemVT = LN0->getMemoryVT();
    if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
      SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
                                       VT, LN0->getChain(), LN0->getBasePtr(),
                                       MemVT, LN0->getMemOperand());
      CombineTo(N, ExtLoad);
      DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
      recursivelyDeleteUnusedNodes(LN0);
      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
    }
  }

  if (N0.getOpcode() == ISD::SETCC) {
    // For vectors:
    // aext(setcc) -> vsetcc
    // aext(setcc) -> truncate(vsetcc)
    // aext(setcc) -> aext(vsetcc)
    // Only do this before legalize for now.
    if (VT.isVector() && !LegalOperations) {
      EVT N00VT = N0.getOperand(0).getValueType();
      if (getSetCCResultType(N00VT) == N0.getValueType())
        return SDValue();

      // We know that the # elements of the results is the same as the
      // # elements of the compare (and the # elements of the compare result
      // for that matter).  Check to see that they are the same size.  If so,
      // we know that the element size of the sext'd result matches the
      // element size of the compare operands.
      if (VT.getSizeInBits() == N00VT.getSizeInBits())
        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
                             N0.getOperand(1),
                             cast<CondCodeSDNode>(N0.getOperand(2))->get());

      // If the desired elements are smaller or larger than the source
      // elements we can use a matching integer vector type and then
      // truncate/any extend
      EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
      SDValue VsetCC =
        DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
                      N0.getOperand(1),
                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
      return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
    }

    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
    SDLoc DL(N);
    if (SDValue SCC = SimplifySelectCC(
            DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
            DAG.getConstant(0, DL, VT),
            cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
      return SCC;
  }

  if (SDValue NewCtPop = widenCtPop(N, DAG))
    return NewCtPop;

  return SDValue();
}

SDValue DAGCombiner::visitAssertExt(SDNode *N) {
  unsigned Opcode = N->getOpcode();
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT AssertVT = cast<VTSDNode>(N1)->getVT();

  // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
  if (N0.getOpcode() == Opcode &&
      AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT())
    return N0;

  if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
      N0.getOperand(0).getOpcode() == Opcode) {
    // We have an assert, truncate, assert sandwich. Make one stronger assert
    // by asserting on the smallest asserted type to the larger source type.
    // This eliminates the later assert:
    // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
    // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
    SDValue BigA = N0.getOperand(0);
    EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
    assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
           "Asserting zero/sign-extended bits to a type larger than the "
           "truncated destination does not provide information");

    SDLoc DL(N);
    EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT;
    SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT);
    SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
                                    BigA.getOperand(0), MinAssertVTVal);
    return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
  }

  // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
  // than X. Just move the AssertZext in front of the truncate and drop the
  // AssertSExt.
  if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
      N0.getOperand(0).getOpcode() == ISD::AssertSext &&
      Opcode == ISD::AssertZext) {
    SDValue BigA = N0.getOperand(0);
    EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
    assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
           "Asserting zero/sign-extended bits to a type larger than the "
           "truncated destination does not provide information");

    if (AssertVT.bitsLT(BigA_AssertVT)) {
      SDLoc DL(N);
      SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
                                      BigA.getOperand(0), N1);
      return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
    }
  }

  return SDValue();
}

SDValue DAGCombiner::visitAssertAlign(SDNode *N) {
  SDLoc DL(N);

  Align AL = cast<AssertAlignSDNode>(N)->getAlign();
  SDValue N0 = N->getOperand(0);

  // Fold (assertalign (assertalign x, AL0), AL1) ->
  // (assertalign x, max(AL0, AL1))
  if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0))
    return DAG.getAssertAlign(DL, N0.getOperand(0),
                              std::max(AL, AAN->getAlign()));

  // In rare cases, there are trivial arithmetic ops in source operands. Sink
  // this assert down to source operands so that those arithmetic ops could be
  // exposed to the DAG combining.
  switch (N0.getOpcode()) {
  default:
    break;
  case ISD::ADD:
  case ISD::SUB: {
    unsigned AlignShift = Log2(AL);
    SDValue LHS = N0.getOperand(0);
    SDValue RHS = N0.getOperand(1);
    unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros();
    unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros();
    if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) {
      if (LHSAlignShift < AlignShift)
        LHS = DAG.getAssertAlign(DL, LHS, AL);
      if (RHSAlignShift < AlignShift)
        RHS = DAG.getAssertAlign(DL, RHS, AL);
      return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS);
    }
    break;
  }
  }

  return SDValue();
}

/// If the result of a wider load is shifted to right of N  bits and then
/// truncated to a narrower type and where N is a multiple of number of bits of
/// the narrower type, transform it to a narrower load from address + N / num of
/// bits of new type. Also narrow the load if the result is masked with an AND
/// to effectively produce a smaller type. If the result is to be extended, also
/// fold the extension to form a extending load.
SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
  unsigned Opc = N->getOpcode();

  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);
  EVT ExtVT = VT;

  // This transformation isn't valid for vector loads.
  if (VT.isVector())
    return SDValue();

  unsigned ShAmt = 0;
  bool HasShiftedOffset = false;
  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
  // extended to VT.
  if (Opc == ISD::SIGN_EXTEND_INREG) {
    ExtType = ISD::SEXTLOAD;
    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
  } else if (Opc == ISD::SRL) {
    // Another special-case: SRL is basically zero-extending a narrower value,
    // or it maybe shifting a higher subword, half or byte into the lowest
    // bits.
    ExtType = ISD::ZEXTLOAD;
    N0 = SDValue(N, 0);

    auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0));
    auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
    if (!N01 || !LN0)
      return SDValue();

    uint64_t ShiftAmt = N01->getZExtValue();
    uint64_t MemoryWidth = LN0->getMemoryVT().getSizeInBits();
    if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt)
      ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt);
    else
      ExtVT = EVT::getIntegerVT(*DAG.getContext(),
                                VT.getSizeInBits() - ShiftAmt);
  } else if (Opc == ISD::AND) {
    // An AND with a constant mask is the same as a truncate + zero-extend.
    auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1));
    if (!AndC)
      return SDValue();

    const APInt &Mask = AndC->getAPIntValue();
    unsigned ActiveBits = 0;
    if (Mask.isMask()) {
      ActiveBits = Mask.countTrailingOnes();
    } else if (Mask.isShiftedMask()) {
      ShAmt = Mask.countTrailingZeros();
      APInt ShiftedMask = Mask.lshr(ShAmt);
      ActiveBits = ShiftedMask.countTrailingOnes();
      HasShiftedOffset = true;
    } else
      return SDValue();

    ExtType = ISD::ZEXTLOAD;
    ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
  }

  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
    SDValue SRL = N0;
    if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) {
      ShAmt = ConstShift->getZExtValue();
      unsigned EVTBits = ExtVT.getSizeInBits();
      // Is the shift amount a multiple of size of VT?
      if ((ShAmt & (EVTBits-1)) == 0) {
        N0 = N0.getOperand(0);
        // Is the load width a multiple of size of VT?
        if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0)
          return SDValue();
      }

      // At this point, we must have a load or else we can't do the transform.
      auto *LN0 = dyn_cast<LoadSDNode>(N0);
      if (!LN0) return SDValue();

      // Because a SRL must be assumed to *need* to zero-extend the high bits
      // (as opposed to anyext the high bits), we can't combine the zextload
      // lowering of SRL and an sextload.
      if (LN0->getExtensionType() == ISD::SEXTLOAD)
        return SDValue();

      // If the shift amount is larger than the input type then we're not
      // accessing any of the loaded bytes.  If the load was a zextload/extload
      // then the result of the shift+trunc is zero/undef (handled elsewhere).
      if (ShAmt >= LN0->getMemoryVT().getSizeInBits())
        return SDValue();

      // If the SRL is only used by a masking AND, we may be able to adjust
      // the ExtVT to make the AND redundant.
      SDNode *Mask = *(SRL->use_begin());
      if (Mask->getOpcode() == ISD::AND &&
          isa<ConstantSDNode>(Mask->getOperand(1))) {
        const APInt& ShiftMask = Mask->getConstantOperandAPInt(1);
        if (ShiftMask.isMask()) {
          EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(),
                                           ShiftMask.countTrailingOnes());
          // If the mask is smaller, recompute the type.
          if ((ExtVT.getSizeInBits() > MaskedVT.getSizeInBits()) &&
              TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT))
            ExtVT = MaskedVT;
        }
      }
    }
  }

  // If the load is shifted left (and the result isn't shifted back right),
  // we can fold the truncate through the shift.
  unsigned ShLeftAmt = 0;
  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
      ShLeftAmt = N01->getZExtValue();
      N0 = N0.getOperand(0);
    }
  }

  // If we haven't found a load, we can't narrow it.
  if (!isa<LoadSDNode>(N0))
    return SDValue();

  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
  // Reducing the width of a volatile load is illegal.  For atomics, we may be
  // able to reduce the width provided we never widen again. (see D66309)
  if (!LN0->isSimple() ||
      !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt))
    return SDValue();

  auto AdjustBigEndianShift = [&](unsigned ShAmt) {
    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
    return LVTStoreBits - EVTStoreBits - ShAmt;
  };

  // For big endian targets, we need to adjust the offset to the pointer to
  // load the correct bytes.
  if (DAG.getDataLayout().isBigEndian())
    ShAmt = AdjustBigEndianShift(ShAmt);

  uint64_t PtrOff = ShAmt / 8;
  Align NewAlign = commonAlignment(LN0->getAlign(), PtrOff);
  SDLoc DL(LN0);
  // The original load itself didn't wrap, so an offset within it doesn't.
  SDNodeFlags Flags;
  Flags.setNoUnsignedWrap(true);
  SDValue NewPtr = DAG.getMemBasePlusOffset(LN0->getBasePtr(),
                                            TypeSize::Fixed(PtrOff), DL, Flags);
  AddToWorklist(NewPtr.getNode());

  SDValue Load;
  if (ExtType == ISD::NON_EXTLOAD)
    Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr,
                       LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign,
                       LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
  else
    Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr,
                          LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT,
                          NewAlign, LN0->getMemOperand()->getFlags(),
                          LN0->getAAInfo());

  // Replace the old load's chain with the new load's chain.
  WorklistRemover DeadNodes(*this);
  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));

  // Shift the result left, if we've swallowed a left shift.
  SDValue Result = Load;
  if (ShLeftAmt != 0) {
    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
      ShImmTy = VT;
    // If the shift amount is as large as the result size (but, presumably,
    // no larger than the source) then the useful bits of the result are
    // zero; we can't simply return the shortened shift, because the result
    // of that operation is undefined.
    if (ShLeftAmt >= VT.getSizeInBits())
      Result = DAG.getConstant(0, DL, VT);
    else
      Result = DAG.getNode(ISD::SHL, DL, VT,
                          Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
  }

  if (HasShiftedOffset) {
    // Recalculate the shift amount after it has been altered to calculate
    // the offset.
    if (DAG.getDataLayout().isBigEndian())
      ShAmt = AdjustBigEndianShift(ShAmt);

    // We're using a shifted mask, so the load now has an offset. This means
    // that data has been loaded into the lower bytes than it would have been
    // before, so we need to shl the loaded data into the correct position in the
    // register.
    SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT);
    Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC);
    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
  }

  // Return the new loaded value.
  return Result;
}

SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N->getValueType(0);
  EVT ExtVT = cast<VTSDNode>(N1)->getVT();
  unsigned VTBits = VT.getScalarSizeInBits();
  unsigned ExtVTBits = ExtVT.getScalarSizeInBits();

  // sext_vector_inreg(undef) = 0 because the top bit will all be the same.
  if (N0.isUndef())
    return DAG.getConstant(0, SDLoc(N), VT);

  // fold (sext_in_reg c1) -> c1
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);

  // If the input is already sign extended, just drop the extension.
  if (DAG.ComputeNumSignBits(N0) >= (VTBits - ExtVTBits + 1))
    return N0;

  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
      ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0),
                       N1);

  // fold (sext_in_reg (sext x)) -> (sext x)
  // fold (sext_in_reg (aext x)) -> (sext x)
  // if x is small enough or if we know that x has more than 1 sign bit and the
  // sign_extend_inreg is extending from one of them.
  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
    SDValue N00 = N0.getOperand(0);
    unsigned N00Bits = N00.getScalarValueSizeInBits();
    if ((N00Bits <= ExtVTBits ||
         (N00Bits - DAG.ComputeNumSignBits(N00)) < ExtVTBits) &&
        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
      return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00);
  }

  // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
  if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG ||
       N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ||
       N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) &&
      N0.getOperand(0).getScalarValueSizeInBits() == ExtVTBits) {
    if (!LegalOperations ||
        TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))
      return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT,
                         N0.getOperand(0));
  }

  // fold (sext_in_reg (zext x)) -> (sext x)
  // iff we are extending the source sign bit.
  if (N0.getOpcode() == ISD::ZERO_EXTEND) {
    SDValue N00 = N0.getOperand(0);
    if (N00.getScalarValueSizeInBits() == ExtVTBits &&
        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
      return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
  }

  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
  if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1)))
    return DAG.getZeroExtendInReg(N0, SDLoc(N), ExtVT);

  // fold operands of sext_in_reg based on knowledge that the top bits are not
  // demanded.
  if (SimplifyDemandedBits(SDValue(N, 0)))
    return SDValue(N, 0);

  // fold (sext_in_reg (load x)) -> (smaller sextload x)
  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
  if (SDValue NarrowLoad = ReduceLoadWidth(N))
    return NarrowLoad;

  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
  if (N0.getOpcode() == ISD::SRL) {
    if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
      if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) {
        // We can turn this into an SRA iff the input to the SRL is already sign
        // extended enough.
        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
        if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits)
          return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
                             N0.getOperand(1));
      }
  }

  // fold (sext_inreg (extload x)) -> (sextload x)
  // If sextload is not supported by target, we can only do the combine when
  // load has one use. Doing otherwise can block folding the extload with other
  // extends that the target does support.
  if (ISD::isEXTLoad(N0.getNode()) &&
      ISD::isUNINDEXEDLoad(N0.getNode()) &&
      ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
      ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() &&
        N0.hasOneUse()) ||
       TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) {
    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
                                     LN0->getChain(),
                                     LN0->getBasePtr(), ExtVT,
                                     LN0->getMemOperand());
    CombineTo(N, ExtLoad);
    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
    AddToWorklist(ExtLoad.getNode());
    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
  }
  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
      N0.hasOneUse() &&
      ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
      ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) &&
       TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) {
    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
                                     LN0->getChain(),
                                     LN0->getBasePtr(), ExtVT,
                                     LN0->getMemOperand());
    CombineTo(N, ExtLoad);
    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
  }

  // fold (sext_inreg (masked_load x)) -> (sext_masked_load x)
  // ignore it if the masked load is already sign extended
  if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) {
    if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() &&
        Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD &&
        TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) {
      SDValue ExtMaskedLoad = DAG.getMaskedLoad(
          VT, SDLoc(N), Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(),
          Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(),
          Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad());
      CombineTo(N, ExtMaskedLoad);
      CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1));
      return SDValue(N, 0); // Return N so it doesn't get rechecked!
    }
  }

  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
  if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) {
    if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
                                           N0.getOperand(1), false))
      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1);
  }

  return SDValue();
}

SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // sext_vector_inreg(undef) = 0 because the top bit will all be the same.
  if (N0.isUndef())
    return DAG.getConstant(0, SDLoc(N), VT);

  if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
    return Res;

  if (SimplifyDemandedVectorElts(SDValue(N, 0)))
    return SDValue(N, 0);

  return SDValue();
}

SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // zext_vector_inreg(undef) = 0 because the top bits will be zero.
  if (N0.isUndef())
    return DAG.getConstant(0, SDLoc(N), VT);

  if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
    return Res;

  if (SimplifyDemandedVectorElts(SDValue(N, 0)))
    return SDValue(N, 0);

  return SDValue();
}

SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);
  EVT SrcVT = N0.getValueType();
  bool isLE = DAG.getDataLayout().isLittleEndian();

  // noop truncate
  if (SrcVT == VT)
    return N0;

  // fold (truncate (truncate x)) -> (truncate x)
  if (N0.getOpcode() == ISD::TRUNCATE)
    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));

  // fold (truncate c1) -> c1
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
    SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
    if (C.getNode() != N)
      return C;
  }

  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
      N0.getOpcode() == ISD::SIGN_EXTEND ||
      N0.getOpcode() == ISD::ANY_EXTEND) {
    // if the source is smaller than the dest, we still need an extend.
    if (N0.getOperand(0).getValueType().bitsLT(VT))
      return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
    // if the source is larger than the dest, than we just need the truncate.
    if (N0.getOperand(0).getValueType().bitsGT(VT))
      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
    // if the source and dest are the same type, we can drop both the extend
    // and the truncate.
    return N0.getOperand(0);
  }

  // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
  if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND))
    return SDValue();

  // Fold extract-and-trunc into a narrow extract. For example:
  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
  //   i32 y = TRUNCATE(i64 x)
  //        -- becomes --
  //   v16i8 b = BITCAST (v2i64 val)
  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
  //
  // Note: We only run this optimization after type legalization (which often
  // creates this pattern) and before operation legalization after which
  // we need to be more careful about the vector instructions that we generate.
  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
      LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
    EVT VecTy = N0.getOperand(0).getValueType();
    EVT ExTy = N0.getValueType();
    EVT TrTy = N->getValueType(0);

    auto EltCnt = VecTy.getVectorElementCount();
    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
    auto NewEltCnt = EltCnt * SizeRatio;

    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt);
    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");

    SDValue EltNo = N0->getOperand(1);
    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));

      SDLoc DL(N);
      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
                         DAG.getBitcast(NVT, N0.getOperand(0)),
                         DAG.getVectorIdxConstant(Index, DL));
    }
  }

  // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
  if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) {
    if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
        TLI.isTruncateFree(SrcVT, VT)) {
      SDLoc SL(N0);
      SDValue Cond = N0.getOperand(0);
      SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
      SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
      return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
    }
  }

  // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
  if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
      (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) &&
      TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
    SDValue Amt = N0.getOperand(1);
    KnownBits Known = DAG.computeKnownBits(Amt);
    unsigned Size = VT.getScalarSizeInBits();
    if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
      SDLoc SL(N);
      EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());

      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
      if (AmtVT != Amt.getValueType()) {
        Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT);
        AddToWorklist(Amt.getNode());
      }
      return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt);
    }
  }

  // Attempt to pre-truncate BUILD_VECTOR sources.
  if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations &&
      TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) &&
      // Avoid creating illegal types if running after type legalizer.
      (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) {
    SDLoc DL(N);
    EVT SVT = VT.getScalarType();
    SmallVector<SDValue, 8> TruncOps;
    for (const SDValue &Op : N0->op_values()) {
      SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op);
      TruncOps.push_back(TruncOp);
    }
    return DAG.getBuildVector(VT, DL, TruncOps);
  }

  // Fold a series of buildvector, bitcast, and truncate if possible.
  // For example fold
  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
  //   (2xi32 (buildvector x, y)).
  if (Level == AfterLegalizeVectorOps && VT.isVector() &&
      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
      N0.getOperand(0).hasOneUse()) {
    SDValue BuildVect = N0.getOperand(0);
    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
    EVT TruncVecEltTy = VT.getVectorElementType();

    // Check that the element types match.
    if (BuildVectEltTy == TruncVecEltTy) {
      // Now we only need to compute the offset of the truncated elements.
      unsigned BuildVecNumElts =  BuildVect.getNumOperands();
      unsigned TruncVecNumElts = VT.getVectorNumElements();
      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;

      assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
             "Invalid number of elements");

      SmallVector<SDValue, 8> Opnds;
      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
        Opnds.push_back(BuildVect.getOperand(i));

      return DAG.getBuildVector(VT, SDLoc(N), Opnds);
    }
  }

  // See if we can simplify the input to this truncate through knowledge that
  // only the low bits are being used.
  // For example "trunc (or (shl x, 8), y)" // -> trunc y
  // Currently we only perform this optimization on scalars because vectors
  // may have different active low bits.
  if (!VT.isVector()) {
    APInt Mask =
        APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits());
    if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask))
      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
  }

  // fold (truncate (load x)) -> (smaller load x)
  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
    if (SDValue Reduced = ReduceLoadWidth(N))
      return Reduced;

    // Handle the case where the load remains an extending load even
    // after truncation.
    if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
      if (LN0->isSimple() &&
          LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) {
        SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
                                         VT, LN0->getChain(), LN0->getBasePtr(),
                                         LN0->getMemoryVT(),
                                         LN0->getMemOperand());
        DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
        return NewLoad;
      }
    }
  }

  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
  // where ... are all 'undef'.
  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
    SmallVector<EVT, 8> VTs;
    SDValue V;
    unsigned Idx = 0;
    unsigned NumDefs = 0;

    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
      SDValue X = N0.getOperand(i);
      if (!X.isUndef()) {
        V = X;
        Idx = i;
        NumDefs++;
      }
      // Stop if more than one members are non-undef.
      if (NumDefs > 1)
        break;

      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
                                     VT.getVectorElementType(),
                                     X.getValueType().getVectorElementCount()));
    }

    if (NumDefs == 0)
      return DAG.getUNDEF(VT);

    if (NumDefs == 1) {
      assert(V.getNode() && "The single defined operand is empty!");
      SmallVector<SDValue, 8> Opnds;
      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
        if (i != Idx) {
          Opnds.push_back(DAG.getUNDEF(VTs[i]));
          continue;
        }
        SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
        AddToWorklist(NV.getNode());
        Opnds.push_back(NV);
      }
      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
    }
  }

  // Fold truncate of a bitcast of a vector to an extract of the low vector
  // element.
  //
  // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
  if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
    SDValue VecSrc = N0.getOperand(0);
    EVT VecSrcVT = VecSrc.getValueType();
    if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT &&
        (!LegalOperations ||
         TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) {
      SDLoc SL(N);

      unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1;
      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc,
                         DAG.getVectorIdxConstant(Idx, SL));
    }
  }

  // Simplify the operands using demanded-bits information.
  if (!VT.isVector() &&
      SimplifyDemandedBits(SDValue(N, 0)))
    return SDValue(N, 0);

  // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
  // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
  // When the adde's carry is not used.
  if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) &&
      N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) &&
      // We only do for addcarry before legalize operation
      ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) ||
       TLI.isOperationLegal(N0.getOpcode(), VT))) {
    SDLoc SL(N);
    auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
    auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
    auto VTs = DAG.getVTList(VT, N0->getValueType(1));
    return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2));
  }

  // fold (truncate (extract_subvector(ext x))) ->
  //      (extract_subvector x)
  // TODO: This can be generalized to cover cases where the truncate and extract
  // do not fully cancel each other out.
  if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
    SDValue N00 = N0.getOperand(0);
    if (N00.getOpcode() == ISD::SIGN_EXTEND ||
        N00.getOpcode() == ISD::ZERO_EXTEND ||
        N00.getOpcode() == ISD::ANY_EXTEND) {
      if (N00.getOperand(0)->getValueType(0).getVectorElementType() ==
          VT.getVectorElementType())
        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT,
                           N00.getOperand(0), N0.getOperand(1));
    }
  }

  if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
    return NewVSel;

  // Narrow a suitable binary operation with a non-opaque constant operand by
  // moving it ahead of the truncate. This is limited to pre-legalization
  // because targets may prefer a wider type during later combines and invert
  // this transform.
  switch (N0.getOpcode()) {
  case ISD::ADD:
  case ISD::SUB:
  case ISD::MUL:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
    if (!LegalOperations && N0.hasOneUse() &&
        (isConstantOrConstantVector(N0.getOperand(0), true) ||
         isConstantOrConstantVector(N0.getOperand(1), true))) {
      // TODO: We already restricted this to pre-legalization, but for vectors
      // we are extra cautious to not create an unsupported operation.
      // Target-specific changes are likely needed to avoid regressions here.
      if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) {
        SDLoc DL(N);
        SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
        SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
        return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR);
      }
    }
  }

  return SDValue();
}

static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
  SDValue Elt = N->getOperand(i);
  if (Elt.getOpcode() != ISD::MERGE_VALUES)
    return Elt.getNode();
  return Elt.getOperand(Elt.getResNo()).getNode();
}

/// build_pair (load, load) -> load
/// if load locations are consecutive.
SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
  assert(N->getOpcode() == ISD::BUILD_PAIR);

  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));

  // A BUILD_PAIR is always having the least significant part in elt 0 and the
  // most significant part in elt 1. So when combining into one large load, we
  // need to consider the endianness.
  if (DAG.getDataLayout().isBigEndian())
    std::swap(LD1, LD2);

  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
      LD1->getAddressSpace() != LD2->getAddressSpace())
    return SDValue();
  EVT LD1VT = LD1->getValueType(0);
  unsigned LD1Bytes = LD1VT.getStoreSize();
  if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() &&
      DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) {
    Align Alignment = LD1->getAlign();
    Align NewAlign = DAG.getDataLayout().getABITypeAlign(
        VT.getTypeForEVT(*DAG.getContext()));

    if (NewAlign <= Alignment &&
        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
      return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(),
                         LD1->getPointerInfo(), Alignment);
  }

  return SDValue();
}

static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
  // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
  // and Lo parts; on big-endian machines it doesn't.
  return DAG.getDataLayout().isBigEndian() ? 1 : 0;
}

static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
                                    const TargetLowering &TLI) {
  // If this is not a bitcast to an FP type or if the target doesn't have
  // IEEE754-compliant FP logic, we're done.
  EVT VT = N->getValueType(0);
  if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT))
    return SDValue();

  // TODO: Handle cases where the integer constant is a different scalar
  // bitwidth to the FP.
  SDValue N0 = N->getOperand(0);
  EVT SourceVT = N0.getValueType();
  if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits())
    return SDValue();

  unsigned FPOpcode;
  APInt SignMask;
  switch (N0.getOpcode()) {
  case ISD::AND:
    FPOpcode = ISD::FABS;
    SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits());
    break;
  case ISD::XOR:
    FPOpcode = ISD::FNEG;
    SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
    break;
  case ISD::OR:
    FPOpcode = ISD::FABS;
    SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
    break;
  default:
    return SDValue();
  }

  // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
  // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
  // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
  //   fneg (fabs X)
  SDValue LogicOp0 = N0.getOperand(0);
  ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true);
  if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
      LogicOp0.getOpcode() == ISD::BITCAST &&
      LogicOp0.getOperand(0).getValueType() == VT) {
    SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0));
    NumFPLogicOpsConv++;
    if (N0.getOpcode() == ISD::OR)
      return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp);
    return FPOp;
  }

  return SDValue();
}

SDValue DAGCombiner::visitBITCAST(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  if (N0.isUndef())
    return DAG.getUNDEF(VT);

  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
  // Only do this before legalize types, unless both types are integer and the
  // scalar type is legal. Only do this before legalize ops, since the target
  // maybe depending on the bitcast.
  // First check to see if this is all constant.
  // TODO: Support FP bitcasts after legalize types.
  if (VT.isVector() &&
      (!LegalTypes ||
       (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() &&
        TLI.isTypeLegal(VT.getVectorElementType()))) &&
      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
      cast<BuildVectorSDNode>(N0)->isConstant())
    return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(),
                                             VT.getVectorElementType());

  // If the input is a constant, let getNode fold it.
  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
    // If we can't allow illegal operations, we need to check that this is just
    // a fp -> int or int -> conversion and that the resulting operation will
    // be legal.
    if (!LegalOperations ||
        (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
         TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
        (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
         TLI.isOperationLegal(ISD::Constant, VT))) {
      SDValue C = DAG.getBitcast(VT, N0);
      if (C.getNode() != N)
        return C;
    }
  }

  // (conv (conv x, t1), t2) -> (conv x, t2)
  if (N0.getOpcode() == ISD::BITCAST)
    return DAG.getBitcast(VT, N0.getOperand(0));

  // fold (conv (load x)) -> (load (conv*)x)
  // If the resultant load doesn't need a higher alignment than the original!
  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
      // Do not remove the cast if the types differ in endian layout.
      TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
          TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
      // If the load is volatile, we only want to change the load type if the
      // resulting load is legal. Otherwise we might increase the number of
      // memory accesses. We don't care if the original type was legal or not
      // as we assume software couldn't rely on the number of accesses of an
      // illegal type.
      ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) ||
       TLI.isOperationLegal(ISD::LOAD, VT))) {
    LoadSDNode *LN0 = cast<LoadSDNode>(N0);

    if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG,
                                    *LN0->getMemOperand())) {
      SDValue Load =
          DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
                      LN0->getPointerInfo(), LN0->getAlign(),
                      LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
      return Load;
    }
  }

  if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
    return V;

  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
  //
  // For ppc_fp128:
  // fold (bitcast (fneg x)) ->
  //     flipbit = signbit
  //     (xor (bitcast x) (build_pair flipbit, flipbit))
  //
  // fold (bitcast (fabs x)) ->
  //     flipbit = (and (extract_element (bitcast x), 0), signbit)
  //     (xor (bitcast x) (build_pair flipbit, flipbit))
  // This often reduces constant pool loads.
  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
      N0.getNode()->hasOneUse() && VT.isInteger() &&
      !VT.isVector() && !N0.getValueType().isVector()) {
    SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0));
    AddToWorklist(NewConv.getNode());

    SDLoc DL(N);
    if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
      assert(VT.getSizeInBits() == 128);
      SDValue SignBit = DAG.getConstant(
          APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
      SDValue FlipBit;
      if (N0.getOpcode() == ISD::FNEG) {
        FlipBit = SignBit;
        AddToWorklist(FlipBit.getNode());
      } else {
        assert(N0.getOpcode() == ISD::FABS);
        SDValue Hi =
            DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
                        DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
                                              SDLoc(NewConv)));
        AddToWorklist(Hi.getNode());
        FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
        AddToWorklist(FlipBit.getNode());
      }
      SDValue FlipBits =
          DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
      AddToWorklist(FlipBits.getNode());
      return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
    }
    APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
    if (N0.getOpcode() == ISD::FNEG)
      return DAG.getNode(ISD::XOR, DL, VT,
                         NewConv, DAG.getConstant(SignBit, DL, VT));
    assert(N0.getOpcode() == ISD::FABS);
    return DAG.getNode(ISD::AND, DL, VT,
                       NewConv, DAG.getConstant(~SignBit, DL, VT));
  }

  // fold (bitconvert (fcopysign cst, x)) ->
  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
  // Note that we don't handle (copysign x, cst) because this can always be
  // folded to an fneg or fabs.
  //
  // For ppc_fp128:
  // fold (bitcast (fcopysign cst, x)) ->
  //     flipbit = (and (extract_element
  //                     (xor (bitcast cst), (bitcast x)), 0),
  //                    signbit)
  //     (xor (bitcast cst) (build_pair flipbit, flipbit))
  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
      VT.isInteger() && !VT.isVector()) {
    unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
    if (isTypeLegal(IntXVT)) {
      SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
      AddToWorklist(X.getNode());

      // If X has a different width than the result/lhs, sext it or truncate it.
      unsigned VTWidth = VT.getSizeInBits();
      if (OrigXWidth < VTWidth) {
        X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
        AddToWorklist(X.getNode());
      } else if (OrigXWidth > VTWidth) {
        // To get the sign bit in the right place, we have to shift it right
        // before truncating.
        SDLoc DL(X);
        X = DAG.getNode(ISD::SRL, DL,
                        X.getValueType(), X,
                        DAG.getConstant(OrigXWidth-VTWidth, DL,
                                        X.getValueType()));
        AddToWorklist(X.getNode());
        X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
        AddToWorklist(X.getNode());
      }

      if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
        APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2);
        SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
        AddToWorklist(Cst.getNode());
        SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
        AddToWorklist(X.getNode());
        SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
        AddToWorklist(XorResult.getNode());
        SDValue XorResult64 = DAG.getNode(
            ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
            DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
                                  SDLoc(XorResult)));
        AddToWorklist(XorResult64.getNode());
        SDValue FlipBit =
            DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
                        DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
        AddToWorklist(FlipBit.getNode());
        SDValue FlipBits =
            DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
        AddToWorklist(FlipBits.getNode());
        return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
      }
      APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
      X = DAG.getNode(ISD::AND, SDLoc(X), VT,
                      X, DAG.getConstant(SignBit, SDLoc(X), VT));
      AddToWorklist(X.getNode());

      SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
      Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
                        Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
      AddToWorklist(Cst.getNode());

      return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
    }
  }

  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
  if (N0.getOpcode() == ISD::BUILD_PAIR)
    if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
      return CombineLD;

  // Remove double bitcasts from shuffles - this is often a legacy of
  // XformToShuffleWithZero being used to combine bitmaskings (of
  // float vectors bitcast to integer vectors) into shuffles.
  // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
  if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
      N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() &&
      VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
      !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
    ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);

    // If operands are a bitcast, peek through if it casts the original VT.
    // If operands are a constant, just bitcast back to original VT.
    auto PeekThroughBitcast = [&](SDValue Op) {
      if (Op.getOpcode() == ISD::BITCAST &&
          Op.getOperand(0).getValueType() == VT)
        return SDValue(Op.getOperand(0));
      if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
          ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
        return DAG.getBitcast(VT, Op);
      return SDValue();
    };

    // FIXME: If either input vector is bitcast, try to convert the shuffle to
    // the result type of this bitcast. This would eliminate at least one
    // bitcast. See the transform in InstCombine.
    SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
    SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
    if (!(SV0 && SV1))
      return SDValue();

    int MaskScale =
        VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
    SmallVector<int, 8> NewMask;
    for (int M : SVN->getMask())
      for (int i = 0; i != MaskScale; ++i)
        NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);

    SDValue LegalShuffle =
        TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG);
    if (LegalShuffle)
      return LegalShuffle;
  }

  return SDValue();
}

SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
  EVT VT = N->getValueType(0);
  return CombineConsecutiveLoads(N, VT);
}

SDValue DAGCombiner::visitFREEZE(SDNode *N) {
  SDValue N0 = N->getOperand(0);

  // (freeze (freeze x)) -> (freeze x)
  if (N0.getOpcode() == ISD::FREEZE)
    return N0;

  // If the input is a constant, return it.
  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0))
    return N0;

  return SDValue();
}

/// We know that BV is a build_vector node with Constant, ConstantFP or Undef
/// operands. DstEltVT indicates the destination element value type.
SDValue DAGCombiner::
ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();

  // If this is already the right type, we're done.
  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);

  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
  unsigned DstBitSize = DstEltVT.getSizeInBits();

  // If this is a conversion of N elements of one type to N elements of another
  // type, convert each element.  This handles FP<->INT cases.
  if (SrcBitSize == DstBitSize) {
    SmallVector<SDValue, 8> Ops;
    for (SDValue Op : BV->op_values()) {
      // If the vector element type is not legal, the BUILD_VECTOR operands
      // are promoted and implicitly truncated.  Make that explicit here.
      if (Op.getValueType() != SrcEltVT)
        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
      Ops.push_back(DAG.getBitcast(DstEltVT, Op));
      AddToWorklist(Ops.back().getNode());
    }
    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
                              BV->getValueType(0).getVectorNumElements());
    return DAG.getBuildVector(VT, SDLoc(BV), Ops);
  }

  // Otherwise, we're growing or shrinking the elements.  To avoid having to
  // handle annoying details of growing/shrinking FP values, we convert them to
  // int first.
  if (SrcEltVT.isFloatingPoint()) {
    // Convert the input float vector to a int vector where the elements are the
    // same sizes.
    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
    SrcEltVT = IntVT;
  }

  // Now we know the input is an integer vector.  If the output is a FP type,
  // convert to integer first, then to FP of the right size.
  if (DstEltVT.isFloatingPoint()) {
    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();

    // Next, convert to FP elements of the same size.
    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
  }

  SDLoc DL(BV);

  // Okay, we know the src/dst types are both integers of differing types.
  // Handling growing first.
  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
  if (SrcBitSize < DstBitSize) {
    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;

    SmallVector<SDValue, 8> Ops;
    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
         i += NumInputsPerOutput) {
      bool isLE = DAG.getDataLayout().isLittleEndian();
      APInt NewBits = APInt(DstBitSize, 0);
      bool EltIsUndef = true;
      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
        // Shift the previously computed bits over.
        NewBits <<= SrcBitSize;
        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
        if (Op.isUndef()) continue;
        EltIsUndef = false;

        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
      }

      if (EltIsUndef)
        Ops.push_back(DAG.getUNDEF(DstEltVT));
      else
        Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
    }

    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
    return DAG.getBuildVector(VT, DL, Ops);
  }

  // Finally, this must be the case where we are shrinking elements: each input
  // turns into multiple outputs.
  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
                            NumOutputsPerInput*BV->getNumOperands());
  SmallVector<SDValue, 8> Ops;

  for (const SDValue &Op : BV->op_values()) {
    if (Op.isUndef()) {
      Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
      continue;
    }

    APInt OpVal = cast<ConstantSDNode>(Op)->
                  getAPIntValue().zextOrTrunc(SrcBitSize);

    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
      APInt ThisVal = OpVal.trunc(DstBitSize);
      Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
      OpVal.lshrInPlace(DstBitSize);
    }

    // For big endian targets, swap the order of the pieces of each element.
    if (DAG.getDataLayout().isBigEndian())
      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
  }

  return DAG.getBuildVector(VT, DL, Ops);
}

static bool isContractable(SDNode *N) {
  SDNodeFlags F = N->getFlags();
  return F.hasAllowContract() || F.hasAllowReassociation();
}

/// Try to perform FMA combining on a given FADD node.
SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N->getValueType(0);
  SDLoc SL(N);

  const TargetOptions &Options = DAG.getTarget().Options;

  // Floating-point multiply-add with intermediate rounding.
  bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N));

  // Floating-point multiply-add without intermediate rounding.
  bool HasFMA =
      TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) &&
      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));

  // No valid opcode, do not combine.
  if (!HasFMAD && !HasFMA)
    return SDValue();

  bool CanFuse = Options.UnsafeFPMath || isContractable(N);
  bool CanReassociate =
      Options.UnsafeFPMath || N->getFlags().hasAllowReassociation();
  bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
                              CanFuse || HasFMAD);
  // If the addition is not contractable, do not combine.
  if (!AllowFusionGlobally && !isContractable(N))
    return SDValue();

  if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
    return SDValue();

  // Always prefer FMAD to FMA for precision.
  unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
  bool Aggressive = TLI.enableAggressiveFMAFusion(VT);

  // Is the node an FMUL and contractable either due to global flags or
  // SDNodeFlags.
  auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
    if (N.getOpcode() != ISD::FMUL)
      return false;
    return AllowFusionGlobally || isContractable(N.getNode());
  };
  // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
  // prefer to fold the multiply with fewer uses.
  if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) {
    if (N0.getNode()->use_size() > N1.getNode()->use_size())
      std::swap(N0, N1);
  }

  // fold (fadd (fmul x, y), z) -> (fma x, y, z)
  if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
    return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0),
                       N0.getOperand(1), N1);
  }

  // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
  // Note: Commutes FADD operands.
  if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
    return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0),
                       N1.getOperand(1), N0);
  }

  // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E)
  // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E)
  // This requires reassociation because it changes the order of operations.
  SDValue FMA, E;
  if (CanReassociate && N0.getOpcode() == PreferredFusedOpcode &&
      N0.getOperand(2).getOpcode() == ISD::FMUL && N0.hasOneUse() &&
      N0.getOperand(2).hasOneUse()) {
    FMA = N0;
    E = N1;
  } else if (CanReassociate && N1.getOpcode() == PreferredFusedOpcode &&
             N1.getOperand(2).getOpcode() == ISD::FMUL && N1.hasOneUse() &&
             N1.getOperand(2).hasOneUse()) {
    FMA = N1;
    E = N0;
  }
  if (FMA && E) {
    SDValue A = FMA.getOperand(0);
    SDValue B = FMA.getOperand(1);
    SDValue C = FMA.getOperand(2).getOperand(0);
    SDValue D = FMA.getOperand(2).getOperand(1);
    SDValue CDE = DAG.getNode(PreferredFusedOpcode, SL, VT, C, D, E);
    return DAG.getNode(PreferredFusedOpcode, SL, VT, A, B, CDE);
  }

  // Look through FP_EXTEND nodes to do more combining.

  // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
  if (N0.getOpcode() == ISD::FP_EXTEND) {
    SDValue N00 = N0.getOperand(0);
    if (isContractableFMUL(N00) &&
        TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
                            N00.getValueType())) {
      return DAG.getNode(PreferredFusedOpcode, SL, VT,
                         DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
                         DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
                         N1);
    }
  }

  // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
  // Note: Commutes FADD operands.
  if (N1.getOpcode() == ISD::FP_EXTEND) {
    SDValue N10 = N1.getOperand(0);
    if (isContractableFMUL(N10) &&
        TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
                            N10.getValueType())) {
      return DAG.getNode(PreferredFusedOpcode, SL, VT,
                         DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)),
                         DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)),
                         N0);
    }
  }

  // More folding opportunities when target permits.
  if (Aggressive) {
    // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
    //   -> (fma x, y, (fma (fpext u), (fpext v), z))
    auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V,
                                    SDValue Z) {
      return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
                         DAG.getNode(PreferredFusedOpcode, SL, VT,
                                     DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
                                     DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
                                     Z));
    };
    if (N0.getOpcode() == PreferredFusedOpcode) {
      SDValue N02 = N0.getOperand(2);
      if (N02.getOpcode() == ISD::FP_EXTEND) {
        SDValue N020 = N02.getOperand(0);
        if (isContractableFMUL(N020) &&
            TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
                                N020.getValueType())) {
          return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
                                      N020.getOperand(0), N020.getOperand(1),
                                      N1);
        }
      }
    }

    // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
    //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
    // FIXME: This turns two single-precision and one double-precision
    // operation into two double-precision operations, which might not be
    // interesting for all targets, especially GPUs.
    auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V,
                                    SDValue Z) {
      return DAG.getNode(
          PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
          DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
          DAG.getNode(PreferredFusedOpcode, SL, VT,
                      DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
                      DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z));
    };
    if (N0.getOpcode() == ISD::FP_EXTEND) {
      SDValue N00 = N0.getOperand(0);
      if (N00.getOpcode() == PreferredFusedOpcode) {
        SDValue N002 = N00.getOperand(2);
        if (isContractableFMUL(N002) &&
            TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
                                N00.getValueType())) {
          return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
                                      N002.getOperand(0), N002.getOperand(1),
                                      N1);
        }
      }
    }

    // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
    //   -> (fma y, z, (fma (fpext u), (fpext v), x))
    if (N1.getOpcode() == PreferredFusedOpcode) {
      SDValue N12 = N1.getOperand(2);
      if (N12.getOpcode() == ISD::FP_EXTEND) {
        SDValue N120 = N12.getOperand(0);
        if (isContractableFMUL(N120) &&
            TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
                                N120.getValueType())) {
          return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
                                      N120.getOperand(0), N120.getOperand(1),
                                      N0);
        }
      }
    }

    // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
    //   -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
    // FIXME: This turns two single-precision and one double-precision
    // operation into two double-precision operations, which might not be
    // interesting for all targets, especially GPUs.
    if (N1.getOpcode() == ISD::FP_EXTEND) {
      SDValue N10 = N1.getOperand(0);
      if (N10.getOpcode() == PreferredFusedOpcode) {
        SDValue N102 = N10.getOperand(2);
        if (isContractableFMUL(N102) &&
            TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
                                N10.getValueType())) {
          return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
                                      N102.getOperand(0), N102.getOperand(1),
                                      N0);
        }
      }
    }
  }

  return SDValue();
}

/// Try to perform FMA combining on a given FSUB node.
SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N->getValueType(0);
  SDLoc SL(N);

  const TargetOptions &Options = DAG.getTarget().Options;
  // Floating-point multiply-add with intermediate rounding.
  bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N));

  // Floating-point multiply-add without intermediate rounding.
  bool HasFMA =
      TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) &&
      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));

  // No valid opcode, do not combine.
  if (!HasFMAD && !HasFMA)
    return SDValue();

  const SDNodeFlags Flags = N->getFlags();
  bool CanFuse = Options.UnsafeFPMath || isContractable(N);
  bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
                              CanFuse || HasFMAD);

  // If the subtraction is not contractable, do not combine.
  if (!AllowFusionGlobally && !isContractable(N))
    return SDValue();

  if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
    return SDValue();

  // Always prefer FMAD to FMA for precision.
  unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
  bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
  bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros();

  // Is the node an FMUL and contractable either due to global flags or
  // SDNodeFlags.
  auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
    if (N.getOpcode() != ISD::FMUL)
      return false;
    return AllowFusionGlobally || isContractable(N.getNode());
  };

  // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
  auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) {
    if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) {
      return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0),
                         XY.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, Z));
    }
    return SDValue();
  };

  // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
  // Note: Commutes FSUB operands.
  auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) {
    if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) {
      return DAG.getNode(PreferredFusedOpcode, SL, VT,
                         DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)),
                         YZ.getOperand(1), X);
    }
    return SDValue();
  };

  // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)),
  // prefer to fold the multiply with fewer uses.
  if (isContractableFMUL(N0) && isContractableFMUL(N1) &&
      (N0.getNode()->use_size() > N1.getNode()->use_size())) {
    // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b))
    if (SDValue V = tryToFoldXSubYZ(N0, N1))
      return V;
    // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d)))
    if (SDValue V = tryToFoldXYSubZ(N0, N1))
      return V;
  } else {
    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
    if (SDValue V = tryToFoldXYSubZ(N0, N1))
      return V;
    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
    if (SDValue V = tryToFoldXSubYZ(N0, N1))
      return V;
  }

  // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
  if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) &&
      (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
    SDValue N00 = N0.getOperand(0).getOperand(0);
    SDValue N01 = N0.getOperand(0).getOperand(1);
    return DAG.getNode(PreferredFusedOpcode, SL, VT,
                       DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
                       DAG.getNode(ISD::FNEG, SL, VT, N1));
  }

  // Look through FP_EXTEND nodes to do more combining.

  // fold (fsub (fpext (fmul x, y)), z)
  //   -> (fma (fpext x), (fpext y), (fneg z))
  if (N0.getOpcode() == ISD::FP_EXTEND) {
    SDValue N00 = N0.getOperand(0);
    if (isContractableFMUL(N00) &&
        TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
                            N00.getValueType())) {
      return DAG.getNode(PreferredFusedOpcode, SL, VT,
                         DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
                         DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
                         DAG.getNode(ISD::FNEG, SL, VT, N1));
    }
  }

  // fold (fsub x, (fpext (fmul y, z)))
  //   -> (fma (fneg (fpext y)), (fpext z), x)
  // Note: Commutes FSUB operands.
  if (N1.getOpcode() == ISD::FP_EXTEND) {
    SDValue N10 = N1.getOperand(0);
    if (isContractableFMUL(N10) &&
        TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
                            N10.getValueType())) {
      return DAG.getNode(
          PreferredFusedOpcode, SL, VT,
          DAG.getNode(ISD::FNEG, SL, VT,
                      DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))),
          DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0);
    }
  }

  // fold (fsub (fpext (fneg (fmul, x, y))), z)
  //   -> (fneg (fma (fpext x), (fpext y), z))
  // Note: This could be removed with appropriate canonicalization of the
  // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
  // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
  // from implementing the canonicalization in visitFSUB.
  if (N0.getOpcode() == ISD::FP_EXTEND) {
    SDValue N00 = N0.getOperand(0);
    if (N00.getOpcode() == ISD::FNEG) {
      SDValue N000 = N00.getOperand(0);
      if (isContractableFMUL(N000) &&
          TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
                              N00.getValueType())) {
        return DAG.getNode(
            ISD::FNEG, SL, VT,
            DAG.getNode(PreferredFusedOpcode, SL, VT,
                        DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)),
                        DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)),
                        N1));
      }
    }
  }

  // fold (fsub (fneg (fpext (fmul, x, y))), z)
  //   -> (fneg (fma (fpext x)), (fpext y), z)
  // Note: This could be removed with appropriate canonicalization of the
  // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
  // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
  // from implementing the canonicalization in visitFSUB.
  if (N0.getOpcode() == ISD::FNEG) {
    SDValue N00 = N0.getOperand(0);
    if (N00.getOpcode() == ISD::FP_EXTEND) {
      SDValue N000 = N00.getOperand(0);
      if (isContractableFMUL(N000) &&
          TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
                              N000.getValueType())) {
        return DAG.getNode(
            ISD::FNEG, SL, VT,
            DAG.getNode(PreferredFusedOpcode, SL, VT,
                        DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)),
                        DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)),
                        N1));
      }
    }
  }

  // More folding opportunities when target permits.
  if (Aggressive) {
    // fold (fsub (fma x, y, (fmul u, v)), z)
    //   -> (fma x, y (fma u, v, (fneg z)))
    if (CanFuse && N0.getOpcode() == PreferredFusedOpcode &&
        isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() &&
        N0.getOperand(2)->hasOneUse()) {
      return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0),
                         N0.getOperand(1),
                         DAG.getNode(PreferredFusedOpcode, SL, VT,
                                     N0.getOperand(2).getOperand(0),
                                     N0.getOperand(2).getOperand(1),
                                     DAG.getNode(ISD::FNEG, SL, VT, N1)));
    }

    // fold (fsub x, (fma y, z, (fmul u, v)))
    //   -> (fma (fneg y), z, (fma (fneg u), v, x))
    if (CanFuse && N1.getOpcode() == PreferredFusedOpcode &&
        isContractableFMUL(N1.getOperand(2)) &&
        N1->hasOneUse() && NoSignedZero) {
      SDValue N20 = N1.getOperand(2).getOperand(0);
      SDValue N21 = N1.getOperand(2).getOperand(1);
      return DAG.getNode(
          PreferredFusedOpcode, SL, VT,
          DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1),
          DAG.getNode(PreferredFusedOpcode, SL, VT,
                      DAG.getNode(ISD::FNEG, SL, VT, N20), N21, N0));
    }


    // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
    //   -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
    if (N0.getOpcode() == PreferredFusedOpcode &&
        N0->hasOneUse()) {
      SDValue N02 = N0.getOperand(2);
      if (N02.getOpcode() == ISD::FP_EXTEND) {
        SDValue N020 = N02.getOperand(0);
        if (isContractableFMUL(N020) &&
            TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
                                N020.getValueType())) {
          return DAG.getNode(
              PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1),
              DAG.getNode(
                  PreferredFusedOpcode, SL, VT,
                  DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)),
                  DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)),
                  DAG.getNode(ISD::FNEG, SL, VT, N1)));
        }
      }
    }

    // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
    //   -> (fma (fpext x), (fpext y),
    //           (fma (fpext u), (fpext v), (fneg z)))
    // FIXME: This turns two single-precision and one double-precision
    // operation into two double-precision operations, which might not be
    // interesting for all targets, especially GPUs.
    if (N0.getOpcode() == ISD::FP_EXTEND) {
      SDValue N00 = N0.getOperand(0);
      if (N00.getOpcode() == PreferredFusedOpcode) {
        SDValue N002 = N00.getOperand(2);
        if (isContractableFMUL(N002) &&
            TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
                                N00.getValueType())) {
          return DAG.getNode(
              PreferredFusedOpcode, SL, VT,
              DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
              DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
              DAG.getNode(
                  PreferredFusedOpcode, SL, VT,
                  DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)),
                  DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)),
                  DAG.getNode(ISD::FNEG, SL, VT, N1)));
        }
      }
    }

    // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
    //   -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
    if (N1.getOpcode() == PreferredFusedOpcode &&
        N1.getOperand(2).getOpcode() == ISD::FP_EXTEND &&
        N1->hasOneUse()) {
      SDValue N120 = N1.getOperand(2).getOperand(0);
      if (isContractableFMUL(N120) &&
          TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
                              N120.getValueType())) {
        SDValue N1200 = N120.getOperand(0);
        SDValue N1201 = N120.getOperand(1);
        return DAG.getNode(
            PreferredFusedOpcode, SL, VT,
            DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1),
            DAG.getNode(PreferredFusedOpcode, SL, VT,
                        DAG.getNode(ISD::FNEG, SL, VT,
                                    DAG.getNode(ISD::FP_EXTEND, SL, VT, N1200)),
                        DAG.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0));
      }
    }

    // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
    //   -> (fma (fneg (fpext y)), (fpext z),
    //           (fma (fneg (fpext u)), (fpext v), x))
    // FIXME: This turns two single-precision and one double-precision
    // operation into two double-precision operations, which might not be
    // interesting for all targets, especially GPUs.
    if (N1.getOpcode() == ISD::FP_EXTEND &&
        N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
      SDValue CvtSrc = N1.getOperand(0);
      SDValue N100 = CvtSrc.getOperand(0);
      SDValue N101 = CvtSrc.getOperand(1);
      SDValue N102 = CvtSrc.getOperand(2);
      if (isContractableFMUL(N102) &&
          TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
                              CvtSrc.getValueType())) {
        SDValue N1020 = N102.getOperand(0);
        SDValue N1021 = N102.getOperand(1);
        return DAG.getNode(
            PreferredFusedOpcode, SL, VT,
            DAG.getNode(ISD::FNEG, SL, VT,
                        DAG.getNode(ISD::FP_EXTEND, SL, VT, N100)),
            DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
            DAG.getNode(PreferredFusedOpcode, SL, VT,
                        DAG.getNode(ISD::FNEG, SL, VT,
                                    DAG.getNode(ISD::FP_EXTEND, SL, VT, N1020)),
                        DAG.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0));
      }
    }
  }

  return SDValue();
}

/// Try to perform FMA combining on a given FMUL node based on the distributive
/// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
/// subtraction instead of addition).
SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N->getValueType(0);
  SDLoc SL(N);

  assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");

  const TargetOptions &Options = DAG.getTarget().Options;

  // The transforms below are incorrect when x == 0 and y == inf, because the
  // intermediate multiplication produces a nan.
  if (!Options.NoInfsFPMath)
    return SDValue();

  // Floating-point multiply-add without intermediate rounding.
  bool HasFMA =
      (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) &&
      TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) &&
      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));

  // Floating-point multiply-add with intermediate rounding. This can result
  // in a less precise result due to the changed rounding order.
  bool HasFMAD = Options.UnsafeFPMath &&
                 (LegalOperations && TLI.isFMADLegal(DAG, N));

  // No valid opcode, do not combine.
  if (!HasFMAD && !HasFMA)
    return SDValue();

  // Always prefer FMAD to FMA for precision.
  unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
  bool Aggressive = TLI.enableAggressiveFMAFusion(VT);

  // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
  // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
  auto FuseFADD = [&](SDValue X, SDValue Y) {
    if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
      if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) {
        if (C->isExactlyValue(+1.0))
          return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
                             Y);
        if (C->isExactlyValue(-1.0))
          return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
                             DAG.getNode(ISD::FNEG, SL, VT, Y));
      }
    }
    return SDValue();
  };

  if (SDValue FMA = FuseFADD(N0, N1))
    return FMA;
  if (SDValue FMA = FuseFADD(N1, N0))
    return FMA;

  // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
  // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
  // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
  // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
  auto FuseFSUB = [&](SDValue X, SDValue Y) {
    if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
      if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) {
        if (C0->isExactlyValue(+1.0))
          return DAG.getNode(PreferredFusedOpcode, SL, VT,
                             DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
                             Y);
        if (C0->isExactlyValue(-1.0))
          return DAG.getNode(PreferredFusedOpcode, SL, VT,
                             DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
                             DAG.getNode(ISD::FNEG, SL, VT, Y));
      }
      if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) {
        if (C1->isExactlyValue(+1.0))
          return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
                             DAG.getNode(ISD::FNEG, SL, VT, Y));
        if (C1->isExactlyValue(-1.0))
          return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
                             Y);
      }
    }
    return SDValue();
  };

  if (SDValue FMA = FuseFSUB(N0, N1))
    return FMA;
  if (SDValue FMA = FuseFSUB(N1, N0))
    return FMA;

  return SDValue();
}

SDValue DAGCombiner::visitFADD(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
  bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
  EVT VT = N->getValueType(0);
  SDLoc DL(N);
  const TargetOptions &Options = DAG.getTarget().Options;
  SDNodeFlags Flags = N->getFlags();
  SelectionDAG::FlagInserter FlagsInserter(DAG, N);

  if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
    return R;

  // fold vector ops
  if (VT.isVector())
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;

  // fold (fadd c1, c2) -> c1 + c2
  if (N0CFP && N1CFP)
    return DAG.getNode(ISD::FADD, DL, VT, N0, N1);

  // canonicalize constant to RHS
  if (N0CFP && !N1CFP)
    return DAG.getNode(ISD::FADD, DL, VT, N1, N0);

  // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
  ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true);
  if (N1C && N1C->isZero())
    if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())
      return N0;

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  // fold (fadd A, (fneg B)) -> (fsub A, B)
  if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
    if (SDValue NegN1 = TLI.getCheaperNegatedExpression(
            N1, DAG, LegalOperations, ForCodeSize))
      return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1);

  // fold (fadd (fneg A), B) -> (fsub B, A)
  if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
    if (SDValue NegN0 = TLI.getCheaperNegatedExpression(
            N0, DAG, LegalOperations, ForCodeSize))
      return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0);

  auto isFMulNegTwo = [](SDValue FMul) {
    if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL)
      return false;
    auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true);
    return C && C->isExactlyValue(-2.0);
  };

  // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
  if (isFMulNegTwo(N0)) {
    SDValue B = N0.getOperand(0);
    SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B);
    return DAG.getNode(ISD::FSUB, DL, VT, N1, Add);
  }
  // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
  if (isFMulNegTwo(N1)) {
    SDValue B = N1.getOperand(0);
    SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B);
    return DAG.getNode(ISD::FSUB, DL, VT, N0, Add);
  }

  // No FP constant should be created after legalization as Instruction
  // Selection pass has a hard time dealing with FP constants.
  bool AllowNewConst = (Level < AfterLegalizeDAG);

  // If nnan is enabled, fold lots of things.
  if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) {
    // If allowed, fold (fadd (fneg x), x) -> 0.0
    if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
      return DAG.getConstantFP(0.0, DL, VT);

    // If allowed, fold (fadd x, (fneg x)) -> 0.0
    if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
      return DAG.getConstantFP(0.0, DL, VT);
  }

  // If 'unsafe math' or reassoc and nsz, fold lots of things.
  // TODO: break out portions of the transformations below for which Unsafe is
  //       considered and which do not require both nsz and reassoc
  if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
       (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
      AllowNewConst) {
    // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
    if (N1CFP && N0.getOpcode() == ISD::FADD &&
        isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
      SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1);
      return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC);
    }

    // We can fold chains of FADD's of the same value into multiplications.
    // This transform is not safe in general because we are reducing the number
    // of rounding steps.
    if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
      if (N0.getOpcode() == ISD::FMUL) {
        bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
        bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));

        // (fadd (fmul x, c), x) -> (fmul x, c+1)
        if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
          SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
                                       DAG.getConstantFP(1.0, DL, VT));
          return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP);
        }

        // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
        if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
            N1.getOperand(0) == N1.getOperand(1) &&
            N0.getOperand(0) == N1.getOperand(0)) {
          SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
                                       DAG.getConstantFP(2.0, DL, VT));
          return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP);
        }
      }

      if (N1.getOpcode() == ISD::FMUL) {
        bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
        bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));

        // (fadd x, (fmul x, c)) -> (fmul x, c+1)
        if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
          SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
                                       DAG.getConstantFP(1.0, DL, VT));
          return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP);
        }

        // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
        if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
            N0.getOperand(0) == N0.getOperand(1) &&
            N1.getOperand(0) == N0.getOperand(0)) {
          SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
                                       DAG.getConstantFP(2.0, DL, VT));
          return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP);
        }
      }

      if (N0.getOpcode() == ISD::FADD) {
        bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
        // (fadd (fadd x, x), x) -> (fmul x, 3.0)
        if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
            (N0.getOperand(0) == N1)) {
          return DAG.getNode(ISD::FMUL, DL, VT, N1,
                             DAG.getConstantFP(3.0, DL, VT));
        }
      }

      if (N1.getOpcode() == ISD::FADD) {
        bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
        // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
        if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
            N1.getOperand(0) == N0) {
          return DAG.getNode(ISD::FMUL, DL, VT, N0,
                             DAG.getConstantFP(3.0, DL, VT));
        }
      }

      // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
      if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
          N0.getOperand(0) == N0.getOperand(1) &&
          N1.getOperand(0) == N1.getOperand(1) &&
          N0.getOperand(0) == N1.getOperand(0)) {
        return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
                           DAG.getConstantFP(4.0, DL, VT));
      }
    }
  } // enable-unsafe-fp-math

  // FADD -> FMA combines:
  if (SDValue Fused = visitFADDForFMACombine(N)) {
    AddToWorklist(Fused.getNode());
    return Fused;
  }
  return SDValue();
}

SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) {
  SDValue Chain = N->getOperand(0);
  SDValue N0 = N->getOperand(1);
  SDValue N1 = N->getOperand(2);
  EVT VT = N->getValueType(0);
  EVT ChainVT = N->getValueType(1);
  SDLoc DL(N);
  SelectionDAG::FlagInserter FlagsInserter(DAG, N);

  // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B)
  if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT))
    if (SDValue NegN1 = TLI.getCheaperNegatedExpression(
            N1, DAG, LegalOperations, ForCodeSize)) {
      return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT),
                         {Chain, N0, NegN1});
    }

  // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A)
  if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT))
    if (SDValue NegN0 = TLI.getCheaperNegatedExpression(
            N0, DAG, LegalOperations, ForCodeSize)) {
      return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT),
                         {Chain, N1, NegN0});
    }
  return SDValue();
}

SDValue DAGCombiner::visitFSUB(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
  ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
  EVT VT = N->getValueType(0);
  SDLoc DL(N);
  const TargetOptions &Options = DAG.getTarget().Options;
  const SDNodeFlags Flags = N->getFlags();
  SelectionDAG::FlagInserter FlagsInserter(DAG, N);

  if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
    return R;

  // fold vector ops
  if (VT.isVector())
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;

  // fold (fsub c1, c2) -> c1-c2
  if (N0CFP && N1CFP)
    return DAG.getNode(ISD::FSUB, DL, VT, N0, N1);

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  // (fsub A, 0) -> A
  if (N1CFP && N1CFP->isZero()) {
    if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath ||
        Flags.hasNoSignedZeros()) {
      return N0;
    }
  }

  if (N0 == N1) {
    // (fsub x, x) -> 0.0
    if (Options.NoNaNsFPMath || Flags.hasNoNaNs())
      return DAG.getConstantFP(0.0f, DL, VT);
  }

  // (fsub -0.0, N1) -> -N1
  // NOTE: It is safe to transform an FSUB(-0.0,X) into an FNEG(X), since the
  //       FSUB does not specify the sign bit of a NaN. Also note that for
  //       the same reason, the inverse transform is not safe, unless fast math
  //       flags are in play.
  if (N0CFP && N0CFP->isZero()) {
    if (N0CFP->isNegative() ||
        (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) {
      if (SDValue NegN1 =
              TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize))
        return NegN1;
      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
        return DAG.getNode(ISD::FNEG, DL, VT, N1);
    }
  }

  if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
       (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
      N1.getOpcode() == ISD::FADD) {
    // X - (X + Y) -> -Y
    if (N0 == N1->getOperand(0))
      return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1));
    // X - (Y + X) -> -Y
    if (N0 == N1->getOperand(1))
      return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0));
  }

  // fold (fsub A, (fneg B)) -> (fadd A, B)
  if (SDValue NegN1 =
          TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize))
    return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1);

  // FSUB -> FMA combines:
  if (SDValue Fused = visitFSUBForFMACombine(N)) {
    AddToWorklist(Fused.getNode());
    return Fused;
  }

  return SDValue();
}

SDValue DAGCombiner::visitFMUL(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
  ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
  EVT VT = N->getValueType(0);
  SDLoc DL(N);
  const TargetOptions &Options = DAG.getTarget().Options;
  const SDNodeFlags Flags = N->getFlags();
  SelectionDAG::FlagInserter FlagsInserter(DAG, N);

  if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
    return R;

  // fold vector ops
  if (VT.isVector()) {
    // This just handles C1 * C2 for vectors. Other vector folds are below.
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;
  }

  // fold (fmul c1, c2) -> c1*c2
  if (N0CFP && N1CFP)
    return DAG.getNode(ISD::FMUL, DL, VT, N0, N1);

  // canonicalize constant to RHS
  if (isConstantFPBuildVectorOrConstantFP(N0) &&
     !isConstantFPBuildVectorOrConstantFP(N1))
    return DAG.getNode(ISD::FMUL, DL, VT, N1, N0);

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) {
    // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
    if (isConstantFPBuildVectorOrConstantFP(N1) &&
        N0.getOpcode() == ISD::FMUL) {
      SDValue N00 = N0.getOperand(0);
      SDValue N01 = N0.getOperand(1);
      // Avoid an infinite loop by making sure that N00 is not a constant
      // (the inner multiply has not been constant folded yet).
      if (isConstantFPBuildVectorOrConstantFP(N01) &&
          !isConstantFPBuildVectorOrConstantFP(N00)) {
        SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1);
        return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts);
      }
    }

    // Match a special-case: we convert X * 2.0 into fadd.
    // fmul (fadd X, X), C -> fmul X, 2.0 * C
    if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() &&
        N0.getOperand(0) == N0.getOperand(1)) {
      const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
      SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1);
      return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts);
    }
  }

  // fold (fmul X, 2.0) -> (fadd X, X)
  if (N1CFP && N1CFP->isExactlyValue(+2.0))
    return DAG.getNode(ISD::FADD, DL, VT, N0, N0);

  // fold (fmul X, -1.0) -> (fneg X)
  if (N1CFP && N1CFP->isExactlyValue(-1.0))
    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
      return DAG.getNode(ISD::FNEG, DL, VT, N0);

  // -N0 * -N1 --> N0 * N1
  TargetLowering::NegatibleCost CostN0 =
      TargetLowering::NegatibleCost::Expensive;
  TargetLowering::NegatibleCost CostN1 =
      TargetLowering::NegatibleCost::Expensive;
  SDValue NegN0 =
      TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
  SDValue NegN1 =
      TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
  if (NegN0 && NegN1 &&
      (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
       CostN1 == TargetLowering::NegatibleCost::Cheaper))
    return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1);

  // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
  // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
  if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() &&
      (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) &&
      TLI.isOperationLegal(ISD::FABS, VT)) {
    SDValue Select = N0, X = N1;
    if (Select.getOpcode() != ISD::SELECT)
      std::swap(Select, X);

    SDValue Cond = Select.getOperand(0);
    auto TrueOpnd  = dyn_cast<ConstantFPSDNode>(Select.getOperand(1));
    auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2));

    if (TrueOpnd && FalseOpnd &&
        Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X &&
        isa<ConstantFPSDNode>(Cond.getOperand(1)) &&
        cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) {
      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
      switch (CC) {
      default: break;
      case ISD::SETOLT:
      case ISD::SETULT:
      case ISD::SETOLE:
      case ISD::SETULE:
      case ISD::SETLT:
      case ISD::SETLE:
        std::swap(TrueOpnd, FalseOpnd);
        LLVM_FALLTHROUGH;
      case ISD::SETOGT:
      case ISD::SETUGT:
      case ISD::SETOGE:
      case ISD::SETUGE:
      case ISD::SETGT:
      case ISD::SETGE:
        if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) &&
            TLI.isOperationLegal(ISD::FNEG, VT))
          return DAG.getNode(ISD::FNEG, DL, VT,
                   DAG.getNode(ISD::FABS, DL, VT, X));
        if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0))
          return DAG.getNode(ISD::FABS, DL, VT, X);

        break;
      }
    }
  }

  // FMUL -> FMA combines:
  if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
    AddToWorklist(Fused.getNode());
    return Fused;
  }

  return SDValue();
}

SDValue DAGCombiner::visitFMA(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue N2 = N->getOperand(2);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
  EVT VT = N->getValueType(0);
  SDLoc DL(N);
  const TargetOptions &Options = DAG.getTarget().Options;
  SelectionDAG::FlagInserter FlagsInserter(DAG, N);

  // FMA nodes have flags that propagate to the created nodes.
  bool UnsafeFPMath = Options.UnsafeFPMath || isContractable(N);

  // Constant fold FMA.
  if (isa<ConstantFPSDNode>(N0) &&
      isa<ConstantFPSDNode>(N1) &&
      isa<ConstantFPSDNode>(N2)) {
    return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2);
  }

  // (-N0 * -N1) + N2 --> (N0 * N1) + N2
  TargetLowering::NegatibleCost CostN0 =
      TargetLowering::NegatibleCost::Expensive;
  TargetLowering::NegatibleCost CostN1 =
      TargetLowering::NegatibleCost::Expensive;
  SDValue NegN0 =
      TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
  SDValue NegN1 =
      TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
  if (NegN0 && NegN1 &&
      (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
       CostN1 == TargetLowering::NegatibleCost::Cheaper))
    return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2);

  if (UnsafeFPMath) {
    if (N0CFP && N0CFP->isZero())
      return N2;
    if (N1CFP && N1CFP->isZero())
      return N2;
  }

  if (N0CFP && N0CFP->isExactlyValue(1.0))
    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
  if (N1CFP && N1CFP->isExactlyValue(1.0))
    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);

  // Canonicalize (fma c, x, y) -> (fma x, c, y)
  if (isConstantFPBuildVectorOrConstantFP(N0) &&
     !isConstantFPBuildVectorOrConstantFP(N1))
    return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);

  if (UnsafeFPMath) {
    // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
    if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
        isConstantFPBuildVectorOrConstantFP(N1) &&
        isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
      return DAG.getNode(ISD::FMUL, DL, VT, N0,
                         DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1)));
    }

    // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
    if (N0.getOpcode() == ISD::FMUL &&
        isConstantFPBuildVectorOrConstantFP(N1) &&
        isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
      return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
                         DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)),
                         N2);
    }
  }

  // (fma x, -1, y) -> (fadd (fneg x), y)
  if (N1CFP) {
    if (N1CFP->isExactlyValue(1.0))
      return DAG.getNode(ISD::FADD, DL, VT, N0, N2);

    if (N1CFP->isExactlyValue(-1.0) &&
        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
      SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0);
      AddToWorklist(RHSNeg.getNode());
      return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
    }

    // fma (fneg x), K, y -> fma x -K, y
    if (N0.getOpcode() == ISD::FNEG &&
        (TLI.isOperationLegal(ISD::ConstantFP, VT) ||
         (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT,
                                              ForCodeSize)))) {
      return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
                         DAG.getNode(ISD::FNEG, DL, VT, N1), N2);
    }
  }

  if (UnsafeFPMath) {
    // (fma x, c, x) -> (fmul x, (c+1))
    if (N1CFP && N0 == N2) {
      return DAG.getNode(
          ISD::FMUL, DL, VT, N0,
          DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(1.0, DL, VT)));
    }

    // (fma x, c, (fneg x)) -> (fmul x, (c-1))
    if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
      return DAG.getNode(
          ISD::FMUL, DL, VT, N0,
          DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(-1.0, DL, VT)));
    }
  }

  // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z))
  // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z))
  if (!TLI.isFNegFree(VT))
    if (SDValue Neg = TLI.getCheaperNegatedExpression(
            SDValue(N, 0), DAG, LegalOperations, ForCodeSize))
      return DAG.getNode(ISD::FNEG, DL, VT, Neg);
  return SDValue();
}

// Combine multiple FDIVs with the same divisor into multiple FMULs by the
// reciprocal.
// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
// Notice that this is not always beneficial. One reason is different targets
// may have different costs for FDIV and FMUL, so sometimes the cost of two
// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
  // TODO: Limit this transform based on optsize/minsize - it always creates at
  //       least 1 extra instruction. But the perf win may be substantial enough
  //       that only minsize should restrict this.
  bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
  const SDNodeFlags Flags = N->getFlags();
  if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal()))
    return SDValue();

  // Skip if current node is a reciprocal/fneg-reciprocal.
  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
  ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true);
  if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0)))
    return SDValue();

  // Exit early if the target does not want this transform or if there can't
  // possibly be enough uses of the divisor to make the transform worthwhile.
  unsigned MinUses = TLI.combineRepeatedFPDivisors();

  // For splat vectors, scale the number of uses by the splat factor. If we can
  // convert the division into a scalar op, that will likely be much faster.
  unsigned NumElts = 1;
  EVT VT = N->getValueType(0);
  if (VT.isVector() && DAG.isSplatValue(N1))
    NumElts = VT.getVectorNumElements();

  if (!MinUses || (N1->use_size() * NumElts) < MinUses)
    return SDValue();

  // Find all FDIV users of the same divisor.
  // Use a set because duplicates may be present in the user list.
  SetVector<SDNode *> Users;
  for (auto *U : N1->uses()) {
    if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
      // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet.
      if (U->getOperand(1).getOpcode() == ISD::FSQRT &&
          U->getOperand(0) == U->getOperand(1).getOperand(0) &&
          U->getFlags().hasAllowReassociation() &&
          U->getFlags().hasNoSignedZeros())
        continue;

      // This division is eligible for optimization only if global unsafe math
      // is enabled or if this division allows reciprocal formation.
      if (UnsafeMath || U->getFlags().hasAllowReciprocal())
        Users.insert(U);
    }
  }

  // Now that we have the actual number of divisor uses, make sure it meets
  // the minimum threshold specified by the target.
  if ((Users.size() * NumElts) < MinUses)
    return SDValue();

  SDLoc DL(N);
  SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
  SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);

  // Dividend / Divisor -> Dividend * Reciprocal
  for (auto *U : Users) {
    SDValue Dividend = U->getOperand(0);
    if (Dividend != FPOne) {
      SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
                                    Reciprocal, Flags);
      CombineTo(U, NewNode);
    } else if (U != Reciprocal.getNode()) {
      // In the absence of fast-math-flags, this user node is always the
      // same node as Reciprocal, but with FMF they may be different nodes.
      CombineTo(U, Reciprocal);
    }
  }
  return SDValue(N, 0);  // N was replaced.
}

SDValue DAGCombiner::visitFDIV(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
  EVT VT = N->getValueType(0);
  SDLoc DL(N);
  const TargetOptions &Options = DAG.getTarget().Options;
  SDNodeFlags Flags = N->getFlags();
  SelectionDAG::FlagInserter FlagsInserter(DAG, N);

  if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
    return R;

  // fold vector ops
  if (VT.isVector())
    if (SDValue FoldedVOp = SimplifyVBinOp(N))
      return FoldedVOp;

  // fold (fdiv c1, c2) -> c1/c2
  if (N0CFP && N1CFP)
    return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  if (SDValue V = combineRepeatedFPDivisors(N))
    return V;

  if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) {
    // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
    if (N1CFP) {
      // Compute the reciprocal 1.0 / c2.
      const APFloat &N1APF = N1CFP->getValueAPF();
      APFloat Recip(N1APF.getSemantics(), 1); // 1.0
      APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
      // Only do the transform if the reciprocal is a legal fp immediate that
      // isn't too nasty (eg NaN, denormal, ...).
      if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
          (!LegalOperations ||
           // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
           // backend)... we should handle this gracefully after Legalize.
           // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
           TLI.isOperationLegal(ISD::ConstantFP, VT) ||
           TLI.isFPImmLegal(Recip, VT, ForCodeSize)))
        return DAG.getNode(ISD::FMUL, DL, VT, N0,
                           DAG.getConstantFP(Recip, DL, VT));
    }

    // If this FDIV is part of a reciprocal square root, it may be folded
    // into a target-specific square root estimate instruction.
    if (N1.getOpcode() == ISD::FSQRT) {
      if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags))
        return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
    } else if (N1.getOpcode() == ISD::FP_EXTEND &&
               N1.getOperand(0).getOpcode() == ISD::FSQRT) {
      if (SDValue RV =
              buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) {
        RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
        AddToWorklist(RV.getNode());
        return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
      }
    } else if (N1.getOpcode() == ISD::FP_ROUND &&
               N1.getOperand(0).getOpcode() == ISD::FSQRT) {
      if (SDValue RV =
              buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) {
        RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
        AddToWorklist(RV.getNode());
        return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
      }
    } else if (N1.getOpcode() == ISD::FMUL) {
      // Look through an FMUL. Even though this won't remove the FDIV directly,
      // it's still worthwhile to get rid of the FSQRT if possible.
      SDValue Sqrt, Y;
      if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
        Sqrt = N1.getOperand(0);
        Y = N1.getOperand(1);
      } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
        Sqrt = N1.getOperand(1);
        Y = N1.getOperand(0);
      }
      if (Sqrt.getNode()) {
        // If the other multiply operand is known positive, pull it into the
        // sqrt. That will eliminate the division if we convert to an estimate.
        if (Flags.hasAllowReassociation() && N1.hasOneUse() &&
            N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) {
          SDValue A;
          if (Y.getOpcode() == ISD::FABS && Y.hasOneUse())
            A = Y.getOperand(0);
          else if (Y == Sqrt.getOperand(0))
            A = Y;
          if (A) {
            // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z)
            // X / (A * sqrt(A))       --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A)
            SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A);
            SDValue AAZ =
                DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0));
            if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags))
              return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt);

            // Estimate creation failed. Clean up speculatively created nodes.
            recursivelyDeleteUnusedNodes(AAZ.getNode());
          }
        }

        // We found a FSQRT, so try to make this fold:
        // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y)
        if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) {
          SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y);
          AddToWorklist(Div.getNode());
          return DAG.getNode(ISD::FMUL, DL, VT, N0, Div);
        }
      }
    }

    // Fold into a reciprocal estimate and multiply instead of a real divide.
    if (Options.NoInfsFPMath || Flags.hasNoInfs())
      if (SDValue RV = BuildDivEstimate(N0, N1, Flags))
        return RV;
  }

  // Fold X/Sqrt(X) -> Sqrt(X)
  if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
      (Options.UnsafeFPMath || Flags.hasAllowReassociation()))
    if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0))
      return N1;

  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
  TargetLowering::NegatibleCost CostN0 =
      TargetLowering::NegatibleCost::Expensive;
  TargetLowering::NegatibleCost CostN1 =
      TargetLowering::NegatibleCost::Expensive;
  SDValue NegN0 =
      TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
  SDValue NegN1 =
      TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
  if (NegN0 && NegN1 &&
      (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
       CostN1 == TargetLowering::NegatibleCost::Cheaper))
    return DAG.getNode(ISD::FDIV, SDLoc(N), VT, NegN0, NegN1);

  return SDValue();
}

SDValue DAGCombiner::visitFREM(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
  EVT VT = N->getValueType(0);
  SDNodeFlags Flags = N->getFlags();
  SelectionDAG::FlagInserter FlagsInserter(DAG, N);

  if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
    return R;

  // fold (frem c1, c2) -> fmod(c1,c2)
  if (N0CFP && N1CFP)
    return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);

  if (SDValue NewSel = foldBinOpIntoSelect(N))
    return NewSel;

  return SDValue();
}

SDValue DAGCombiner::visitFSQRT(SDNode *N) {
  SDNodeFlags Flags = N->getFlags();
  const TargetOptions &Options = DAG.getTarget().Options;

  // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as:
  // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN
  if ((!Options.UnsafeFPMath && !Flags.hasApproximateFuncs()) ||
      (!Options.NoInfsFPMath && !Flags.hasNoInfs()))
    return SDValue();

  SDValue N0 = N->getOperand(0);
  if (TLI.isFsqrtCheap(N0, DAG))
    return SDValue();

  // FSQRT nodes have flags that propagate to the created nodes.
  // TODO: If this is N0/sqrt(N0), and we reach this node before trying to
  //       transform the fdiv, we may produce a sub-optimal estimate sequence
  //       because the reciprocal calculation may not have to filter out a
  //       0.0 input.
  return buildSqrtEstimate(N0, Flags);
}

/// copysign(x, fp_extend(y)) -> copysign(x, y)
/// copysign(x, fp_round(y)) -> copysign(x, y)
static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) {
  SDValue N1 = N->getOperand(1);
  if ((N1.getOpcode() == ISD::FP_EXTEND ||
       N1.getOpcode() == ISD::FP_ROUND)) {
    // Do not optimize out type conversion of f128 type yet.
    // For some targets like x86_64, configuration is changed to keep one f128
    // value in one SSE register, but instruction selection cannot handle
    // FCOPYSIGN on SSE registers yet.
    EVT N1VT = N1->getValueType(0);
    EVT N1Op0VT = N1->getOperand(0).getValueType();
    return (N1VT == N1Op0VT || N1Op0VT != MVT::f128);
  }
  return false;
}

SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
  bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
  EVT VT = N->getValueType(0);

  if (N0CFP && N1CFP) // Constant fold
    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);

  if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) {
    const APFloat &V = N1C->getValueAPF();
    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
    if (!V.isNegative()) {
      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
        return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
    } else {
      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
        return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
                           DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
    }
  }

  // copysign(fabs(x), y) -> copysign(x, y)
  // copysign(fneg(x), y) -> copysign(x, y)
  // copysign(copysign(x,z), y) -> copysign(x, y)
  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
      N0.getOpcode() == ISD::FCOPYSIGN)
    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1);

  // copysign(x, abs(y)) -> abs(x)
  if (N1.getOpcode() == ISD::FABS)
    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);

  // copysign(x, copysign(y,z)) -> copysign(x, z)
  if (N1.getOpcode() == ISD::FCOPYSIGN)
    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1));

  // copysign(x, fp_extend(y)) -> copysign(x, y)
  // copysign(x, fp_round(y)) -> copysign(x, y)
  if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0));

  return SDValue();
}

SDValue DAGCombiner::visitFPOW(SDNode *N) {
  ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1));
  if (!ExponentC)
    return SDValue();
  SelectionDAG::FlagInserter FlagsInserter(DAG, N);

  // Try to convert x ** (1/3) into cube root.
  // TODO: Handle the various flavors of long double.
  // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
  //       Some range near 1/3 should be fine.
  EVT VT = N->getValueType(0);
  if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) ||
      (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) {
    // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
    // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
    // pow(-val, 1/3) =  nan; cbrt(-val) = -num.
    // For regular numbers, rounding may cause the results to differ.
    // Therefore, we require { nsz ninf nnan afn } for this transform.
    // TODO: We could select out the special cases if we don't have nsz/ninf.
    SDNodeFlags Flags = N->getFlags();
    if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() ||
        !Flags.hasApproximateFuncs())
      return SDValue();

    // Do not create a cbrt() libcall if the target does not have it, and do not
    // turn a pow that has lowering support into a cbrt() libcall.
    if (!DAG.getLibInfo().has(LibFunc_cbrt) ||
        (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) &&
         DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT)))
      return SDValue();

    return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0));
  }

  // Try to convert x ** (1/4) and x ** (3/4) into square roots.
  // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
  // TODO: This could be extended (using a target hook) to handle smaller
  // power-of-2 fractional exponents.
  bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25);
  bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75);
  if (ExponentIs025 || ExponentIs075) {
    // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
    // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) =  NaN.
    // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
    // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) =  NaN.
    // For regular numbers, rounding may cause the results to differ.
    // Therefore, we require { nsz ninf afn } for this transform.
    // TODO: We could select out the special cases if we don't have nsz/ninf.
    SDNodeFlags Flags = N->getFlags();

    // We only need no signed zeros for the 0.25 case.
    if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() ||
        !Flags.hasApproximateFuncs())
      return SDValue();

    // Don't double the number of libcalls. We are trying to inline fast code.
    if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT))
      return SDValue();

    // Assume that libcalls are the smallest code.
    // TODO: This restriction should probably be lifted for vectors.
    if (ForCodeSize)
      return SDValue();

    // pow(X, 0.25) --> sqrt(sqrt(X))
    SDLoc DL(N);
    SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0));
    SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt);
    if (ExponentIs025)
      return SqrtSqrt;
    // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
    return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt);
  }

  return SDValue();
}

static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG,
                               const TargetLowering &TLI) {
  // This optimization is guarded by a function attribute because it may produce
  // unexpected results. Ie, programs may be relying on the platform-specific
  // undefined behavior when the float-to-int conversion overflows.
  const Function &F = DAG.getMachineFunction().getFunction();
  Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow");
  if (StrictOverflow.getValueAsString().equals("false"))
    return SDValue();

  // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
  // replacing casts with a libcall. We also must be allowed to ignore -0.0
  // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
  // conversions would return +0.0.
  // FIXME: We should be able to use node-level FMF here.
  // TODO: If strict math, should we use FABS (+ range check for signed cast)?
  EVT VT = N->getValueType(0);
  if (!TLI.isOperationLegal(ISD::FTRUNC, VT) ||
      !DAG.getTarget().Options.NoSignedZerosFPMath)
    return SDValue();

  // fptosi/fptoui round towards zero, so converting from FP to integer and
  // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
  SDValue N0 = N->getOperand(0);
  if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT &&
      N0.getOperand(0).getValueType() == VT)
    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));

  if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT &&
      N0.getOperand(0).getValueType() == VT)
    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));

  return SDValue();
}

SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);
  EVT OpVT = N0.getValueType();

  // [us]itofp(undef) = 0, because the result value is bounded.
  if (N0.isUndef())
    return DAG.getConstantFP(0.0, SDLoc(N), VT);

  // fold (sint_to_fp c1) -> c1fp
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
      // ...but only if the target supports immediate floating-point values
      (!LegalOperations ||
       TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
    return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);

  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
  // but UINT_TO_FP is legal on this target, try to convert.
  if (!hasOperation(ISD::SINT_TO_FP, OpVT) &&
      hasOperation(ISD::UINT_TO_FP, OpVT)) {
    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
    if (DAG.SignBitIsZero(N0))
      return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
  }

  // The next optimizations are desirable only if SELECT_CC can be lowered.
  // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0)
  if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
      !VT.isVector() &&
      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
    SDLoc DL(N);
    return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT),
                         DAG.getConstantFP(0.0, DL, VT));
  }

  // fold (sint_to_fp (zext (setcc x, y, cc))) ->
  //      (select (setcc x, y, cc), 1.0, 0.0)
  if (N0.getOpcode() == ISD::ZERO_EXTEND &&
      N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() &&
      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
    SDLoc DL(N);
    return DAG.getSelect(DL, VT, N0.getOperand(0),
                         DAG.getConstantFP(1.0, DL, VT),
                         DAG.getConstantFP(0.0, DL, VT));
  }

  if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
    return FTrunc;

  return SDValue();
}

SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);
  EVT OpVT = N0.getValueType();

  // [us]itofp(undef) = 0, because the result value is bounded.
  if (N0.isUndef())
    return DAG.getConstantFP(0.0, SDLoc(N), VT);

  // fold (uint_to_fp c1) -> c1fp
  if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
      // ...but only if the target supports immediate floating-point values
      (!LegalOperations ||
       TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
    return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);

  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
  // but SINT_TO_FP is legal on this target, try to convert.
  if (!hasOperation(ISD::UINT_TO_FP, OpVT) &&
      hasOperation(ISD::SINT_TO_FP, OpVT)) {
    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
    if (DAG.SignBitIsZero(N0))
      return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
  }

  // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0)
  if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
    SDLoc DL(N);
    return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT),
                         DAG.getConstantFP(0.0, DL, VT));
  }

  if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
    return FTrunc;

  return SDValue();
}

// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
    return SDValue();

  SDValue Src = N0.getOperand(0);
  EVT SrcVT = Src.getValueType();
  bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
  bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;

  // We can safely assume the conversion won't overflow the output range,
  // because (for example) (uint8_t)18293.f is undefined behavior.

  // Since we can assume the conversion won't overflow, our decision as to
  // whether the input will fit in the float should depend on the minimum
  // of the input range and output range.

  // This means this is also safe for a signed input and unsigned output, since
  // a negative input would lead to undefined behavior.
  unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
  unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
  unsigned ActualSize = std::min(InputSize, OutputSize);
  const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());

  // We can only fold away the float conversion if the input range can be
  // represented exactly in the float range.
  if (APFloat::semanticsPrecision(sem) >= ActualSize) {
    if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
      unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
                                                       : ISD::ZERO_EXTEND;
      return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
    }
    if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
    return DAG.getBitcast(VT, Src);
  }
  return SDValue();
}

SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // fold (fp_to_sint undef) -> undef
  if (N0.isUndef())
    return DAG.getUNDEF(VT);

  // fold (fp_to_sint c1fp) -> c1
  if (isConstantFPBuildVectorOrConstantFP(N0))
    return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);

  return FoldIntToFPToInt(N, DAG);
}

SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // fold (fp_to_uint undef) -> undef
  if (N0.isUndef())
    return DAG.getUNDEF(VT);

  // fold (fp_to_uint c1fp) -> c1
  if (isConstantFPBuildVectorOrConstantFP(N0))
    return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);

  return FoldIntToFPToInt(N, DAG);
}

SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  EVT VT = N->getValueType(0);

  // fold (fp_round c1fp) -> c1fp
  if (N0CFP)
    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);

  // fold (fp_round (fp_extend x)) -> x
  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
    return N0.getOperand(0);

  // fold (fp_round (fp_round x)) -> (fp_round x)
  if (N0.getOpcode() == ISD::FP_ROUND) {
    const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
    const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;

    // Skip this folding if it results in an fp_round from f80 to f16.
    //
    // f80 to f16 always generates an expensive (and as yet, unimplemented)
    // libcall to __truncxfhf2 instead of selecting native f16 conversion
    // instructions from f32 or f64.  Moreover, the first (value-preserving)
    // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
    // x86.
    if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
      return SDValue();

    // If the first fp_round isn't a value preserving truncation, it might
    // introduce a tie in the second fp_round, that wouldn't occur in the
    // single-step fp_round we want to fold to.
    // In other words, double rounding isn't the same as rounding.
    // Also, this is a value preserving truncation iff both fp_round's are.
    if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
      SDLoc DL(N);
      return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
                         DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
    }
  }

  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
                              N0.getOperand(0), N1);
    AddToWorklist(Tmp.getNode());
    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
                       Tmp, N0.getOperand(1));
  }

  if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
    return NewVSel;

  return SDValue();
}

SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
  if (N->hasOneUse() &&
      N->use_begin()->getOpcode() == ISD::FP_ROUND)
    return SDValue();

  // fold (fp_extend c1fp) -> c1fp
  if (isConstantFPBuildVectorOrConstantFP(N0))
    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);

  // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
  if (N0.getOpcode() == ISD::FP16_TO_FP &&
      TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
    return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));

  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
  // value of X.
  if (N0.getOpcode() == ISD::FP_ROUND
      && N0.getConstantOperandVal(1) == 1) {
    SDValue In = N0.getOperand(0);
    if (In.getValueType() == VT) return In;
    if (VT.bitsLT(In.getValueType()))
      return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
                         In, N0.getOperand(1));
    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
  }

  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
       TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
                                     LN0->getChain(),
                                     LN0->getBasePtr(), N0.getValueType(),
                                     LN0->getMemOperand());
    CombineTo(N, ExtLoad);
    CombineTo(N0.getNode(),
              DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
                          N0.getValueType(), ExtLoad,
                          DAG.getIntPtrConstant(1, SDLoc(N0))),
              ExtLoad.getValue(1));
    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
  }

  if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
    return NewVSel;

  return SDValue();
}

SDValue DAGCombiner::visitFCEIL(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // fold (fceil c1) -> fceil(c1)
  if (isConstantFPBuildVectorOrConstantFP(N0))
    return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);

  return SDValue();
}

SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // fold (ftrunc c1) -> ftrunc(c1)
  if (isConstantFPBuildVectorOrConstantFP(N0))
    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);

  // fold ftrunc (known rounded int x) -> x
  // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
  // likely to be generated to extract integer from a rounded floating value.
  switch (N0.getOpcode()) {
  default: break;
  case ISD::FRINT:
  case ISD::FTRUNC:
  case ISD::FNEARBYINT:
  case ISD::FFLOOR:
  case ISD::FCEIL:
    return N0;
  }

  return SDValue();
}

SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // fold (ffloor c1) -> ffloor(c1)
  if (isConstantFPBuildVectorOrConstantFP(N0))
    return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);

  return SDValue();
}

SDValue DAGCombiner::visitFNEG(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);
  SelectionDAG::FlagInserter FlagsInserter(DAG, N);

  // Constant fold FNEG.
  if (isConstantFPBuildVectorOrConstantFP(N0))
    return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);

  if (SDValue NegN0 =
          TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize))
    return NegN0;

  // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
  // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't
  // know it was called from a context with a nsz flag if the input fsub does
  // not.
  if (N0.getOpcode() == ISD::FSUB &&
      (DAG.getTarget().Options.NoSignedZerosFPMath ||
       N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) {
    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1),
                       N0.getOperand(0));
  }

  if (SDValue Cast = foldSignChangeInBitcast(N))
    return Cast;

  return SDValue();
}

static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N,
                            APFloat (*Op)(const APFloat &, const APFloat &)) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N->getValueType(0);
  const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
  const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
  const SDNodeFlags Flags = N->getFlags();
  unsigned Opc = N->getOpcode();
  bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM;
  bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM;
  SelectionDAG::FlagInserter FlagsInserter(DAG, N);

  if (N0CFP && N1CFP) {
    const APFloat &C0 = N0CFP->getValueAPF();
    const APFloat &C1 = N1CFP->getValueAPF();
    return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT);
  }

  // Canonicalize to constant on RHS.
  if (isConstantFPBuildVectorOrConstantFP(N0) &&
      !isConstantFPBuildVectorOrConstantFP(N1))
    return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);

  if (N1CFP) {
    const APFloat &AF = N1CFP->getValueAPF();

    // minnum(X, nan) -> X
    // maxnum(X, nan) -> X
    // minimum(X, nan) -> nan
    // maximum(X, nan) -> nan
    if (AF.isNaN())
      return PropagatesNaN ? N->getOperand(1) : N->getOperand(0);

    // In the following folds, inf can be replaced with the largest finite
    // float, if the ninf flag is set.
    if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) {
      // minnum(X, -inf) -> -inf
      // maxnum(X, +inf) -> +inf
      // minimum(X, -inf) -> -inf if nnan
      // maximum(X, +inf) -> +inf if nnan
      if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs()))
        return N->getOperand(1);

      // minnum(X, +inf) -> X if nnan
      // maxnum(X, -inf) -> X if nnan
      // minimum(X, +inf) -> X
      // maximum(X, -inf) -> X
      if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs()))
        return N->getOperand(0);
    }
  }

  return SDValue();
}

SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
  return visitFMinMax(DAG, N, minnum);
}

SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
  return visitFMinMax(DAG, N, maxnum);
}

SDValue DAGCombiner::visitFMINIMUM(SDNode *N) {
  return visitFMinMax(DAG, N, minimum);
}

SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) {
  return visitFMinMax(DAG, N, maximum);
}

SDValue DAGCombiner::visitFABS(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // fold (fabs c1) -> fabs(c1)
  if (isConstantFPBuildVectorOrConstantFP(N0))
    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);

  // fold (fabs (fabs x)) -> (fabs x)
  if (N0.getOpcode() == ISD::FABS)
    return N->getOperand(0);

  // fold (fabs (fneg x)) -> (fabs x)
  // fold (fabs (fcopysign x, y)) -> (fabs x)
  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));

  if (SDValue Cast = foldSignChangeInBitcast(N))
    return Cast;

  return SDValue();
}

SDValue DAGCombiner::visitBRCOND(SDNode *N) {
  SDValue Chain = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue N2 = N->getOperand(2);

  // If N is a constant we could fold this into a fallthrough or unconditional
  // branch. However that doesn't happen very often in normal code, because
  // Instcombine/SimplifyCFG should have handled the available opportunities.
  // If we did this folding here, it would be necessary to update the
  // MachineBasicBlock CFG, which is awkward.

  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
  // on the target.
  if (N1.getOpcode() == ISD::SETCC &&
      TLI.isOperationLegalOrCustom(ISD::BR_CC,
                                   N1.getOperand(0).getValueType())) {
    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
                       Chain, N1.getOperand(2),
                       N1.getOperand(0), N1.getOperand(1), N2);
  }

  if (N1.hasOneUse()) {
    // rebuildSetCC calls visitXor which may change the Chain when there is a
    // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes.
    HandleSDNode ChainHandle(Chain);
    if (SDValue NewN1 = rebuildSetCC(N1))
      return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other,
                         ChainHandle.getValue(), NewN1, N2);
  }

  return SDValue();
}

SDValue DAGCombiner::rebuildSetCC(SDValue N) {
  if (N.getOpcode() == ISD::SRL ||
      (N.getOpcode() == ISD::TRUNCATE &&
       (N.getOperand(0).hasOneUse() &&
        N.getOperand(0).getOpcode() == ISD::SRL))) {
    // Look pass the truncate.
    if (N.getOpcode() == ISD::TRUNCATE)
      N = N.getOperand(0);

    // Match this pattern so that we can generate simpler code:
    //
    //   %a = ...
    //   %b = and i32 %a, 2
    //   %c = srl i32 %b, 1
    //   brcond i32 %c ...
    //
    // into
    //
    //   %a = ...
    //   %b = and i32 %a, 2
    //   %c = setcc eq %b, 0
    //   brcond %c ...
    //
    // This applies only when the AND constant value has one bit set and the
    // SRL constant is equal to the log2 of the AND constant. The back-end is
    // smart enough to convert the result into a TEST/JMP sequence.
    SDValue Op0 = N.getOperand(0);
    SDValue Op1 = N.getOperand(1);

    if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) {
      SDValue AndOp1 = Op0.getOperand(1);

      if (AndOp1.getOpcode() == ISD::Constant) {
        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();

        if (AndConst.isPowerOf2() &&
            cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) {
          SDLoc DL(N);
          return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()),
                              Op0, DAG.getConstant(0, DL, Op0.getValueType()),
                              ISD::SETNE);
        }
      }
    }
  }

  // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne))
  // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq))
  if (N.getOpcode() == ISD::XOR) {
    // Because we may call this on a speculatively constructed
    // SimplifiedSetCC Node, we need to simplify this node first.
    // Ideally this should be folded into SimplifySetCC and not
    // here. For now, grab a handle to N so we don't lose it from
    // replacements interal to the visit.
    HandleSDNode XORHandle(N);
    while (N.getOpcode() == ISD::XOR) {
      SDValue Tmp = visitXOR(N.getNode());
      // No simplification done.
      if (!Tmp.getNode())
        break;
      // Returning N is form in-visit replacement that may invalidated
      // N. Grab value from Handle.
      if (Tmp.getNode() == N.getNode())
        N = XORHandle.getValue();
      else // Node simplified. Try simplifying again.
        N = Tmp;
    }

    if (N.getOpcode() != ISD::XOR)
      return N;

    SDValue Op0 = N->getOperand(0);
    SDValue Op1 = N->getOperand(1);

    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
      bool Equal = false;
      // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq))
      if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR &&
          Op0.getValueType() == MVT::i1) {
        N = Op0;
        Op0 = N->getOperand(0);
        Op1 = N->getOperand(1);
        Equal = true;
      }

      EVT SetCCVT = N.getValueType();
      if (LegalTypes)
        SetCCVT = getSetCCResultType(SetCCVT);
      // Replace the uses of XOR with SETCC
      return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1,
                          Equal ? ISD::SETEQ : ISD::SETNE);
    }
  }

  return SDValue();
}

// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
//
SDValue DAGCombiner::visitBR_CC(SDNode *N) {
  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);

  // If N is a constant we could fold this into a fallthrough or unconditional
  // branch. However that doesn't happen very often in normal code, because
  // Instcombine/SimplifyCFG should have handled the available opportunities.
  // If we did this folding here, it would be necessary to update the
  // MachineBasicBlock CFG, which is awkward.

  // Use SimplifySetCC to simplify SETCC's.
  SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
                               CondLHS, CondRHS, CC->get(), SDLoc(N),
                               false);
  if (Simp.getNode()) AddToWorklist(Simp.getNode());

  // fold to a simpler setcc
  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
                       N->getOperand(0), Simp.getOperand(2),
                       Simp.getOperand(0), Simp.getOperand(1),
                       N->getOperand(4));

  return SDValue();
}

/// Return true if 'Use' is a load or a store that uses N as its base pointer
/// and that N may be folded in the load / store addressing mode.
static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
                                    SelectionDAG &DAG,
                                    const TargetLowering &TLI) {
  EVT VT;
  unsigned AS;

  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
      return false;
    VT = LD->getMemoryVT();
    AS = LD->getAddressSpace();
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
      return false;
    VT = ST->getMemoryVT();
    AS = ST->getAddressSpace();
  } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) {
    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
      return false;
    VT = LD->getMemoryVT();
    AS = LD->getAddressSpace();
  } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) {
    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
      return false;
    VT = ST->getMemoryVT();
    AS = ST->getAddressSpace();
  } else
    return false;

  TargetLowering::AddrMode AM;
  if (N->getOpcode() == ISD::ADD) {
    AM.HasBaseReg = true;
    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
    if (Offset)
      // [reg +/- imm]
      AM.BaseOffs = Offset->getSExtValue();
    else
      // [reg +/- reg]
      AM.Scale = 1;
  } else if (N->getOpcode() == ISD::SUB) {
    AM.HasBaseReg = true;
    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
    if (Offset)
      // [reg +/- imm]
      AM.BaseOffs = -Offset->getSExtValue();
    else
      // [reg +/- reg]
      AM.Scale = 1;
  } else
    return false;

  return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
                                   VT.getTypeForEVT(*DAG.getContext()), AS);
}

static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec,
                                     bool &IsLoad, bool &IsMasked, SDValue &Ptr,
                                     const TargetLowering &TLI) {
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
    if (LD->isIndexed())
      return false;
    EVT VT = LD->getMemoryVT();
    if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT))
      return false;
    Ptr = LD->getBasePtr();
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
    if (ST->isIndexed())
      return false;
    EVT VT = ST->getMemoryVT();
    if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT))
      return false;
    Ptr = ST->getBasePtr();
    IsLoad = false;
  } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
    if (LD->isIndexed())
      return false;
    EVT VT = LD->getMemoryVT();
    if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) &&
        !TLI.isIndexedMaskedLoadLegal(Dec, VT))
      return false;
    Ptr = LD->getBasePtr();
    IsMasked = true;
  } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
    if (ST->isIndexed())
      return false;
    EVT VT = ST->getMemoryVT();
    if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) &&
        !TLI.isIndexedMaskedStoreLegal(Dec, VT))
      return false;
    Ptr = ST->getBasePtr();
    IsLoad = false;
    IsMasked = true;
  } else {
    return false;
  }
  return true;
}

/// Try turning a load/store into a pre-indexed load/store when the base
/// pointer is an add or subtract and it has other uses besides the load/store.
/// After the transformation, the new indexed load/store has effectively folded
/// the add/subtract in and all of its other uses are redirected to the
/// new load/store.
bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
  if (Level < AfterLegalizeDAG)
    return false;

  bool IsLoad = true;
  bool IsMasked = false;
  SDValue Ptr;
  if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked,
                                Ptr, TLI))
    return false;

  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
  // out.  There is no reason to make this a preinc/predec.
  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
      Ptr.getNode()->hasOneUse())
    return false;

  // Ask the target to do addressing mode selection.
  SDValue BasePtr;
  SDValue Offset;
  ISD::MemIndexedMode AM = ISD::UNINDEXED;
  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
    return false;

  // Backends without true r+i pre-indexed forms may need to pass a
  // constant base with a variable offset so that constant coercion
  // will work with the patterns in canonical form.
  bool Swapped = false;
  if (isa<ConstantSDNode>(BasePtr)) {
    std::swap(BasePtr, Offset);
    Swapped = true;
  }

  // Don't create a indexed load / store with zero offset.
  if (isNullConstant(Offset))
    return false;

  // Try turning it into a pre-indexed load / store except when:
  // 1) The new base ptr is a frame index.
  // 2) If N is a store and the new base ptr is either the same as or is a
  //    predecessor of the value being stored.
  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
  //    that would create a cycle.
  // 4) All uses are load / store ops that use it as old base ptr.

  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
  // (plus the implicit offset) to a register to preinc anyway.
  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
    return false;

  // Check #2.
  if (!IsLoad) {
    SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue()
                           : cast<StoreSDNode>(N)->getValue();

    // Would require a copy.
    if (Val == BasePtr)
      return false;

    // Would create a cycle.
    if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode()))
      return false;
  }

  // Caches for hasPredecessorHelper.
  SmallPtrSet<const SDNode *, 32> Visited;
  SmallVector<const SDNode *, 16> Worklist;
  Worklist.push_back(N);

  // If the offset is a constant, there may be other adds of constants that
  // can be folded with this one. We should do this to avoid having to keep
  // a copy of the original base pointer.
  SmallVector<SDNode *, 16> OtherUses;
  if (isa<ConstantSDNode>(Offset))
    for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
                              UE = BasePtr.getNode()->use_end();
         UI != UE; ++UI) {
      SDUse &Use = UI.getUse();
      // Skip the use that is Ptr and uses of other results from BasePtr's
      // node (important for nodes that return multiple results).
      if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
        continue;

      if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist))
        continue;

      if (Use.getUser()->getOpcode() != ISD::ADD &&
          Use.getUser()->getOpcode() != ISD::SUB) {
        OtherUses.clear();
        break;
      }

      SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
      if (!isa<ConstantSDNode>(Op1)) {
        OtherUses.clear();
        break;
      }

      // FIXME: In some cases, we can be smarter about this.
      if (Op1.getValueType() != Offset.getValueType()) {
        OtherUses.clear();
        break;
      }

      OtherUses.push_back(Use.getUser());
    }

  if (Swapped)
    std::swap(BasePtr, Offset);

  // Now check for #3 and #4.
  bool RealUse = false;

  for (SDNode *Use : Ptr.getNode()->uses()) {
    if (Use == N)
      continue;
    if (SDNode::hasPredecessorHelper(Use, Visited, Worklist))
      return false;

    // If Ptr may be folded in addressing mode of other use, then it's
    // not profitable to do this transformation.
    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
      RealUse = true;
  }

  if (!RealUse)
    return false;

  SDValue Result;
  if (!IsMasked) {
    if (IsLoad)
      Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM);
    else
      Result =
          DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM);
  } else {
    if (IsLoad)
      Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr,
                                        Offset, AM);
    else
      Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr,
                                         Offset, AM);
  }
  ++PreIndexedNodes;
  ++NodesCombined;
  LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: ";
             Result.getNode()->dump(&DAG); dbgs() << '\n');
  WorklistRemover DeadNodes(*this);
  if (IsLoad) {
    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
  } else {
    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
  }

  // Finally, since the node is now dead, remove it from the graph.
  deleteAndRecombine(N);

  if (Swapped)
    std::swap(BasePtr, Offset);

  // Replace other uses of BasePtr that can be updated to use Ptr
  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
    unsigned OffsetIdx = 1;
    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
      OffsetIdx = 0;
    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
           BasePtr.getNode() && "Expected BasePtr operand");

    // We need to replace ptr0 in the following expression:
    //   x0 * offset0 + y0 * ptr0 = t0
    // knowing that
    //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
    //
    // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
    // indexed load/store and the expression that needs to be re-written.
    //
    // Therefore, we have:
    //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1

    ConstantSDNode *CN =
      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
    int X0, X1, Y0, Y1;
    const APInt &Offset0 = CN->getAPIntValue();
    APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();

    X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
    Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
    X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
    Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;

    unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;

    APInt CNV = Offset0;
    if (X0 < 0) CNV = -CNV;
    if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
    else CNV = CNV - Offset1;

    SDLoc DL(OtherUses[i]);

    // We can now generate the new expression.
    SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
    SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0);

    SDValue NewUse = DAG.getNode(Opcode,
                                 DL,
                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
    deleteAndRecombine(OtherUses[i]);
  }

  // Replace the uses of Ptr with uses of the updated base value.
  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0));
  deleteAndRecombine(Ptr.getNode());
  AddToWorklist(Result.getNode());

  return true;
}

static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse,
                                   SDValue &BasePtr, SDValue &Offset,
                                   ISD::MemIndexedMode &AM,
                                   SelectionDAG &DAG,
                                   const TargetLowering &TLI) {
  if (PtrUse == N ||
      (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB))
    return false;

  if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG))
    return false;

  // Don't create a indexed load / store with zero offset.
  if (isNullConstant(Offset))
    return false;

  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
    return false;

  SmallPtrSet<const SDNode *, 32> Visited;
  for (SDNode *Use : BasePtr.getNode()->uses()) {
    if (Use == Ptr.getNode())
      continue;

    // No if there's a later user which could perform the index instead.
    if (isa<MemSDNode>(Use)) {
      bool IsLoad = true;
      bool IsMasked = false;
      SDValue OtherPtr;
      if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad,
                                   IsMasked, OtherPtr, TLI)) {
        SmallVector<const SDNode *, 2> Worklist;
        Worklist.push_back(Use);
        if (SDNode::hasPredecessorHelper(N, Visited, Worklist))
          return false;
      }
    }

    // If all the uses are load / store addresses, then don't do the
    // transformation.
    if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) {
      for (SDNode *UseUse : Use->uses())
        if (canFoldInAddressingMode(Use, UseUse, DAG, TLI))
          return false;
    }
  }
  return true;
}

static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad,
                                         bool &IsMasked, SDValue &Ptr,
                                         SDValue &BasePtr, SDValue &Offset,
                                         ISD::MemIndexedMode &AM,
                                         SelectionDAG &DAG,
                                         const TargetLowering &TLI) {
  if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad,
                                IsMasked, Ptr, TLI) ||
      Ptr.getNode()->hasOneUse())
    return nullptr;

  // Try turning it into a post-indexed load / store except when
  // 1) All uses are load / store ops that use it as base ptr (and
  //    it may be folded as addressing mmode).
  // 2) Op must be independent of N, i.e. Op is neither a predecessor
  //    nor a successor of N. Otherwise, if Op is folded that would
  //    create a cycle.
  for (SDNode *Op : Ptr->uses()) {
    // Check for #1.
    if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI))
      continue;

    // Check for #2.
    SmallPtrSet<const SDNode *, 32> Visited;
    SmallVector<const SDNode *, 8> Worklist;
    // Ptr is predecessor to both N and Op.
    Visited.insert(Ptr.getNode());
    Worklist.push_back(N);
    Worklist.push_back(Op);
    if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) &&
        !SDNode::hasPredecessorHelper(Op, Visited, Worklist))
      return Op;
  }
  return nullptr;
}

/// Try to combine a load/store with a add/sub of the base pointer node into a
/// post-indexed load/store. The transformation folded the add/subtract into the
/// new indexed load/store effectively and all of its uses are redirected to the
/// new load/store.
bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
  if (Level < AfterLegalizeDAG)
    return false;

  bool IsLoad = true;
  bool IsMasked = false;
  SDValue Ptr;
  SDValue BasePtr;
  SDValue Offset;
  ISD::MemIndexedMode AM = ISD::UNINDEXED;
  SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr,
                                         Offset, AM, DAG, TLI);
  if (!Op)
    return false;

  SDValue Result;
  if (!IsMasked)
    Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr,
                                         Offset, AM)
                    : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N),
                                          BasePtr, Offset, AM);
  else
    Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N),
                                               BasePtr, Offset, AM)
                    : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N),
                                                BasePtr, Offset, AM);
  ++PostIndexedNodes;
  ++NodesCombined;
  LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG);
             dbgs() << "\nWith: "; Result.getNode()->dump(&DAG);
             dbgs() << '\n');
  WorklistRemover DeadNodes(*this);
  if (IsLoad) {
    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
  } else {
    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
  }

  // Finally, since the node is now dead, remove it from the graph.
  deleteAndRecombine(N);

  // Replace the uses of Use with uses of the updated base value.
  DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
                                Result.getValue(IsLoad ? 1 : 0));
  deleteAndRecombine(Op);
  return true;
}

/// Return the base-pointer arithmetic from an indexed \p LD.
SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
  ISD::MemIndexedMode AM = LD->getAddressingMode();
  assert(AM != ISD::UNINDEXED);
  SDValue BP = LD->getOperand(1);
  SDValue Inc = LD->getOperand(2);

  // Some backends use TargetConstants for load offsets, but don't expect
  // TargetConstants in general ADD nodes. We can convert these constants into
  // regular Constants (if the constant is not opaque).
  assert((Inc.getOpcode() != ISD::TargetConstant ||
          !cast<ConstantSDNode>(Inc)->isOpaque()) &&
         "Cannot split out indexing using opaque target constants");
  if (Inc.getOpcode() == ISD::TargetConstant) {
    ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
    Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
                          ConstInc->getValueType(0));
  }

  unsigned Opc =
      (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
  return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
}

static inline int numVectorEltsOrZero(EVT T) {
  return T.isVector() ? T.getVectorNumElements() : 0;
}

bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) {
  Val = ST->getValue();
  EVT STType = Val.getValueType();
  EVT STMemType = ST->getMemoryVT();
  if (STType == STMemType)
    return true;
  if (isTypeLegal(STMemType))
    return false; // fail.
  if (STType.isFloatingPoint() && STMemType.isFloatingPoint() &&
      TLI.isOperationLegal(ISD::FTRUNC, STMemType)) {
    Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val);
    return true;
  }
  if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) &&
      STType.isInteger() && STMemType.isInteger()) {
    Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val);
    return true;
  }
  if (STType.getSizeInBits() == STMemType.getSizeInBits()) {
    Val = DAG.getBitcast(STMemType, Val);
    return true;
  }
  return false; // fail.
}

bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) {
  EVT LDMemType = LD->getMemoryVT();
  EVT LDType = LD->getValueType(0);
  assert(Val.getValueType() == LDMemType &&
         "Attempting to extend value of non-matching type");
  if (LDType == LDMemType)
    return true;
  if (LDMemType.isInteger() && LDType.isInteger()) {
    switch (LD->getExtensionType()) {
    case ISD::NON_EXTLOAD:
      Val = DAG.getBitcast(LDType, Val);
      return true;
    case ISD::EXTLOAD:
      Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val);
      return true;
    case ISD::SEXTLOAD:
      Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val);
      return true;
    case ISD::ZEXTLOAD:
      Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val);
      return true;
    }
  }
  return false;
}

SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) {
  if (OptLevel == CodeGenOpt::None || !LD->isSimple())
    return SDValue();
  SDValue Chain = LD->getOperand(0);
  StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode());
  // TODO: Relax this restriction for unordered atomics (see D66309)
  if (!ST || !ST->isSimple())
    return SDValue();

  EVT LDType = LD->getValueType(0);
  EVT LDMemType = LD->getMemoryVT();
  EVT STMemType = ST->getMemoryVT();
  EVT STType = ST->getValue().getValueType();

  BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
  BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG);
  int64_t Offset;
  if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset))
    return SDValue();

  // Normalize for Endianness. After this Offset=0 will denote that the least
  // significant bit in the loaded value maps to the least significant bit in
  // the stored value). With Offset=n (for n > 0) the loaded value starts at the
  // n:th least significant byte of the stored value.
  if (DAG.getDataLayout().isBigEndian())
    Offset = ((int64_t)STMemType.getStoreSizeInBits() -
              (int64_t)LDMemType.getStoreSizeInBits()) / 8 - Offset;

  // Check that the stored value cover all bits that are loaded.
  bool STCoversLD =
      (Offset >= 0) &&
      (Offset * 8 + LDMemType.getSizeInBits() <= STMemType.getSizeInBits());

  auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue {
    if (LD->isIndexed()) {
      // Cannot handle opaque target constants and we must respect the user's
      // request not to split indexes from loads.
      if (!canSplitIdx(LD))
        return SDValue();
      SDValue Idx = SplitIndexingFromLoad(LD);
      SDValue Ops[] = {Val, Idx, Chain};
      return CombineTo(LD, Ops, 3);
    }
    return CombineTo(LD, Val, Chain);
  };

  if (!STCoversLD)
    return SDValue();

  // Memory as copy space (potentially masked).
  if (Offset == 0 && LDType == STType && STMemType == LDMemType) {
    // Simple case: Direct non-truncating forwarding
    if (LDType.getSizeInBits() == LDMemType.getSizeInBits())
      return ReplaceLd(LD, ST->getValue(), Chain);
    // Can we model the truncate and extension with an and mask?
    if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() &&
        !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) {
      // Mask to size of LDMemType
      auto Mask =
          DAG.getConstant(APInt::getLowBitsSet(STType.getSizeInBits(),
                                               STMemType.getSizeInBits()),
                          SDLoc(ST), STType);
      auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask);
      return ReplaceLd(LD, Val, Chain);
    }
  }

  // TODO: Deal with nonzero offset.
  if (LD->getBasePtr().isUndef() || Offset != 0)
    return SDValue();
  // Model necessary truncations / extenstions.
  SDValue Val;
  // Truncate Value To Stored Memory Size.
  do {
    if (!getTruncatedStoreValue(ST, Val))
      continue;
    if (!isTypeLegal(LDMemType))
      continue;
    if (STMemType != LDMemType) {
      // TODO: Support vectors? This requires extract_subvector/bitcast.
      if (!STMemType.isVector() && !LDMemType.isVector() &&
          STMemType.isInteger() && LDMemType.isInteger())
        Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val);
      else
        continue;
    }
    if (!extendLoadedValueToExtension(LD, Val))
      continue;
    return ReplaceLd(LD, Val, Chain);
  } while (false);

  // On failure, cleanup dead nodes we may have created.
  if (Val->use_empty())
    deleteAndRecombine(Val.getNode());
  return SDValue();
}

SDValue DAGCombiner::visitLOAD(SDNode *N) {
  LoadSDNode *LD  = cast<LoadSDNode>(N);
  SDValue Chain = LD->getChain();
  SDValue Ptr   = LD->getBasePtr();

  // If load is not volatile and there are no uses of the loaded value (and
  // the updated indexed value in case of indexed loads), change uses of the
  // chain value into uses of the chain input (i.e. delete the dead load).
  // TODO: Allow this for unordered atomics (see D66309)
  if (LD->isSimple()) {
    if (N->getValueType(1) == MVT::Other) {
      // Unindexed loads.
      if (!N->hasAnyUseOfValue(0)) {
        // It's not safe to use the two value CombineTo variant here. e.g.
        // v1, chain2 = load chain1, loc
        // v2, chain3 = load chain2, loc
        // v3         = add v2, c
        // Now we replace use of chain2 with chain1.  This makes the second load
        // isomorphic to the one we are deleting, and thus makes this load live.
        LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG);
                   dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG);
                   dbgs() << "\n");
        WorklistRemover DeadNodes(*this);
        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
        AddUsersToWorklist(Chain.getNode());
        if (N->use_empty())
          deleteAndRecombine(N);

        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
      }
    } else {
      // Indexed loads.
      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");

      // If this load has an opaque TargetConstant offset, then we cannot split
      // the indexing into an add/sub directly (that TargetConstant may not be
      // valid for a different type of node, and we cannot convert an opaque
      // target constant into a regular constant).
      bool CanSplitIdx = canSplitIdx(LD);

      if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) {
        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
        SDValue Index;
        if (N->hasAnyUseOfValue(1) && CanSplitIdx) {
          Index = SplitIndexingFromLoad(LD);
          // Try to fold the base pointer arithmetic into subsequent loads and
          // stores.
          AddUsersToWorklist(N);
        } else
          Index = DAG.getUNDEF(N->getValueType(1));
        LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG);
                   dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG);
                   dbgs() << " and 2 other values\n");
        WorklistRemover DeadNodes(*this);
        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
        deleteAndRecombine(N);
        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
      }
    }
  }

  // If this load is directly stored, replace the load value with the stored
  // value.
  if (auto V = ForwardStoreValueToDirectLoad(LD))
    return V;

  // Try to infer better alignment information than the load already has.
  if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) {
    if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) {
      if (*Alignment > LD->getAlign() &&
          isAligned(*Alignment, LD->getSrcValueOffset())) {
        SDValue NewLoad = DAG.getExtLoad(
            LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr,
            LD->getPointerInfo(), LD->getMemoryVT(), *Alignment,
            LD->getMemOperand()->getFlags(), LD->getAAInfo());
        // NewLoad will always be N as we are only refining the alignment
        assert(NewLoad.getNode() == N);
        (void)NewLoad;
      }
    }
  }

  if (LD->isUnindexed()) {
    // Walk up chain skipping non-aliasing memory nodes.
    SDValue BetterChain = FindBetterChain(LD, Chain);

    // If there is a better chain.
    if (Chain != BetterChain) {
      SDValue ReplLoad;

      // Replace the chain to void dependency.
      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
        ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
                               BetterChain, Ptr, LD->getMemOperand());
      } else {
        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
                                  LD->getValueType(0),
                                  BetterChain, Ptr, LD->getMemoryVT(),
                                  LD->getMemOperand());
      }

      // Create token factor to keep old chain connected.
      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
                                  MVT::Other, Chain, ReplLoad.getValue(1));

      // Replace uses with load result and token factor
      return CombineTo(N, ReplLoad.getValue(0), Token);
    }
  }

  // Try transforming N to an indexed load.
  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
    return SDValue(N, 0);

  // Try to slice up N to more direct loads if the slices are mapped to
  // different register banks or pairing can take place.
  if (SliceUpLoad(N))
    return SDValue(N, 0);

  return SDValue();
}

namespace {

/// Helper structure used to slice a load in smaller loads.
/// Basically a slice is obtained from the following sequence:
/// Origin = load Ty1, Base
/// Shift = srl Ty1 Origin, CstTy Amount
/// Inst = trunc Shift to Ty2
///
/// Then, it will be rewritten into:
/// Slice = load SliceTy, Base + SliceOffset
/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
///
/// SliceTy is deduced from the number of bits that are actually used to
/// build Inst.
struct LoadedSlice {
  /// Helper structure used to compute the cost of a slice.
  struct Cost {
    /// Are we optimizing for code size.
    bool ForCodeSize = false;

    /// Various cost.
    unsigned Loads = 0;
    unsigned Truncates = 0;
    unsigned CrossRegisterBanksCopies = 0;
    unsigned ZExts = 0;
    unsigned Shift = 0;

    explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {}

    /// Get the cost of one isolated slice.
    Cost(const LoadedSlice &LS, bool ForCodeSize)
        : ForCodeSize(ForCodeSize), Loads(1) {
      EVT TruncType = LS.Inst->getValueType(0);
      EVT LoadedType = LS.getLoadedType();
      if (TruncType != LoadedType &&
          !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
        ZExts = 1;
    }

    /// Account for slicing gain in the current cost.
    /// Slicing provide a few gains like removing a shift or a
    /// truncate. This method allows to grow the cost of the original
    /// load with the gain from this slice.
    void addSliceGain(const LoadedSlice &LS) {
      // Each slice saves a truncate.
      const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
      if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
                              LS.Inst->getValueType(0)))
        ++Truncates;
      // If there is a shift amount, this slice gets rid of it.
      if (LS.Shift)
        ++Shift;
      // If this slice can merge a cross register bank copy, account for it.
      if (LS.canMergeExpensiveCrossRegisterBankCopy())
        ++CrossRegisterBanksCopies;
    }

    Cost &operator+=(const Cost &RHS) {
      Loads += RHS.Loads;
      Truncates += RHS.Truncates;
      CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
      ZExts += RHS.ZExts;
      Shift += RHS.Shift;
      return *this;
    }

    bool operator==(const Cost &RHS) const {
      return Loads == RHS.Loads && Truncates == RHS.Truncates &&
             CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
             ZExts == RHS.ZExts && Shift == RHS.Shift;
    }

    bool operator!=(const Cost &RHS) const { return !(*this == RHS); }

    bool operator<(const Cost &RHS) const {
      // Assume cross register banks copies are as expensive as loads.
      // FIXME: Do we want some more target hooks?
      unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
      unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
      // Unless we are optimizing for code size, consider the
      // expensive operation first.
      if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
        return ExpensiveOpsLHS < ExpensiveOpsRHS;
      return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
             (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
    }

    bool operator>(const Cost &RHS) const { return RHS < *this; }

    bool operator<=(const Cost &RHS) const { return !(RHS < *this); }

    bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
  };

  // The last instruction that represent the slice. This should be a
  // truncate instruction.
  SDNode *Inst;

  // The original load instruction.
  LoadSDNode *Origin;

  // The right shift amount in bits from the original load.
  unsigned Shift;

  // The DAG from which Origin came from.
  // This is used to get some contextual information about legal types, etc.
  SelectionDAG *DAG;

  LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
              unsigned Shift = 0, SelectionDAG *DAG = nullptr)
      : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}

  /// Get the bits used in a chunk of bits \p BitWidth large.
  /// \return Result is \p BitWidth and has used bits set to 1 and
  ///         not used bits set to 0.
  APInt getUsedBits() const {
    // Reproduce the trunc(lshr) sequence:
    // - Start from the truncated value.
    // - Zero extend to the desired bit width.
    // - Shift left.
    assert(Origin && "No original load to compare against.");
    unsigned BitWidth = Origin->getValueSizeInBits(0);
    assert(Inst && "This slice is not bound to an instruction");
    assert(Inst->getValueSizeInBits(0) <= BitWidth &&
           "Extracted slice is bigger than the whole type!");
    APInt UsedBits(Inst->getValueSizeInBits(0), 0);
    UsedBits.setAllBits();
    UsedBits = UsedBits.zext(BitWidth);
    UsedBits <<= Shift;
    return UsedBits;
  }

  /// Get the size of the slice to be loaded in bytes.
  unsigned getLoadedSize() const {
    unsigned SliceSize = getUsedBits().countPopulation();
    assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
    return SliceSize / 8;
  }

  /// Get the type that will be loaded for this slice.
  /// Note: This may not be the final type for the slice.
  EVT getLoadedType() const {
    assert(DAG && "Missing context");
    LLVMContext &Ctxt = *DAG->getContext();
    return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
  }

  /// Get the alignment of the load used for this slice.
  Align getAlign() const {
    Align Alignment = Origin->getAlign();
    uint64_t Offset = getOffsetFromBase();
    if (Offset != 0)
      Alignment = commonAlignment(Alignment, Alignment.value() + Offset);
    return Alignment;
  }

  /// Check if this slice can be rewritten with legal operations.
  bool isLegal() const {
    // An invalid slice is not legal.
    if (!Origin || !Inst || !DAG)
      return false;

    // Offsets are for indexed load only, we do not handle that.
    if (!Origin->getOffset().isUndef())
      return false;

    const TargetLowering &TLI = DAG->getTargetLoweringInfo();

    // Check that the type is legal.
    EVT SliceType = getLoadedType();
    if (!TLI.isTypeLegal(SliceType))
      return false;

    // Check that the load is legal for this type.
    if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
      return false;

    // Check that the offset can be computed.
    // 1. Check its type.
    EVT PtrType = Origin->getBasePtr().getValueType();
    if (PtrType == MVT::Untyped || PtrType.isExtended())
      return false;

    // 2. Check that it fits in the immediate.
    if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
      return false;

    // 3. Check that the computation is legal.
    if (!TLI.isOperationLegal(ISD::ADD, PtrType))
      return false;

    // Check that the zext is legal if it needs one.
    EVT TruncateType = Inst->getValueType(0);
    if (TruncateType != SliceType &&
        !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
      return false;

    return true;
  }

  /// Get the offset in bytes of this slice in the original chunk of
  /// bits.
  /// \pre DAG != nullptr.
  uint64_t getOffsetFromBase() const {
    assert(DAG && "Missing context.");
    bool IsBigEndian = DAG->getDataLayout().isBigEndian();
    assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
    uint64_t Offset = Shift / 8;
    unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
    assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
           "The size of the original loaded type is not a multiple of a"
           " byte.");
    // If Offset is bigger than TySizeInBytes, it means we are loading all
    // zeros. This should have been optimized before in the process.
    assert(TySizeInBytes > Offset &&
           "Invalid shift amount for given loaded size");
    if (IsBigEndian)
      Offset = TySizeInBytes - Offset - getLoadedSize();
    return Offset;
  }

  /// Generate the sequence of instructions to load the slice
  /// represented by this object and redirect the uses of this slice to
  /// this new sequence of instructions.
  /// \pre this->Inst && this->Origin are valid Instructions and this
  /// object passed the legal check: LoadedSlice::isLegal returned true.
  /// \return The last instruction of the sequence used to load the slice.
  SDValue loadSlice() const {
    assert(Inst && Origin && "Unable to replace a non-existing slice.");
    const SDValue &OldBaseAddr = Origin->getBasePtr();
    SDValue BaseAddr = OldBaseAddr;
    // Get the offset in that chunk of bytes w.r.t. the endianness.
    int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
    assert(Offset >= 0 && "Offset too big to fit in int64_t!");
    if (Offset) {
      // BaseAddr = BaseAddr + Offset.
      EVT ArithType = BaseAddr.getValueType();
      SDLoc DL(Origin);
      BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
                              DAG->getConstant(Offset, DL, ArithType));
    }

    // Create the type of the loaded slice according to its size.
    EVT SliceType = getLoadedType();

    // Create the load for the slice.
    SDValue LastInst =
        DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
                     Origin->getPointerInfo().getWithOffset(Offset), getAlign(),
                     Origin->getMemOperand()->getFlags());
    // If the final type is not the same as the loaded type, this means that
    // we have to pad with zero. Create a zero extend for that.
    EVT FinalType = Inst->getValueType(0);
    if (SliceType != FinalType)
      LastInst =
          DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
    return LastInst;
  }

  /// Check if this slice can be merged with an expensive cross register
  /// bank copy. E.g.,
  /// i = load i32
  /// f = bitcast i32 i to float
  bool canMergeExpensiveCrossRegisterBankCopy() const {
    if (!Inst || !Inst->hasOneUse())
      return false;
    SDNode *Use = *Inst->use_begin();
    if (Use->getOpcode() != ISD::BITCAST)
      return false;
    assert(DAG && "Missing context");
    const TargetLowering &TLI = DAG->getTargetLoweringInfo();
    EVT ResVT = Use->getValueType(0);
    const TargetRegisterClass *ResRC =
        TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent());
    const TargetRegisterClass *ArgRC =
        TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(),
                           Use->getOperand(0)->isDivergent());
    if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
      return false;

    // At this point, we know that we perform a cross-register-bank copy.
    // Check if it is expensive.
    const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
    // Assume bitcasts are cheap, unless both register classes do not
    // explicitly share a common sub class.
    if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
      return false;

    // Check if it will be merged with the load.
    // 1. Check the alignment constraint.
    Align RequiredAlignment = DAG->getDataLayout().getABITypeAlign(
        ResVT.getTypeForEVT(*DAG->getContext()));

    if (RequiredAlignment > getAlign())
      return false;

    // 2. Check that the load is a legal operation for that type.
    if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
      return false;

    // 3. Check that we do not have a zext in the way.
    if (Inst->getValueType(0) != getLoadedType())
      return false;

    return true;
  }
};

} // end anonymous namespace

/// Check that all bits set in \p UsedBits form a dense region, i.e.,
/// \p UsedBits looks like 0..0 1..1 0..0.
static bool areUsedBitsDense(const APInt &UsedBits) {
  // If all the bits are one, this is dense!
  if (UsedBits.isAllOnesValue())
    return true;

  // Get rid of the unused bits on the right.
  APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
  // Get rid of the unused bits on the left.
  if (NarrowedUsedBits.countLeadingZeros())
    NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
  // Check that the chunk of bits is completely used.
  return NarrowedUsedBits.isAllOnesValue();
}

/// Check whether or not \p First and \p Second are next to each other
/// in memory. This means that there is no hole between the bits loaded
/// by \p First and the bits loaded by \p Second.
static bool areSlicesNextToEachOther(const LoadedSlice &First,
                                     const LoadedSlice &Second) {
  assert(First.Origin == Second.Origin && First.Origin &&
         "Unable to match different memory origins.");
  APInt UsedBits = First.getUsedBits();
  assert((UsedBits & Second.getUsedBits()) == 0 &&
         "Slices are not supposed to overlap.");
  UsedBits |= Second.getUsedBits();
  return areUsedBitsDense(UsedBits);
}

/// Adjust the \p GlobalLSCost according to the target
/// paring capabilities and the layout of the slices.
/// \pre \p GlobalLSCost should account for at least as many loads as
/// there is in the slices in \p LoadedSlices.
static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
                                 LoadedSlice::Cost &GlobalLSCost) {
  unsigned NumberOfSlices = LoadedSlices.size();
  // If there is less than 2 elements, no pairing is possible.
  if (NumberOfSlices < 2)
    return;

  // Sort the slices so that elements that are likely to be next to each
  // other in memory are next to each other in the list.
  llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
    assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
    return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
  });
  const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
  // First (resp. Second) is the first (resp. Second) potentially candidate
  // to be placed in a paired load.
  const LoadedSlice *First = nullptr;
  const LoadedSlice *Second = nullptr;
  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
                // Set the beginning of the pair.
                                                           First = Second) {
    Second = &LoadedSlices[CurrSlice];

    // If First is NULL, it means we start a new pair.
    // Get to the next slice.
    if (!First)
      continue;

    EVT LoadedType = First->getLoadedType();

    // If the types of the slices are different, we cannot pair them.
    if (LoadedType != Second->getLoadedType())
      continue;

    // Check if the target supplies paired loads for this type.
    Align RequiredAlignment;
    if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
      // move to the next pair, this type is hopeless.
      Second = nullptr;
      continue;
    }
    // Check if we meet the alignment requirement.
    if (First->getAlign() < RequiredAlignment)
      continue;

    // Check that both loads are next to each other in memory.
    if (!areSlicesNextToEachOther(*First, *Second))
      continue;

    assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
    --GlobalLSCost.Loads;
    // Move to the next pair.
    Second = nullptr;
  }
}

/// Check the profitability of all involved LoadedSlice.
/// Currently, it is considered profitable if there is exactly two
/// involved slices (1) which are (2) next to each other in memory, and
/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
///
/// Note: The order of the elements in \p LoadedSlices may be modified, but not
/// the elements themselves.
///
/// FIXME: When the cost model will be mature enough, we can relax
/// constraints (1) and (2).
static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
                                const APInt &UsedBits, bool ForCodeSize) {
  unsigned NumberOfSlices = LoadedSlices.size();
  if (StressLoadSlicing)
    return NumberOfSlices > 1;

  // Check (1).
  if (NumberOfSlices != 2)
    return false;

  // Check (2).
  if (!areUsedBitsDense(UsedBits))
    return false;

  // Check (3).
  LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
  // The original code has one big load.
  OrigCost.Loads = 1;
  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
    const LoadedSlice &LS = LoadedSlices[CurrSlice];
    // Accumulate the cost of all the slices.
    LoadedSlice::Cost SliceCost(LS, ForCodeSize);
    GlobalSlicingCost += SliceCost;

    // Account as cost in the original configuration the gain obtained
    // with the current slices.
    OrigCost.addSliceGain(LS);
  }

  // If the target supports paired load, adjust the cost accordingly.
  adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
  return OrigCost > GlobalSlicingCost;
}

/// If the given load, \p LI, is used only by trunc or trunc(lshr)
/// operations, split it in the various pieces being extracted.
///
/// This sort of thing is introduced by SROA.
/// This slicing takes care not to insert overlapping loads.
/// \pre LI is a simple load (i.e., not an atomic or volatile load).
bool DAGCombiner::SliceUpLoad(SDNode *N) {
  if (Level < AfterLegalizeDAG)
    return false;

  LoadSDNode *LD = cast<LoadSDNode>(N);
  if (!LD->isSimple() || !ISD::isNormalLoad(LD) ||
      !LD->getValueType(0).isInteger())
    return false;

  // The algorithm to split up a load of a scalable vector into individual
  // elements currently requires knowing the length of the loaded type,
  // so will need adjusting to work on scalable vectors.
  if (LD->getValueType(0).isScalableVector())
    return false;

  // Keep track of already used bits to detect overlapping values.
  // In that case, we will just abort the transformation.
  APInt UsedBits(LD->getValueSizeInBits(0), 0);

  SmallVector<LoadedSlice, 4> LoadedSlices;

  // Check if this load is used as several smaller chunks of bits.
  // Basically, look for uses in trunc or trunc(lshr) and record a new chain
  // of computation for each trunc.
  for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
       UI != UIEnd; ++UI) {
    // Skip the uses of the chain.
    if (UI.getUse().getResNo() != 0)
      continue;

    SDNode *User = *UI;
    unsigned Shift = 0;

    // Check if this is a trunc(lshr).
    if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
        isa<ConstantSDNode>(User->getOperand(1))) {
      Shift = User->getConstantOperandVal(1);
      User = *User->use_begin();
    }

    // At this point, User is a Truncate, iff we encountered, trunc or
    // trunc(lshr).
    if (User->getOpcode() != ISD::TRUNCATE)
      return false;

    // The width of the type must be a power of 2 and greater than 8-bits.
    // Otherwise the load cannot be represented in LLVM IR.
    // Moreover, if we shifted with a non-8-bits multiple, the slice
    // will be across several bytes. We do not support that.
    unsigned Width = User->getValueSizeInBits(0);
    if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
      return false;

    // Build the slice for this chain of computations.
    LoadedSlice LS(User, LD, Shift, &DAG);
    APInt CurrentUsedBits = LS.getUsedBits();

    // Check if this slice overlaps with another.
    if ((CurrentUsedBits & UsedBits) != 0)
      return false;
    // Update the bits used globally.
    UsedBits |= CurrentUsedBits;

    // Check if the new slice would be legal.
    if (!LS.isLegal())
      return false;

    // Record the slice.
    LoadedSlices.push_back(LS);
  }

  // Abort slicing if it does not seem to be profitable.
  if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
    return false;

  ++SlicedLoads;

  // Rewrite each chain to use an independent load.
  // By construction, each chain can be represented by a unique load.

  // Prepare the argument for the new token factor for all the slices.
  SmallVector<SDValue, 8> ArgChains;
  for (SmallVectorImpl<LoadedSlice>::const_iterator
           LSIt = LoadedSlices.begin(),
           LSItEnd = LoadedSlices.end();
       LSIt != LSItEnd; ++LSIt) {
    SDValue SliceInst = LSIt->loadSlice();
    CombineTo(LSIt->Inst, SliceInst, true);
    if (SliceInst.getOpcode() != ISD::LOAD)
      SliceInst = SliceInst.getOperand(0);
    assert(SliceInst->getOpcode() == ISD::LOAD &&
           "It takes more than a zext to get to the loaded slice!!");
    ArgChains.push_back(SliceInst.getValue(1));
  }

  SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
                              ArgChains);
  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
  AddToWorklist(Chain.getNode());
  return true;
}

/// Check to see if V is (and load (ptr), imm), where the load is having
/// specific bytes cleared out.  If so, return the byte size being masked out
/// and the shift amount.
static std::pair<unsigned, unsigned>
CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
  std::pair<unsigned, unsigned> Result(0, 0);

  // Check for the structure we're looking for.
  if (V->getOpcode() != ISD::AND ||
      !isa<ConstantSDNode>(V->getOperand(1)) ||
      !ISD::isNormalLoad(V->getOperand(0).getNode()))
    return Result;

  // Check the chain and pointer.
  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.

  // This only handles simple types.
  if (V.getValueType() != MVT::i16 &&
      V.getValueType() != MVT::i32 &&
      V.getValueType() != MVT::i64)
    return Result;

  // Check the constant mask.  Invert it so that the bits being masked out are
  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
  // follow the sign bit for uniformity.
  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
  unsigned NotMaskLZ = countLeadingZeros(NotMask);
  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
  unsigned NotMaskTZ = countTrailingZeros(NotMask);
  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
  if (NotMaskLZ == 64) return Result;  // All zero mask.

  // See if we have a continuous run of bits.  If so, we have 0*1+0*
  if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
    return Result;

  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
  if (V.getValueType() != MVT::i64 && NotMaskLZ)
    NotMaskLZ -= 64-V.getValueSizeInBits();

  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
  switch (MaskedBytes) {
  case 1:
  case 2:
  case 4: break;
  default: return Result; // All one mask, or 5-byte mask.
  }

  // Verify that the first bit starts at a multiple of mask so that the access
  // is aligned the same as the access width.
  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;

  // For narrowing to be valid, it must be the case that the load the
  // immediately preceding memory operation before the store.
  if (LD == Chain.getNode())
    ; // ok.
  else if (Chain->getOpcode() == ISD::TokenFactor &&
           SDValue(LD, 1).hasOneUse()) {
    // LD has only 1 chain use so they are no indirect dependencies.
    if (!LD->isOperandOf(Chain.getNode()))
      return Result;
  } else
    return Result; // Fail.

  Result.first = MaskedBytes;
  Result.second = NotMaskTZ/8;
  return Result;
}

/// Check to see if IVal is something that provides a value as specified by
/// MaskInfo. If so, replace the specified store with a narrower store of
/// truncated IVal.
static SDValue
ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
                                SDValue IVal, StoreSDNode *St,
                                DAGCombiner *DC) {
  unsigned NumBytes = MaskInfo.first;
  unsigned ByteShift = MaskInfo.second;
  SelectionDAG &DAG = DC->getDAG();

  // Check to see if IVal is all zeros in the part being masked in by the 'or'
  // that uses this.  If not, this is not a replacement.
  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
                                  ByteShift*8, (ByteShift+NumBytes)*8);
  if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue();

  // Check that it is legal on the target to do this.  It is legal if the new
  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
  // legalization (and the target doesn't explicitly think this is a bad idea).
  MVT VT = MVT::getIntegerVT(NumBytes * 8);
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  if (!DC->isTypeLegal(VT))
    return SDValue();
  if (St->getMemOperand() &&
      !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
                              *St->getMemOperand()))
    return SDValue();

  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
  // shifted by ByteShift and truncated down to NumBytes.
  if (ByteShift) {
    SDLoc DL(IVal);
    IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
                       DAG.getConstant(ByteShift*8, DL,
                                    DC->getShiftAmountTy(IVal.getValueType())));
  }

  // Figure out the offset for the store and the alignment of the access.
  unsigned StOffset;
  if (DAG.getDataLayout().isLittleEndian())
    StOffset = ByteShift;
  else
    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;

  SDValue Ptr = St->getBasePtr();
  if (StOffset) {
    SDLoc DL(IVal);
    Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(StOffset), DL);
  }

  // Truncate down to the new size.
  IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);

  ++OpsNarrowed;
  return DAG
      .getStore(St->getChain(), SDLoc(St), IVal, Ptr,
                St->getPointerInfo().getWithOffset(StOffset),
                St->getOriginalAlign());
}

/// Look for sequence of load / op / store where op is one of 'or', 'xor', and
/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
/// narrowing the load and store if it would end up being a win for performance
/// or code size.
SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
  StoreSDNode *ST  = cast<StoreSDNode>(N);
  if (!ST->isSimple())
    return SDValue();

  SDValue Chain = ST->getChain();
  SDValue Value = ST->getValue();
  SDValue Ptr   = ST->getBasePtr();
  EVT VT = Value.getValueType();

  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
    return SDValue();

  unsigned Opc = Value.getOpcode();

  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
  // is a byte mask indicating a consecutive number of bytes, check to see if
  // Y is known to provide just those bytes.  If so, we try to replace the
  // load + replace + store sequence with a single (narrower) store, which makes
  // the load dead.
  if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) {
    std::pair<unsigned, unsigned> MaskedLoad;
    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
    if (MaskedLoad.first)
      if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
                                                  Value.getOperand(1), ST,this))
        return NewST;

    // Or is commutative, so try swapping X and Y.
    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
    if (MaskedLoad.first)
      if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
                                                  Value.getOperand(0), ST,this))
        return NewST;
  }

  if (!EnableReduceLoadOpStoreWidth)
    return SDValue();

  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
      Value.getOperand(1).getOpcode() != ISD::Constant)
    return SDValue();

  SDValue N0 = Value.getOperand(0);
  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
      Chain == SDValue(N0.getNode(), 1)) {
    LoadSDNode *LD = cast<LoadSDNode>(N0);
    if (LD->getBasePtr() != Ptr ||
        LD->getPointerInfo().getAddrSpace() !=
        ST->getPointerInfo().getAddrSpace())
      return SDValue();

    // Find the type to narrow it the load / op / store to.
    SDValue N1 = Value.getOperand(1);
    unsigned BitWidth = N1.getValueSizeInBits();
    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
    if (Opc == ISD::AND)
      Imm ^= APInt::getAllOnesValue(BitWidth);
    if (Imm == 0 || Imm.isAllOnesValue())
      return SDValue();
    unsigned ShAmt = Imm.countTrailingZeros();
    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
    // The narrowing should be profitable, the load/store operation should be
    // legal (or custom) and the store size should be equal to the NewVT width.
    while (NewBW < BitWidth &&
           (NewVT.getStoreSizeInBits() != NewBW ||
            !TLI.isOperationLegalOrCustom(Opc, NewVT) ||
            !TLI.isNarrowingProfitable(VT, NewVT))) {
      NewBW = NextPowerOf2(NewBW);
      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
    }
    if (NewBW >= BitWidth)
      return SDValue();

    // If the lsb changed does not start at the type bitwidth boundary,
    // start at the previous one.
    if (ShAmt % NewBW)
      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
                                   std::min(BitWidth, ShAmt + NewBW));
    if ((Imm & Mask) == Imm) {
      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
      if (Opc == ISD::AND)
        NewImm ^= APInt::getAllOnesValue(NewBW);
      uint64_t PtrOff = ShAmt / 8;
      // For big endian targets, we need to adjust the offset to the pointer to
      // load the correct bytes.
      if (DAG.getDataLayout().isBigEndian())
        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;

      Align NewAlign = commonAlignment(LD->getAlign(), PtrOff);
      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
      if (NewAlign < DAG.getDataLayout().getABITypeAlign(NewVTTy))
        return SDValue();

      SDValue NewPtr =
          DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(PtrOff), SDLoc(LD));
      SDValue NewLD =
          DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr,
                      LD->getPointerInfo().getWithOffset(PtrOff), NewAlign,
                      LD->getMemOperand()->getFlags(), LD->getAAInfo());
      SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
                                   DAG.getConstant(NewImm, SDLoc(Value),
                                                   NewVT));
      SDValue NewST =
          DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr,
                       ST->getPointerInfo().getWithOffset(PtrOff), NewAlign);

      AddToWorklist(NewPtr.getNode());
      AddToWorklist(NewLD.getNode());
      AddToWorklist(NewVal.getNode());
      WorklistRemover DeadNodes(*this);
      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
      ++OpsNarrowed;
      return NewST;
    }
  }

  return SDValue();
}

/// For a given floating point load / store pair, if the load value isn't used
/// by any other operations, then consider transforming the pair to integer
/// load / store operations if the target deems the transformation profitable.
SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
  StoreSDNode *ST  = cast<StoreSDNode>(N);
  SDValue Value = ST->getValue();
  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
      Value.hasOneUse()) {
    LoadSDNode *LD = cast<LoadSDNode>(Value);
    EVT VT = LD->getMemoryVT();
    if (!VT.isFloatingPoint() ||
        VT != ST->getMemoryVT() ||
        LD->isNonTemporal() ||
        ST->isNonTemporal() ||
        LD->getPointerInfo().getAddrSpace() != 0 ||
        ST->getPointerInfo().getAddrSpace() != 0)
      return SDValue();

    TypeSize VTSize = VT.getSizeInBits();

    // We don't know the size of scalable types at compile time so we cannot
    // create an integer of the equivalent size.
    if (VTSize.isScalable())
      return SDValue();

    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedSize());
    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
      return SDValue();

    Align LDAlign = LD->getAlign();
    Align STAlign = ST->getAlign();
    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
    Align ABIAlign = DAG.getDataLayout().getABITypeAlign(IntVTTy);
    if (LDAlign < ABIAlign || STAlign < ABIAlign)
      return SDValue();

    SDValue NewLD =
        DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(),
                    LD->getPointerInfo(), LDAlign);

    SDValue NewST =
        DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(),
                     ST->getPointerInfo(), STAlign);

    AddToWorklist(NewLD.getNode());
    AddToWorklist(NewST.getNode());
    WorklistRemover DeadNodes(*this);
    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
    ++LdStFP2Int;
    return NewST;
  }

  return SDValue();
}

// This is a helper function for visitMUL to check the profitability
// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
// MulNode is the original multiply, AddNode is (add x, c1),
// and ConstNode is c2.
//
// If the (add x, c1) has multiple uses, we could increase
// the number of adds if we make this transformation.
// It would only be worth doing this if we can remove a
// multiply in the process. Check for that here.
// To illustrate:
//     (A + c1) * c3
//     (A + c2) * c3
// We're checking for cases where we have common "c3 * A" expressions.
bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
                                              SDValue &AddNode,
                                              SDValue &ConstNode) {
  APInt Val;

  // If the add only has one use, this would be OK to do.
  if (AddNode.getNode()->hasOneUse())
    return true;

  // Walk all the users of the constant with which we're multiplying.
  for (SDNode *Use : ConstNode->uses()) {
    if (Use == MulNode) // This use is the one we're on right now. Skip it.
      continue;

    if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
      SDNode *OtherOp;
      SDNode *MulVar = AddNode.getOperand(0).getNode();

      // OtherOp is what we're multiplying against the constant.
      if (Use->getOperand(0) == ConstNode)
        OtherOp = Use->getOperand(1).getNode();
      else
        OtherOp = Use->getOperand(0).getNode();

      // Check to see if multiply is with the same operand of our "add".
      //
      //     ConstNode  = CONST
      //     Use = ConstNode * A  <-- visiting Use. OtherOp is A.
      //     ...
      //     AddNode  = (A + c1)  <-- MulVar is A.
      //         = AddNode * ConstNode   <-- current visiting instruction.
      //
      // If we make this transformation, we will have a common
      // multiply (ConstNode * A) that we can save.
      if (OtherOp == MulVar)
        return true;

      // Now check to see if a future expansion will give us a common
      // multiply.
      //
      //     ConstNode  = CONST
      //     AddNode    = (A + c1)
      //     ...   = AddNode * ConstNode <-- current visiting instruction.
      //     ...
      //     OtherOp = (A + c2)
      //     Use     = OtherOp * ConstNode <-- visiting Use.
      //
      // If we make this transformation, we will have a common
      // multiply (CONST * A) after we also do the same transformation
      // to the "t2" instruction.
      if (OtherOp->getOpcode() == ISD::ADD &&
          DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
          OtherOp->getOperand(0).getNode() == MulVar)
        return true;
    }
  }

  // Didn't find a case where this would be profitable.
  return false;
}

SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
                                         unsigned NumStores) {
  SmallVector<SDValue, 8> Chains;
  SmallPtrSet<const SDNode *, 8> Visited;
  SDLoc StoreDL(StoreNodes[0].MemNode);

  for (unsigned i = 0; i < NumStores; ++i) {
    Visited.insert(StoreNodes[i].MemNode);
  }

  // don't include nodes that are children or repeated nodes.
  for (unsigned i = 0; i < NumStores; ++i) {
    if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second)
      Chains.push_back(StoreNodes[i].MemNode->getChain());
  }

  assert(Chains.size() > 0 && "Chain should have generated a chain");
  return DAG.getTokenFactor(StoreDL, Chains);
}

bool DAGCombiner::mergeStoresOfConstantsOrVecElts(
    SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
    bool IsConstantSrc, bool UseVector, bool UseTrunc) {
  // Make sure we have something to merge.
  if (NumStores < 2)
    return false;

  // The latest Node in the DAG.
  SDLoc DL(StoreNodes[0].MemNode);

  TypeSize ElementSizeBits = MemVT.getStoreSizeInBits();
  unsigned SizeInBits = NumStores * ElementSizeBits;
  unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;

  EVT StoreTy;
  if (UseVector) {
    unsigned Elts = NumStores * NumMemElts;
    // Get the type for the merged vector store.
    StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
  } else
    StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);

  SDValue StoredVal;
  if (UseVector) {
    if (IsConstantSrc) {
      SmallVector<SDValue, 8> BuildVector;
      for (unsigned I = 0; I != NumStores; ++I) {
        StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
        SDValue Val = St->getValue();
        // If constant is of the wrong type, convert it now.
        if (MemVT != Val.getValueType()) {
          Val = peekThroughBitcasts(Val);
          // Deal with constants of wrong size.
          if (ElementSizeBits != Val.getValueSizeInBits()) {
            EVT IntMemVT =
                EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
            if (isa<ConstantFPSDNode>(Val)) {
              // Not clear how to truncate FP values.
              return false;
            } else if (auto *C = dyn_cast<ConstantSDNode>(Val))
              Val = DAG.getConstant(C->getAPIntValue()
                                        .zextOrTrunc(Val.getValueSizeInBits())
                                        .zextOrTrunc(ElementSizeBits),
                                    SDLoc(C), IntMemVT);
          }
          // Make sure correctly size type is the correct type.
          Val = DAG.getBitcast(MemVT, Val);
        }
        BuildVector.push_back(Val);
      }
      StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
                                               : ISD::BUILD_VECTOR,
                              DL, StoreTy, BuildVector);
    } else {
      SmallVector<SDValue, 8> Ops;
      for (unsigned i = 0; i < NumStores; ++i) {
        StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
        SDValue Val = peekThroughBitcasts(St->getValue());
        // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
        // type MemVT. If the underlying value is not the correct
        // type, but it is an extraction of an appropriate vector we
        // can recast Val to be of the correct type. This may require
        // converting between EXTRACT_VECTOR_ELT and
        // EXTRACT_SUBVECTOR.
        if ((MemVT != Val.getValueType()) &&
            (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
             Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) {
          EVT MemVTScalarTy = MemVT.getScalarType();
          // We may need to add a bitcast here to get types to line up.
          if (MemVTScalarTy != Val.getValueType().getScalarType()) {
            Val = DAG.getBitcast(MemVT, Val);
          } else {
            unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR
                                            : ISD::EXTRACT_VECTOR_ELT;
            SDValue Vec = Val.getOperand(0);
            SDValue Idx = Val.getOperand(1);
            Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx);
          }
        }
        Ops.push_back(Val);
      }

      // Build the extracted vector elements back into a vector.
      StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
                                               : ISD::BUILD_VECTOR,
                              DL, StoreTy, Ops);
    }
  } else {
    // We should always use a vector store when merging extracted vector
    // elements, so this path implies a store of constants.
    assert(IsConstantSrc && "Merged vector elements should use vector store");

    APInt StoreInt(SizeInBits, 0);

    // Construct a single integer constant which is made of the smaller
    // constant inputs.
    bool IsLE = DAG.getDataLayout().isLittleEndian();
    for (unsigned i = 0; i < NumStores; ++i) {
      unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);

      SDValue Val = St->getValue();
      Val = peekThroughBitcasts(Val);
      StoreInt <<= ElementSizeBits;
      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
        StoreInt |= C->getAPIntValue()
                        .zextOrTrunc(ElementSizeBits)
                        .zextOrTrunc(SizeInBits);
      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
        StoreInt |= C->getValueAPF()
                        .bitcastToAPInt()
                        .zextOrTrunc(ElementSizeBits)
                        .zextOrTrunc(SizeInBits);
        // If fp truncation is necessary give up for now.
        if (MemVT.getSizeInBits() != ElementSizeBits)
          return false;
      } else {
        llvm_unreachable("Invalid constant element type");
      }
    }

    // Create the new Load and Store operations.
    StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
  }

  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
  SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores);

  // make sure we use trunc store if it's necessary to be legal.
  SDValue NewStore;
  if (!UseTrunc) {
    NewStore =
        DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(),
                     FirstInChain->getPointerInfo(), FirstInChain->getAlign());
  } else { // Must be realized as a trunc store
    EVT LegalizedStoredValTy =
        TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
    unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits();
    ConstantSDNode *C = cast<ConstantSDNode>(StoredVal);
    SDValue ExtendedStoreVal =
        DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL,
                        LegalizedStoredValTy);
    NewStore = DAG.getTruncStore(
        NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(),
        FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/,
        FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags());
  }

  // Replace all merged stores with the new store.
  for (unsigned i = 0; i < NumStores; ++i)
    CombineTo(StoreNodes[i].MemNode, NewStore);

  AddToWorklist(NewChain.getNode());
  return true;
}

void DAGCombiner::getStoreMergeCandidates(
    StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes,
    SDNode *&RootNode) {
  // This holds the base pointer, index, and the offset in bytes from the base
  // pointer. We must have a base and an offset. Do not handle stores to undef
  // base pointers.
  BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
  if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef())
    return;

  SDValue Val = peekThroughBitcasts(St->getValue());
  StoreSource StoreSrc = getStoreSource(Val);
  assert(StoreSrc != StoreSource::Unknown && "Expected known source for store");

  // Match on loadbaseptr if relevant.
  EVT MemVT = St->getMemoryVT();
  BaseIndexOffset LBasePtr;
  EVT LoadVT;
  if (StoreSrc == StoreSource::Load) {
    auto *Ld = cast<LoadSDNode>(Val);
    LBasePtr = BaseIndexOffset::match(Ld, DAG);
    LoadVT = Ld->getMemoryVT();
    // Load and store should be the same type.
    if (MemVT != LoadVT)
      return;
    // Loads must only have one use.
    if (!Ld->hasNUsesOfValue(1, 0))
      return;
    // The memory operands must not be volatile/indexed/atomic.
    // TODO: May be able to relax for unordered atomics (see D66309)
    if (!Ld->isSimple() || Ld->isIndexed())
      return;
  }
  auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr,
                            int64_t &Offset) -> bool {
    // The memory operands must not be volatile/indexed/atomic.
    // TODO: May be able to relax for unordered atomics (see D66309)
    if (!Other->isSimple() || Other->isIndexed())
      return false;
    // Don't mix temporal stores with non-temporal stores.
    if (St->isNonTemporal() != Other->isNonTemporal())
      return false;
    SDValue OtherBC = peekThroughBitcasts(Other->getValue());
    // Allow merging constants of different types as integers.
    bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT())
                                           : Other->getMemoryVT() != MemVT;
    switch (StoreSrc) {
    case StoreSource::Load: {
      if (NoTypeMatch)
        return false;
      // The Load's Base Ptr must also match.
      auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC);
      if (!OtherLd)
        return false;
      BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG);
      if (LoadVT != OtherLd->getMemoryVT())
        return false;
      // Loads must only have one use.
      if (!OtherLd->hasNUsesOfValue(1, 0))
        return false;
      // The memory operands must not be volatile/indexed/atomic.
      // TODO: May be able to relax for unordered atomics (see D66309)
      if (!OtherLd->isSimple() || OtherLd->isIndexed())
        return false;
      // Don't mix temporal loads with non-temporal loads.
      if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal())
        return false;
      if (!(LBasePtr.equalBaseIndex(LPtr, DAG)))
        return false;
      break;
    }
    case StoreSource::Constant:
      if (NoTypeMatch)
        return false;
      if (!(isa<ConstantSDNode>(OtherBC) || isa<ConstantFPSDNode>(OtherBC)))
        return false;
      break;
    case StoreSource::Extract:
      // Do not merge truncated stores here.
      if (Other->isTruncatingStore())
        return false;
      if (!MemVT.bitsEq(OtherBC.getValueType()))
        return false;
      if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
          OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR)
        return false;
      break;
    default:
      llvm_unreachable("Unhandled store source for merging");
    }
    Ptr = BaseIndexOffset::match(Other, DAG);
    return (BasePtr.equalBaseIndex(Ptr, DAG, Offset));
  };

  // Check if the pair of StoreNode and the RootNode already bail out many
  // times which is over the limit in dependence check.
  auto OverLimitInDependenceCheck = [&](SDNode *StoreNode,
                                        SDNode *RootNode) -> bool {
    auto RootCount = StoreRootCountMap.find(StoreNode);
    return RootCount != StoreRootCountMap.end() &&
           RootCount->second.first == RootNode &&
           RootCount->second.second > StoreMergeDependenceLimit;
  };

  auto TryToAddCandidate = [&](SDNode::use_iterator UseIter) {
    // This must be a chain use.
    if (UseIter.getOperandNo() != 0)
      return;
    if (auto *OtherStore = dyn_cast<StoreSDNode>(*UseIter)) {
      BaseIndexOffset Ptr;
      int64_t PtrDiff;
      if (CandidateMatch(OtherStore, Ptr, PtrDiff) &&
          !OverLimitInDependenceCheck(OtherStore, RootNode))
        StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff));
    }
  };

  // We looking for a root node which is an ancestor to all mergable
  // stores. We search up through a load, to our root and then down
  // through all children. For instance we will find Store{1,2,3} if
  // St is Store1, Store2. or Store3 where the root is not a load
  // which always true for nonvolatile ops. TODO: Expand
  // the search to find all valid candidates through multiple layers of loads.
  //
  // Root
  // |-------|-------|
  // Load    Load    Store3
  // |       |
  // Store1   Store2
  //
  // FIXME: We should be able to climb and
  // descend TokenFactors to find candidates as well.

  RootNode = St->getChain().getNode();

  unsigned NumNodesExplored = 0;
  const unsigned MaxSearchNodes = 1024;
  if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) {
    RootNode = Ldn->getChain().getNode();
    for (auto I = RootNode->use_begin(), E = RootNode->use_end();
         I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) {
      if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) { // walk down chain
        for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2)
          TryToAddCandidate(I2);
      }
    }
  } else {
    for (auto I = RootNode->use_begin(), E = RootNode->use_end();
         I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored)
      TryToAddCandidate(I);
  }
}

// We need to check that merging these stores does not cause a loop in
// the DAG. Any store candidate may depend on another candidate
// indirectly through its operand (we already consider dependencies
// through the chain). Check in parallel by searching up from
// non-chain operands of candidates.
bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
    SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
    SDNode *RootNode) {
  // FIXME: We should be able to truncate a full search of
  // predecessors by doing a BFS and keeping tabs the originating
  // stores from which worklist nodes come from in a similar way to
  // TokenFactor simplfication.

  SmallPtrSet<const SDNode *, 32> Visited;
  SmallVector<const SDNode *, 8> Worklist;

  // RootNode is a predecessor to all candidates so we need not search
  // past it. Add RootNode (peeking through TokenFactors). Do not count
  // these towards size check.

  Worklist.push_back(RootNode);
  while (!Worklist.empty()) {
    auto N = Worklist.pop_back_val();
    if (!Visited.insert(N).second)
      continue; // Already present in Visited.
    if (N->getOpcode() == ISD::TokenFactor) {
      for (SDValue Op : N->ops())
        Worklist.push_back(Op.getNode());
    }
  }

  // Don't count pruning nodes towards max.
  unsigned int Max = 1024 + Visited.size();
  // Search Ops of store candidates.
  for (unsigned i = 0; i < NumStores; ++i) {
    SDNode *N = StoreNodes[i].MemNode;
    // Of the 4 Store Operands:
    //   * Chain (Op 0) -> We have already considered these
    //                    in candidate selection and can be
    //                    safely ignored
    //   * Value (Op 1) -> Cycles may happen (e.g. through load chains)
    //   * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
    //                       but aren't necessarily fromt the same base node, so
    //                       cycles possible (e.g. via indexed store).
    //   * (Op 3) -> Represents the pre or post-indexing offset (or undef for
    //               non-indexed stores). Not constant on all targets (e.g. ARM)
    //               and so can participate in a cycle.
    for (unsigned j = 1; j < N->getNumOperands(); ++j)
      Worklist.push_back(N->getOperand(j).getNode());
  }
  // Search through DAG. We can stop early if we find a store node.
  for (unsigned i = 0; i < NumStores; ++i)
    if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist,
                                     Max)) {
      // If the searching bail out, record the StoreNode and RootNode in the
      // StoreRootCountMap. If we have seen the pair many times over a limit,
      // we won't add the StoreNode into StoreNodes set again.
      if (Visited.size() >= Max) {
        auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode];
        if (RootCount.first == RootNode)
          RootCount.second++;
        else
          RootCount = {RootNode, 1};
      }
      return false;
    }
  return true;
}

unsigned
DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes,
                                  int64_t ElementSizeBytes) const {
  while (true) {
    // Find a store past the width of the first store.
    size_t StartIdx = 0;
    while ((StartIdx + 1 < StoreNodes.size()) &&
           StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes !=
              StoreNodes[StartIdx + 1].OffsetFromBase)
      ++StartIdx;

    // Bail if we don't have enough candidates to merge.
    if (StartIdx + 1 >= StoreNodes.size())
      return 0;

    // Trim stores that overlapped with the first store.
    if (StartIdx)
      StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx);

    // Scan the memory operations on the chain and find the first
    // non-consecutive store memory address.
    unsigned NumConsecutiveStores = 1;
    int64_t StartAddress = StoreNodes[0].OffsetFromBase;
    // Check that the addresses are consecutive starting from the second
    // element in the list of stores.
    for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) {
      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
        break;
      NumConsecutiveStores = i + 1;
    }
    if (NumConsecutiveStores > 1)
      return NumConsecutiveStores;

    // There are no consecutive stores at the start of the list.
    // Remove the first store and try again.
    StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1);
  }
}

bool DAGCombiner::tryStoreMergeOfConstants(
    SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores,
    EVT MemVT, SDNode *RootNode, bool AllowVectors) {
  LLVMContext &Context = *DAG.getContext();
  const DataLayout &DL = DAG.getDataLayout();
  int64_t ElementSizeBytes = MemVT.getStoreSize();
  unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
  bool MadeChange = false;

  // Store the constants into memory as one consecutive store.
  while (NumConsecutiveStores >= 2) {
    LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
    unsigned FirstStoreAS = FirstInChain->getAddressSpace();
    unsigned FirstStoreAlign = FirstInChain->getAlignment();
    unsigned LastLegalType = 1;
    unsigned LastLegalVectorType = 1;
    bool LastIntegerTrunc = false;
    bool NonZero = false;
    unsigned FirstZeroAfterNonZero = NumConsecutiveStores;
    for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
      StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode);
      SDValue StoredVal = ST->getValue();
      bool IsElementZero = false;
      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal))
        IsElementZero = C->isNullValue();
      else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal))
        IsElementZero = C->getConstantFPValue()->isNullValue();
      if (IsElementZero) {
        if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores)
          FirstZeroAfterNonZero = i;
      }
      NonZero |= !IsElementZero;

      // Find a legal type for the constant store.
      unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
      EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
      bool IsFast = false;

      // Break early when size is too large to be legal.
      if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
        break;

      if (TLI.isTypeLegal(StoreTy) &&
          TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
          TLI.allowsMemoryAccess(Context, DL, StoreTy,
                                 *FirstInChain->getMemOperand(), &IsFast) &&
          IsFast) {
        LastIntegerTrunc = false;
        LastLegalType = i + 1;
        // Or check whether a truncstore is legal.
      } else if (TLI.getTypeAction(Context, StoreTy) ==
                 TargetLowering::TypePromoteInteger) {
        EVT LegalizedStoredValTy =
            TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
        if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
            TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
            TLI.allowsMemoryAccess(Context, DL, StoreTy,
                                   *FirstInChain->getMemOperand(), &IsFast) &&
            IsFast) {
          LastIntegerTrunc = true;
          LastLegalType = i + 1;
        }
      }

      // We only use vectors if the constant is known to be zero or the
      // target allows it and the function is not marked with the
      // noimplicitfloat attribute.
      if ((!NonZero ||
           TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) &&
          AllowVectors) {
        // Find a legal type for the vector store.
        unsigned Elts = (i + 1) * NumMemElts;
        EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
        if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) &&
            TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
            TLI.allowsMemoryAccess(Context, DL, Ty,
                                   *FirstInChain->getMemOperand(), &IsFast) &&
            IsFast)
          LastLegalVectorType = i + 1;
      }
    }

    bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors;
    unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType;

    // Check if we found a legal integer type that creates a meaningful
    // merge.
    if (NumElem < 2) {
      // We know that candidate stores are in order and of correct
      // shape. While there is no mergeable sequence from the
      // beginning one may start later in the sequence. The only
      // reason a merge of size N could have failed where another of
      // the same size would not have, is if the alignment has
      // improved or we've dropped a non-zero value. Drop as many
      // candidates as we can here.
      unsigned NumSkip = 1;
      while ((NumSkip < NumConsecutiveStores) &&
             (NumSkip < FirstZeroAfterNonZero) &&
             (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
        NumSkip++;

      StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
      NumConsecutiveStores -= NumSkip;
      continue;
    }

    // Check that we can merge these candidates without causing a cycle.
    if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
                                                  RootNode)) {
      StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
      NumConsecutiveStores -= NumElem;
      continue;
    }

    MadeChange |= mergeStoresOfConstantsOrVecElts(
        StoreNodes, MemVT, NumElem, true, UseVector, LastIntegerTrunc);

    // Remove merged stores for next iteration.
    StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
    NumConsecutiveStores -= NumElem;
  }
  return MadeChange;
}

bool DAGCombiner::tryStoreMergeOfExtracts(
    SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores,
    EVT MemVT, SDNode *RootNode) {
  LLVMContext &Context = *DAG.getContext();
  const DataLayout &DL = DAG.getDataLayout();
  unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
  bool MadeChange = false;

  // Loop on Consecutive Stores on success.
  while (NumConsecutiveStores >= 2) {
    LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
    unsigned FirstStoreAS = FirstInChain->getAddressSpace();
    unsigned FirstStoreAlign = FirstInChain->getAlignment();
    unsigned NumStoresToMerge = 1;
    for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
      // Find a legal type for the vector store.
      unsigned Elts = (i + 1) * NumMemElts;
      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
      bool IsFast = false;

      // Break early when size is too large to be legal.
      if (Ty.getSizeInBits() > MaximumLegalStoreInBits)
        break;

      if (TLI.isTypeLegal(Ty) && TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
          TLI.allowsMemoryAccess(Context, DL, Ty,
                                 *FirstInChain->getMemOperand(), &IsFast) &&
          IsFast)
        NumStoresToMerge = i + 1;
    }

    // Check if we found a legal integer type creating a meaningful
    // merge.
    if (NumStoresToMerge < 2) {
      // We know that candidate stores are in order and of correct
      // shape. While there is no mergeable sequence from the
      // beginning one may start later in the sequence. The only
      // reason a merge of size N could have failed where another of
      // the same size would not have, is if the alignment has
      // improved. Drop as many candidates as we can here.
      unsigned NumSkip = 1;
      while ((NumSkip < NumConsecutiveStores) &&
             (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
        NumSkip++;

      StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
      NumConsecutiveStores -= NumSkip;
      continue;
    }

    // Check that we can merge these candidates without causing a cycle.
    if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge,
                                                  RootNode)) {
      StoreNodes.erase(StoreNodes.begin(),
                       StoreNodes.begin() + NumStoresToMerge);
      NumConsecutiveStores -= NumStoresToMerge;
      continue;
    }

    MadeChange |= mergeStoresOfConstantsOrVecElts(
        StoreNodes, MemVT, NumStoresToMerge, false, true, false);

    StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge);
    NumConsecutiveStores -= NumStoresToMerge;
  }
  return MadeChange;
}

bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes,
                                       unsigned NumConsecutiveStores, EVT MemVT,
                                       SDNode *RootNode, bool AllowVectors,
                                       bool IsNonTemporalStore,
                                       bool IsNonTemporalLoad) {
  LLVMContext &Context = *DAG.getContext();
  const DataLayout &DL = DAG.getDataLayout();
  int64_t ElementSizeBytes = MemVT.getStoreSize();
  unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
  bool MadeChange = false;

  int64_t StartAddress = StoreNodes[0].OffsetFromBase;

  // Look for load nodes which are used by the stored values.
  SmallVector<MemOpLink, 8> LoadNodes;

  // Find acceptable loads. Loads need to have the same chain (token factor),
  // must not be zext, volatile, indexed, and they must be consecutive.
  BaseIndexOffset LdBasePtr;

  for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
    SDValue Val = peekThroughBitcasts(St->getValue());
    LoadSDNode *Ld = cast<LoadSDNode>(Val);

    BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG);
    // If this is not the first ptr that we check.
    int64_t LdOffset = 0;
    if (LdBasePtr.getBase().getNode()) {
      // The base ptr must be the same.
      if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset))
        break;
    } else {
      // Check that all other base pointers are the same as this one.
      LdBasePtr = LdPtr;
    }

    // We found a potential memory operand to merge.
    LoadNodes.push_back(MemOpLink(Ld, LdOffset));
  }

  while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) {
    Align RequiredAlignment;
    bool NeedRotate = false;
    if (LoadNodes.size() == 2) {
      // If we have load/store pair instructions and we only have two values,
      // don't bother merging.
      if (TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
          StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) {
        StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2);
        LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2);
        break;
      }
      // If the loads are reversed, see if we can rotate the halves into place.
      int64_t Offset0 = LoadNodes[0].OffsetFromBase;
      int64_t Offset1 = LoadNodes[1].OffsetFromBase;
      EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2);
      if (Offset0 - Offset1 == ElementSizeBytes &&
          (hasOperation(ISD::ROTL, PairVT) ||
           hasOperation(ISD::ROTR, PairVT))) {
        std::swap(LoadNodes[0], LoadNodes[1]);
        NeedRotate = true;
      }
    }
    LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
    unsigned FirstStoreAS = FirstInChain->getAddressSpace();
    Align FirstStoreAlign = FirstInChain->getAlign();
    LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);

    // Scan the memory operations on the chain and find the first
    // non-consecutive load memory address. These variables hold the index in
    // the store node array.

    unsigned LastConsecutiveLoad = 1;

    // This variable refers to the size and not index in the array.
    unsigned LastLegalVectorType = 1;
    unsigned LastLegalIntegerType = 1;
    bool isDereferenceable = true;
    bool DoIntegerTruncate = false;
    StartAddress = LoadNodes[0].OffsetFromBase;
    SDValue LoadChain = FirstLoad->getChain();
    for (unsigned i = 1; i < LoadNodes.size(); ++i) {
      // All loads must share the same chain.
      if (LoadNodes[i].MemNode->getChain() != LoadChain)
        break;

      int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
        break;
      LastConsecutiveLoad = i;

      if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable())
        isDereferenceable = false;

      // Find a legal type for the vector store.
      unsigned Elts = (i + 1) * NumMemElts;
      EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);

      // Break early when size is too large to be legal.
      if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
        break;

      bool IsFastSt = false;
      bool IsFastLd = false;
      if (TLI.isTypeLegal(StoreTy) &&
          TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
          TLI.allowsMemoryAccess(Context, DL, StoreTy,
                                 *FirstInChain->getMemOperand(), &IsFastSt) &&
          IsFastSt &&
          TLI.allowsMemoryAccess(Context, DL, StoreTy,
                                 *FirstLoad->getMemOperand(), &IsFastLd) &&
          IsFastLd) {
        LastLegalVectorType = i + 1;
      }

      // Find a legal type for the integer store.
      unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
      StoreTy = EVT::getIntegerVT(Context, SizeInBits);
      if (TLI.isTypeLegal(StoreTy) &&
          TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
          TLI.allowsMemoryAccess(Context, DL, StoreTy,
                                 *FirstInChain->getMemOperand(), &IsFastSt) &&
          IsFastSt &&
          TLI.allowsMemoryAccess(Context, DL, StoreTy,
                                 *FirstLoad->getMemOperand(), &IsFastLd) &&
          IsFastLd) {
        LastLegalIntegerType = i + 1;
        DoIntegerTruncate = false;
        // Or check whether a truncstore and extload is legal.
      } else if (TLI.getTypeAction(Context, StoreTy) ==
                 TargetLowering::TypePromoteInteger) {
        EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy);
        if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
            TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
            TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) &&
            TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) &&
            TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) &&
            TLI.allowsMemoryAccess(Context, DL, StoreTy,
                                   *FirstInChain->getMemOperand(), &IsFastSt) &&
            IsFastSt &&
            TLI.allowsMemoryAccess(Context, DL, StoreTy,
                                   *FirstLoad->getMemOperand(), &IsFastLd) &&
            IsFastLd) {
          LastLegalIntegerType = i + 1;
          DoIntegerTruncate = true;
        }
      }
    }

    // Only use vector types if the vector type is larger than the integer
    // type. If they are the same, use integers.
    bool UseVectorTy =
        LastLegalVectorType > LastLegalIntegerType && AllowVectors;
    unsigned LastLegalType =
        std::max(LastLegalVectorType, LastLegalIntegerType);

    // We add +1 here because the LastXXX variables refer to location while
    // the NumElem refers to array/index size.
    unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1);
    NumElem = std::min(LastLegalType, NumElem);
    Align FirstLoadAlign = FirstLoad->getAlign();

    if (NumElem < 2) {
      // We know that candidate stores are in order and of correct
      // shape. While there is no mergeable sequence from the
      // beginning one may start later in the sequence. The only
      // reason a merge of size N could have failed where another of
      // the same size would not have is if the alignment or either
      // the load or store has improved. Drop as many candidates as we
      // can here.
      unsigned NumSkip = 1;
      while ((NumSkip < LoadNodes.size()) &&
             (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) &&
             (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign))
        NumSkip++;
      StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
      LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip);
      NumConsecutiveStores -= NumSkip;
      continue;
    }

    // Check that we can merge these candidates without causing a cycle.
    if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
                                                  RootNode)) {
      StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
      LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
      NumConsecutiveStores -= NumElem;
      continue;
    }

    // Find if it is better to use vectors or integers to load and store
    // to memory.
    EVT JointMemOpVT;
    if (UseVectorTy) {
      // Find a legal type for the vector store.
      unsigned Elts = NumElem * NumMemElts;
      JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
    } else {
      unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
      JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
    }

    SDLoc LoadDL(LoadNodes[0].MemNode);
    SDLoc StoreDL(StoreNodes[0].MemNode);

    // The merged loads are required to have the same incoming chain, so
    // using the first's chain is acceptable.

    SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem);
    AddToWorklist(NewStoreChain.getNode());

    MachineMemOperand::Flags LdMMOFlags =
        isDereferenceable ? MachineMemOperand::MODereferenceable
                          : MachineMemOperand::MONone;
    if (IsNonTemporalLoad)
      LdMMOFlags |= MachineMemOperand::MONonTemporal;

    MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore
                                              ? MachineMemOperand::MONonTemporal
                                              : MachineMemOperand::MONone;

    SDValue NewLoad, NewStore;
    if (UseVectorTy || !DoIntegerTruncate) {
      NewLoad = DAG.getLoad(
          JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(),
          FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags);
      SDValue StoreOp = NewLoad;
      if (NeedRotate) {
        unsigned LoadWidth = ElementSizeBytes * 8 * 2;
        assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) &&
               "Unexpected type for rotate-able load pair");
        SDValue RotAmt =
            DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL);
        // Target can convert to the identical ROTR if it does not have ROTL.
        StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt);
      }
      NewStore = DAG.getStore(
          NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(),
          FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags);
    } else { // This must be the truncstore/extload case
      EVT ExtendedTy =
          TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT);
      NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy,
                               FirstLoad->getChain(), FirstLoad->getBasePtr(),
                               FirstLoad->getPointerInfo(), JointMemOpVT,
                               FirstLoadAlign, LdMMOFlags);
      NewStore = DAG.getTruncStore(
          NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
          FirstInChain->getPointerInfo(), JointMemOpVT,
          FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags());
    }

    // Transfer chain users from old loads to the new load.
    for (unsigned i = 0; i < NumElem; ++i) {
      LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
      DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
                                    SDValue(NewLoad.getNode(), 1));
    }

    // Replace all stores with the new store. Recursively remove corresponding
    // values if they are no longer used.
    for (unsigned i = 0; i < NumElem; ++i) {
      SDValue Val = StoreNodes[i].MemNode->getOperand(1);
      CombineTo(StoreNodes[i].MemNode, NewStore);
      if (Val.getNode()->use_empty())
        recursivelyDeleteUnusedNodes(Val.getNode());
    }

    MadeChange = true;
    StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
    LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
    NumConsecutiveStores -= NumElem;
  }
  return MadeChange;
}

bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) {
  if (OptLevel == CodeGenOpt::None || !EnableStoreMerging)
    return false;

  // TODO: Extend this function to merge stores of scalable vectors.
  // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8>
  // store since we know <vscale x 16 x i8> is exactly twice as large as
  // <vscale x 8 x i8>). Until then, bail out for scalable vectors.
  EVT MemVT = St->getMemoryVT();
  if (MemVT.isScalableVector())
    return false;
  if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits)
    return false;

  // This function cannot currently deal with non-byte-sized memory sizes.
  int64_t ElementSizeBytes = MemVT.getStoreSize();
  if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits())
    return false;

  // Do not bother looking at stored values that are not constants, loads, or
  // extracted vector elements.
  SDValue StoredVal = peekThroughBitcasts(St->getValue());
  const StoreSource StoreSrc = getStoreSource(StoredVal);
  if (StoreSrc == StoreSource::Unknown)
    return false;

  SmallVector<MemOpLink, 8> StoreNodes;
  SDNode *RootNode;
  // Find potential store merge candidates by searching through chain sub-DAG
  getStoreMergeCandidates(St, StoreNodes, RootNode);

  // Check if there is anything to merge.
  if (StoreNodes.size() < 2)
    return false;

  // Sort the memory operands according to their distance from the
  // base pointer.
  llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) {
    return LHS.OffsetFromBase < RHS.OffsetFromBase;
  });

  bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute(
      Attribute::NoImplicitFloat);
  bool IsNonTemporalStore = St->isNonTemporal();
  bool IsNonTemporalLoad = StoreSrc == StoreSource::Load &&
                           cast<LoadSDNode>(StoredVal)->isNonTemporal();

  // Store Merge attempts to merge the lowest stores. This generally
  // works out as if successful, as the remaining stores are checked
  // after the first collection of stores is merged. However, in the
  // case that a non-mergeable store is found first, e.g., {p[-2],
  // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
  // mergeable cases. To prevent this, we prune such stores from the
  // front of StoreNodes here.
  bool MadeChange = false;
  while (StoreNodes.size() > 1) {
    unsigned NumConsecutiveStores =
        getConsecutiveStores(StoreNodes, ElementSizeBytes);
    // There are no more stores in the list to examine.
    if (NumConsecutiveStores == 0)
      return MadeChange;

    // We have at least 2 consecutive stores. Try to merge them.
    assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores");
    switch (StoreSrc) {
    case StoreSource::Constant:
      MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores,
                                             MemVT, RootNode, AllowVectors);
      break;

    case StoreSource::Extract:
      MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores,
                                            MemVT, RootNode);
      break;

    case StoreSource::Load:
      MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores,
                                         MemVT, RootNode, AllowVectors,
                                         IsNonTemporalStore, IsNonTemporalLoad);
      break;

    default:
      llvm_unreachable("Unhandled store source type");
    }
  }
  return MadeChange;
}

SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
  SDLoc SL(ST);
  SDValue ReplStore;

  // Replace the chain to avoid dependency.
  if (ST->isTruncatingStore()) {
    ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
                                  ST->getBasePtr(), ST->getMemoryVT(),
                                  ST->getMemOperand());
  } else {
    ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
                             ST->getMemOperand());
  }

  // Create token to keep both nodes around.
  SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
                              MVT::Other, ST->getChain(), ReplStore);

  // Make sure the new and old chains are cleaned up.
  AddToWorklist(Token.getNode());

  // Don't add users to work list.
  return CombineTo(ST, Token, false);
}

SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
  SDValue Value = ST->getValue();
  if (Value.getOpcode() == ISD::TargetConstantFP)
    return SDValue();

  if (!ISD::isNormalStore(ST))
    return SDValue();

  SDLoc DL(ST);

  SDValue Chain = ST->getChain();
  SDValue Ptr = ST->getBasePtr();

  const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);

  // NOTE: If the original store is volatile, this transform must not increase
  // the number of stores.  For example, on x86-32 an f64 can be stored in one
  // processor operation but an i64 (which is not legal) requires two.  So the
  // transform should not be done in this case.

  SDValue Tmp;
  switch (CFP->getSimpleValueType(0).SimpleTy) {
  default:
    llvm_unreachable("Unknown FP type");
  case MVT::f16:    // We don't do this for these yet.
  case MVT::f80:
  case MVT::f128:
  case MVT::ppcf128:
    return SDValue();
  case MVT::f32:
    if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) ||
        TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
      ;
      Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
                            bitcastToAPInt().getZExtValue(), SDLoc(CFP),
                            MVT::i32);
      return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
    }

    return SDValue();
  case MVT::f64:
    if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
         ST->isSimple()) ||
        TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
      ;
      Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
                            getZExtValue(), SDLoc(CFP), MVT::i64);
      return DAG.getStore(Chain, DL, Tmp,
                          Ptr, ST->getMemOperand());
    }

    if (ST->isSimple() &&
        TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
      // Many FP stores are not made apparent until after legalize, e.g. for
      // argument passing.  Since this is so common, custom legalize the
      // 64-bit integer store into two 32-bit stores.
      uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
      SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
      SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
      if (DAG.getDataLayout().isBigEndian())
        std::swap(Lo, Hi);

      MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
      AAMDNodes AAInfo = ST->getAAInfo();

      SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
                                 ST->getOriginalAlign(), MMOFlags, AAInfo);
      Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), DL);
      SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr,
                                 ST->getPointerInfo().getWithOffset(4),
                                 ST->getOriginalAlign(), MMOFlags, AAInfo);
      return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
                         St0, St1);
    }

    return SDValue();
  }
}

SDValue DAGCombiner::visitSTORE(SDNode *N) {
  StoreSDNode *ST  = cast<StoreSDNode>(N);
  SDValue Chain = ST->getChain();
  SDValue Value = ST->getValue();
  SDValue Ptr   = ST->getBasePtr();

  // If this is a store of a bit convert, store the input value if the
  // resultant store does not need a higher alignment than the original.
  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
      ST->isUnindexed()) {
    EVT SVT = Value.getOperand(0).getValueType();
    // If the store is volatile, we only want to change the store type if the
    // resulting store is legal. Otherwise we might increase the number of
    // memory accesses. We don't care if the original type was legal or not
    // as we assume software couldn't rely on the number of accesses of an
    // illegal type.
    // TODO: May be able to relax for unordered atomics (see D66309)
    if (((!LegalOperations && ST->isSimple()) ||
         TLI.isOperationLegal(ISD::STORE, SVT)) &&
        TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT,
                                     DAG, *ST->getMemOperand())) {
      return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
                          ST->getMemOperand());
    }
  }

  // Turn 'store undef, Ptr' -> nothing.
  if (Value.isUndef() && ST->isUnindexed())
    return Chain;

  // Try to infer better alignment information than the store already has.
  if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) {
    if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) {
      if (*Alignment > ST->getAlign() &&
          isAligned(*Alignment, ST->getSrcValueOffset())) {
        SDValue NewStore =
            DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(),
                              ST->getMemoryVT(), *Alignment,
                              ST->getMemOperand()->getFlags(), ST->getAAInfo());
        // NewStore will always be N as we are only refining the alignment
        assert(NewStore.getNode() == N);
        (void)NewStore;
      }
    }
  }

  // Try transforming a pair floating point load / store ops to integer
  // load / store ops.
  if (SDValue NewST = TransformFPLoadStorePair(N))
    return NewST;

  // Try transforming several stores into STORE (BSWAP).
  if (SDValue Store = mergeTruncStores(ST))
    return Store;

  if (ST->isUnindexed()) {
    // Walk up chain skipping non-aliasing memory nodes, on this store and any
    // adjacent stores.
    if (findBetterNeighborChains(ST)) {
      // replaceStoreChain uses CombineTo, which handled all of the worklist
      // manipulation. Return the original node to not do anything else.
      return SDValue(ST, 0);
    }
    Chain = ST->getChain();
  }

  // FIXME: is there such a thing as a truncating indexed store?
  if (ST->isTruncatingStore() && ST->isUnindexed() &&
      Value.getValueType().isInteger() &&
      (!isa<ConstantSDNode>(Value) ||
       !cast<ConstantSDNode>(Value)->isOpaque())) {
    APInt TruncDemandedBits =
        APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
                             ST->getMemoryVT().getScalarSizeInBits());

    // See if we can simplify the input to this truncstore with knowledge that
    // only the low bits are being used.  For example:
    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
    AddToWorklist(Value.getNode());
    if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits))
      return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(),
                               ST->getMemOperand());

    // Otherwise, see if we can simplify the operation with
    // SimplifyDemandedBits, which only works if the value has a single use.
    if (SimplifyDemandedBits(Value, TruncDemandedBits)) {
      // Re-visit the store if anything changed and the store hasn't been merged
      // with another node (N is deleted) SimplifyDemandedBits will add Value's
      // node back to the worklist if necessary, but we also need to re-visit
      // the Store node itself.
      if (N->getOpcode() != ISD::DELETED_NODE)
        AddToWorklist(N);
      return SDValue(N, 0);
    }
  }

  // If this is a load followed by a store to the same location, then the store
  // is dead/noop.
  // TODO: Can relax for unordered atomics (see D66309)
  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
        ST->isUnindexed() && ST->isSimple() &&
        // There can't be any side effects between the load and store, such as
        // a call or store.
        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
      // The store is dead, remove it.
      return Chain;
    }
  }

  // TODO: Can relax for unordered atomics (see D66309)
  if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
    if (ST->isUnindexed() && ST->isSimple() &&
        ST1->isUnindexed() && ST1->isSimple()) {
      if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value &&
          ST->getMemoryVT() == ST1->getMemoryVT()) {
        // If this is a store followed by a store with the same value to the
        // same location, then the store is dead/noop.
        return Chain;
      }

      if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() &&
          !ST1->getBasePtr().isUndef() &&
          // BaseIndexOffset and the code below requires knowing the size
          // of a vector, so bail out if MemoryVT is scalable.
          !ST1->getMemoryVT().isScalableVector()) {
        const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG);
        const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG);
        unsigned STBitSize = ST->getMemoryVT().getSizeInBits();
        unsigned ChainBitSize = ST1->getMemoryVT().getSizeInBits();
        // If this is a store who's preceding store to a subset of the current
        // location and no one other node is chained to that store we can
        // effectively drop the store. Do not remove stores to undef as they may
        // be used as data sinks.
        if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) {
          CombineTo(ST1, ST1->getChain());
          return SDValue();
        }
      }
    }
  }

  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
  // truncating store.  We can do this even if this is already a truncstore.
  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
                            ST->getMemoryVT())) {
    return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
                             Ptr, ST->getMemoryVT(), ST->getMemOperand());
  }

  // Always perform this optimization before types are legal. If the target
  // prefers, also try this after legalization to catch stores that were created
  // by intrinsics or other nodes.
  if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) {
    while (true) {
      // There can be multiple store sequences on the same chain.
      // Keep trying to merge store sequences until we are unable to do so
      // or until we merge the last store on the chain.
      bool Changed = mergeConsecutiveStores(ST);
      if (!Changed) break;
      // Return N as merge only uses CombineTo and no worklist clean
      // up is necessary.
      if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N))
        return SDValue(N, 0);
    }
  }

  // Try transforming N to an indexed store.
  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
    return SDValue(N, 0);

  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
  //
  // Make sure to do this only after attempting to merge stores in order to
  //  avoid changing the types of some subset of stores due to visit order,
  //  preventing their merging.
  if (isa<ConstantFPSDNode>(ST->getValue())) {
    if (SDValue NewSt = replaceStoreOfFPConstant(ST))
      return NewSt;
  }

  if (SDValue NewSt = splitMergedValStore(ST))
    return NewSt;

  return ReduceLoadOpStoreWidth(N);
}

SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) {
  const auto *LifetimeEnd = cast<LifetimeSDNode>(N);
  if (!LifetimeEnd->hasOffset())
    return SDValue();

  const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(),
                                        LifetimeEnd->getOffset(), false);

  // We walk up the chains to find stores.
  SmallVector<SDValue, 8> Chains = {N->getOperand(0)};
  while (!Chains.empty()) {
    SDValue Chain = Chains.back();
    Chains.pop_back();
    if (!Chain.hasOneUse())
      continue;
    switch (Chain.getOpcode()) {
    case ISD::TokenFactor:
      for (unsigned Nops = Chain.getNumOperands(); Nops;)
        Chains.push_back(Chain.getOperand(--Nops));
      break;
    case ISD::LIFETIME_START:
    case ISD::LIFETIME_END:
      // We can forward past any lifetime start/end that can be proven not to
      // alias the node.
      if (!isAlias(Chain.getNode(), N))
        Chains.push_back(Chain.getOperand(0));
      break;
    case ISD::STORE: {
      StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain);
      // TODO: Can relax for unordered atomics (see D66309)
      if (!ST->isSimple() || ST->isIndexed())
        continue;
      const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG);
      // If we store purely within object bounds just before its lifetime ends,
      // we can remove the store.
      if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase,
                                   ST->getMemoryVT().getStoreSizeInBits())) {
        LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump();
                   dbgs() << "\nwithin LIFETIME_END of : ";
                   LifetimeEndBase.dump(); dbgs() << "\n");
        CombineTo(ST, ST->getChain());
        return SDValue(N, 0);
      }
    }
    }
  }
  return SDValue();
}

/// For the instruction sequence of store below, F and I values
/// are bundled together as an i64 value before being stored into memory.
/// Sometimes it is more efficent to generate separate stores for F and I,
/// which can remove the bitwise instructions or sink them to colder places.
///
///   (store (or (zext (bitcast F to i32) to i64),
///              (shl (zext I to i64), 32)), addr)  -->
///   (store F, addr) and (store I, addr+4)
///
/// Similarly, splitting for other merged store can also be beneficial, like:
/// For pair of {i32, i32}, i64 store --> two i32 stores.
/// For pair of {i32, i16}, i64 store --> two i32 stores.
/// For pair of {i16, i16}, i32 store --> two i16 stores.
/// For pair of {i16, i8},  i32 store --> two i16 stores.
/// For pair of {i8, i8},   i16 store --> two i8 stores.
///
/// We allow each target to determine specifically which kind of splitting is
/// supported.
///
/// The store patterns are commonly seen from the simple code snippet below
/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
///   void goo(const std::pair<int, float> &);
///   hoo() {
///     ...
///     goo(std::make_pair(tmp, ftmp));
///     ...
///   }
///
SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
  if (OptLevel == CodeGenOpt::None)
    return SDValue();

  // Can't change the number of memory accesses for a volatile store or break
  // atomicity for an atomic one.
  if (!ST->isSimple())
    return SDValue();

  SDValue Val = ST->getValue();
  SDLoc DL(ST);

  // Match OR operand.
  if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
    return SDValue();

  // Match SHL operand and get Lower and Higher parts of Val.
  SDValue Op1 = Val.getOperand(0);
  SDValue Op2 = Val.getOperand(1);
  SDValue Lo, Hi;
  if (Op1.getOpcode() != ISD::SHL) {
    std::swap(Op1, Op2);
    if (Op1.getOpcode() != ISD::SHL)
      return SDValue();
  }
  Lo = Op2;
  Hi = Op1.getOperand(0);
  if (!Op1.hasOneUse())
    return SDValue();

  // Match shift amount to HalfValBitSize.
  unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
  ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
  if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
    return SDValue();

  // Lo and Hi are zero-extended from int with size less equal than 32
  // to i64.
  if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
      !Lo.getOperand(0).getValueType().isScalarInteger() ||
      Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
      Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
      !Hi.getOperand(0).getValueType().isScalarInteger() ||
      Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
    return SDValue();

  // Use the EVT of low and high parts before bitcast as the input
  // of target query.
  EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
                  ? Lo.getOperand(0).getValueType()
                  : Lo.getValueType();
  EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
                   ? Hi.getOperand(0).getValueType()
                   : Hi.getValueType();
  if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
    return SDValue();

  // Start to split store.
  MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
  AAMDNodes AAInfo = ST->getAAInfo();

  // Change the sizes of Lo and Hi's value types to HalfValBitSize.
  EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
  Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
  Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));

  SDValue Chain = ST->getChain();
  SDValue Ptr = ST->getBasePtr();
  // Lower value store.
  SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
                             ST->getOriginalAlign(), MMOFlags, AAInfo);
  Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(HalfValBitSize / 8), DL);
  // Higher value store.
  SDValue St1 = DAG.getStore(
      St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
      ST->getOriginalAlign(), MMOFlags, AAInfo);
  return St1;
}

/// Convert a disguised subvector insertion into a shuffle:
SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) {
  assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT &&
         "Expected extract_vector_elt");
  SDValue InsertVal = N->getOperand(1);
  SDValue Vec = N->getOperand(0);

  // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N),
  // InsIndex)
  //   --> (vector_shuffle X, Y) and variations where shuffle operands may be
  //   CONCAT_VECTORS.
  if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() &&
      InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
      isa<ConstantSDNode>(InsertVal.getOperand(1))) {
    ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode());
    ArrayRef<int> Mask = SVN->getMask();

    SDValue X = Vec.getOperand(0);
    SDValue Y = Vec.getOperand(1);

    // Vec's operand 0 is using indices from 0 to N-1 and
    // operand 1 from N to 2N - 1, where N is the number of
    // elements in the vectors.
    SDValue InsertVal0 = InsertVal.getOperand(0);
    int ElementOffset = -1;

    // We explore the inputs of the shuffle in order to see if we find the
    // source of the extract_vector_elt. If so, we can use it to modify the
    // shuffle rather than perform an insert_vector_elt.
    SmallVector<std::pair<int, SDValue>, 8> ArgWorkList;
    ArgWorkList.emplace_back(Mask.size(), Y);
    ArgWorkList.emplace_back(0, X);

    while (!ArgWorkList.empty()) {
      int ArgOffset;
      SDValue ArgVal;
      std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val();

      if (ArgVal == InsertVal0) {
        ElementOffset = ArgOffset;
        break;
      }

      // Peek through concat_vector.
      if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) {
        int CurrentArgOffset =
            ArgOffset + ArgVal.getValueType().getVectorNumElements();
        int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements();
        for (SDValue Op : reverse(ArgVal->ops())) {
          CurrentArgOffset -= Step;
          ArgWorkList.emplace_back(CurrentArgOffset, Op);
        }

        // Make sure we went through all the elements and did not screw up index
        // computation.
        assert(CurrentArgOffset == ArgOffset);
      }
    }

    if (ElementOffset != -1) {
      SmallVector<int, 16> NewMask(Mask.begin(), Mask.end());

      auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1));
      NewMask[InsIndex] = ElementOffset + ExtrIndex->getZExtValue();
      assert(NewMask[InsIndex] <
                 (int)(2 * Vec.getValueType().getVectorNumElements()) &&
             NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound");

      SDValue LegalShuffle =
              TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X,
                                          Y, NewMask, DAG);
      if (LegalShuffle)
        return LegalShuffle;
    }
  }

  // insert_vector_elt V, (bitcast X from vector type), IdxC -->
  // bitcast(shuffle (bitcast V), (extended X), Mask)
  // Note: We do not use an insert_subvector node because that requires a
  // legal subvector type.
  if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() ||
      !InsertVal.getOperand(0).getValueType().isVector())
    return SDValue();

  SDValue SubVec = InsertVal.getOperand(0);
  SDValue DestVec = N->getOperand(0);
  EVT SubVecVT = SubVec.getValueType();
  EVT VT = DestVec.getValueType();
  unsigned NumSrcElts = SubVecVT.getVectorNumElements();
  // If the source only has a single vector element, the cost of creating adding
  // it to a vector is likely to exceed the cost of a insert_vector_elt.
  if (NumSrcElts == 1)
    return SDValue();
  unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits();
  unsigned NumMaskVals = ExtendRatio * NumSrcElts;

  // Step 1: Create a shuffle mask that implements this insert operation. The
  // vector that we are inserting into will be operand 0 of the shuffle, so
  // those elements are just 'i'. The inserted subvector is in the first
  // positions of operand 1 of the shuffle. Example:
  // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
  SmallVector<int, 16> Mask(NumMaskVals);
  for (unsigned i = 0; i != NumMaskVals; ++i) {
    if (i / NumSrcElts == InsIndex)
      Mask[i] = (i % NumSrcElts) + NumMaskVals;
    else
      Mask[i] = i;
  }

  // Bail out if the target can not handle the shuffle we want to create.
  EVT SubVecEltVT = SubVecVT.getVectorElementType();
  EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals);
  if (!TLI.isShuffleMaskLegal(Mask, ShufVT))
    return SDValue();

  // Step 2: Create a wide vector from the inserted source vector by appending
  // undefined elements. This is the same size as our destination vector.
  SDLoc DL(N);
  SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT));
  ConcatOps[0] = SubVec;
  SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps);

  // Step 3: Shuffle in the padded subvector.
  SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec);
  SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask);
  AddToWorklist(PaddedSubV.getNode());
  AddToWorklist(DestVecBC.getNode());
  AddToWorklist(Shuf.getNode());
  return DAG.getBitcast(VT, Shuf);
}

SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
  SDValue InVec = N->getOperand(0);
  SDValue InVal = N->getOperand(1);
  SDValue EltNo = N->getOperand(2);
  SDLoc DL(N);

  EVT VT = InVec.getValueType();
  auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);

  // Insert into out-of-bounds element is undefined.
  if (IndexC && VT.isFixedLengthVector() &&
      IndexC->getZExtValue() >= VT.getVectorNumElements())
    return DAG.getUNDEF(VT);

  // Remove redundant insertions:
  // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
  if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
      InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1))
    return InVec;

  if (!IndexC) {
    // If this is variable insert to undef vector, it might be better to splat:
    // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
    if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) {
      if (VT.isScalableVector())
        return DAG.getSplatVector(VT, DL, InVal);
      else {
        SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), InVal);
        return DAG.getBuildVector(VT, DL, Ops);
      }
    }
    return SDValue();
  }

  if (VT.isScalableVector())
    return SDValue();

  unsigned NumElts = VT.getVectorNumElements();

  // We must know which element is being inserted for folds below here.
  unsigned Elt = IndexC->getZExtValue();
  if (SDValue Shuf = combineInsertEltToShuffle(N, Elt))
    return Shuf;

  // Canonicalize insert_vector_elt dag nodes.
  // Example:
  // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
  // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
  //
  // Do this only if the child insert_vector node has one use; also
  // do this only if indices are both constants and Idx1 < Idx0.
  if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
      && isa<ConstantSDNode>(InVec.getOperand(2))) {
    unsigned OtherElt = InVec.getConstantOperandVal(2);
    if (Elt < OtherElt) {
      // Swap nodes.
      SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
                                  InVec.getOperand(0), InVal, EltNo);
      AddToWorklist(NewOp.getNode());
      return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
                         VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
    }
  }

  // If we can't generate a legal BUILD_VECTOR, exit
  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
    return SDValue();

  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
  // vector elements.
  SmallVector<SDValue, 8> Ops;
  // Do not combine these two vectors if the output vector will not replace
  // the input vector.
  if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
    Ops.append(InVec.getNode()->op_begin(),
               InVec.getNode()->op_end());
  } else if (InVec.isUndef()) {
    Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType()));
  } else {
    return SDValue();
  }
  assert(Ops.size() == NumElts && "Unexpected vector size");

  // Insert the element
  if (Elt < Ops.size()) {
    // All the operands of BUILD_VECTOR must have the same type;
    // we enforce that here.
    EVT OpVT = Ops[0].getValueType();
    Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal;
  }

  // Return the new vector
  return DAG.getBuildVector(VT, DL, Ops);
}

SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
                                                  SDValue EltNo,
                                                  LoadSDNode *OriginalLoad) {
  assert(OriginalLoad->isSimple());

  EVT ResultVT = EVE->getValueType(0);
  EVT VecEltVT = InVecVT.getVectorElementType();
  Align Alignment = OriginalLoad->getAlign();
  Align NewAlign = DAG.getDataLayout().getABITypeAlign(
      VecEltVT.getTypeForEVT(*DAG.getContext()));

  if (NewAlign > Alignment ||
      !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
    return SDValue();

  ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ?
    ISD::NON_EXTLOAD : ISD::EXTLOAD;
  if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT))
    return SDValue();

  Alignment = NewAlign;

  SDValue NewPtr = OriginalLoad->getBasePtr();
  SDValue Offset;
  EVT PtrType = NewPtr.getValueType();
  MachinePointerInfo MPI;
  SDLoc DL(EVE);
  if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
    int Elt = ConstEltNo->getZExtValue();
    unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
    Offset = DAG.getConstant(PtrOff, DL, PtrType);
    MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
  } else {
    Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType);
    Offset = DAG.getNode(
        ISD::MUL, DL, PtrType, Offset,
        DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType));
    // Discard the pointer info except the address space because the memory
    // operand can't represent this new access since the offset is variable.
    MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace());
  }
  NewPtr = DAG.getMemBasePlusOffset(NewPtr, Offset, DL);

  // The replacement we need to do here is a little tricky: we need to
  // replace an extractelement of a load with a load.
  // Use ReplaceAllUsesOfValuesWith to do the replacement.
  // Note that this replacement assumes that the extractvalue is the only
  // use of the load; that's okay because we don't want to perform this
  // transformation in other cases anyway.
  SDValue Load;
  SDValue Chain;
  if (ResultVT.bitsGT(VecEltVT)) {
    // If the result type of vextract is wider than the load, then issue an
    // extending load instead.
    ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
                                                  VecEltVT)
                                   ? ISD::ZEXTLOAD
                                   : ISD::EXTLOAD;
    Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT,
                          OriginalLoad->getChain(), NewPtr, MPI, VecEltVT,
                          Alignment, OriginalLoad->getMemOperand()->getFlags(),
                          OriginalLoad->getAAInfo());
    Chain = Load.getValue(1);
  } else {
    Load = DAG.getLoad(
        VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, Alignment,
        OriginalLoad->getMemOperand()->getFlags(), OriginalLoad->getAAInfo());
    Chain = Load.getValue(1);
    if (ResultVT.bitsLT(VecEltVT))
      Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
    else
      Load = DAG.getBitcast(ResultVT, Load);
  }
  WorklistRemover DeadNodes(*this);
  SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
  SDValue To[] = { Load, Chain };
  DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
  // Make sure to revisit this node to clean it up; it will usually be dead.
  AddToWorklist(EVE);
  // Since we're explicitly calling ReplaceAllUses, add the new node to the
  // worklist explicitly as well.
  AddToWorklistWithUsers(Load.getNode());
  ++OpsNarrowed;
  return SDValue(EVE, 0);
}

/// Transform a vector binary operation into a scalar binary operation by moving
/// the math/logic after an extract element of a vector.
static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG,
                                       bool LegalOperations) {
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  SDValue Vec = ExtElt->getOperand(0);
  SDValue Index = ExtElt->getOperand(1);
  auto *IndexC = dyn_cast<ConstantSDNode>(Index);
  if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() ||
      Vec.getNode()->getNumValues() != 1)
    return SDValue();

  // Targets may want to avoid this to prevent an expensive register transfer.
  if (!TLI.shouldScalarizeBinop(Vec))
    return SDValue();

  // Extracting an element of a vector constant is constant-folded, so this
  // transform is just replacing a vector op with a scalar op while moving the
  // extract.
  SDValue Op0 = Vec.getOperand(0);
  SDValue Op1 = Vec.getOperand(1);
  if (isAnyConstantBuildVector(Op0, true) ||
      isAnyConstantBuildVector(Op1, true)) {
    // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
    // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
    SDLoc DL(ExtElt);
    EVT VT = ExtElt->getValueType(0);
    SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index);
    SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index);
    return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1);
  }

  return SDValue();
}

SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
  SDValue VecOp = N->getOperand(0);
  SDValue Index = N->getOperand(1);
  EVT ScalarVT = N->getValueType(0);
  EVT VecVT = VecOp.getValueType();
  if (VecOp.isUndef())
    return DAG.getUNDEF(ScalarVT);

  // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
  //
  // This only really matters if the index is non-constant since other combines
  // on the constant elements already work.
  SDLoc DL(N);
  if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT &&
      Index == VecOp.getOperand(2)) {
    SDValue Elt = VecOp.getOperand(1);
    return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt;
  }

  // (vextract (scalar_to_vector val, 0) -> val
  if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) {
    // Only 0'th element of SCALAR_TO_VECTOR is defined.
    if (DAG.isKnownNeverZero(Index))
      return DAG.getUNDEF(ScalarVT);

    // Check if the result type doesn't match the inserted element type. A
    // SCALAR_TO_VECTOR may truncate the inserted element and the
    // EXTRACT_VECTOR_ELT may widen the extracted vector.
    SDValue InOp = VecOp.getOperand(0);
    if (InOp.getValueType() != ScalarVT) {
      assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
      return DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
    }
    return InOp;
  }

  // extract_vector_elt of out-of-bounds element -> UNDEF
  auto *IndexC = dyn_cast<ConstantSDNode>(Index);
  if (IndexC && VecVT.isFixedLengthVector() &&
      IndexC->getAPIntValue().uge(VecVT.getVectorNumElements()))
    return DAG.getUNDEF(ScalarVT);

  // extract_vector_elt (build_vector x, y), 1 -> y
  if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) ||
       VecOp.getOpcode() == ISD::SPLAT_VECTOR) &&
      TLI.isTypeLegal(VecVT) &&
      (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) {
    assert((VecOp.getOpcode() != ISD::BUILD_VECTOR ||
            VecVT.isFixedLengthVector()) &&
           "BUILD_VECTOR used for scalable vectors");
    unsigned IndexVal =
        VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0;
    SDValue Elt = VecOp.getOperand(IndexVal);
    EVT InEltVT = Elt.getValueType();

    // Sometimes build_vector's scalar input types do not match result type.
    if (ScalarVT == InEltVT)
      return Elt;

    // TODO: It may be useful to truncate if free if the build_vector implicitly
    // converts.
  }

  if (VecVT.isScalableVector())
    return SDValue();

  // All the code from this point onwards assumes fixed width vectors, but it's
  // possible that some of the combinations could be made to work for scalable
  // vectors too.
  unsigned NumElts = VecVT.getVectorNumElements();
  unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();

  // TODO: These transforms should not require the 'hasOneUse' restriction, but
  // there are regressions on multiple targets without it. We can end up with a
  // mess of scalar and vector code if we reduce only part of the DAG to scalar.
  if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() &&
      VecOp.hasOneUse()) {
    // The vector index of the LSBs of the source depend on the endian-ness.
    bool IsLE = DAG.getDataLayout().isLittleEndian();
    unsigned ExtractIndex = IndexC->getZExtValue();
    // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
    unsigned BCTruncElt = IsLE ? 0 : NumElts - 1;
    SDValue BCSrc = VecOp.getOperand(0);
    if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger())
      return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc);

    if (LegalTypes && BCSrc.getValueType().isInteger() &&
        BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) {
      // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
      // trunc i64 X to i32
      SDValue X = BCSrc.getOperand(0);
      assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() &&
             "Extract element and scalar to vector can't change element type "
             "from FP to integer.");
      unsigned XBitWidth = X.getValueSizeInBits();
      BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1;

      // An extract element return value type can be wider than its vector
      // operand element type. In that case, the high bits are undefined, so
      // it's possible that we may need to extend rather than truncate.
      if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) {
        assert(XBitWidth % VecEltBitWidth == 0 &&
               "Scalar bitwidth must be a multiple of vector element bitwidth");
        return DAG.getAnyExtOrTrunc(X, DL, ScalarVT);
      }
    }
  }

  if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations))
    return BO;

  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
  // We only perform this optimization before the op legalization phase because
  // we may introduce new vector instructions which are not backed by TD
  // patterns. For example on AVX, extracting elements from a wide vector
  // without using extract_subvector. However, if we can find an underlying
  // scalar value, then we can always use that.
  if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) {
    auto *Shuf = cast<ShuffleVectorSDNode>(VecOp);
    // Find the new index to extract from.
    int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue());

    // Extracting an undef index is undef.
    if (OrigElt == -1)
      return DAG.getUNDEF(ScalarVT);

    // Select the right vector half to extract from.
    SDValue SVInVec;
    if (OrigElt < (int)NumElts) {
      SVInVec = VecOp.getOperand(0);
    } else {
      SVInVec = VecOp.getOperand(1);
      OrigElt -= NumElts;
    }

    if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
      SDValue InOp = SVInVec.getOperand(OrigElt);
      if (InOp.getValueType() != ScalarVT) {
        assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
        InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
      }

      return InOp;
    }

    // FIXME: We should handle recursing on other vector shuffles and
    // scalar_to_vector here as well.

    if (!LegalOperations ||
        // FIXME: Should really be just isOperationLegalOrCustom.
        TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) ||
        TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) {
      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec,
                         DAG.getVectorIdxConstant(OrigElt, DL));
    }
  }

  // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
  // simplify it based on the (valid) extraction indices.
  if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) {
        return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
               Use->getOperand(0) == VecOp &&
               isa<ConstantSDNode>(Use->getOperand(1));
      })) {
    APInt DemandedElts = APInt::getNullValue(NumElts);
    for (SDNode *Use : VecOp->uses()) {
      auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1));
      if (CstElt->getAPIntValue().ult(NumElts))
        DemandedElts.setBit(CstElt->getZExtValue());
    }
    if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) {
      // We simplified the vector operand of this extract element. If this
      // extract is not dead, visit it again so it is folded properly.
      if (N->getOpcode() != ISD::DELETED_NODE)
        AddToWorklist(N);
      return SDValue(N, 0);
    }
    APInt DemandedBits = APInt::getAllOnesValue(VecEltBitWidth);
    if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) {
      // We simplified the vector operand of this extract element. If this
      // extract is not dead, visit it again so it is folded properly.
      if (N->getOpcode() != ISD::DELETED_NODE)
        AddToWorklist(N);
      return SDValue(N, 0);
    }
  }

  // Everything under here is trying to match an extract of a loaded value.
  // If the result of load has to be truncated, then it's not necessarily
  // profitable.
  bool BCNumEltsChanged = false;
  EVT ExtVT = VecVT.getVectorElementType();
  EVT LVT = ExtVT;
  if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT))
    return SDValue();

  if (VecOp.getOpcode() == ISD::BITCAST) {
    // Don't duplicate a load with other uses.
    if (!VecOp.hasOneUse())
      return SDValue();

    EVT BCVT = VecOp.getOperand(0).getValueType();
    if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
      return SDValue();
    if (NumElts != BCVT.getVectorNumElements())
      BCNumEltsChanged = true;
    VecOp = VecOp.getOperand(0);
    ExtVT = BCVT.getVectorElementType();
  }

  // extract (vector load $addr), i --> load $addr + i * size
  if (!LegalOperations && !IndexC && VecOp.hasOneUse() &&
      ISD::isNormalLoad(VecOp.getNode()) &&
      !Index->hasPredecessor(VecOp.getNode())) {
    auto *VecLoad = dyn_cast<LoadSDNode>(VecOp);
    if (VecLoad && VecLoad->isSimple())
      return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad);
  }

  // Perform only after legalization to ensure build_vector / vector_shuffle
  // optimizations have already been done.
  if (!LegalOperations || !IndexC)
    return SDValue();

  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
  int Elt = IndexC->getZExtValue();
  LoadSDNode *LN0 = nullptr;
  if (ISD::isNormalLoad(VecOp.getNode())) {
    LN0 = cast<LoadSDNode>(VecOp);
  } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
             VecOp.getOperand(0).getValueType() == ExtVT &&
             ISD::isNormalLoad(VecOp.getOperand(0).getNode())) {
    // Don't duplicate a load with other uses.
    if (!VecOp.hasOneUse())
      return SDValue();

    LN0 = cast<LoadSDNode>(VecOp.getOperand(0));
  }
  if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) {
    // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
    // =>
    // (load $addr+1*size)

    // Don't duplicate a load with other uses.
    if (!VecOp.hasOneUse())
      return SDValue();

    // If the bit convert changed the number of elements, it is unsafe
    // to examine the mask.
    if (BCNumEltsChanged)
      return SDValue();

    // Select the input vector, guarding against out of range extract vector.
    int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt);
    VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1);

    if (VecOp.getOpcode() == ISD::BITCAST) {
      // Don't duplicate a load with other uses.
      if (!VecOp.hasOneUse())
        return SDValue();

      VecOp = VecOp.getOperand(0);
    }
    if (ISD::isNormalLoad(VecOp.getNode())) {
      LN0 = cast<LoadSDNode>(VecOp);
      Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts;
      Index = DAG.getConstant(Elt, DL, Index.getValueType());
    }
  } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged &&
             VecVT.getVectorElementType() == ScalarVT &&
             (!LegalTypes ||
              TLI.isTypeLegal(
                  VecOp.getOperand(0).getValueType().getVectorElementType()))) {
    // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0
    //      -> extract_vector_elt a, 0
    // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1
    //      -> extract_vector_elt a, 1
    // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2
    //      -> extract_vector_elt b, 0
    // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3
    //      -> extract_vector_elt b, 1
    SDLoc SL(N);
    EVT ConcatVT = VecOp.getOperand(0).getValueType();
    unsigned ConcatNumElts = ConcatVT.getVectorNumElements();
    SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL,
                                     Index.getValueType());

    SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts);
    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL,
                              ConcatVT.getVectorElementType(),
                              ConcatOp, NewIdx);
    return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt);
  }

  // Make sure we found a non-volatile load and the extractelement is
  // the only use.
  if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple())
    return SDValue();

  // If Idx was -1 above, Elt is going to be -1, so just return undef.
  if (Elt == -1)
    return DAG.getUNDEF(LVT);

  return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0);
}

// Simplify (build_vec (ext )) to (bitcast (build_vec ))
SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
  // We perform this optimization post type-legalization because
  // the type-legalizer often scalarizes integer-promoted vectors.
  // Performing this optimization before may create bit-casts which
  // will be type-legalized to complex code sequences.
  // We perform this optimization only before the operation legalizer because we
  // may introduce illegal operations.
  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
    return SDValue();

  unsigned NumInScalars = N->getNumOperands();
  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  // Check to see if this is a BUILD_VECTOR of a bunch of values
  // which come from any_extend or zero_extend nodes. If so, we can create
  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
  // optimizations. We do not handle sign-extend because we can't fill the sign
  // using shuffles.
  EVT SourceType = MVT::Other;
  bool AllAnyExt = true;

  for (unsigned i = 0; i != NumInScalars; ++i) {
    SDValue In = N->getOperand(i);
    // Ignore undef inputs.
    if (In.isUndef()) continue;

    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;

    // Abort if the element is not an extension.
    if (!ZeroExt && !AnyExt) {
      SourceType = MVT::Other;
      break;
    }

    // The input is a ZeroExt or AnyExt. Check the original type.
    EVT InTy = In.getOperand(0).getValueType();

    // Check that all of the widened source types are the same.
    if (SourceType == MVT::Other)
      // First time.
      SourceType = InTy;
    else if (InTy != SourceType) {
      // Multiple income types. Abort.
      SourceType = MVT::Other;
      break;
    }

    // Check if all of the extends are ANY_EXTENDs.
    AllAnyExt &= AnyExt;
  }

  // In order to have valid types, all of the inputs must be extended from the
  // same source type and all of the inputs must be any or zero extend.
  // Scalar sizes must be a power of two.
  EVT OutScalarTy = VT.getScalarType();
  bool ValidTypes = SourceType != MVT::Other &&
                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
                 isPowerOf2_32(SourceType.getSizeInBits());

  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
  // turn into a single shuffle instruction.
  if (!ValidTypes)
    return SDValue();

  // If we already have a splat buildvector, then don't fold it if it means
  // introducing zeros.
  if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true))
    return SDValue();

  bool isLE = DAG.getDataLayout().isLittleEndian();
  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
  assert(ElemRatio > 1 && "Invalid element size ratio");
  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
                               DAG.getConstant(0, DL, SourceType);

  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);

  // Populate the new build_vector
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    SDValue Cast = N->getOperand(i);
    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
            Cast.getOpcode() == ISD::ZERO_EXTEND ||
            Cast.isUndef()) && "Invalid cast opcode");
    SDValue In;
    if (Cast.isUndef())
      In = DAG.getUNDEF(SourceType);
    else
      In = Cast->getOperand(0);
    unsigned Index = isLE ? (i * ElemRatio) :
                            (i * ElemRatio + (ElemRatio - 1));

    assert(Index < Ops.size() && "Invalid index");
    Ops[Index] = In;
  }

  // The type of the new BUILD_VECTOR node.
  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
         "Invalid vector size");
  // Check if the new vector type is legal.
  if (!isTypeLegal(VecVT) ||
      (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) &&
       TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)))
    return SDValue();

  // Make the new BUILD_VECTOR.
  SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);

  // The new BUILD_VECTOR node has the potential to be further optimized.
  AddToWorklist(BV.getNode());
  // Bitcast to the desired type.
  return DAG.getBitcast(VT, BV);
}

// Simplify (build_vec (trunc $1)
//                     (trunc (srl $1 half-width))
//                     (trunc (srl $1 (2 * half-width))) …)
// to (bitcast $1)
SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");

  // Only for little endian
  if (!DAG.getDataLayout().isLittleEndian())
    return SDValue();

  SDLoc DL(N);
  EVT VT = N->getValueType(0);
  EVT OutScalarTy = VT.getScalarType();
  uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits();

  // Only for power of two types to be sure that bitcast works well
  if (!isPowerOf2_64(ScalarTypeBitsize))
    return SDValue();

  unsigned NumInScalars = N->getNumOperands();

  // Look through bitcasts
  auto PeekThroughBitcast = [](SDValue Op) {
    if (Op.getOpcode() == ISD::BITCAST)
      return Op.getOperand(0);
    return Op;
  };

  // The source value where all the parts are extracted.
  SDValue Src;
  for (unsigned i = 0; i != NumInScalars; ++i) {
    SDValue In = PeekThroughBitcast(N->getOperand(i));
    // Ignore undef inputs.
    if (In.isUndef()) continue;

    if (In.getOpcode() != ISD::TRUNCATE)
      return SDValue();

    In = PeekThroughBitcast(In.getOperand(0));

    if (In.getOpcode() != ISD::SRL) {
      // For now only build_vec without shuffling, handle shifts here in the
      // future.
      if (i != 0)
        return SDValue();

      Src = In;
    } else {
      // In is SRL
      SDValue part = PeekThroughBitcast(In.getOperand(0));

      if (!Src) {
        Src = part;
      } else if (Src != part) {
        // Vector parts do not stem from the same variable
        return SDValue();
      }

      SDValue ShiftAmtVal = In.getOperand(1);
      if (!isa<ConstantSDNode>(ShiftAmtVal))
        return SDValue();

      uint64_t ShiftAmt = In.getNode()->getConstantOperandVal(1);

      // The extracted value is not extracted at the right position
      if (ShiftAmt != i * ScalarTypeBitsize)
        return SDValue();
    }
  }

  // Only cast if the size is the same
  if (Src.getValueType().getSizeInBits() != VT.getSizeInBits())
    return SDValue();

  return DAG.getBitcast(VT, Src);
}

SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N,
                                           ArrayRef<int> VectorMask,
                                           SDValue VecIn1, SDValue VecIn2,
                                           unsigned LeftIdx, bool DidSplitVec) {
  SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL);

  EVT VT = N->getValueType(0);
  EVT InVT1 = VecIn1.getValueType();
  EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;

  unsigned NumElems = VT.getVectorNumElements();
  unsigned ShuffleNumElems = NumElems;

  // If we artificially split a vector in two already, then the offsets in the
  // operands will all be based off of VecIn1, even those in VecIn2.
  unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements();

  // We can't generate a shuffle node with mismatched input and output types.
  // Try to make the types match the type of the output.
  if (InVT1 != VT || InVT2 != VT) {
    if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) {
      // If the output vector length is a multiple of both input lengths,
      // we can concatenate them and pad the rest with undefs.
      unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits();
      assert(NumConcats >= 2 && "Concat needs at least two inputs!");
      SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
      ConcatOps[0] = VecIn1;
      ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
      VecIn2 = SDValue();
    } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) {
      if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems))
        return SDValue();

      if (!VecIn2.getNode()) {
        // If we only have one input vector, and it's twice the size of the
        // output, split it in two.
        VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
                             DAG.getVectorIdxConstant(NumElems, DL));
        VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx);
        // Since we now have shorter input vectors, adjust the offset of the
        // second vector's start.
        Vec2Offset = NumElems;
      } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) {
        // VecIn1 is wider than the output, and we have another, possibly
        // smaller input. Pad the smaller input with undefs, shuffle at the
        // input vector width, and extract the output.
        // The shuffle type is different than VT, so check legality again.
        if (LegalOperations &&
            !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
          return SDValue();

        // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
        // lower it back into a BUILD_VECTOR. So if the inserted type is
        // illegal, don't even try.
        if (InVT1 != InVT2) {
          if (!TLI.isTypeLegal(InVT2))
            return SDValue();
          VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1,
                               DAG.getUNDEF(InVT1), VecIn2, ZeroIdx);
        }
        ShuffleNumElems = NumElems * 2;
      } else {
        // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider
        // than VecIn1. We can't handle this for now - this case will disappear
        // when we start sorting the vectors by type.
        return SDValue();
      }
    } else if (InVT2.getSizeInBits() * 2 == VT.getSizeInBits() &&
               InVT1.getSizeInBits() == VT.getSizeInBits()) {
      SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2));
      ConcatOps[0] = VecIn2;
      VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
    } else {
      // TODO: Support cases where the length mismatch isn't exactly by a
      // factor of 2.
      // TODO: Move this check upwards, so that if we have bad type
      // mismatches, we don't create any DAG nodes.
      return SDValue();
    }
  }

  // Initialize mask to undef.
  SmallVector<int, 8> Mask(ShuffleNumElems, -1);

  // Only need to run up to the number of elements actually used, not the
  // total number of elements in the shuffle - if we are shuffling a wider
  // vector, the high lanes should be set to undef.
  for (unsigned i = 0; i != NumElems; ++i) {
    if (VectorMask[i] <= 0)
      continue;

    unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
    if (VectorMask[i] == (int)LeftIdx) {
      Mask[i] = ExtIndex;
    } else if (VectorMask[i] == (int)LeftIdx + 1) {
      Mask[i] = Vec2Offset + ExtIndex;
    }
  }

  // The type the input vectors may have changed above.
  InVT1 = VecIn1.getValueType();

  // If we already have a VecIn2, it should have the same type as VecIn1.
  // If we don't, get an undef/zero vector of the appropriate type.
  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
  assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.");

  SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
  if (ShuffleNumElems > NumElems)
    Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx);

  return Shuffle;
}

static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) {
  assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");

  // First, determine where the build vector is not undef.
  // TODO: We could extend this to handle zero elements as well as undefs.
  int NumBVOps = BV->getNumOperands();
  int ZextElt = -1;
  for (int i = 0; i != NumBVOps; ++i) {
    SDValue Op = BV->getOperand(i);
    if (Op.isUndef())
      continue;
    if (ZextElt == -1)
      ZextElt = i;
    else
      return SDValue();
  }
  // Bail out if there's no non-undef element.
  if (ZextElt == -1)
    return SDValue();

  // The build vector contains some number of undef elements and exactly
  // one other element. That other element must be a zero-extended scalar
  // extracted from a vector at a constant index to turn this into a shuffle.
  // Also, require that the build vector does not implicitly truncate/extend
  // its elements.
  // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
  EVT VT = BV->getValueType(0);
  SDValue Zext = BV->getOperand(ZextElt);
  if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() ||
      Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
      !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) ||
      Zext.getValueSizeInBits() != VT.getScalarSizeInBits())
    return SDValue();

  // The zero-extend must be a multiple of the source size, and we must be
  // building a vector of the same size as the source of the extract element.
  SDValue Extract = Zext.getOperand(0);
  unsigned DestSize = Zext.getValueSizeInBits();
  unsigned SrcSize = Extract.getValueSizeInBits();
  if (DestSize % SrcSize != 0 ||
      Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits())
    return SDValue();

  // Create a shuffle mask that will combine the extracted element with zeros
  // and undefs.
  int ZextRatio = DestSize / SrcSize;
  int NumMaskElts = NumBVOps * ZextRatio;
  SmallVector<int, 32> ShufMask(NumMaskElts, -1);
  for (int i = 0; i != NumMaskElts; ++i) {
    if (i / ZextRatio == ZextElt) {
      // The low bits of the (potentially translated) extracted element map to
      // the source vector. The high bits map to zero. We will use a zero vector
      // as the 2nd source operand of the shuffle, so use the 1st element of
      // that vector (mask value is number-of-elements) for the high bits.
      if (i % ZextRatio == 0)
        ShufMask[i] = Extract.getConstantOperandVal(1);
      else
        ShufMask[i] = NumMaskElts;
    }

    // Undef elements of the build vector remain undef because we initialize
    // the shuffle mask with -1.
  }

  // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
  // bitcast (shuffle V, ZeroVec, VectorMask)
  SDLoc DL(BV);
  EVT VecVT = Extract.getOperand(0).getValueType();
  SDValue ZeroVec = DAG.getConstant(0, DL, VecVT);
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0),
                                             ZeroVec, ShufMask, DAG);
  if (!Shuf)
    return SDValue();
  return DAG.getBitcast(VT, Shuf);
}

// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
// operations. If the types of the vectors we're extracting from allow it,
// turn this into a vector_shuffle node.
SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
  if (!isTypeLegal(VT))
    return SDValue();

  if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG))
    return V;

  // May only combine to shuffle after legalize if shuffle is legal.
  if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
    return SDValue();

  bool UsesZeroVector = false;
  unsigned NumElems = N->getNumOperands();

  // Record, for each element of the newly built vector, which input vector
  // that element comes from. -1 stands for undef, 0 for the zero vector,
  // and positive values for the input vectors.
  // VectorMask maps each element to its vector number, and VecIn maps vector
  // numbers to their initial SDValues.

  SmallVector<int, 8> VectorMask(NumElems, -1);
  SmallVector<SDValue, 8> VecIn;
  VecIn.push_back(SDValue());

  for (unsigned i = 0; i != NumElems; ++i) {
    SDValue Op = N->getOperand(i);

    if (Op.isUndef())
      continue;

    // See if we can use a blend with a zero vector.
    // TODO: Should we generalize this to a blend with an arbitrary constant
    // vector?
    if (isNullConstant(Op) || isNullFPConstant(Op)) {
      UsesZeroVector = true;
      VectorMask[i] = 0;
      continue;
    }

    // Not an undef or zero. If the input is something other than an
    // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
    if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
        !isa<ConstantSDNode>(Op.getOperand(1)))
      return SDValue();
    SDValue ExtractedFromVec = Op.getOperand(0);

    if (ExtractedFromVec.getValueType().isScalableVector())
      return SDValue();

    const APInt &ExtractIdx = Op.getConstantOperandAPInt(1);
    if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements()))
      return SDValue();

    // All inputs must have the same element type as the output.
    if (VT.getVectorElementType() !=
        ExtractedFromVec.getValueType().getVectorElementType())
      return SDValue();

    // Have we seen this input vector before?
    // The vectors are expected to be tiny (usually 1 or 2 elements), so using
    // a map back from SDValues to numbers isn't worth it.
    unsigned Idx = std::distance(
        VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec));
    if (Idx == VecIn.size())
      VecIn.push_back(ExtractedFromVec);

    VectorMask[i] = Idx;
  }

  // If we didn't find at least one input vector, bail out.
  if (VecIn.size() < 2)
    return SDValue();

  // If all the Operands of BUILD_VECTOR extract from same
  // vector, then split the vector efficiently based on the maximum
  // vector access index and adjust the VectorMask and
  // VecIn accordingly.
  bool DidSplitVec = false;
  if (VecIn.size() == 2) {
    unsigned MaxIndex = 0;
    unsigned NearestPow2 = 0;
    SDValue Vec = VecIn.back();
    EVT InVT = Vec.getValueType();
    SmallVector<unsigned, 8> IndexVec(NumElems, 0);

    for (unsigned i = 0; i < NumElems; i++) {
      if (VectorMask[i] <= 0)
        continue;
      unsigned Index = N->getOperand(i).getConstantOperandVal(1);
      IndexVec[i] = Index;
      MaxIndex = std::max(MaxIndex, Index);
    }

    NearestPow2 = PowerOf2Ceil(MaxIndex);
    if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 &&
        NumElems * 2 < NearestPow2) {
      unsigned SplitSize = NearestPow2 / 2;
      EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
                                     InVT.getVectorElementType(), SplitSize);
      if (TLI.isTypeLegal(SplitVT)) {
        SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
                                     DAG.getVectorIdxConstant(SplitSize, DL));
        SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
                                     DAG.getVectorIdxConstant(0, DL));
        VecIn.pop_back();
        VecIn.push_back(VecIn1);
        VecIn.push_back(VecIn2);
        DidSplitVec = true;

        for (unsigned i = 0; i < NumElems; i++) {
          if (VectorMask[i] <= 0)
            continue;
          VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2;
        }
      }
    }
  }

  // TODO: We want to sort the vectors by descending length, so that adjacent
  // pairs have similar length, and the longer vector is always first in the
  // pair.

  // TODO: Should this fire if some of the input vectors has illegal type (like
  // it does now), or should we let legalization run its course first?

  // Shuffle phase:
  // Take pairs of vectors, and shuffle them so that the result has elements
  // from these vectors in the correct places.
  // For example, given:
  // t10: i32 = extract_vector_elt t1, Constant:i64<0>
  // t11: i32 = extract_vector_elt t2, Constant:i64<0>
  // t12: i32 = extract_vector_elt t3, Constant:i64<0>
  // t13: i32 = extract_vector_elt t1, Constant:i64<1>
  // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
  // We will generate:
  // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
  // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
  SmallVector<SDValue, 4> Shuffles;
  for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
    unsigned LeftIdx = 2 * In + 1;
    SDValue VecLeft = VecIn[LeftIdx];
    SDValue VecRight =
        (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();

    if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
                                                VecRight, LeftIdx, DidSplitVec))
      Shuffles.push_back(Shuffle);
    else
      return SDValue();
  }

  // If we need the zero vector as an "ingredient" in the blend tree, add it
  // to the list of shuffles.
  if (UsesZeroVector)
    Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
                                      : DAG.getConstantFP(0.0, DL, VT));

  // If we only have one shuffle, we're done.
  if (Shuffles.size() == 1)
    return Shuffles[0];

  // Update the vector mask to point to the post-shuffle vectors.
  for (int &Vec : VectorMask)
    if (Vec == 0)
      Vec = Shuffles.size() - 1;
    else
      Vec = (Vec - 1) / 2;

  // More than one shuffle. Generate a binary tree of blends, e.g. if from
  // the previous step we got the set of shuffles t10, t11, t12, t13, we will
  // generate:
  // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
  // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
  // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
  // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
  // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
  // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
  // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21

  // Make sure the initial size of the shuffle list is even.
  if (Shuffles.size() % 2)
    Shuffles.push_back(DAG.getUNDEF(VT));

  for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
    if (CurSize % 2) {
      Shuffles[CurSize] = DAG.getUNDEF(VT);
      CurSize++;
    }
    for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
      int Left = 2 * In;
      int Right = 2 * In + 1;
      SmallVector<int, 8> Mask(NumElems, -1);
      for (unsigned i = 0; i != NumElems; ++i) {
        if (VectorMask[i] == Left) {
          Mask[i] = i;
          VectorMask[i] = In;
        } else if (VectorMask[i] == Right) {
          Mask[i] = i + NumElems;
          VectorMask[i] = In;
        }
      }

      Shuffles[In] =
          DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask);
    }
  }
  return Shuffles[0];
}

// Try to turn a build vector of zero extends of extract vector elts into a
// a vector zero extend and possibly an extract subvector.
// TODO: Support sign extend?
// TODO: Allow undef elements?
SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) {
  if (LegalOperations)
    return SDValue();

  EVT VT = N->getValueType(0);

  bool FoundZeroExtend = false;
  SDValue Op0 = N->getOperand(0);
  auto checkElem = [&](SDValue Op) -> int64_t {
    unsigned Opc = Op.getOpcode();
    FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND);
    if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) &&
        Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
        Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0))
      if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1)))
        return C->getZExtValue();
    return -1;
  };

  // Make sure the first element matches
  // (zext (extract_vector_elt X, C))
  int64_t Offset = checkElem(Op0);
  if (Offset < 0)
    return SDValue();

  unsigned NumElems = N->getNumOperands();
  SDValue In = Op0.getOperand(0).getOperand(0);
  EVT InSVT = In.getValueType().getScalarType();
  EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems);

  // Don't create an illegal input type after type legalization.
  if (LegalTypes && !TLI.isTypeLegal(InVT))
    return SDValue();

  // Ensure all the elements come from the same vector and are adjacent.
  for (unsigned i = 1; i != NumElems; ++i) {
    if ((Offset + i) != checkElem(N->getOperand(i)))
      return SDValue();
  }

  SDLoc DL(N);
  In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In,
                   Op0.getOperand(0).getOperand(1));
  return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL,
                     VT, In);
}

SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
  EVT VT = N->getValueType(0);

  // A vector built entirely of undefs is undef.
  if (ISD::allOperandsUndef(N))
    return DAG.getUNDEF(VT);

  // If this is a splat of a bitcast from another vector, change to a
  // concat_vector.
  // For example:
  //   (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
  //     (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
  //
  // If X is a build_vector itself, the concat can become a larger build_vector.
  // TODO: Maybe this is useful for non-splat too?
  if (!LegalOperations) {
    if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) {
      Splat = peekThroughBitcasts(Splat);
      EVT SrcVT = Splat.getValueType();
      if (SrcVT.isVector()) {
        unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements();
        EVT NewVT = EVT::getVectorVT(*DAG.getContext(),
                                     SrcVT.getVectorElementType(), NumElts);
        if (!LegalTypes || TLI.isTypeLegal(NewVT)) {
          SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat);
          SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N),
                                       NewVT, Ops);
          return DAG.getBitcast(VT, Concat);
        }
      }
    }
  }

  // A splat of a single element is a SPLAT_VECTOR if supported on the target.
  if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand)
    if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) {
      assert(!V.isUndef() && "Splat of undef should have been handled earlier");
      return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V);
    }

  // Check if we can express BUILD VECTOR via subvector extract.
  if (!LegalTypes && (N->getNumOperands() > 1)) {
    SDValue Op0 = N->getOperand(0);
    auto checkElem = [&](SDValue Op) -> uint64_t {
      if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) &&
          (Op0.getOperand(0) == Op.getOperand(0)))
        if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
          return CNode->getZExtValue();
      return -1;
    };

    int Offset = checkElem(Op0);
    for (unsigned i = 0; i < N->getNumOperands(); ++i) {
      if (Offset + i != checkElem(N->getOperand(i))) {
        Offset = -1;
        break;
      }
    }

    if ((Offset == 0) &&
        (Op0.getOperand(0).getValueType() == N->getValueType(0)))
      return Op0.getOperand(0);
    if ((Offset != -1) &&
        ((Offset % N->getValueType(0).getVectorNumElements()) ==
         0)) // IDX must be multiple of output size.
      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0),
                         Op0.getOperand(0), Op0.getOperand(1));
  }

  if (SDValue V = convertBuildVecZextToZext(N))
    return V;

  if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
    return V;

  if (SDValue V = reduceBuildVecTruncToBitCast(N))
    return V;

  if (SDValue V = reduceBuildVecToShuffle(N))
    return V;

  return SDValue();
}

static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  EVT OpVT = N->getOperand(0).getValueType();

  // If the operands are legal vectors, leave them alone.
  if (TLI.isTypeLegal(OpVT))
    return SDValue();

  SDLoc DL(N);
  EVT VT = N->getValueType(0);
  SmallVector<SDValue, 8> Ops;

  EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
  SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);

  // Keep track of what we encounter.
  bool AnyInteger = false;
  bool AnyFP = false;
  for (const SDValue &Op : N->ops()) {
    if (ISD::BITCAST == Op.getOpcode() &&
        !Op.getOperand(0).getValueType().isVector())
      Ops.push_back(Op.getOperand(0));
    else if (ISD::UNDEF == Op.getOpcode())
      Ops.push_back(ScalarUndef);
    else
      return SDValue();

    // Note whether we encounter an integer or floating point scalar.
    // If it's neither, bail out, it could be something weird like x86mmx.
    EVT LastOpVT = Ops.back().getValueType();
    if (LastOpVT.isFloatingPoint())
      AnyFP = true;
    else if (LastOpVT.isInteger())
      AnyInteger = true;
    else
      return SDValue();
  }

  // If any of the operands is a floating point scalar bitcast to a vector,
  // use floating point types throughout, and bitcast everything.
  // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
  if (AnyFP) {
    SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
    ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
    if (AnyInteger) {
      for (SDValue &Op : Ops) {
        if (Op.getValueType() == SVT)
          continue;
        if (Op.isUndef())
          Op = ScalarUndef;
        else
          Op = DAG.getBitcast(SVT, Op);
      }
    }
  }

  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
                               VT.getSizeInBits() / SVT.getSizeInBits());
  return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops));
}

// Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
// operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
// most two distinct vectors the same size as the result, attempt to turn this
// into a legal shuffle.
static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
  EVT VT = N->getValueType(0);
  EVT OpVT = N->getOperand(0).getValueType();

  // We currently can't generate an appropriate shuffle for a scalable vector.
  if (VT.isScalableVector())
    return SDValue();

  int NumElts = VT.getVectorNumElements();
  int NumOpElts = OpVT.getVectorNumElements();

  SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
  SmallVector<int, 8> Mask;

  for (SDValue Op : N->ops()) {
    Op = peekThroughBitcasts(Op);

    // UNDEF nodes convert to UNDEF shuffle mask values.
    if (Op.isUndef()) {
      Mask.append((unsigned)NumOpElts, -1);
      continue;
    }

    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
      return SDValue();

    // What vector are we extracting the subvector from and at what index?
    SDValue ExtVec = Op.getOperand(0);
    int ExtIdx = Op.getConstantOperandVal(1);

    // We want the EVT of the original extraction to correctly scale the
    // extraction index.
    EVT ExtVT = ExtVec.getValueType();
    ExtVec = peekThroughBitcasts(ExtVec);

    // UNDEF nodes convert to UNDEF shuffle mask values.
    if (ExtVec.isUndef()) {
      Mask.append((unsigned)NumOpElts, -1);
      continue;
    }

    // Ensure that we are extracting a subvector from a vector the same
    // size as the result.
    if (ExtVT.getSizeInBits() != VT.getSizeInBits())
      return SDValue();

    // Scale the subvector index to account for any bitcast.
    int NumExtElts = ExtVT.getVectorNumElements();
    if (0 == (NumExtElts % NumElts))
      ExtIdx /= (NumExtElts / NumElts);
    else if (0 == (NumElts % NumExtElts))
      ExtIdx *= (NumElts / NumExtElts);
    else
      return SDValue();

    // At most we can reference 2 inputs in the final shuffle.
    if (SV0.isUndef() || SV0 == ExtVec) {
      SV0 = ExtVec;
      for (int i = 0; i != NumOpElts; ++i)
        Mask.push_back(i + ExtIdx);
    } else if (SV1.isUndef() || SV1 == ExtVec) {
      SV1 = ExtVec;
      for (int i = 0; i != NumOpElts; ++i)
        Mask.push_back(i + ExtIdx + NumElts);
    } else {
      return SDValue();
    }
  }

  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
                                     DAG.getBitcast(VT, SV1), Mask, DAG);
}

static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) {
  unsigned CastOpcode = N->getOperand(0).getOpcode();
  switch (CastOpcode) {
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
    // TODO: Allow more opcodes?
    //  case ISD::BITCAST:
    //  case ISD::TRUNCATE:
    //  case ISD::ZERO_EXTEND:
    //  case ISD::SIGN_EXTEND:
    //  case ISD::FP_EXTEND:
    break;
  default:
    return SDValue();
  }

  EVT SrcVT = N->getOperand(0).getOperand(0).getValueType();
  if (!SrcVT.isVector())
    return SDValue();

  // All operands of the concat must be the same kind of cast from the same
  // source type.
  SmallVector<SDValue, 4> SrcOps;
  for (SDValue Op : N->ops()) {
    if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() ||
        Op.getOperand(0).getValueType() != SrcVT)
      return SDValue();
    SrcOps.push_back(Op.getOperand(0));
  }

  // The wider cast must be supported by the target. This is unusual because
  // the operation support type parameter depends on the opcode. In addition,
  // check the other type in the cast to make sure this is really legal.
  EVT VT = N->getValueType(0);
  EVT SrcEltVT = SrcVT.getVectorElementType();
  ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands();
  EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts);
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  switch (CastOpcode) {
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:
    if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) ||
        !TLI.isTypeLegal(VT))
      return SDValue();
    break;
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
    if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) ||
        !TLI.isTypeLegal(ConcatSrcVT))
      return SDValue();
    break;
  default:
    llvm_unreachable("Unexpected cast opcode");
  }

  // concat (cast X), (cast Y)... -> cast (concat X, Y...)
  SDLoc DL(N);
  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps);
  return DAG.getNode(CastOpcode, DL, VT, NewConcat);
}

SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
  // If we only have one input vector, we don't need to do any concatenation.
  if (N->getNumOperands() == 1)
    return N->getOperand(0);

  // Check if all of the operands are undefs.
  EVT VT = N->getValueType(0);
  if (ISD::allOperandsUndef(N))
    return DAG.getUNDEF(VT);

  // Optimize concat_vectors where all but the first of the vectors are undef.
  if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) {
        return Op.isUndef();
      })) {
    SDValue In = N->getOperand(0);
    assert(In.getValueType().isVector() && "Must concat vectors");

    // If the input is a concat_vectors, just make a larger concat by padding
    // with smaller undefs.
    if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) {
      unsigned NumOps = N->getNumOperands() * In.getNumOperands();
      SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end());
      Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType()));
      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
    }

    SDValue Scalar = peekThroughOneUseBitcasts(In);

    // concat_vectors(scalar_to_vector(scalar), undef) ->
    //     scalar_to_vector(scalar)
    if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR &&
         Scalar.hasOneUse()) {
      EVT SVT = Scalar.getValueType().getVectorElementType();
      if (SVT == Scalar.getOperand(0).getValueType())
        Scalar = Scalar.getOperand(0);
    }

    // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
    if (!Scalar.getValueType().isVector()) {
      // If the bitcast type isn't legal, it might be a trunc of a legal type;
      // look through the trunc so we can still do the transform:
      //   concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
      if (Scalar->getOpcode() == ISD::TRUNCATE &&
          !TLI.isTypeLegal(Scalar.getValueType()) &&
          TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
        Scalar = Scalar->getOperand(0);

      EVT SclTy = Scalar.getValueType();

      if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
        return SDValue();

      // Bail out if the vector size is not a multiple of the scalar size.
      if (VT.getSizeInBits() % SclTy.getSizeInBits())
        return SDValue();

      unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits();
      if (VNTNumElms < 2)
        return SDValue();

      EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms);
      if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
        return SDValue();

      SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
      return DAG.getBitcast(VT, Res);
    }
  }

  // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
  // We have already tested above for an UNDEF only concatenation.
  // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
  // -> (BUILD_VECTOR A, B, ..., C, D, ...)
  auto IsBuildVectorOrUndef = [](const SDValue &Op) {
    return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
  };
  if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) {
    SmallVector<SDValue, 8> Opnds;
    EVT SVT = VT.getScalarType();

    EVT MinVT = SVT;
    if (!SVT.isFloatingPoint()) {
      // If BUILD_VECTOR are from built from integer, they may have different
      // operand types. Get the smallest type and truncate all operands to it.
      bool FoundMinVT = false;
      for (const SDValue &Op : N->ops())
        if (ISD::BUILD_VECTOR == Op.getOpcode()) {
          EVT OpSVT = Op.getOperand(0).getValueType();
          MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
          FoundMinVT = true;
        }
      assert(FoundMinVT && "Concat vector type mismatch");
    }

    for (const SDValue &Op : N->ops()) {
      EVT OpVT = Op.getValueType();
      unsigned NumElts = OpVT.getVectorNumElements();

      if (ISD::UNDEF == Op.getOpcode())
        Opnds.append(NumElts, DAG.getUNDEF(MinVT));

      if (ISD::BUILD_VECTOR == Op.getOpcode()) {
        if (SVT.isFloatingPoint()) {
          assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
          Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
        } else {
          for (unsigned i = 0; i != NumElts; ++i)
            Opnds.push_back(
                DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
        }
      }
    }

    assert(VT.getVectorNumElements() == Opnds.size() &&
           "Concat vector type mismatch");
    return DAG.getBuildVector(VT, SDLoc(N), Opnds);
  }

  // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
  if (SDValue V = combineConcatVectorOfScalars(N, DAG))
    return V;

  // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
  if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
    if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
      return V;

  if (SDValue V = combineConcatVectorOfCasts(N, DAG))
    return V;

  // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
  // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR
  // operands and look for a CONCAT operations that place the incoming vectors
  // at the exact same location.
  //
  // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled.
  SDValue SingleSource = SDValue();
  unsigned PartNumElem =
      N->getOperand(0).getValueType().getVectorMinNumElements();

  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    SDValue Op = N->getOperand(i);

    if (Op.isUndef())
      continue;

    // Check if this is the identity extract:
    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
      return SDValue();

    // Find the single incoming vector for the extract_subvector.
    if (SingleSource.getNode()) {
      if (Op.getOperand(0) != SingleSource)
        return SDValue();
    } else {
      SingleSource = Op.getOperand(0);

      // Check the source type is the same as the type of the result.
      // If not, this concat may extend the vector, so we can not
      // optimize it away.
      if (SingleSource.getValueType() != N->getValueType(0))
        return SDValue();
    }

    // Check that we are reading from the identity index.
    unsigned IdentityIndex = i * PartNumElem;
    if (Op.getConstantOperandAPInt(1) != IdentityIndex)
      return SDValue();
  }

  if (SingleSource.getNode())
    return SingleSource;

  return SDValue();
}

// Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
// if the subvector can be sourced for free.
static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) {
  if (V.getOpcode() == ISD::INSERT_SUBVECTOR &&
      V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) {
    return V.getOperand(1);
  }
  auto *IndexC = dyn_cast<ConstantSDNode>(Index);
  if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS &&
      V.getOperand(0).getValueType() == SubVT &&
      (IndexC->getZExtValue() % SubVT.getVectorNumElements()) == 0) {
    uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorNumElements();
    return V.getOperand(SubIdx);
  }
  return SDValue();
}

static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract,
                                              SelectionDAG &DAG,
                                              bool LegalOperations) {
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  SDValue BinOp = Extract->getOperand(0);
  unsigned BinOpcode = BinOp.getOpcode();
  if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1)
    return SDValue();

  EVT VecVT = BinOp.getValueType();
  SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1);
  if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType())
    return SDValue();

  SDValue Index = Extract->getOperand(1);
  EVT SubVT = Extract->getValueType(0);
  if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations))
    return SDValue();

  SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT);
  SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT);

  // TODO: We could handle the case where only 1 operand is being inserted by
  //       creating an extract of the other operand, but that requires checking
  //       number of uses and/or costs.
  if (!Sub0 || !Sub1)
    return SDValue();

  // We are inserting both operands of the wide binop only to extract back
  // to the narrow vector size. Eliminate all of the insert/extract:
  // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
  return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1,
                     BinOp->getFlags());
}

/// If we are extracting a subvector produced by a wide binary operator try
/// to use a narrow binary operator and/or avoid concatenation and extraction.
static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG,
                                          bool LegalOperations) {
  // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
  // some of these bailouts with other transforms.

  if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG, LegalOperations))
    return V;

  // The extract index must be a constant, so we can map it to a concat operand.
  auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
  if (!ExtractIndexC)
    return SDValue();

  // We are looking for an optionally bitcasted wide vector binary operator
  // feeding an extract subvector.
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0));
  unsigned BOpcode = BinOp.getOpcode();
  if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1)
    return SDValue();

  // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be
  // reduced to the unary fneg when it is visited, and we probably want to deal
  // with fneg in a target-specific way.
  if (BOpcode == ISD::FSUB) {
    auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true);
    if (C && C->getValueAPF().isNegZero())
      return SDValue();
  }

  // The binop must be a vector type, so we can extract some fraction of it.
  EVT WideBVT = BinOp.getValueType();
  // The optimisations below currently assume we are dealing with fixed length
  // vectors. It is possible to add support for scalable vectors, but at the
  // moment we've done no analysis to prove whether they are profitable or not.
  if (!WideBVT.isFixedLengthVector())
    return SDValue();

  EVT VT = Extract->getValueType(0);
  unsigned ExtractIndex = ExtractIndexC->getZExtValue();
  assert(ExtractIndex % VT.getVectorNumElements() == 0 &&
         "Extract index is not a multiple of the vector length.");

  // Bail out if this is not a proper multiple width extraction.
  unsigned WideWidth = WideBVT.getSizeInBits();
  unsigned NarrowWidth = VT.getSizeInBits();
  if (WideWidth % NarrowWidth != 0)
    return SDValue();

  // Bail out if we are extracting a fraction of a single operation. This can
  // occur because we potentially looked through a bitcast of the binop.
  unsigned NarrowingRatio = WideWidth / NarrowWidth;
  unsigned WideNumElts = WideBVT.getVectorNumElements();
  if (WideNumElts % NarrowingRatio != 0)
    return SDValue();

  // Bail out if the target does not support a narrower version of the binop.
  EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(),
                                   WideNumElts / NarrowingRatio);
  if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT))
    return SDValue();

  // If extraction is cheap, we don't need to look at the binop operands
  // for concat ops. The narrow binop alone makes this transform profitable.
  // We can't just reuse the original extract index operand because we may have
  // bitcasted.
  unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements();
  unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements();
  if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) &&
      BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) {
    // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
    SDLoc DL(Extract);
    SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL);
    SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
                            BinOp.getOperand(0), NewExtIndex);
    SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
                            BinOp.getOperand(1), NewExtIndex);
    SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y,
                                      BinOp.getNode()->getFlags());
    return DAG.getBitcast(VT, NarrowBinOp);
  }

  // Only handle the case where we are doubling and then halving. A larger ratio
  // may require more than two narrow binops to replace the wide binop.
  if (NarrowingRatio != 2)
    return SDValue();

  // TODO: The motivating case for this transform is an x86 AVX1 target. That
  // target has temptingly almost legal versions of bitwise logic ops in 256-bit
  // flavors, but no other 256-bit integer support. This could be extended to
  // handle any binop, but that may require fixing/adding other folds to avoid
  // codegen regressions.
  if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR)
    return SDValue();

  // We need at least one concatenation operation of a binop operand to make
  // this transform worthwhile. The concat must double the input vector sizes.
  auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue {
    if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2)
      return V.getOperand(ConcatOpNum);
    return SDValue();
  };
  SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0)));
  SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1)));

  if (SubVecL || SubVecR) {
    // If a binop operand was not the result of a concat, we must extract a
    // half-sized operand for our new narrow binop:
    // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
    // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
    // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
    SDLoc DL(Extract);
    SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL);
    SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL)
                        : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
                                      BinOp.getOperand(0), IndexC);

    SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR)
                        : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
                                      BinOp.getOperand(1), IndexC);

    SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y);
    return DAG.getBitcast(VT, NarrowBinOp);
  }

  return SDValue();
}

/// If we are extracting a subvector from a wide vector load, convert to a
/// narrow load to eliminate the extraction:
/// (extract_subvector (load wide vector)) --> (load narrow vector)
static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) {
  // TODO: Add support for big-endian. The offset calculation must be adjusted.
  if (DAG.getDataLayout().isBigEndian())
    return SDValue();

  auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0));
  auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
  if (!Ld || Ld->getExtensionType() || !Ld->isSimple() ||
      !ExtIdx)
    return SDValue();

  // Allow targets to opt-out.
  EVT VT = Extract->getValueType(0);

  // We can only create byte sized loads.
  if (!VT.isByteSized())
    return SDValue();

  unsigned Index = ExtIdx->getZExtValue();
  unsigned NumElts = VT.getVectorMinNumElements();

  // The definition of EXTRACT_SUBVECTOR states that the index must be a
  // multiple of the minimum number of elements in the result type.
  assert(Index % NumElts == 0 && "The extract subvector index is not a "
                                 "multiple of the result's element count");

  // It's fine to use TypeSize here as we know the offset will not be negative.
  TypeSize Offset = VT.getStoreSize() * (Index / NumElts);

  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT))
    return SDValue();

  // The narrow load will be offset from the base address of the old load if
  // we are extracting from something besides index 0 (little-endian).
  SDLoc DL(Extract);

  // TODO: Use "BaseIndexOffset" to make this more effective.
  SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL);

  uint64_t StoreSize = MemoryLocation::getSizeOrUnknown(VT.getStoreSize());
  MachineFunction &MF = DAG.getMachineFunction();
  MachineMemOperand *MMO;
  if (Offset.isScalable()) {
    MachinePointerInfo MPI =
        MachinePointerInfo(Ld->getPointerInfo().getAddrSpace());
    MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, StoreSize);
  } else
    MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedSize(),
                                  StoreSize);

  SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO);
  DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
  return NewLd;
}

SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) {
  EVT NVT = N->getValueType(0);
  SDValue V = N->getOperand(0);
  uint64_t ExtIdx = N->getConstantOperandVal(1);

  // Extract from UNDEF is UNDEF.
  if (V.isUndef())
    return DAG.getUNDEF(NVT);

  if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT))
    if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG))
      return NarrowLoad;

  // Combine an extract of an extract into a single extract_subvector.
  // ext (ext X, C), 0 --> ext X, C
  if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) {
    if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(),
                                    V.getConstantOperandVal(1)) &&
        TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) {
      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0),
                         V.getOperand(1));
    }
  }

  // Try to move vector bitcast after extract_subv by scaling extraction index:
  // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
  if (V.getOpcode() == ISD::BITCAST &&
      V.getOperand(0).getValueType().isVector()) {
    SDValue SrcOp = V.getOperand(0);
    EVT SrcVT = SrcOp.getValueType();
    unsigned SrcNumElts = SrcVT.getVectorMinNumElements();
    unsigned DestNumElts = V.getValueType().getVectorMinNumElements();
    if ((SrcNumElts % DestNumElts) == 0) {
      unsigned SrcDestRatio = SrcNumElts / DestNumElts;
      ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio;
      EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
                                      NewExtEC);
      if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) {
        SDLoc DL(N);
        SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL);
        SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
                                         V.getOperand(0), NewIndex);
        return DAG.getBitcast(NVT, NewExtract);
      }
    }
    if ((DestNumElts % SrcNumElts) == 0) {
      unsigned DestSrcRatio = DestNumElts / SrcNumElts;
      if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) {
        ElementCount NewExtEC =
            NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio);
        EVT ScalarVT = SrcVT.getScalarType();
        if ((ExtIdx % DestSrcRatio) == 0) {
          SDLoc DL(N);
          unsigned IndexValScaled = ExtIdx / DestSrcRatio;
          EVT NewExtVT =
              EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC);
          if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) {
            SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL);
            SDValue NewExtract =
                DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
                            V.getOperand(0), NewIndex);
            return DAG.getBitcast(NVT, NewExtract);
          }
          if (NewExtEC == 1 &&
              TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) {
            SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL);
            SDValue NewExtract =
                DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT,
                            V.getOperand(0), NewIndex);
            return DAG.getBitcast(NVT, NewExtract);
          }
        }
      }
    }
  }

  if (V.getOpcode() == ISD::CONCAT_VECTORS) {
    unsigned ExtNumElts = NVT.getVectorMinNumElements();
    EVT ConcatSrcVT = V.getOperand(0).getValueType();
    assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() &&
           "Concat and extract subvector do not change element type");
    assert((ExtIdx % ExtNumElts) == 0 &&
           "Extract index is not a multiple of the input vector length.");

    unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements();
    unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts;

    // If the concatenated source types match this extract, it's a direct
    // simplification:
    // extract_subvec (concat V1, V2, ...), i --> Vi
    if (ConcatSrcNumElts == ExtNumElts)
      return V.getOperand(ConcatOpIdx);

    // If the concatenated source vectors are a multiple length of this extract,
    // then extract a fraction of one of those source vectors directly from a
    // concat operand. Example:
    //   v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 -->
    //   v2i8 extract_subvec v8i8 Y, 6
    if (NVT.isFixedLengthVector() && ConcatSrcNumElts % ExtNumElts == 0) {
      SDLoc DL(N);
      unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts;
      assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts &&
             "Trying to extract from >1 concat operand?");
      assert(NewExtIdx % ExtNumElts == 0 &&
             "Extract index is not a multiple of the input vector length.");
      SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL);
      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT,
                         V.getOperand(ConcatOpIdx), NewIndexC);
    }
  }

  V = peekThroughBitcasts(V);

  // If the input is a build vector. Try to make a smaller build vector.
  if (V.getOpcode() == ISD::BUILD_VECTOR) {
    EVT InVT = V.getValueType();
    unsigned ExtractSize = NVT.getSizeInBits();
    unsigned EltSize = InVT.getScalarSizeInBits();
    // Only do this if we won't split any elements.
    if (ExtractSize % EltSize == 0) {
      unsigned NumElems = ExtractSize / EltSize;
      EVT EltVT = InVT.getVectorElementType();
      EVT ExtractVT =
          NumElems == 1 ? EltVT
                        : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems);
      if ((Level < AfterLegalizeDAG ||
           (NumElems == 1 ||
            TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) &&
          (!LegalTypes || TLI.isTypeLegal(ExtractVT))) {
        unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize;

        if (NumElems == 1) {
          SDValue Src = V->getOperand(IdxVal);
          if (EltVT != Src.getValueType())
            Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src);
          return DAG.getBitcast(NVT, Src);
        }

        // Extract the pieces from the original build_vector.
        SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N),
                                              V->ops().slice(IdxVal, NumElems));
        return DAG.getBitcast(NVT, BuildVec);
      }
    }
  }

  if (V.getOpcode() == ISD::INSERT_SUBVECTOR) {
    // Handle only simple case where vector being inserted and vector
    // being extracted are of same size.
    EVT SmallVT = V.getOperand(1).getValueType();
    if (!NVT.bitsEq(SmallVT))
      return SDValue();

    // Combine:
    //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
    // Into:
    //    indices are equal or bit offsets are equal => V1
    //    otherwise => (extract_subvec V1, ExtIdx)
    uint64_t InsIdx = V.getConstantOperandVal(2);
    if (InsIdx * SmallVT.getScalarSizeInBits() ==
        ExtIdx * NVT.getScalarSizeInBits())
      return DAG.getBitcast(NVT, V.getOperand(1));
    return DAG.getNode(
        ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT,
        DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)),
        N->getOperand(1));
  }

  if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG, LegalOperations))
    return NarrowBOp;

  if (SimplifyDemandedVectorElts(SDValue(N, 0)))
    return SDValue(N, 0);

  return SDValue();
}

/// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
/// followed by concatenation. Narrow vector ops may have better performance
/// than wide ops, and this can unlock further narrowing of other vector ops.
/// Targets can invert this transform later if it is not profitable.
static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf,
                                         SelectionDAG &DAG) {
  SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1);
  if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
      N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 ||
      !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef())
    return SDValue();

  // Split the wide shuffle mask into halves. Any mask element that is accessing
  // operand 1 is offset down to account for narrowing of the vectors.
  ArrayRef<int> Mask = Shuf->getMask();
  EVT VT = Shuf->getValueType(0);
  unsigned NumElts = VT.getVectorNumElements();
  unsigned HalfNumElts = NumElts / 2;
  SmallVector<int, 16> Mask0(HalfNumElts, -1);
  SmallVector<int, 16> Mask1(HalfNumElts, -1);
  for (unsigned i = 0; i != NumElts; ++i) {
    if (Mask[i] == -1)
      continue;
    int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts;
    if (i < HalfNumElts)
      Mask0[i] = M;
    else
      Mask1[i - HalfNumElts] = M;
  }

  // Ask the target if this is a valid transform.
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
                                HalfNumElts);
  if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) ||
      !TLI.isShuffleMaskLegal(Mask1, HalfVT))
    return SDValue();

  // shuffle (concat X, undef), (concat Y, undef), Mask -->
  // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
  SDValue X = N0.getOperand(0), Y = N1.getOperand(0);
  SDLoc DL(Shuf);
  SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0);
  SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1);
  return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1);
}

// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
// or turn a shuffle of a single concat into simpler shuffle then concat.
static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
  EVT VT = N->getValueType(0);
  unsigned NumElts = VT.getVectorNumElements();

  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
  ArrayRef<int> Mask = SVN->getMask();

  SmallVector<SDValue, 4> Ops;
  EVT ConcatVT = N0.getOperand(0).getValueType();
  unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
  unsigned NumConcats = NumElts / NumElemsPerConcat;

  auto IsUndefMaskElt = [](int i) { return i == -1; };

  // Special case: shuffle(concat(A,B)) can be more efficiently represented
  // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
  // half vector elements.
  if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
      llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat),
                   IsUndefMaskElt)) {
    N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0),
                              N0.getOperand(1),
                              Mask.slice(0, NumElemsPerConcat));
    N1 = DAG.getUNDEF(ConcatVT);
    return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
  }

  // Look at every vector that's inserted. We're looking for exact
  // subvector-sized copies from a concatenated vector
  for (unsigned I = 0; I != NumConcats; ++I) {
    unsigned Begin = I * NumElemsPerConcat;
    ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat);

    // Make sure we're dealing with a copy.
    if (llvm::all_of(SubMask, IsUndefMaskElt)) {
      Ops.push_back(DAG.getUNDEF(ConcatVT));
      continue;
    }

    int OpIdx = -1;
    for (int i = 0; i != (int)NumElemsPerConcat; ++i) {
      if (IsUndefMaskElt(SubMask[i]))
        continue;
      if ((SubMask[i] % (int)NumElemsPerConcat) != i)
        return SDValue();
      int EltOpIdx = SubMask[i] / NumElemsPerConcat;
      if (0 <= OpIdx && EltOpIdx != OpIdx)
        return SDValue();
      OpIdx = EltOpIdx;
    }
    assert(0 <= OpIdx && "Unknown concat_vectors op");

    if (OpIdx < (int)N0.getNumOperands())
      Ops.push_back(N0.getOperand(OpIdx));
    else
      Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands()));
  }

  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
}

// Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
//
// SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
// a simplification in some sense, but it isn't appropriate in general: some
// BUILD_VECTORs are substantially cheaper than others. The general case
// of a BUILD_VECTOR requires inserting each element individually (or
// performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
// all constants is a single constant pool load.  A BUILD_VECTOR where each
// element is identical is a splat.  A BUILD_VECTOR where most of the operands
// are undef lowers to a small number of element insertions.
//
// To deal with this, we currently use a bunch of mostly arbitrary heuristics.
// We don't fold shuffles where one side is a non-zero constant, and we don't
// fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
// non-constant operands. This seems to work out reasonably well in practice.
static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN,
                                       SelectionDAG &DAG,
                                       const TargetLowering &TLI) {
  EVT VT = SVN->getValueType(0);
  unsigned NumElts = VT.getVectorNumElements();
  SDValue N0 = SVN->getOperand(0);
  SDValue N1 = SVN->getOperand(1);

  if (!N0->hasOneUse())
    return SDValue();

  // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
  // discussed above.
  if (!N1.isUndef()) {
    if (!N1->hasOneUse())
      return SDValue();

    bool N0AnyConst = isAnyConstantBuildVector(N0);
    bool N1AnyConst = isAnyConstantBuildVector(N1);
    if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
      return SDValue();
    if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
      return SDValue();
  }

  // If both inputs are splats of the same value then we can safely merge this
  // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
  bool IsSplat = false;
  auto *BV0 = dyn_cast<BuildVectorSDNode>(N0);
  auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
  if (BV0 && BV1)
    if (SDValue Splat0 = BV0->getSplatValue())
      IsSplat = (Splat0 == BV1->getSplatValue());

  SmallVector<SDValue, 8> Ops;
  SmallSet<SDValue, 16> DuplicateOps;
  for (int M : SVN->getMask()) {
    SDValue Op = DAG.getUNDEF(VT.getScalarType());
    if (M >= 0) {
      int Idx = M < (int)NumElts ? M : M - NumElts;
      SDValue &S = (M < (int)NumElts ? N0 : N1);
      if (S.getOpcode() == ISD::BUILD_VECTOR) {
        Op = S.getOperand(Idx);
      } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
        SDValue Op0 = S.getOperand(0);
        Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType());
      } else {
        // Operand can't be combined - bail out.
        return SDValue();
      }
    }

    // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
    // generating a splat; semantically, this is fine, but it's likely to
    // generate low-quality code if the target can't reconstruct an appropriate
    // shuffle.
    if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op))
      if (!IsSplat && !DuplicateOps.insert(Op).second)
        return SDValue();

    Ops.push_back(Op);
  }

  // BUILD_VECTOR requires all inputs to be of the same type, find the
  // maximum type and extend them all.
  EVT SVT = VT.getScalarType();
  if (SVT.isInteger())
    for (SDValue &Op : Ops)
      SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
  if (SVT != VT.getScalarType())
    for (SDValue &Op : Ops)
      Op = TLI.isZExtFree(Op.getValueType(), SVT)
               ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
               : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT);
  return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
}

// Match shuffles that can be converted to any_vector_extend_in_reg.
// This is often generated during legalization.
// e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
// TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN,
                                            SelectionDAG &DAG,
                                            const TargetLowering &TLI,
                                            bool LegalOperations) {
  EVT VT = SVN->getValueType(0);
  bool IsBigEndian = DAG.getDataLayout().isBigEndian();

  // TODO Add support for big-endian when we have a test case.
  if (!VT.isInteger() || IsBigEndian)
    return SDValue();

  unsigned NumElts = VT.getVectorNumElements();
  unsigned EltSizeInBits = VT.getScalarSizeInBits();
  ArrayRef<int> Mask = SVN->getMask();
  SDValue N0 = SVN->getOperand(0);

  // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
  auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) {
    for (unsigned i = 0; i != NumElts; ++i) {
      if (Mask[i] < 0)
        continue;
      if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale))
        continue;
      return false;
    }
    return true;
  };

  // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
  // power-of-2 extensions as they are the most likely.
  for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) {
    // Check for non power of 2 vector sizes
    if (NumElts % Scale != 0)
      continue;
    if (!isAnyExtend(Scale))
      continue;

    EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale);
    EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale);
    // Never create an illegal type. Only create unsupported operations if we
    // are pre-legalization.
    if (TLI.isTypeLegal(OutVT))
      if (!LegalOperations ||
          TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT))
        return DAG.getBitcast(VT,
                              DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG,
                                          SDLoc(SVN), OutVT, N0));
  }

  return SDValue();
}

// Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
// each source element of a large type into the lowest elements of a smaller
// destination type. This is often generated during legalization.
// If the source node itself was a '*_extend_vector_inreg' node then we should
// then be able to remove it.
static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN,
                                        SelectionDAG &DAG) {
  EVT VT = SVN->getValueType(0);
  bool IsBigEndian = DAG.getDataLayout().isBigEndian();

  // TODO Add support for big-endian when we have a test case.
  if (!VT.isInteger() || IsBigEndian)
    return SDValue();

  SDValue N0 = peekThroughBitcasts(SVN->getOperand(0));

  unsigned Opcode = N0.getOpcode();
  if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG &&
      Opcode != ISD::SIGN_EXTEND_VECTOR_INREG &&
      Opcode != ISD::ZERO_EXTEND_VECTOR_INREG)
    return SDValue();

  SDValue N00 = N0.getOperand(0);
  ArrayRef<int> Mask = SVN->getMask();
  unsigned NumElts = VT.getVectorNumElements();
  unsigned EltSizeInBits = VT.getScalarSizeInBits();
  unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits();
  unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits();

  if (ExtDstSizeInBits % ExtSrcSizeInBits != 0)
    return SDValue();
  unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits;

  // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
  // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
  // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
  auto isTruncate = [&Mask, &NumElts](unsigned Scale) {
    for (unsigned i = 0; i != NumElts; ++i) {
      if (Mask[i] < 0)
        continue;
      if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale))
        continue;
      return false;
    }
    return true;
  };

  // At the moment we just handle the case where we've truncated back to the
  // same size as before the extension.
  // TODO: handle more extension/truncation cases as cases arise.
  if (EltSizeInBits != ExtSrcSizeInBits)
    return SDValue();

  // We can remove *extend_vector_inreg only if the truncation happens at
  // the same scale as the extension.
  if (isTruncate(ExtScale))
    return DAG.getBitcast(VT, N00);

  return SDValue();
}

// Combine shuffles of splat-shuffles of the form:
// shuffle (shuffle V, undef, splat-mask), undef, M
// If splat-mask contains undef elements, we need to be careful about
// introducing undef's in the folded mask which are not the result of composing
// the masks of the shuffles.
static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf,
                                        SelectionDAG &DAG) {
  if (!Shuf->getOperand(1).isUndef())
    return SDValue();
  auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
  if (!Splat || !Splat->isSplat())
    return SDValue();

  ArrayRef<int> ShufMask = Shuf->getMask();
  ArrayRef<int> SplatMask = Splat->getMask();
  assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch");

  // Prefer simplifying to the splat-shuffle, if possible. This is legal if
  // every undef mask element in the splat-shuffle has a corresponding undef
  // element in the user-shuffle's mask or if the composition of mask elements
  // would result in undef.
  // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
  // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
  //   In this case it is not legal to simplify to the splat-shuffle because we
  //   may be exposing the users of the shuffle an undef element at index 1
  //   which was not there before the combine.
  // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
  //   In this case the composition of masks yields SplatMask, so it's ok to
  //   simplify to the splat-shuffle.
  // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
  //   In this case the composed mask includes all undef elements of SplatMask
  //   and in addition sets element zero to undef. It is safe to simplify to
  //   the splat-shuffle.
  auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask,
                                       ArrayRef<int> SplatMask) {
    for (unsigned i = 0, e = UserMask.size(); i != e; ++i)
      if (UserMask[i] != -1 && SplatMask[i] == -1 &&
          SplatMask[UserMask[i]] != -1)
        return false;
    return true;
  };
  if (CanSimplifyToExistingSplat(ShufMask, SplatMask))
    return Shuf->getOperand(0);

  // Create a new shuffle with a mask that is composed of the two shuffles'
  // masks.
  SmallVector<int, 32> NewMask;
  for (int Idx : ShufMask)
    NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]);

  return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat),
                              Splat->getOperand(0), Splat->getOperand(1),
                              NewMask);
}

/// Combine shuffle of shuffle of the form:
/// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X
static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf,
                                     SelectionDAG &DAG) {
  if (!OuterShuf->getOperand(1).isUndef())
    return SDValue();
  auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0));
  if (!InnerShuf || !InnerShuf->getOperand(1).isUndef())
    return SDValue();

  ArrayRef<int> OuterMask = OuterShuf->getMask();
  ArrayRef<int> InnerMask = InnerShuf->getMask();
  unsigned NumElts = OuterMask.size();
  assert(NumElts == InnerMask.size() && "Mask length mismatch");
  SmallVector<int, 32> CombinedMask(NumElts, -1);
  int SplatIndex = -1;
  for (unsigned i = 0; i != NumElts; ++i) {
    // Undef lanes remain undef.
    int OuterMaskElt = OuterMask[i];
    if (OuterMaskElt == -1)
      continue;

    // Peek through the shuffle masks to get the underlying source element.
    int InnerMaskElt = InnerMask[OuterMaskElt];
    if (InnerMaskElt == -1)
      continue;

    // Initialize the splatted element.
    if (SplatIndex == -1)
      SplatIndex = InnerMaskElt;

    // Non-matching index - this is not a splat.
    if (SplatIndex != InnerMaskElt)
      return SDValue();

    CombinedMask[i] = InnerMaskElt;
  }
  assert((all_of(CombinedMask, [](int M) { return M == -1; }) ||
          getSplatIndex(CombinedMask) != -1) &&
         "Expected a splat mask");

  // TODO: The transform may be a win even if the mask is not legal.
  EVT VT = OuterShuf->getValueType(0);
  assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types");
  if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT))
    return SDValue();

  return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0),
                              InnerShuf->getOperand(1), CombinedMask);
}

/// If the shuffle mask is taking exactly one element from the first vector
/// operand and passing through all other elements from the second vector
/// operand, return the index of the mask element that is choosing an element
/// from the first operand. Otherwise, return -1.
static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) {
  int MaskSize = Mask.size();
  int EltFromOp0 = -1;
  // TODO: This does not match if there are undef elements in the shuffle mask.
  // Should we ignore undefs in the shuffle mask instead? The trade-off is
  // removing an instruction (a shuffle), but losing the knowledge that some
  // vector lanes are not needed.
  for (int i = 0; i != MaskSize; ++i) {
    if (Mask[i] >= 0 && Mask[i] < MaskSize) {
      // We're looking for a shuffle of exactly one element from operand 0.
      if (EltFromOp0 != -1)
        return -1;
      EltFromOp0 = i;
    } else if (Mask[i] != i + MaskSize) {
      // Nothing from operand 1 can change lanes.
      return -1;
    }
  }
  return EltFromOp0;
}

/// If a shuffle inserts exactly one element from a source vector operand into
/// another vector operand and we can access the specified element as a scalar,
/// then we can eliminate the shuffle.
static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf,
                                      SelectionDAG &DAG) {
  // First, check if we are taking one element of a vector and shuffling that
  // element into another vector.
  ArrayRef<int> Mask = Shuf->getMask();
  SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end());
  SDValue Op0 = Shuf->getOperand(0);
  SDValue Op1 = Shuf->getOperand(1);
  int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask);
  if (ShufOp0Index == -1) {
    // Commute mask and check again.
    ShuffleVectorSDNode::commuteMask(CommutedMask);
    ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask);
    if (ShufOp0Index == -1)
      return SDValue();
    // Commute operands to match the commuted shuffle mask.
    std::swap(Op0, Op1);
    Mask = CommutedMask;
  }

  // The shuffle inserts exactly one element from operand 0 into operand 1.
  // Now see if we can access that element as a scalar via a real insert element
  // instruction.
  // TODO: We can try harder to locate the element as a scalar. Examples: it
  // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
  assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() &&
         "Shuffle mask value must be from operand 0");
  if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT)
    return SDValue();

  auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2));
  if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index])
    return SDValue();

  // There's an existing insertelement with constant insertion index, so we
  // don't need to check the legality/profitability of a replacement operation
  // that differs at most in the constant value. The target should be able to
  // lower any of those in a similar way. If not, legalization will expand this
  // to a scalar-to-vector plus shuffle.
  //
  // Note that the shuffle may move the scalar from the position that the insert
  // element used. Therefore, our new insert element occurs at the shuffle's
  // mask index value, not the insert's index value.
  // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
  SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf));
  return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
                     Op1, Op0.getOperand(1), NewInsIndex);
}

/// If we have a unary shuffle of a shuffle, see if it can be folded away
/// completely. This has the potential to lose undef knowledge because the first
/// shuffle may not have an undef mask element where the second one does. So
/// only call this after doing simplifications based on demanded elements.
static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) {
  // shuf (shuf0 X, Y, Mask0), undef, Mask
  auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
  if (!Shuf0 || !Shuf->getOperand(1).isUndef())
    return SDValue();

  ArrayRef<int> Mask = Shuf->getMask();
  ArrayRef<int> Mask0 = Shuf0->getMask();
  for (int i = 0, e = (int)Mask.size(); i != e; ++i) {
    // Ignore undef elements.
    if (Mask[i] == -1)
      continue;
    assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value");

    // Is the element of the shuffle operand chosen by this shuffle the same as
    // the element chosen by the shuffle operand itself?
    if (Mask0[Mask[i]] != Mask0[i])
      return SDValue();
  }
  // Every element of this shuffle is identical to the result of the previous
  // shuffle, so we can replace this value.
  return Shuf->getOperand(0);
}

SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
  EVT VT = N->getValueType(0);
  unsigned NumElts = VT.getVectorNumElements();

  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);

  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");

  // Canonicalize shuffle undef, undef -> undef
  if (N0.isUndef() && N1.isUndef())
    return DAG.getUNDEF(VT);

  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);

  // Canonicalize shuffle v, v -> v, undef
  if (N0 == N1) {
    SmallVector<int, 8> NewMask;
    for (unsigned i = 0; i != NumElts; ++i) {
      int Idx = SVN->getMaskElt(i);
      if (Idx >= (int)NumElts) Idx -= NumElts;
      NewMask.push_back(Idx);
    }
    return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask);
  }

  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
  if (N0.isUndef())
    return DAG.getCommutedVectorShuffle(*SVN);

  // Remove references to rhs if it is undef
  if (N1.isUndef()) {
    bool Changed = false;
    SmallVector<int, 8> NewMask;
    for (unsigned i = 0; i != NumElts; ++i) {
      int Idx = SVN->getMaskElt(i);
      if (Idx >= (int)NumElts) {
        Idx = -1;
        Changed = true;
      }
      NewMask.push_back(Idx);
    }
    if (Changed)
      return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
  }

  if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG))
    return InsElt;

  // A shuffle of a single vector that is a splatted value can always be folded.
  if (SDValue V = combineShuffleOfSplatVal(SVN, DAG))
    return V;

  if (SDValue V = formSplatFromShuffles(SVN, DAG))
    return V;

  // If it is a splat, check if the argument vector is another splat or a
  // build_vector.
  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
    int SplatIndex = SVN->getSplatIndex();
    if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) &&
        TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) {
      // splat (vector_bo L, R), Index -->
      // splat (scalar_bo (extelt L, Index), (extelt R, Index))
      SDValue L = N0.getOperand(0), R = N0.getOperand(1);
      SDLoc DL(N);
      EVT EltVT = VT.getScalarType();
      SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL);
      SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index);
      SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index);
      SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR,
                                  N0.getNode()->getFlags());
      SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO);
      SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0);
      return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask);
    }

    // If this is a bit convert that changes the element type of the vector but
    // not the number of vector elements, look through it.  Be careful not to
    // look though conversions that change things like v4f32 to v2f64.
    SDNode *V = N0.getNode();
    if (V->getOpcode() == ISD::BITCAST) {
      SDValue ConvInput = V->getOperand(0);
      if (ConvInput.getValueType().isVector() &&
          ConvInput.getValueType().getVectorNumElements() == NumElts)
        V = ConvInput.getNode();
    }

    if (V->getOpcode() == ISD::BUILD_VECTOR) {
      assert(V->getNumOperands() == NumElts &&
             "BUILD_VECTOR has wrong number of operands");
      SDValue Base;
      bool AllSame = true;
      for (unsigned i = 0; i != NumElts; ++i) {
        if (!V->getOperand(i).isUndef()) {
          Base = V->getOperand(i);
          break;
        }
      }
      // Splat of <u, u, u, u>, return <u, u, u, u>
      if (!Base.getNode())
        return N0;
      for (unsigned i = 0; i != NumElts; ++i) {
        if (V->getOperand(i) != Base) {
          AllSame = false;
          break;
        }
      }
      // Splat of <x, x, x, x>, return <x, x, x, x>
      if (AllSame)
        return N0;

      // Canonicalize any other splat as a build_vector.
      SDValue Splatted = V->getOperand(SplatIndex);
      SmallVector<SDValue, 8> Ops(NumElts, Splatted);
      SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops);

      // We may have jumped through bitcasts, so the type of the
      // BUILD_VECTOR may not match the type of the shuffle.
      if (V->getValueType(0) != VT)
        NewBV = DAG.getBitcast(VT, NewBV);
      return NewBV;
    }
  }

  // Simplify source operands based on shuffle mask.
  if (SimplifyDemandedVectorElts(SDValue(N, 0)))
    return SDValue(N, 0);

  // This is intentionally placed after demanded elements simplification because
  // it could eliminate knowledge of undef elements created by this shuffle.
  if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN))
    return ShufOp;

  // Match shuffles that can be converted to any_vector_extend_in_reg.
  if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations))
    return V;

  // Combine "truncate_vector_in_reg" style shuffles.
  if (SDValue V = combineTruncationShuffle(SVN, DAG))
    return V;

  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
      Level < AfterLegalizeVectorOps &&
      (N1.isUndef() ||
      (N1.getOpcode() == ISD::CONCAT_VECTORS &&
       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
    if (SDValue V = partitionShuffleOfConcats(N, DAG))
      return V;
  }

  // A shuffle of a concat of the same narrow vector can be reduced to use
  // only low-half elements of a concat with undef:
  // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask'
  if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() &&
      N0.getNumOperands() == 2 &&
      N0.getOperand(0) == N0.getOperand(1)) {
    int HalfNumElts = (int)NumElts / 2;
    SmallVector<int, 8> NewMask;
    for (unsigned i = 0; i != NumElts; ++i) {
      int Idx = SVN->getMaskElt(i);
      if (Idx >= HalfNumElts) {
        assert(Idx < (int)NumElts && "Shuffle mask chooses undef op");
        Idx -= HalfNumElts;
      }
      NewMask.push_back(Idx);
    }
    if (TLI.isShuffleMaskLegal(NewMask, VT)) {
      SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType());
      SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
                                   N0.getOperand(0), UndefVec);
      return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask);
    }
  }

  // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
  // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
  if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT))
    if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
      return Res;

  // If this shuffle only has a single input that is a bitcasted shuffle,
  // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
  // back to their original types.
  if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
      N1.isUndef() && Level < AfterLegalizeVectorOps &&
      TLI.isTypeLegal(VT)) {

    SDValue BC0 = peekThroughOneUseBitcasts(N0);
    if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
      EVT SVT = VT.getScalarType();
      EVT InnerVT = BC0->getValueType(0);
      EVT InnerSVT = InnerVT.getScalarType();

      // Determine which shuffle works with the smaller scalar type.
      EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
      EVT ScaleSVT = ScaleVT.getScalarType();

      if (TLI.isTypeLegal(ScaleVT) &&
          0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
          0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
        int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
        int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();

        // Scale the shuffle masks to the smaller scalar type.
        ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
        SmallVector<int, 8> InnerMask;
        SmallVector<int, 8> OuterMask;
        narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask);
        narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask);

        // Merge the shuffle masks.
        SmallVector<int, 8> NewMask;
        for (int M : OuterMask)
          NewMask.push_back(M < 0 ? -1 : InnerMask[M]);

        // Test for shuffle mask legality over both commutations.
        SDValue SV0 = BC0->getOperand(0);
        SDValue SV1 = BC0->getOperand(1);
        bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
        if (!LegalMask) {
          std::swap(SV0, SV1);
          ShuffleVectorSDNode::commuteMask(NewMask);
          LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
        }

        if (LegalMask) {
          SV0 = DAG.getBitcast(ScaleVT, SV0);
          SV1 = DAG.getBitcast(ScaleVT, SV1);
          return DAG.getBitcast(
              VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
        }
      }
    }
  }

  // Canonicalize shuffles according to rules:
  //  shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
  //  shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
  //  shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
  if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
      N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
      TLI.isTypeLegal(VT)) {
    // The incoming shuffle must be of the same type as the result of the
    // current shuffle.
    assert(N1->getOperand(0).getValueType() == VT &&
           "Shuffle types don't match");

    SDValue SV0 = N1->getOperand(0);
    SDValue SV1 = N1->getOperand(1);
    bool HasSameOp0 = N0 == SV0;
    bool IsSV1Undef = SV1.isUndef();
    if (HasSameOp0 || IsSV1Undef || N0 == SV1)
      // Commute the operands of this shuffle so that next rule
      // will trigger.
      return DAG.getCommutedVectorShuffle(*SVN);
  }

  // Try to fold according to rules:
  //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
  //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
  //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
  // Don't try to fold shuffles with illegal type.
  // Only fold if this shuffle is the only user of the other shuffle.
  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) &&
      Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);

    // Don't try to fold splats; they're likely to simplify somehow, or they
    // might be free.
    if (OtherSV->isSplat())
      return SDValue();

    // The incoming shuffle must be of the same type as the result of the
    // current shuffle.
    assert(OtherSV->getOperand(0).getValueType() == VT &&
           "Shuffle types don't match");

    SDValue SV0, SV1;
    SmallVector<int, 4> Mask;
    // Compute the combined shuffle mask for a shuffle with SV0 as the first
    // operand, and SV1 as the second operand.
    for (unsigned i = 0; i != NumElts; ++i) {
      int Idx = SVN->getMaskElt(i);
      if (Idx < 0) {
        // Propagate Undef.
        Mask.push_back(Idx);
        continue;
      }

      SDValue CurrentVec;
      if (Idx < (int)NumElts) {
        // This shuffle index refers to the inner shuffle N0. Lookup the inner
        // shuffle mask to identify which vector is actually referenced.
        Idx = OtherSV->getMaskElt(Idx);
        if (Idx < 0) {
          // Propagate Undef.
          Mask.push_back(Idx);
          continue;
        }

        CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0)
                                           : OtherSV->getOperand(1);
      } else {
        // This shuffle index references an element within N1.
        CurrentVec = N1;
      }

      // Simple case where 'CurrentVec' is UNDEF.
      if (CurrentVec.isUndef()) {
        Mask.push_back(-1);
        continue;
      }

      // Canonicalize the shuffle index. We don't know yet if CurrentVec
      // will be the first or second operand of the combined shuffle.
      Idx = Idx % NumElts;
      if (!SV0.getNode() || SV0 == CurrentVec) {
        // Ok. CurrentVec is the left hand side.
        // Update the mask accordingly.
        SV0 = CurrentVec;
        Mask.push_back(Idx);
        continue;
      }

      // Bail out if we cannot convert the shuffle pair into a single shuffle.
      if (SV1.getNode() && SV1 != CurrentVec)
        return SDValue();

      // Ok. CurrentVec is the right hand side.
      // Update the mask accordingly.
      SV1 = CurrentVec;
      Mask.push_back(Idx + NumElts);
    }

    // Check if all indices in Mask are Undef. In case, propagate Undef.
    bool isUndefMask = true;
    for (unsigned i = 0; i != NumElts && isUndefMask; ++i)
      isUndefMask &= Mask[i] < 0;

    if (isUndefMask)
      return DAG.getUNDEF(VT);

    if (!SV0.getNode())
      SV0 = DAG.getUNDEF(VT);
    if (!SV1.getNode())
      SV1 = DAG.getUNDEF(VT);

    // Avoid introducing shuffles with illegal mask.
    //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
    //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
    //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
    //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
    //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
    //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
    return TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask, DAG);
  }

  if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG))
    return V;

  return SDValue();
}

SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
  SDValue InVal = N->getOperand(0);
  EVT VT = N->getValueType(0);

  // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
  // with a VECTOR_SHUFFLE and possible truncate.
  if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
      VT.isFixedLengthVector() &&
      InVal->getOperand(0).getValueType().isFixedLengthVector()) {
    SDValue InVec = InVal->getOperand(0);
    SDValue EltNo = InVal->getOperand(1);
    auto InVecT = InVec.getValueType();
    if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) {
      SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1);
      int Elt = C0->getZExtValue();
      NewMask[0] = Elt;
      // If we have an implict truncate do truncate here as long as it's legal.
      // if it's not legal, this should
      if (VT.getScalarType() != InVal.getValueType() &&
          InVal.getValueType().isScalarInteger() &&
          isTypeLegal(VT.getScalarType())) {
        SDValue Val =
            DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal);
        return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val);
      }
      if (VT.getScalarType() == InVecT.getScalarType() &&
          VT.getVectorNumElements() <= InVecT.getVectorNumElements()) {
        SDValue LegalShuffle =
          TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec,
                                      DAG.getUNDEF(InVecT), NewMask, DAG);
        if (LegalShuffle) {
          // If the initial vector is the correct size this shuffle is a
          // valid result.
          if (VT == InVecT)
            return LegalShuffle;
          // If not we must truncate the vector.
          if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) {
            SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N));
            EVT SubVT = EVT::getVectorVT(*DAG.getContext(),
                                         InVecT.getVectorElementType(),
                                         VT.getVectorNumElements());
            return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT,
                               LegalShuffle, ZeroIdx);
          }
        }
      }
    }
  }

  return SDValue();
}

SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
  EVT VT = N->getValueType(0);
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue N2 = N->getOperand(2);
  uint64_t InsIdx = N->getConstantOperandVal(2);

  // If inserting an UNDEF, just return the original vector.
  if (N1.isUndef())
    return N0;

  // If this is an insert of an extracted vector into an undef vector, we can
  // just use the input to the extract.
  if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
      N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT)
    return N1.getOperand(0);

  // If we are inserting a bitcast value into an undef, with the same
  // number of elements, just use the bitcast input of the extract.
  // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
  //        BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
  if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST &&
      N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR &&
      N1.getOperand(0).getOperand(1) == N2 &&
      N1.getOperand(0).getOperand(0).getValueType().getVectorNumElements() ==
          VT.getVectorNumElements() &&
      N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
          VT.getSizeInBits()) {
    return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0));
  }

  // If both N1 and N2 are bitcast values on which insert_subvector
  // would makes sense, pull the bitcast through.
  // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
  //        BITCAST (INSERT_SUBVECTOR N0 N1 N2)
  if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) {
    SDValue CN0 = N0.getOperand(0);
    SDValue CN1 = N1.getOperand(0);
    EVT CN0VT = CN0.getValueType();
    EVT CN1VT = CN1.getValueType();
    if (CN0VT.isVector() && CN1VT.isVector() &&
        CN0VT.getVectorElementType() == CN1VT.getVectorElementType() &&
        CN0VT.getVectorNumElements() == VT.getVectorNumElements()) {
      SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
                                      CN0.getValueType(), CN0, CN1, N2);
      return DAG.getBitcast(VT, NewINSERT);
    }
  }

  // Combine INSERT_SUBVECTORs where we are inserting to the same index.
  // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
  // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
  if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
      N0.getOperand(1).getValueType() == N1.getValueType() &&
      N0.getOperand(2) == N2)
    return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
                       N1, N2);

  // Eliminate an intermediate insert into an undef vector:
  // insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
  // insert_subvector undef, X, N2
  if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR &&
      N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2)))
    return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0,
                       N1.getOperand(1), N2);

  // Push subvector bitcasts to the output, adjusting the index as we go.
  // insert_subvector(bitcast(v), bitcast(s), c1)
  // -> bitcast(insert_subvector(v, s, c2))
  if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) &&
      N1.getOpcode() == ISD::BITCAST) {
    SDValue N0Src = peekThroughBitcasts(N0);
    SDValue N1Src = peekThroughBitcasts(N1);
    EVT N0SrcSVT = N0Src.getValueType().getScalarType();
    EVT N1SrcSVT = N1Src.getValueType().getScalarType();
    if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) &&
        N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) {
      EVT NewVT;
      SDLoc DL(N);
      SDValue NewIdx;
      LLVMContext &Ctx = *DAG.getContext();
      ElementCount NumElts = VT.getVectorElementCount();
      unsigned EltSizeInBits = VT.getScalarSizeInBits();
      if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) {
        unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits();
        NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale);
        NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL);
      } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) {
        unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits;
        if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) {
          NewVT = EVT::getVectorVT(Ctx, N1SrcSVT,
                                   NumElts.divideCoefficientBy(Scale));
          NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL);
        }
      }
      if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) {
        SDValue Res = DAG.getBitcast(NewVT, N0Src);
        Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx);
        return DAG.getBitcast(VT, Res);
      }
    }
  }

  // Canonicalize insert_subvector dag nodes.
  // Example:
  // (insert_subvector (insert_subvector A, Idx0), Idx1)
  // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
  if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() &&
      N1.getValueType() == N0.getOperand(1).getValueType()) {
    unsigned OtherIdx = N0.getConstantOperandVal(2);
    if (InsIdx < OtherIdx) {
      // Swap nodes.
      SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT,
                                  N0.getOperand(0), N1, N2);
      AddToWorklist(NewOp.getNode());
      return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()),
                         VT, NewOp, N0.getOperand(1), N0.getOperand(2));
    }
  }

  // If the input vector is a concatenation, and the insert replaces
  // one of the pieces, we can optimize into a single concat_vectors.
  if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() &&
      N0.getOperand(0).getValueType() == N1.getValueType()) {
    unsigned Factor = N1.getValueType().getVectorNumElements();
    SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end());
    Ops[InsIdx / Factor] = N1;
    return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
  }

  // Simplify source operands based on insertion.
  if (SimplifyDemandedVectorElts(SDValue(N, 0)))
    return SDValue(N, 0);

  return SDValue();
}

SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
  SDValue N0 = N->getOperand(0);

  // fold (fp_to_fp16 (fp16_to_fp op)) -> op
  if (N0->getOpcode() == ISD::FP16_TO_FP)
    return N0->getOperand(0);

  return SDValue();
}

SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
  SDValue N0 = N->getOperand(0);

  // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
  if (N0->getOpcode() == ISD::AND) {
    ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
    if (AndConst && AndConst->getAPIntValue() == 0xffff) {
      return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
                         N0.getOperand(0));
    }
  }

  return SDValue();
}

SDValue DAGCombiner::visitVECREDUCE(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N0.getValueType();
  unsigned Opcode = N->getOpcode();

  // VECREDUCE over 1-element vector is just an extract.
  if (VT.getVectorNumElements() == 1) {
    SDLoc dl(N);
    SDValue Res =
        DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0,
                    DAG.getVectorIdxConstant(0, dl));
    if (Res.getValueType() != N->getValueType(0))
      Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res);
    return Res;
  }

  // On an boolean vector an and/or reduction is the same as a umin/umax
  // reduction. Convert them if the latter is legal while the former isn't.
  if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) {
    unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND
        ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX;
    if (!TLI.isOperationLegalOrCustom(Opcode, VT) &&
        TLI.isOperationLegalOrCustom(NewOpcode, VT) &&
        DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits())
      return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0);
  }

  return SDValue();
}

/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
/// with the destination vector and a zero vector.
/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
///      vector_shuffle V, Zero, <0, 4, 2, 4>
SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
  assert(N->getOpcode() == ISD::AND && "Unexpected opcode!");

  EVT VT = N->getValueType(0);
  SDValue LHS = N->getOperand(0);
  SDValue RHS = peekThroughBitcasts(N->getOperand(1));
  SDLoc DL(N);

  // Make sure we're not running after operation legalization where it
  // may have custom lowered the vector shuffles.
  if (LegalOperations)
    return SDValue();

  if (RHS.getOpcode() != ISD::BUILD_VECTOR)
    return SDValue();

  EVT RVT = RHS.getValueType();
  unsigned NumElts = RHS.getNumOperands();

  // Attempt to create a valid clear mask, splitting the mask into
  // sub elements and checking to see if each is
  // all zeros or all ones - suitable for shuffle masking.
  auto BuildClearMask = [&](int Split) {
    int NumSubElts = NumElts * Split;
    int NumSubBits = RVT.getScalarSizeInBits() / Split;

    SmallVector<int, 8> Indices;
    for (int i = 0; i != NumSubElts; ++i) {
      int EltIdx = i / Split;
      int SubIdx = i % Split;
      SDValue Elt = RHS.getOperand(EltIdx);
      // X & undef --> 0 (not undef). So this lane must be converted to choose
      // from the zero constant vector (same as if the element had all 0-bits).
      if (Elt.isUndef()) {
        Indices.push_back(i + NumSubElts);
        continue;
      }

      APInt Bits;
      if (isa<ConstantSDNode>(Elt))
        Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
      else if (isa<ConstantFPSDNode>(Elt))
        Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
      else
        return SDValue();

      // Extract the sub element from the constant bit mask.
      if (DAG.getDataLayout().isBigEndian())
        Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits);
      else
        Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits);

      if (Bits.isAllOnesValue())
        Indices.push_back(i);
      else if (Bits == 0)
        Indices.push_back(i + NumSubElts);
      else
        return SDValue();
    }

    // Let's see if the target supports this vector_shuffle.
    EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
    EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
    if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
      return SDValue();

    SDValue Zero = DAG.getConstant(0, DL, ClearVT);
    return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
                                                   DAG.getBitcast(ClearVT, LHS),
                                                   Zero, Indices));
  };

  // Determine maximum split level (byte level masking).
  int MaxSplit = 1;
  if (RVT.getScalarSizeInBits() % 8 == 0)
    MaxSplit = RVT.getScalarSizeInBits() / 8;

  for (int Split = 1; Split <= MaxSplit; ++Split)
    if (RVT.getScalarSizeInBits() % Split == 0)
      if (SDValue S = BuildClearMask(Split))
        return S;

  return SDValue();
}

/// If a vector binop is performed on splat values, it may be profitable to
/// extract, scalarize, and insert/splat.
static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  unsigned Opcode = N->getOpcode();
  EVT VT = N->getValueType(0);
  EVT EltVT = VT.getVectorElementType();
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();

  // TODO: Remove/replace the extract cost check? If the elements are available
  //       as scalars, then there may be no extract cost. Should we ask if
  //       inserting a scalar back into a vector is cheap instead?
  int Index0, Index1;
  SDValue Src0 = DAG.getSplatSourceVector(N0, Index0);
  SDValue Src1 = DAG.getSplatSourceVector(N1, Index1);
  if (!Src0 || !Src1 || Index0 != Index1 ||
      Src0.getValueType().getVectorElementType() != EltVT ||
      Src1.getValueType().getVectorElementType() != EltVT ||
      !TLI.isExtractVecEltCheap(VT, Index0) ||
      !TLI.isOperationLegalOrCustom(Opcode, EltVT))
    return SDValue();

  SDLoc DL(N);
  SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL);
  SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC);
  SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC);
  SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags());

  // If all lanes but 1 are undefined, no need to splat the scalar result.
  // TODO: Keep track of undefs and use that info in the general case.
  if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() &&
      count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 &&
      count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) {
    // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
    // build_vec ..undef, (bo X, Y), undef...
    SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT));
    Ops[Index0] = ScalarBO;
    return DAG.getBuildVector(VT, DL, Ops);
  }

  // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
  SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO);
  return DAG.getBuildVector(VT, DL, Ops);
}

/// Visit a binary vector operation, like ADD.
SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
  assert(N->getValueType(0).isVector() &&
         "SimplifyVBinOp only works on vectors!");

  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);
  SDValue Ops[] = {LHS, RHS};
  EVT VT = N->getValueType(0);
  unsigned Opcode = N->getOpcode();
  SDNodeFlags Flags = N->getFlags();

  // See if we can constant fold the vector operation.
  if (SDValue Fold = DAG.FoldConstantVectorArithmetic(
          Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags()))
    return Fold;

  // Move unary shuffles with identical masks after a vector binop:
  // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
  //   --> shuffle (VBinOp A, B), Undef, Mask
  // This does not require type legality checks because we are creating the
  // same types of operations that are in the original sequence. We do have to
  // restrict ops like integer div that have immediate UB (eg, div-by-zero)
  // though. This code is adapted from the identical transform in instcombine.
  if (Opcode != ISD::UDIV && Opcode != ISD::SDIV &&
      Opcode != ISD::UREM && Opcode != ISD::SREM &&
      Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) {
    auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS);
    auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS);
    if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) &&
        LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() &&
        (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) {
      SDLoc DL(N);
      SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0),
                                     RHS.getOperand(0), Flags);
      SDValue UndefV = LHS.getOperand(1);
      return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask());
    }

    // Try to sink a splat shuffle after a binop with a uniform constant.
    // This is limited to cases where neither the shuffle nor the constant have
    // undefined elements because that could be poison-unsafe or inhibit
    // demanded elements analysis. It is further limited to not change a splat
    // of an inserted scalar because that may be optimized better by
    // load-folding or other target-specific behaviors.
    if (isConstOrConstSplat(RHS) && Shuf0 && is_splat(Shuf0->getMask()) &&
        Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() &&
        Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) {
      // binop (splat X), (splat C) --> splat (binop X, C)
      SDLoc DL(N);
      SDValue X = Shuf0->getOperand(0);
      SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags);
      return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT),
                                  Shuf0->getMask());
    }
    if (isConstOrConstSplat(LHS) && Shuf1 && is_splat(Shuf1->getMask()) &&
        Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() &&
        Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) {
      // binop (splat C), (splat X) --> splat (binop C, X)
      SDLoc DL(N);
      SDValue X = Shuf1->getOperand(0);
      SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags);
      return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT),
                                  Shuf1->getMask());
    }
  }

  // The following pattern is likely to emerge with vector reduction ops. Moving
  // the binary operation ahead of insertion may allow using a narrower vector
  // instruction that has better performance than the wide version of the op:
  // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
  if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() &&
      RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() &&
      LHS.getOperand(2) == RHS.getOperand(2) &&
      (LHS.hasOneUse() || RHS.hasOneUse())) {
    SDValue X = LHS.getOperand(1);
    SDValue Y = RHS.getOperand(1);
    SDValue Z = LHS.getOperand(2);
    EVT NarrowVT = X.getValueType();
    if (NarrowVT == Y.getValueType() &&
        TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT,
                                              LegalOperations)) {
      // (binop undef, undef) may not return undef, so compute that result.
      SDLoc DL(N);
      SDValue VecC =
          DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT));
      SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y);
      return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z);
    }
  }

  // Make sure all but the first op are undef or constant.
  auto ConcatWithConstantOrUndef = [](SDValue Concat) {
    return Concat.getOpcode() == ISD::CONCAT_VECTORS &&
           std::all_of(std::next(Concat->op_begin()), Concat->op_end(),
                     [](const SDValue &Op) {
                       return Op.isUndef() ||
                              ISD::isBuildVectorOfConstantSDNodes(Op.getNode());
                     });
  };

  // The following pattern is likely to emerge with vector reduction ops. Moving
  // the binary operation ahead of the concat may allow using a narrower vector
  // instruction that has better performance than the wide version of the op:
  // VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
  //   concat (VBinOp X, Y), VecC
  if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) &&
      (LHS.hasOneUse() || RHS.hasOneUse())) {
    EVT NarrowVT = LHS.getOperand(0).getValueType();
    if (NarrowVT == RHS.getOperand(0).getValueType() &&
        TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) {
      SDLoc DL(N);
      unsigned NumOperands = LHS.getNumOperands();
      SmallVector<SDValue, 4> ConcatOps;
      for (unsigned i = 0; i != NumOperands; ++i) {
        // This constant fold for operands 1 and up.
        ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i),
                                        RHS.getOperand(i)));
      }

      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
    }
  }

  if (SDValue V = scalarizeBinOpOfSplats(N, DAG))
    return V;

  return SDValue();
}

SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1,
                                    SDValue N2) {
  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");

  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());

  // If we got a simplified select_cc node back from SimplifySelectCC, then
  // break it down into a new SETCC node, and a new SELECT node, and then return
  // the SELECT node, since we were called with a SELECT node.
  if (SCC.getNode()) {
    // Check to see if we got a select_cc back (to turn into setcc/select).
    // Otherwise, just return whatever node we got back, like fabs.
    if (SCC.getOpcode() == ISD::SELECT_CC) {
      const SDNodeFlags Flags = N0.getNode()->getFlags();
      SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
                                  N0.getValueType(),
                                  SCC.getOperand(0), SCC.getOperand(1),
                                  SCC.getOperand(4), Flags);
      AddToWorklist(SETCC.getNode());
      SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
                                         SCC.getOperand(2), SCC.getOperand(3));
      SelectNode->setFlags(Flags);
      return SelectNode;
    }

    return SCC;
  }
  return SDValue();
}

/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
/// being selected between, see if we can simplify the select.  Callers of this
/// should assume that TheSelect is deleted if this returns true.  As such, they
/// should return the appropriate thing (e.g. the node) back to the top-level of
/// the DAG combiner loop to avoid it being looked at.
bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
                                    SDValue RHS) {
  // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
  // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
  if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
    if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
      // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
      SDValue Sqrt = RHS;
      ISD::CondCode CC;
      SDValue CmpLHS;
      const ConstantFPSDNode *Zero = nullptr;

      if (TheSelect->getOpcode() == ISD::SELECT_CC) {
        CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
        CmpLHS = TheSelect->getOperand(0);
        Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
      } else {
        // SELECT or VSELECT
        SDValue Cmp = TheSelect->getOperand(0);
        if (Cmp.getOpcode() == ISD::SETCC) {
          CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
          CmpLHS = Cmp.getOperand(0);
          Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
        }
      }
      if (Zero && Zero->isZero() &&
          Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
          CC == ISD::SETULT || CC == ISD::SETLT)) {
        // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
        CombineTo(TheSelect, Sqrt);
        return true;
      }
    }
  }
  // Cannot simplify select with vector condition
  if (TheSelect->getOperand(0).getValueType().isVector()) return false;

  // If this is a select from two identical things, try to pull the operation
  // through the select.
  if (LHS.getOpcode() != RHS.getOpcode() ||
      !LHS.hasOneUse() || !RHS.hasOneUse())
    return false;

  // If this is a load and the token chain is identical, replace the select
  // of two loads with a load through a select of the address to load from.
  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
  // constants have been dropped into the constant pool.
  if (LHS.getOpcode() == ISD::LOAD) {
    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
    LoadSDNode *RLD = cast<LoadSDNode>(RHS);

    // Token chains must be identical.
    if (LHS.getOperand(0) != RHS.getOperand(0) ||
        // Do not let this transformation reduce the number of volatile loads.
        // Be conservative for atomics for the moment
        // TODO: This does appear to be legal for unordered atomics (see D66309)
        !LLD->isSimple() || !RLD->isSimple() ||
        // FIXME: If either is a pre/post inc/dec load,
        // we'd need to split out the address adjustment.
        LLD->isIndexed() || RLD->isIndexed() ||
        // If this is an EXTLOAD, the VT's must match.
        LLD->getMemoryVT() != RLD->getMemoryVT() ||
        // If this is an EXTLOAD, the kind of extension must match.
        (LLD->getExtensionType() != RLD->getExtensionType() &&
         // The only exception is if one of the extensions is anyext.
         LLD->getExtensionType() != ISD::EXTLOAD &&
         RLD->getExtensionType() != ISD::EXTLOAD) ||
        // FIXME: this discards src value information.  This is
        // over-conservative. It would be beneficial to be able to remember
        // both potential memory locations.  Since we are discarding
        // src value info, don't do the transformation if the memory
        // locations are not in the default address space.
        LLD->getPointerInfo().getAddrSpace() != 0 ||
        RLD->getPointerInfo().getAddrSpace() != 0 ||
        // We can't produce a CMOV of a TargetFrameIndex since we won't
        // generate the address generation required.
        LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
        RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
                                      LLD->getBasePtr().getValueType()))
      return false;

    // The loads must not depend on one another.
    if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD))
      return false;

    // Check that the select condition doesn't reach either load.  If so,
    // folding this will induce a cycle into the DAG.  If not, this is safe to
    // xform, so create a select of the addresses.

    SmallPtrSet<const SDNode *, 32> Visited;
    SmallVector<const SDNode *, 16> Worklist;

    // Always fail if LLD and RLD are not independent. TheSelect is a
    // predecessor to all Nodes in question so we need not search past it.

    Visited.insert(TheSelect);
    Worklist.push_back(LLD);
    Worklist.push_back(RLD);

    if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) ||
        SDNode::hasPredecessorHelper(RLD, Visited, Worklist))
      return false;

    SDValue Addr;
    if (TheSelect->getOpcode() == ISD::SELECT) {
      // We cannot do this optimization if any pair of {RLD, LLD} is a
      // predecessor to {RLD, LLD, CondNode}. As we've already compared the
      // Loads, we only need to check if CondNode is a successor to one of the
      // loads. We can further avoid this if there's no use of their chain
      // value.
      SDNode *CondNode = TheSelect->getOperand(0).getNode();
      Worklist.push_back(CondNode);

      if ((LLD->hasAnyUseOfValue(1) &&
           SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
          (RLD->hasAnyUseOfValue(1) &&
           SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
        return false;

      Addr = DAG.getSelect(SDLoc(TheSelect),
                           LLD->getBasePtr().getValueType(),
                           TheSelect->getOperand(0), LLD->getBasePtr(),
                           RLD->getBasePtr());
    } else {  // Otherwise SELECT_CC
      // We cannot do this optimization if any pair of {RLD, LLD} is a
      // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
      // the Loads, we only need to check if CondLHS/CondRHS is a successor to
      // one of the loads. We can further avoid this if there's no use of their
      // chain value.

      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
      Worklist.push_back(CondLHS);
      Worklist.push_back(CondRHS);

      if ((LLD->hasAnyUseOfValue(1) &&
           SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
          (RLD->hasAnyUseOfValue(1) &&
           SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
        return false;

      Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
                         LLD->getBasePtr().getValueType(),
                         TheSelect->getOperand(0),
                         TheSelect->getOperand(1),
                         LLD->getBasePtr(), RLD->getBasePtr(),
                         TheSelect->getOperand(4));
    }

    SDValue Load;
    // It is safe to replace the two loads if they have different alignments,
    // but the new load must be the minimum (most restrictive) alignment of the
    // inputs.
    Align Alignment = std::min(LLD->getAlign(), RLD->getAlign());
    MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
    if (!RLD->isInvariant())
      MMOFlags &= ~MachineMemOperand::MOInvariant;
    if (!RLD->isDereferenceable())
      MMOFlags &= ~MachineMemOperand::MODereferenceable;
    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
      // FIXME: Discards pointer and AA info.
      Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
                         LLD->getChain(), Addr, MachinePointerInfo(), Alignment,
                         MMOFlags);
    } else {
      // FIXME: Discards pointer and AA info.
      Load = DAG.getExtLoad(
          LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType()
                                                  : LLD->getExtensionType(),
          SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr,
          MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags);
    }

    // Users of the select now use the result of the load.
    CombineTo(TheSelect, Load);

    // Users of the old loads now use the new load's chain.  We know the
    // old-load value is dead now.
    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
    return true;
  }

  return false;
}

/// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
/// bitwise 'and'.
SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
                                            SDValue N1, SDValue N2, SDValue N3,
                                            ISD::CondCode CC) {
  // If this is a select where the false operand is zero and the compare is a
  // check of the sign bit, see if we can perform the "gzip trick":
  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
  // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
  EVT XType = N0.getValueType();
  EVT AType = N2.getValueType();
  if (!isNullConstant(N3) || !XType.bitsGE(AType))
    return SDValue();

  // If the comparison is testing for a positive value, we have to invert
  // the sign bit mask, so only do that transform if the target has a bitwise
  // 'and not' instruction (the invert is free).
  if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
    // (X > -1) ? A : 0
    // (X >  0) ? X : 0 <-- This is canonical signed max.
    if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
      return SDValue();
  } else if (CC == ISD::SETLT) {
    // (X <  0) ? A : 0
    // (X <  1) ? X : 0 <-- This is un-canonicalized signed min.
    if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
      return SDValue();
  } else {
    return SDValue();
  }

  // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
  // constant.
  EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
  auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
  if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
    unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
    if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) {
      SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
      SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
      AddToWorklist(Shift.getNode());

      if (XType.bitsGT(AType)) {
        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
        AddToWorklist(Shift.getNode());
      }

      if (CC == ISD::SETGT)
        Shift = DAG.getNOT(DL, Shift, AType);

      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
    }
  }

  unsigned ShCt = XType.getSizeInBits() - 1;
  if (TLI.shouldAvoidTransformToShift(XType, ShCt))
    return SDValue();

  SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
  SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
  AddToWorklist(Shift.getNode());

  if (XType.bitsGT(AType)) {
    Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
    AddToWorklist(Shift.getNode());
  }

  if (CC == ISD::SETGT)
    Shift = DAG.getNOT(DL, Shift, AType);

  return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
}

// Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values.
SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) {
  SDValue N0 = N->getOperand(0);
  EVT VT = N->getValueType(0);
  bool IsFabs = N->getOpcode() == ISD::FABS;
  bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT);

  if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse())
    return SDValue();

  SDValue Int = N0.getOperand(0);
  EVT IntVT = Int.getValueType();

  // The operand to cast should be integer.
  if (!IntVT.isInteger() || IntVT.isVector())
    return SDValue();

  // (fneg (bitconvert x)) -> (bitconvert (xor x sign))
  // (fabs (bitconvert x)) -> (bitconvert (and x ~sign))
  APInt SignMask;
  if (N0.getValueType().isVector()) {
    // For vector, create a sign mask (0x80...) or its inverse (for fabs,
    // 0x7f...) per element and splat it.
    SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits());
    if (IsFabs)
      SignMask = ~SignMask;
    SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
  } else {
    // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...)
    SignMask = APInt::getSignMask(IntVT.getSizeInBits());
    if (IsFabs)
      SignMask = ~SignMask;
  }
  SDLoc DL(N0);
  Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int,
                    DAG.getConstant(SignMask, DL, IntVT));
  AddToWorklist(Int.getNode());
  return DAG.getBitcast(VT, Int);
}

/// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
/// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
/// in it. This may be a win when the constant is not otherwise available
/// because it replaces two constant pool loads with one.
SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
    const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
    ISD::CondCode CC) {
  if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType()))
    return SDValue();

  // If we are before legalize types, we want the other legalization to happen
  // first (for example, to avoid messing with soft float).
  auto *TV = dyn_cast<ConstantFPSDNode>(N2);
  auto *FV = dyn_cast<ConstantFPSDNode>(N3);
  EVT VT = N2.getValueType();
  if (!TV || !FV || !TLI.isTypeLegal(VT))
    return SDValue();

  // If a constant can be materialized without loads, this does not make sense.
  if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal ||
      TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) ||
      TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize))
    return SDValue();

  // If both constants have multiple uses, then we won't need to do an extra
  // load. The values are likely around in registers for other users.
  if (!TV->hasOneUse() && !FV->hasOneUse())
    return SDValue();

  Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()),
                       const_cast<ConstantFP*>(TV->getConstantFPValue()) };
  Type *FPTy = Elts[0]->getType();
  const DataLayout &TD = DAG.getDataLayout();

  // Create a ConstantArray of the two constants.
  Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
  SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
                                      TD.getPrefTypeAlign(FPTy));
  Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();

  // Get offsets to the 0 and 1 elements of the array, so we can select between
  // them.
  SDValue Zero = DAG.getIntPtrConstant(0, DL);
  unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
  SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
  SDValue Cond =
      DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC);
  AddToWorklist(Cond.getNode());
  SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero);
  AddToWorklist(CstOffset.getNode());
  CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset);
  AddToWorklist(CPIdx.getNode());
  return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
                     MachinePointerInfo::getConstantPool(
                         DAG.getMachineFunction()), Alignment);
}

/// Simplify an expression of the form (N0 cond N1) ? N2 : N3
/// where 'cond' is the comparison specified by CC.
SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
                                      SDValue N2, SDValue N3, ISD::CondCode CC,
                                      bool NotExtCompare) {
  // (x ? y : y) -> y.
  if (N2 == N3) return N2;

  EVT CmpOpVT = N0.getValueType();
  EVT CmpResVT = getSetCCResultType(CmpOpVT);
  EVT VT = N2.getValueType();
  auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
  auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
  auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode());

  // Determine if the condition we're dealing with is constant.
  if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) {
    AddToWorklist(SCC.getNode());
    if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) {
      // fold select_cc true, x, y -> x
      // fold select_cc false, x, y -> y
      return !(SCCC->isNullValue()) ? N2 : N3;
    }
  }

  if (SDValue V =
          convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC))
    return V;

  if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
    return V;

  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
  // where y is has a single bit set.
  // A plaintext description would be, we can turn the SELECT_CC into an AND
  // when the condition can be materialized as an all-ones register.  Any
  // single bit-test can be materialized as an all-ones register with
  // shift-left and shift-right-arith.
  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
      N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
    SDValue AndLHS = N0->getOperand(0);
    auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
      // Shift the tested bit over the sign bit.
      const APInt &AndMask = ConstAndRHS->getAPIntValue();
      unsigned ShCt = AndMask.getBitWidth() - 1;
      if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) {
        SDValue ShlAmt =
          DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
                          getShiftAmountTy(AndLHS.getValueType()));
        SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);

        // Now arithmetic right shift it all the way over, so the result is
        // either all-ones, or zero.
        SDValue ShrAmt =
          DAG.getConstant(ShCt, SDLoc(Shl),
                          getShiftAmountTy(Shl.getValueType()));
        SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);

        return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
      }
    }
  }

  // fold select C, 16, 0 -> shl C, 4
  bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2();
  bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2();

  if ((Fold || Swap) &&
      TLI.getBooleanContents(CmpOpVT) ==
          TargetLowering::ZeroOrOneBooleanContent &&
      (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) {

    if (Swap) {
      CC = ISD::getSetCCInverse(CC, CmpOpVT);
      std::swap(N2C, N3C);
    }

    // If the caller doesn't want us to simplify this into a zext of a compare,
    // don't do it.
    if (NotExtCompare && N2C->isOne())
      return SDValue();

    SDValue Temp, SCC;
    // zext (setcc n0, n1)
    if (LegalTypes) {
      SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC);
      if (VT.bitsLT(SCC.getValueType()))
        Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT);
      else
        Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
    } else {
      SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
      Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
    }

    AddToWorklist(SCC.getNode());
    AddToWorklist(Temp.getNode());

    if (N2C->isOne())
      return Temp;

    unsigned ShCt = N2C->getAPIntValue().logBase2();
    if (TLI.shouldAvoidTransformToShift(VT, ShCt))
      return SDValue();

    // shl setcc result by log2 n2c
    return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
                       DAG.getConstant(ShCt, SDLoc(Temp),
                                       getShiftAmountTy(Temp.getValueType())));
  }

  // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
  // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
  // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
  // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
  // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
  // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
  // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
  // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
  if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
    SDValue ValueOnZero = N2;
    SDValue Count = N3;
    // If the condition is NE instead of E, swap the operands.
    if (CC == ISD::SETNE)
      std::swap(ValueOnZero, Count);
    // Check if the value on zero is a constant equal to the bits in the type.
    if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) {
      if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) {
        // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
        // legal, combine to just cttz.
        if ((Count.getOpcode() == ISD::CTTZ ||
             Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
            N0 == Count.getOperand(0) &&
            (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT)))
          return DAG.getNode(ISD::CTTZ, DL, VT, N0);
        // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
        // legal, combine to just ctlz.
        if ((Count.getOpcode() == ISD::CTLZ ||
             Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) &&
            N0 == Count.getOperand(0) &&
            (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT)))
          return DAG.getNode(ISD::CTLZ, DL, VT, N0);
      }
    }
  }

  return SDValue();
}

/// This is a stub for TargetLowering::SimplifySetCC.
SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
                                   ISD::CondCode Cond, const SDLoc &DL,
                                   bool foldBooleans) {
  TargetLowering::DAGCombinerInfo
    DagCombineInfo(DAG, Level, false, this);
  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
}

/// Given an ISD::SDIV node expressing a divide by constant, return
/// a DAG expression to select that will generate the same value by multiplying
/// by a magic number.
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
SDValue DAGCombiner::BuildSDIV(SDNode *N) {
  // when optimising for minimum size, we don't want to expand a div to a mul
  // and a shift.
  if (DAG.getMachineFunction().getFunction().hasMinSize())
    return SDValue();

  SmallVector<SDNode *, 8> Built;
  if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) {
    for (SDNode *N : Built)
      AddToWorklist(N);
    return S;
  }

  return SDValue();
}

/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
/// DAG expression that will generate the same value by right shifting.
SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
  ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
  if (!C)
    return SDValue();

  // Avoid division by zero.
  if (C->isNullValue())
    return SDValue();

  SmallVector<SDNode *, 8> Built;
  if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) {
    for (SDNode *N : Built)
      AddToWorklist(N);
    return S;
  }

  return SDValue();
}

/// Given an ISD::UDIV node expressing a divide by constant, return a DAG
/// expression that will generate the same value by multiplying by a magic
/// number.
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
SDValue DAGCombiner::BuildUDIV(SDNode *N) {
  // when optimising for minimum size, we don't want to expand a div to a mul
  // and a shift.
  if (DAG.getMachineFunction().getFunction().hasMinSize())
    return SDValue();

  SmallVector<SDNode *, 8> Built;
  if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) {
    for (SDNode *N : Built)
      AddToWorklist(N);
    return S;
  }

  return SDValue();
}

/// Determines the LogBase2 value for a non-null input value using the
/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) {
  EVT VT = V.getValueType();
  unsigned EltBits = VT.getScalarSizeInBits();
  SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
  SDValue Base = DAG.getConstant(EltBits - 1, DL, VT);
  SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
  return LogBase2;
}

/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
/// For the reciprocal, we need to find the zero of the function:
///   F(X) = A X - 1 [which has a zero at X = 1/A]
///     =>
///   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
///     does not require additional intermediate precision]
/// For the last iteration, put numerator N into it to gain more precision:
///   Result = N X_i + X_i (N - N A X_i)
SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op,
                                      SDNodeFlags Flags) {
  if (LegalDAG)
    return SDValue();

  // TODO: Handle half and/or extended types?
  EVT VT = Op.getValueType();
  if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
    return SDValue();

  // If estimates are explicitly disabled for this function, we're done.
  MachineFunction &MF = DAG.getMachineFunction();
  int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
  if (Enabled == TLI.ReciprocalEstimate::Disabled)
    return SDValue();

  // Estimates may be explicitly enabled for this type with a custom number of
  // refinement steps.
  int Iterations = TLI.getDivRefinementSteps(VT, MF);
  if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
    AddToWorklist(Est.getNode());

    SDLoc DL(Op);
    if (Iterations) {
      SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);

      // Newton iterations: Est = Est + Est (N - Arg * Est)
      // If this is the last iteration, also multiply by the numerator.
      for (int i = 0; i < Iterations; ++i) {
        SDValue MulEst = Est;

        if (i == Iterations - 1) {
          MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags);
          AddToWorklist(MulEst.getNode());
        }

        SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags);
        AddToWorklist(NewEst.getNode());

        NewEst = DAG.getNode(ISD::FSUB, DL, VT,
                             (i == Iterations - 1 ? N : FPOne), NewEst, Flags);
        AddToWorklist(NewEst.getNode());

        NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
        AddToWorklist(NewEst.getNode());

        Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags);
        AddToWorklist(Est.getNode());
      }
    } else {
      // If no iterations are available, multiply with N.
      Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags);
      AddToWorklist(Est.getNode());
    }

    return Est;
  }

  return SDValue();
}

/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
/// For the reciprocal sqrt, we need to find the zero of the function:
///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
///     =>
///   X_{i+1} = X_i (1.5 - A X_i^2 / 2)
/// As a result, we precompute A/2 prior to the iteration loop.
SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est,
                                         unsigned Iterations,
                                         SDNodeFlags Flags, bool Reciprocal) {
  EVT VT = Arg.getValueType();
  SDLoc DL(Arg);
  SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);

  // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
  // this entire sequence requires only one FP constant.
  SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
  HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);

  // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
  for (unsigned i = 0; i < Iterations; ++i) {
    SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
    NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
    NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
    Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
  }

  // If non-reciprocal square root is requested, multiply the result by Arg.
  if (!Reciprocal)
    Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);

  return Est;
}

/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
/// For the reciprocal sqrt, we need to find the zero of the function:
///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
///     =>
///   X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est,
                                         unsigned Iterations,
                                         SDNodeFlags Flags, bool Reciprocal) {
  EVT VT = Arg.getValueType();
  SDLoc DL(Arg);
  SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
  SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);

  // This routine must enter the loop below to work correctly
  // when (Reciprocal == false).
  assert(Iterations > 0);

  // Newton iterations for reciprocal square root:
  // E = (E * -0.5) * ((A * E) * E + -3.0)
  for (unsigned i = 0; i < Iterations; ++i) {
    SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags);
    SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags);
    SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags);

    // When calculating a square root at the last iteration build:
    // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
    // (notice a common subexpression)
    SDValue LHS;
    if (Reciprocal || (i + 1) < Iterations) {
      // RSQRT: LHS = (E * -0.5)
      LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
    } else {
      // SQRT: LHS = (A * E) * -0.5
      LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags);
    }

    Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags);
  }

  return Est;
}

/// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
/// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
/// Op can be zero.
SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags,
                                           bool Reciprocal) {
  if (LegalDAG)
    return SDValue();

  // TODO: Handle half and/or extended types?
  EVT VT = Op.getValueType();
  if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
    return SDValue();

  // If estimates are explicitly disabled for this function, we're done.
  MachineFunction &MF = DAG.getMachineFunction();
  int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
  if (Enabled == TLI.ReciprocalEstimate::Disabled)
    return SDValue();

  // Estimates may be explicitly enabled for this type with a custom number of
  // refinement steps.
  int Iterations = TLI.getSqrtRefinementSteps(VT, MF);

  bool UseOneConstNR = false;
  if (SDValue Est =
      TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
                          Reciprocal)) {
    AddToWorklist(Est.getNode());

    if (Iterations) {
      Est = UseOneConstNR
            ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
            : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);

      if (!Reciprocal) {
        // The estimate is now completely wrong if the input was exactly 0.0 or
        // possibly a denormal. Force the answer to 0.0 for those cases.
        SDLoc DL(Op);
        EVT CCVT = getSetCCResultType(VT);
        ISD::NodeType SelOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT;
        DenormalMode DenormMode = DAG.getDenormalMode(VT);
        if (DenormMode.Input == DenormalMode::IEEE) {
          // This is specifically a check for the handling of denormal inputs,
          // not the result.

          // fabs(X) < SmallestNormal ? 0.0 : Est
          const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
          APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
          SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
          SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
          SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
          SDValue IsDenorm = DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
          Est = DAG.getNode(SelOpcode, DL, VT, IsDenorm, FPZero, Est);
        } else {
          // X == 0.0 ? 0.0 : Est
          SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
          SDValue IsZero = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
          Est = DAG.getNode(SelOpcode, DL, VT, IsZero, FPZero, Est);
        }
      }
    }
    return Est;
  }

  return SDValue();
}

SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) {
  return buildSqrtEstimateImpl(Op, Flags, true);
}

SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) {
  return buildSqrtEstimateImpl(Op, Flags, false);
}

/// Return true if there is any possibility that the two addresses overlap.
bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const {

  struct MemUseCharacteristics {
    bool IsVolatile;
    bool IsAtomic;
    SDValue BasePtr;
    int64_t Offset;
    Optional<int64_t> NumBytes;
    MachineMemOperand *MMO;
  };

  auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics {
    if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) {
      int64_t Offset = 0;
      if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset()))
        Offset = (LSN->getAddressingMode() == ISD::PRE_INC)
                     ? C->getSExtValue()
                     : (LSN->getAddressingMode() == ISD::PRE_DEC)
                           ? -1 * C->getSExtValue()
                           : 0;
      uint64_t Size =
          MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize());
      return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(),
              Offset /*base offset*/,
              Optional<int64_t>(Size),
              LSN->getMemOperand()};
    }
    if (const auto *LN = cast<LifetimeSDNode>(N))
      return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1),
              (LN->hasOffset()) ? LN->getOffset() : 0,
              (LN->hasOffset()) ? Optional<int64_t>(LN->getSize())
                                : Optional<int64_t>(),
              (MachineMemOperand *)nullptr};
    // Default.
    return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(),
            (int64_t)0 /*offset*/,
            Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr};
  };

  MemUseCharacteristics MUC0 = getCharacteristics(Op0),
                        MUC1 = getCharacteristics(Op1);

  // If they are to the same address, then they must be aliases.
  if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr &&
      MUC0.Offset == MUC1.Offset)
    return true;

  // If they are both volatile then they cannot be reordered.
  if (MUC0.IsVolatile && MUC1.IsVolatile)
    return true;

  // Be conservative about atomics for the moment
  // TODO: This is way overconservative for unordered atomics (see D66309)
  if (MUC0.IsAtomic && MUC1.IsAtomic)
    return true;

  if (MUC0.MMO && MUC1.MMO) {
    if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
        (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
      return false;
  }

  // Try to prove that there is aliasing, or that there is no aliasing. Either
  // way, we can return now. If nothing can be proved, proceed with more tests.
  bool IsAlias;
  if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes,
                                       DAG, IsAlias))
    return IsAlias;

  // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
  // either are not known.
  if (!MUC0.MMO || !MUC1.MMO)
    return true;

  // If one operation reads from invariant memory, and the other may store, they
  // cannot alias. These should really be checking the equivalent of mayWrite,
  // but it only matters for memory nodes other than load /store.
  if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
      (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
    return false;

  // If we know required SrcValue1 and SrcValue2 have relatively large
  // alignment compared to the size and offset of the access, we may be able
  // to prove they do not alias. This check is conservative for now to catch
  // cases created by splitting vector types, it only works when the offsets are
  // multiples of the size of the data.
  int64_t SrcValOffset0 = MUC0.MMO->getOffset();
  int64_t SrcValOffset1 = MUC1.MMO->getOffset();
  Align OrigAlignment0 = MUC0.MMO->getBaseAlign();
  Align OrigAlignment1 = MUC1.MMO->getBaseAlign();
  auto &Size0 = MUC0.NumBytes;
  auto &Size1 = MUC1.NumBytes;
  if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 &&
      Size0.hasValue() && Size1.hasValue() && *Size0 == *Size1 &&
      OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 &&
      SrcValOffset1 % *Size1 == 0) {
    int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value();
    int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value();

    // There is no overlap between these relatively aligned accesses of
    // similar size. Return no alias.
    if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0)
      return false;
  }

  bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
                   ? CombinerGlobalAA
                   : DAG.getSubtarget().useAA();
#ifndef NDEBUG
  if (CombinerAAOnlyFunc.getNumOccurrences() &&
      CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
    UseAA = false;
#endif

  if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() &&
      Size0.hasValue() && Size1.hasValue()) {
    // Use alias analysis information.
    int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
    int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset;
    int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset;
    AliasResult AAResult = AA->alias(
        MemoryLocation(MUC0.MMO->getValue(), Overlap0,
                       UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()),
        MemoryLocation(MUC1.MMO->getValue(), Overlap1,
                       UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes()));
    if (AAResult == NoAlias)
      return false;
  }

  // Otherwise we have to assume they alias.
  return true;
}

/// Walk up chain skipping non-aliasing memory nodes,
/// looking for aliasing nodes and adding them to the Aliases vector.
void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
                                   SmallVectorImpl<SDValue> &Aliases) {
  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.

  // Get alias information for node.
  // TODO: relax aliasing for unordered atomics (see D66309)
  const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple();

  // Starting off.
  Chains.push_back(OriginalChain);
  unsigned Depth = 0;

  // Attempt to improve chain by a single step
  std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool {
    switch (C.getOpcode()) {
    case ISD::EntryToken:
      // No need to mark EntryToken.
      C = SDValue();
      return true;
    case ISD::LOAD:
    case ISD::STORE: {
      // Get alias information for C.
      // TODO: Relax aliasing for unordered atomics (see D66309)
      bool IsOpLoad = isa<LoadSDNode>(C.getNode()) &&
                      cast<LSBaseSDNode>(C.getNode())->isSimple();
      if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) {
        // Look further up the chain.
        C = C.getOperand(0);
        return true;
      }
      // Alias, so stop here.
      return false;
    }

    case ISD::CopyFromReg:
      // Always forward past past CopyFromReg.
      C = C.getOperand(0);
      return true;

    case ISD::LIFETIME_START:
    case ISD::LIFETIME_END: {
      // We can forward past any lifetime start/end that can be proven not to
      // alias the memory access.
      if (!isAlias(N, C.getNode())) {
        // Look further up the chain.
        C = C.getOperand(0);
        return true;
      }
      return false;
    }
    default:
      return false;
    }
  };

  // Look at each chain and determine if it is an alias.  If so, add it to the
  // aliases list.  If not, then continue up the chain looking for the next
  // candidate.
  while (!Chains.empty()) {
    SDValue Chain = Chains.pop_back_val();

    // Don't bother if we've seen Chain before.
    if (!Visited.insert(Chain.getNode()).second)
      continue;

    // For TokenFactor nodes, look at each operand and only continue up the
    // chain until we reach the depth limit.
    //
    // FIXME: The depth check could be made to return the last non-aliasing
    // chain we found before we hit a tokenfactor rather than the original
    // chain.
    if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
      Aliases.clear();
      Aliases.push_back(OriginalChain);
      return;
    }

    if (Chain.getOpcode() == ISD::TokenFactor) {
      // We have to check each of the operands of the token factor for "small"
      // token factors, so we queue them up.  Adding the operands to the queue
      // (stack) in reverse order maintains the original order and increases the
      // likelihood that getNode will find a matching token factor (CSE.)
      if (Chain.getNumOperands() > 16) {
        Aliases.push_back(Chain);
        continue;
      }
      for (unsigned n = Chain.getNumOperands(); n;)
        Chains.push_back(Chain.getOperand(--n));
      ++Depth;
      continue;
    }
    // Everything else
    if (ImproveChain(Chain)) {
      // Updated Chain Found, Consider new chain if one exists.
      if (Chain.getNode())
        Chains.push_back(Chain);
      ++Depth;
      continue;
    }
    // No Improved Chain Possible, treat as Alias.
    Aliases.push_back(Chain);
  }
}

/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
/// (aliasing node.)
SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
  if (OptLevel == CodeGenOpt::None)
    return OldChain;

  // Ops for replacing token factor.
  SmallVector<SDValue, 8> Aliases;

  // Accumulate all the aliases to this node.
  GatherAllAliases(N, OldChain, Aliases);

  // If no operands then chain to entry token.
  if (Aliases.size() == 0)
    return DAG.getEntryNode();

  // If a single operand then chain to it.  We don't need to revisit it.
  if (Aliases.size() == 1)
    return Aliases[0];

  // Construct a custom tailored token factor.
  return DAG.getTokenFactor(SDLoc(N), Aliases);
}

namespace {
// TODO: Replace with with std::monostate when we move to C++17.
struct UnitT { } Unit;
bool operator==(const UnitT &, const UnitT &) { return true; }
bool operator!=(const UnitT &, const UnitT &) { return false; }
} // namespace

// This function tries to collect a bunch of potentially interesting
// nodes to improve the chains of, all at once. This might seem
// redundant, as this function gets called when visiting every store
// node, so why not let the work be done on each store as it's visited?
//
// I believe this is mainly important because mergeConsecutiveStores
// is unable to deal with merging stores of different sizes, so unless
// we improve the chains of all the potential candidates up-front
// before running mergeConsecutiveStores, it might only see some of
// the nodes that will eventually be candidates, and then not be able
// to go from a partially-merged state to the desired final
// fully-merged state.

bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) {
  SmallVector<StoreSDNode *, 8> ChainedStores;
  StoreSDNode *STChain = St;
  // Intervals records which offsets from BaseIndex have been covered. In
  // the common case, every store writes to the immediately previous address
  // space and thus merged with the previous interval at insertion time.

  using IMap =
      llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>;
  IMap::Allocator A;
  IMap Intervals(A);

  // This holds the base pointer, index, and the offset in bytes from the base
  // pointer.
  const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);

  // We must have a base and an offset.
  if (!BasePtr.getBase().getNode())
    return false;

  // Do not handle stores to undef base pointers.
  if (BasePtr.getBase().isUndef())
    return false;

  // BaseIndexOffset assumes that offsets are fixed-size, which
  // is not valid for scalable vectors where the offsets are
  // scaled by `vscale`, so bail out early.
  if (St->getMemoryVT().isScalableVector())
    return false;

  // Add ST's interval.
  Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit);

  while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) {
    // If the chain has more than one use, then we can't reorder the mem ops.
    if (!SDValue(Chain, 0)->hasOneUse())
      break;
    // TODO: Relax for unordered atomics (see D66309)
    if (!Chain->isSimple() || Chain->isIndexed())
      break;

    // Find the base pointer and offset for this memory node.
    const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG);
    // Check that the base pointer is the same as the original one.
    int64_t Offset;
    if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset))
      break;
    int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8;
    // Make sure we don't overlap with other intervals by checking the ones to
    // the left or right before inserting.
    auto I = Intervals.find(Offset);
    // If there's a next interval, we should end before it.
    if (I != Intervals.end() && I.start() < (Offset + Length))
      break;
    // If there's a previous interval, we should start after it.
    if (I != Intervals.begin() && (--I).stop() <= Offset)
      break;
    Intervals.insert(Offset, Offset + Length, Unit);

    ChainedStores.push_back(Chain);
    STChain = Chain;
  }

  // If we didn't find a chained store, exit.
  if (ChainedStores.size() == 0)
    return false;

  // Improve all chained stores (St and ChainedStores members) starting from
  // where the store chain ended and return single TokenFactor.
  SDValue NewChain = STChain->getChain();
  SmallVector<SDValue, 8> TFOps;
  for (unsigned I = ChainedStores.size(); I;) {
    StoreSDNode *S = ChainedStores[--I];
    SDValue BetterChain = FindBetterChain(S, NewChain);
    S = cast<StoreSDNode>(DAG.UpdateNodeOperands(
        S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3)));
    TFOps.push_back(SDValue(S, 0));
    ChainedStores[I] = S;
  }

  // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
  SDValue BetterChain = FindBetterChain(St, NewChain);
  SDValue NewST;
  if (St->isTruncatingStore())
    NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(),
                              St->getBasePtr(), St->getMemoryVT(),
                              St->getMemOperand());
  else
    NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(),
                         St->getBasePtr(), St->getMemOperand());

  TFOps.push_back(NewST);

  // If we improved every element of TFOps, then we've lost the dependence on
  // NewChain to successors of St and we need to add it back to TFOps. Do so at
  // the beginning to keep relative order consistent with FindBetterChains.
  auto hasImprovedChain = [&](SDValue ST) -> bool {
    return ST->getOperand(0) != NewChain;
  };
  bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain);
  if (AddNewChain)
    TFOps.insert(TFOps.begin(), NewChain);

  SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps);
  CombineTo(St, TF);

  // Add TF and its operands to the worklist.
  AddToWorklist(TF.getNode());
  for (const SDValue &Op : TF->ops())
    AddToWorklist(Op.getNode());
  AddToWorklist(STChain);
  return true;
}

bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) {
  if (OptLevel == CodeGenOpt::None)
    return false;

  const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);

  // We must have a base and an offset.
  if (!BasePtr.getBase().getNode())
    return false;

  // Do not handle stores to undef base pointers.
  if (BasePtr.getBase().isUndef())
    return false;

  // Directly improve a chain of disjoint stores starting at St.
  if (parallelizeChainedStores(St))
    return true;

  // Improve St's Chain..
  SDValue BetterChain = FindBetterChain(St, St->getChain());
  if (St->getChain() != BetterChain) {
    replaceStoreChain(St, BetterChain);
    return true;
  }
  return false;
}

/// This is the entry point for the file.
void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA,
                           CodeGenOpt::Level OptLevel) {
  /// This is the main entry point to this class.
  DAGCombiner(*this, AA, OptLevel).Run(Level);
}