LegalizeDAG.cpp 191 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
//===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::Legalize method.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "legalizedag"

namespace {

/// Keeps track of state when getting the sign of a floating-point value as an
/// integer.
struct FloatSignAsInt {
  EVT FloatVT;
  SDValue Chain;
  SDValue FloatPtr;
  SDValue IntPtr;
  MachinePointerInfo IntPointerInfo;
  MachinePointerInfo FloatPointerInfo;
  SDValue IntValue;
  APInt SignMask;
  uint8_t SignBit;
};

//===----------------------------------------------------------------------===//
/// This takes an arbitrary SelectionDAG as input and
/// hacks on it until the target machine can handle it.  This involves
/// eliminating value sizes the machine cannot handle (promoting small sizes to
/// large sizes or splitting up large values into small values) as well as
/// eliminating operations the machine cannot handle.
///
/// This code also does a small amount of optimization and recognition of idioms
/// as part of its processing.  For example, if a target does not support a
/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
/// will attempt merge setcc and brc instructions into brcc's.
class SelectionDAGLegalize {
  const TargetMachine &TM;
  const TargetLowering &TLI;
  SelectionDAG &DAG;

  /// The set of nodes which have already been legalized. We hold a
  /// reference to it in order to update as necessary on node deletion.
  SmallPtrSetImpl<SDNode *> &LegalizedNodes;

  /// A set of all the nodes updated during legalization.
  SmallSetVector<SDNode *, 16> *UpdatedNodes;

  EVT getSetCCResultType(EVT VT) const {
    return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
  }

  // Libcall insertion helpers.

public:
  SelectionDAGLegalize(SelectionDAG &DAG,
                       SmallPtrSetImpl<SDNode *> &LegalizedNodes,
                       SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
      : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
        LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}

  /// Legalizes the given operation.
  void LegalizeOp(SDNode *Node);

private:
  SDValue OptimizeFloatStore(StoreSDNode *ST);

  void LegalizeLoadOps(SDNode *Node);
  void LegalizeStoreOps(SDNode *Node);

  /// Some targets cannot handle a variable
  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
  /// is necessary to spill the vector being inserted into to memory, perform
  /// the insert there, and then read the result back.
  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
                                         const SDLoc &dl);
  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
                                  const SDLoc &dl);

  /// Return a vector shuffle operation which
  /// performs the same shuffe in terms of order or result bytes, but on a type
  /// whose vector element type is narrower than the original shuffle type.
  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
                                     SDValue N1, SDValue N2,
                                     ArrayRef<int> Mask) const;

  bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
                             bool &NeedInvert, const SDLoc &dl, SDValue &Chain,
                             bool IsSignaling = false);

  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);

  void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
                       RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
                       RTLIB::Libcall Call_F128,
                       RTLIB::Libcall Call_PPCF128,
                       SmallVectorImpl<SDValue> &Results);
  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
                           RTLIB::Libcall Call_I8,
                           RTLIB::Libcall Call_I16,
                           RTLIB::Libcall Call_I32,
                           RTLIB::Libcall Call_I64,
                           RTLIB::Libcall Call_I128);
  void ExpandArgFPLibCall(SDNode *Node,
                          RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
                          RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
                          RTLIB::Libcall Call_PPCF128,
                          SmallVectorImpl<SDValue> &Results);
  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
  void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);

  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
                           const SDLoc &dl);
  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
                           const SDLoc &dl, SDValue ChainIn);
  SDValue ExpandBUILD_VECTOR(SDNode *Node);
  SDValue ExpandSPLAT_VECTOR(SDNode *Node);
  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
                                SmallVectorImpl<SDValue> &Results);
  void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
                         SDValue Value) const;
  SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
                          SDValue NewIntValue) const;
  SDValue ExpandFCOPYSIGN(SDNode *Node) const;
  SDValue ExpandFABS(SDNode *Node) const;
  SDValue ExpandFNEG(SDNode *Node) const;
  SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain);
  void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl,
                             SmallVectorImpl<SDValue> &Results);
  void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
                             SmallVectorImpl<SDValue> &Results);

  SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
  SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
  SDValue ExpandPARITY(SDValue Op, const SDLoc &dl);

  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
  SDValue ExpandVectorBuildThroughStack(SDNode* Node);

  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
  SDValue ExpandConstant(ConstantSDNode *CP);

  // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
  bool ExpandNode(SDNode *Node);
  void ConvertNodeToLibcall(SDNode *Node);
  void PromoteNode(SDNode *Node);

public:
  // Node replacement helpers

  void ReplacedNode(SDNode *N) {
    LegalizedNodes.erase(N);
    if (UpdatedNodes)
      UpdatedNodes->insert(N);
  }

  void ReplaceNode(SDNode *Old, SDNode *New) {
    LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
               dbgs() << "     with:      "; New->dump(&DAG));

    assert(Old->getNumValues() == New->getNumValues() &&
           "Replacing one node with another that produces a different number "
           "of values!");
    DAG.ReplaceAllUsesWith(Old, New);
    if (UpdatedNodes)
      UpdatedNodes->insert(New);
    ReplacedNode(Old);
  }

  void ReplaceNode(SDValue Old, SDValue New) {
    LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
               dbgs() << "     with:      "; New->dump(&DAG));

    DAG.ReplaceAllUsesWith(Old, New);
    if (UpdatedNodes)
      UpdatedNodes->insert(New.getNode());
    ReplacedNode(Old.getNode());
  }

  void ReplaceNode(SDNode *Old, const SDValue *New) {
    LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));

    DAG.ReplaceAllUsesWith(Old, New);
    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
      LLVM_DEBUG(dbgs() << (i == 0 ? "     with:      " : "      and:      ");
                 New[i]->dump(&DAG));
      if (UpdatedNodes)
        UpdatedNodes->insert(New[i].getNode());
    }
    ReplacedNode(Old);
  }

  void ReplaceNodeWithValue(SDValue Old, SDValue New) {
    LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
               dbgs() << "     with:      "; New->dump(&DAG));

    DAG.ReplaceAllUsesOfValueWith(Old, New);
    if (UpdatedNodes)
      UpdatedNodes->insert(New.getNode());
    ReplacedNode(Old.getNode());
  }
};

} // end anonymous namespace

/// Return a vector shuffle operation which
/// performs the same shuffle in terms of order or result bytes, but on a type
/// whose vector element type is narrower than the original shuffle type.
/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
    EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
    ArrayRef<int> Mask) const {
  unsigned NumMaskElts = VT.getVectorNumElements();
  unsigned NumDestElts = NVT.getVectorNumElements();
  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;

  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");

  if (NumEltsGrowth == 1)
    return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);

  SmallVector<int, 8> NewMask;
  for (unsigned i = 0; i != NumMaskElts; ++i) {
    int Idx = Mask[i];
    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
      if (Idx < 0)
        NewMask.push_back(-1);
      else
        NewMask.push_back(Idx * NumEltsGrowth + j);
    }
  }
  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
  return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
}

/// Expands the ConstantFP node to an integer constant or
/// a load from the constant pool.
SDValue
SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
  bool Extend = false;
  SDLoc dl(CFP);

  // If a FP immediate is precise when represented as a float and if the
  // target can do an extending load from float to double, we put it into
  // the constant pool as a float, even if it's is statically typed as a
  // double.  This shrinks FP constants and canonicalizes them for targets where
  // an FP extending load is the same cost as a normal load (such as on the x87
  // fp stack or PPC FP unit).
  EVT VT = CFP->getValueType(0);
  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
  if (!UseCP) {
    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
  }

  APFloat APF = CFP->getValueAPF();
  EVT OrigVT = VT;
  EVT SVT = VT;

  // We don't want to shrink SNaNs. Converting the SNaN back to its real type
  // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
  if (!APF.isSignaling()) {
    while (SVT != MVT::f32 && SVT != MVT::f16) {
      SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
      if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
          // Only do this if the target has a native EXTLOAD instruction from
          // smaller type.
          TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
          TLI.ShouldShrinkFPConstant(OrigVT)) {
        Type *SType = SVT.getTypeForEVT(*DAG.getContext());
        LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
        VT = SVT;
        Extend = true;
      }
    }
  }

  SDValue CPIdx =
      DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
  Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
  if (Extend) {
    SDValue Result = DAG.getExtLoad(
        ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
        Alignment);
    return Result;
  }
  SDValue Result = DAG.getLoad(
      OrigVT, dl, DAG.getEntryNode(), CPIdx,
      MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
  return Result;
}

/// Expands the Constant node to a load from the constant pool.
SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
  SDLoc dl(CP);
  EVT VT = CP->getValueType(0);
  SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
                                      TLI.getPointerTy(DAG.getDataLayout()));
  Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
  SDValue Result = DAG.getLoad(
      VT, dl, DAG.getEntryNode(), CPIdx,
      MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
  return Result;
}

/// Some target cannot handle a variable insertion index for the
/// INSERT_VECTOR_ELT instruction.  In this case, it
/// is necessary to spill the vector being inserted into to memory, perform
/// the insert there, and then read the result back.
SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
                                                             SDValue Val,
                                                             SDValue Idx,
                                                             const SDLoc &dl) {
  SDValue Tmp1 = Vec;
  SDValue Tmp2 = Val;
  SDValue Tmp3 = Idx;

  // If the target doesn't support this, we have to spill the input vector
  // to a temporary stack slot, update the element, then reload it.  This is
  // badness.  We could also load the value into a vector register (either
  // with a "move to register" or "extload into register" instruction, then
  // permute it into place, if the idx is a constant and if the idx is
  // supported by the target.
  EVT VT    = Tmp1.getValueType();
  EVT EltVT = VT.getVectorElementType();
  SDValue StackPtr = DAG.CreateStackTemporary(VT);

  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();

  // Store the vector.
  SDValue Ch = DAG.getStore(
      DAG.getEntryNode(), dl, Tmp1, StackPtr,
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));

  SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);

  // Store the scalar value.
  Ch = DAG.getTruncStore(
      Ch, dl, Tmp2, StackPtr2,
      MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT);
  // Load the updated vector.
  return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
                                               DAG.getMachineFunction(), SPFI));
}

SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
                                                      SDValue Idx,
                                                      const SDLoc &dl) {
  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
    // SCALAR_TO_VECTOR requires that the type of the value being inserted
    // match the element type of the vector being created, except for
    // integers in which case the inserted value can be over width.
    EVT EltVT = Vec.getValueType().getVectorElementType();
    if (Val.getValueType() == EltVT ||
        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
                                  Vec.getValueType(), Val);

      unsigned NumElts = Vec.getValueType().getVectorNumElements();
      // We generate a shuffle of InVec and ScVec, so the shuffle mask
      // should be 0,1,2,3,4,5... with the appropriate element replaced with
      // elt 0 of the RHS.
      SmallVector<int, 8> ShufOps;
      for (unsigned i = 0; i != NumElts; ++i)
        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);

      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
    }
  }
  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
}

SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
  if (!ISD::isNormalStore(ST))
    return SDValue();

  LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
  // FIXME: We shouldn't do this for TargetConstantFP's.
  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
  // to phase ordering between legalized code and the dag combiner.  This
  // probably means that we need to integrate dag combiner and legalizer
  // together.
  // We generally can't do this one for long doubles.
  SDValue Chain = ST->getChain();
  SDValue Ptr = ST->getBasePtr();
  MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
  AAMDNodes AAInfo = ST->getAAInfo();
  SDLoc dl(ST);
  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
    if (CFP->getValueType(0) == MVT::f32 &&
        TLI.isTypeLegal(MVT::i32)) {
      SDValue Con = DAG.getConstant(CFP->getValueAPF().
                                      bitcastToAPInt().zextOrTrunc(32),
                                    SDLoc(CFP), MVT::i32);
      return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
                          ST->getOriginalAlign(), MMOFlags, AAInfo);
    }

    if (CFP->getValueType(0) == MVT::f64) {
      // If this target supports 64-bit registers, do a single 64-bit store.
      if (TLI.isTypeLegal(MVT::i64)) {
        SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
                                      zextOrTrunc(64), SDLoc(CFP), MVT::i64);
        return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
                            ST->getOriginalAlign(), MMOFlags, AAInfo);
      }

      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
        // stores.  If the target supports neither 32- nor 64-bits, this
        // xform is certainly not worth it.
        const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
        SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
        if (DAG.getDataLayout().isBigEndian())
          std::swap(Lo, Hi);

        Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(),
                          ST->getOriginalAlign(), MMOFlags, AAInfo);
        Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl);
        Hi = DAG.getStore(Chain, dl, Hi, Ptr,
                          ST->getPointerInfo().getWithOffset(4),
                          ST->getOriginalAlign(), MMOFlags, AAInfo);

        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
      }
    }
  }
  return SDValue(nullptr, 0);
}

void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
  StoreSDNode *ST = cast<StoreSDNode>(Node);
  SDValue Chain = ST->getChain();
  SDValue Ptr = ST->getBasePtr();
  SDLoc dl(Node);

  MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
  AAMDNodes AAInfo = ST->getAAInfo();

  if (!ST->isTruncatingStore()) {
    LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
    if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
      ReplaceNode(ST, OptStore);
      return;
    }

    SDValue Value = ST->getValue();
    MVT VT = Value.getSimpleValueType();
    switch (TLI.getOperationAction(ISD::STORE, VT)) {
    default: llvm_unreachable("This action is not supported yet!");
    case TargetLowering::Legal: {
      // If this is an unaligned store and the target doesn't support it,
      // expand it.
      EVT MemVT = ST->getMemoryVT();
      const DataLayout &DL = DAG.getDataLayout();
      if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
                                              *ST->getMemOperand())) {
        LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
        SDValue Result = TLI.expandUnalignedStore(ST, DAG);
        ReplaceNode(SDValue(ST, 0), Result);
      } else
        LLVM_DEBUG(dbgs() << "Legal store\n");
      break;
    }
    case TargetLowering::Custom: {
      LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
      if (Res && Res != SDValue(Node, 0))
        ReplaceNode(SDValue(Node, 0), Res);
      return;
    }
    case TargetLowering::Promote: {
      MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
      assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
             "Can only promote stores to same size type");
      Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
      SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
                                    ST->getOriginalAlign(), MMOFlags, AAInfo);
      ReplaceNode(SDValue(Node, 0), Result);
      break;
    }
    }
    return;
  }

  LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
  SDValue Value = ST->getValue();
  EVT StVT = ST->getMemoryVT();
  unsigned StWidth = StVT.getSizeInBits();
  auto &DL = DAG.getDataLayout();

  if (StWidth != StVT.getStoreSizeInBits()) {
    // Promote to a byte-sized store with upper bits zero if not
    // storing an integral number of bytes.  For example, promote
    // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
    EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
                                StVT.getStoreSizeInBits());
    Value = DAG.getZeroExtendInReg(Value, dl, StVT);
    SDValue Result =
        DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
                          ST->getOriginalAlign(), MMOFlags, AAInfo);
    ReplaceNode(SDValue(Node, 0), Result);
  } else if (StWidth & (StWidth - 1)) {
    // If not storing a power-of-2 number of bits, expand as two stores.
    assert(!StVT.isVector() && "Unsupported truncstore!");
    unsigned LogStWidth = Log2_32(StWidth);
    assert(LogStWidth < 32);
    unsigned RoundWidth = 1 << LogStWidth;
    assert(RoundWidth < StWidth);
    unsigned ExtraWidth = StWidth - RoundWidth;
    assert(ExtraWidth < RoundWidth);
    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
           "Store size not an integral number of bytes!");
    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
    SDValue Lo, Hi;
    unsigned IncrementSize;

    if (DL.isLittleEndian()) {
      // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
      // Store the bottom RoundWidth bits.
      Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
                             RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo);

      // Store the remaining ExtraWidth bits.
      IncrementSize = RoundWidth / 8;
      Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
      Hi = DAG.getNode(
          ISD::SRL, dl, Value.getValueType(), Value,
          DAG.getConstant(RoundWidth, dl,
                          TLI.getShiftAmountTy(Value.getValueType(), DL)));
      Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
                             ST->getPointerInfo().getWithOffset(IncrementSize),
                             ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
    } else {
      // Big endian - avoid unaligned stores.
      // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
      // Store the top RoundWidth bits.
      Hi = DAG.getNode(
          ISD::SRL, dl, Value.getValueType(), Value,
          DAG.getConstant(ExtraWidth, dl,
                          TLI.getShiftAmountTy(Value.getValueType(), DL)));
      Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT,
                             ST->getOriginalAlign(), MMOFlags, AAInfo);

      // Store the remaining ExtraWidth bits.
      IncrementSize = RoundWidth / 8;
      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
                        DAG.getConstant(IncrementSize, dl,
                                        Ptr.getValueType()));
      Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
                             ST->getPointerInfo().getWithOffset(IncrementSize),
                             ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
    }

    // The order of the stores doesn't matter.
    SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
    ReplaceNode(SDValue(Node, 0), Result);
  } else {
    switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
    default: llvm_unreachable("This action is not supported yet!");
    case TargetLowering::Legal: {
      EVT MemVT = ST->getMemoryVT();
      // If this is an unaligned store and the target doesn't support it,
      // expand it.
      if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
                                              *ST->getMemOperand())) {
        SDValue Result = TLI.expandUnalignedStore(ST, DAG);
        ReplaceNode(SDValue(ST, 0), Result);
      }
      break;
    }
    case TargetLowering::Custom: {
      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
      if (Res && Res != SDValue(Node, 0))
        ReplaceNode(SDValue(Node, 0), Res);
      return;
    }
    case TargetLowering::Expand:
      assert(!StVT.isVector() &&
             "Vector Stores are handled in LegalizeVectorOps");

      SDValue Result;

      // TRUNCSTORE:i16 i32 -> STORE i16
      if (TLI.isTypeLegal(StVT)) {
        Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
        Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
                              ST->getOriginalAlign(), MMOFlags, AAInfo);
      } else {
        // The in-memory type isn't legal. Truncate to the type it would promote
        // to, and then do a truncstore.
        Value = DAG.getNode(ISD::TRUNCATE, dl,
                            TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
                            Value);
        Result =
            DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT,
                              ST->getOriginalAlign(), MMOFlags, AAInfo);
      }

      ReplaceNode(SDValue(Node, 0), Result);
      break;
    }
  }
}

void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
  LoadSDNode *LD = cast<LoadSDNode>(Node);
  SDValue Chain = LD->getChain();  // The chain.
  SDValue Ptr = LD->getBasePtr();  // The base pointer.
  SDValue Value;                   // The value returned by the load op.
  SDLoc dl(Node);

  ISD::LoadExtType ExtType = LD->getExtensionType();
  if (ExtType == ISD::NON_EXTLOAD) {
    LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
    MVT VT = Node->getSimpleValueType(0);
    SDValue RVal = SDValue(Node, 0);
    SDValue RChain = SDValue(Node, 1);

    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
    default: llvm_unreachable("This action is not supported yet!");
    case TargetLowering::Legal: {
      EVT MemVT = LD->getMemoryVT();
      const DataLayout &DL = DAG.getDataLayout();
      // If this is an unaligned load and the target doesn't support it,
      // expand it.
      if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
                                              *LD->getMemOperand())) {
        std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
      }
      break;
    }
    case TargetLowering::Custom:
      if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
        RVal = Res;
        RChain = Res.getValue(1);
      }
      break;

    case TargetLowering::Promote: {
      MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
      assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
             "Can only promote loads to same size type");

      SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
      RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
      RChain = Res.getValue(1);
      break;
    }
    }
    if (RChain.getNode() != Node) {
      assert(RVal.getNode() != Node && "Load must be completely replaced");
      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
      if (UpdatedNodes) {
        UpdatedNodes->insert(RVal.getNode());
        UpdatedNodes->insert(RChain.getNode());
      }
      ReplacedNode(Node);
    }
    return;
  }

  LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
  EVT SrcVT = LD->getMemoryVT();
  TypeSize SrcWidth = SrcVT.getSizeInBits();
  MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
  AAMDNodes AAInfo = LD->getAAInfo();

  if (SrcWidth != SrcVT.getStoreSizeInBits() &&
      // Some targets pretend to have an i1 loading operation, and actually
      // load an i8.  This trick is correct for ZEXTLOAD because the top 7
      // bits are guaranteed to be zero; it helps the optimizers understand
      // that these bits are zero.  It is also useful for EXTLOAD, since it
      // tells the optimizers that those bits are undefined.  It would be
      // nice to have an effective generic way of getting these benefits...
      // Until such a way is found, don't insist on promoting i1 here.
      (SrcVT != MVT::i1 ||
       TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
         TargetLowering::Promote)) {
    // Promote to a byte-sized load if not loading an integral number of
    // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
    unsigned NewWidth = SrcVT.getStoreSizeInBits();
    EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
    SDValue Ch;

    // The extra bits are guaranteed to be zero, since we stored them that
    // way.  A zext load from NVT thus automatically gives zext from SrcVT.

    ISD::LoadExtType NewExtType =
      ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;

    SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
                                    Chain, Ptr, LD->getPointerInfo(), NVT,
                                    LD->getOriginalAlign(), MMOFlags, AAInfo);

    Ch = Result.getValue(1); // The chain.

    if (ExtType == ISD::SEXTLOAD)
      // Having the top bits zero doesn't help when sign extending.
      Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
                           Result.getValueType(),
                           Result, DAG.getValueType(SrcVT));
    else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
      // All the top bits are guaranteed to be zero - inform the optimizers.
      Result = DAG.getNode(ISD::AssertZext, dl,
                           Result.getValueType(), Result,
                           DAG.getValueType(SrcVT));

    Value = Result;
    Chain = Ch;
  } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) {
    // If not loading a power-of-2 number of bits, expand as two loads.
    assert(!SrcVT.isVector() && "Unsupported extload!");
    unsigned SrcWidthBits = SrcWidth.getFixedSize();
    unsigned LogSrcWidth = Log2_32(SrcWidthBits);
    assert(LogSrcWidth < 32);
    unsigned RoundWidth = 1 << LogSrcWidth;
    assert(RoundWidth < SrcWidthBits);
    unsigned ExtraWidth = SrcWidthBits - RoundWidth;
    assert(ExtraWidth < RoundWidth);
    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
           "Load size not an integral number of bytes!");
    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
    SDValue Lo, Hi, Ch;
    unsigned IncrementSize;
    auto &DL = DAG.getDataLayout();

    if (DL.isLittleEndian()) {
      // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
      // Load the bottom RoundWidth bits.
      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
                          LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
                          MMOFlags, AAInfo);

      // Load the remaining ExtraWidth bits.
      IncrementSize = RoundWidth / 8;
      Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
                          LD->getPointerInfo().getWithOffset(IncrementSize),
                          ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);

      // Build a factor node to remember that this load is independent of
      // the other one.
      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
                       Hi.getValue(1));

      // Move the top bits to the right place.
      Hi = DAG.getNode(
          ISD::SHL, dl, Hi.getValueType(), Hi,
          DAG.getConstant(RoundWidth, dl,
                          TLI.getShiftAmountTy(Hi.getValueType(), DL)));

      // Join the hi and lo parts.
      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
    } else {
      // Big endian - avoid unaligned loads.
      // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
      // Load the top RoundWidth bits.
      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
                          LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
                          MMOFlags, AAInfo);

      // Load the remaining ExtraWidth bits.
      IncrementSize = RoundWidth / 8;
      Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
                          LD->getPointerInfo().getWithOffset(IncrementSize),
                          ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);

      // Build a factor node to remember that this load is independent of
      // the other one.
      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
                       Hi.getValue(1));

      // Move the top bits to the right place.
      Hi = DAG.getNode(
          ISD::SHL, dl, Hi.getValueType(), Hi,
          DAG.getConstant(ExtraWidth, dl,
                          TLI.getShiftAmountTy(Hi.getValueType(), DL)));

      // Join the hi and lo parts.
      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
    }

    Chain = Ch;
  } else {
    bool isCustom = false;
    switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
                                 SrcVT.getSimpleVT())) {
    default: llvm_unreachable("This action is not supported yet!");
    case TargetLowering::Custom:
      isCustom = true;
      LLVM_FALLTHROUGH;
    case TargetLowering::Legal:
      Value = SDValue(Node, 0);
      Chain = SDValue(Node, 1);

      if (isCustom) {
        if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
          Value = Res;
          Chain = Res.getValue(1);
        }
      } else {
        // If this is an unaligned load and the target doesn't support it,
        // expand it.
        EVT MemVT = LD->getMemoryVT();
        const DataLayout &DL = DAG.getDataLayout();
        if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
                                    *LD->getMemOperand())) {
          std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
        }
      }
      break;

    case TargetLowering::Expand: {
      EVT DestVT = Node->getValueType(0);
      if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
        // If the source type is not legal, see if there is a legal extload to
        // an intermediate type that we can then extend further.
        EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
        if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
            TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
          // If we are loading a legal type, this is a non-extload followed by a
          // full extend.
          ISD::LoadExtType MidExtType =
              (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;

          SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
                                        SrcVT, LD->getMemOperand());
          unsigned ExtendOp =
              ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
          Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
          Chain = Load.getValue(1);
          break;
        }

        // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
        // normal undefined upper bits behavior to allow using an in-reg extend
        // with the illegal FP type, so load as an integer and do the
        // from-integer conversion.
        if (SrcVT.getScalarType() == MVT::f16) {
          EVT ISrcVT = SrcVT.changeTypeToInteger();
          EVT IDestVT = DestVT.changeTypeToInteger();
          EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());

          SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain,
                                          Ptr, ISrcVT, LD->getMemOperand());
          Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
          Chain = Result.getValue(1);
          break;
        }
      }

      assert(!SrcVT.isVector() &&
             "Vector Loads are handled in LegalizeVectorOps");

      // FIXME: This does not work for vectors on most targets.  Sign-
      // and zero-extend operations are currently folded into extending
      // loads, whether they are legal or not, and then we end up here
      // without any support for legalizing them.
      assert(ExtType != ISD::EXTLOAD &&
             "EXTLOAD should always be supported!");
      // Turn the unsupported load into an EXTLOAD followed by an
      // explicit zero/sign extend inreg.
      SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
                                      Node->getValueType(0),
                                      Chain, Ptr, SrcVT,
                                      LD->getMemOperand());
      SDValue ValRes;
      if (ExtType == ISD::SEXTLOAD)
        ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
                             Result.getValueType(),
                             Result, DAG.getValueType(SrcVT));
      else
        ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
      Value = ValRes;
      Chain = Result.getValue(1);
      break;
    }
    }
  }

  // Since loads produce two values, make sure to remember that we legalized
  // both of them.
  if (Chain.getNode() != Node) {
    assert(Value.getNode() != Node && "Load must be completely replaced");
    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
    if (UpdatedNodes) {
      UpdatedNodes->insert(Value.getNode());
      UpdatedNodes->insert(Chain.getNode());
    }
    ReplacedNode(Node);
  }
}

/// Return a legal replacement for the given operation, with all legal operands.
void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
  LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));

  // Allow illegal target nodes and illegal registers.
  if (Node->getOpcode() == ISD::TargetConstant ||
      Node->getOpcode() == ISD::Register)
    return;

#ifndef NDEBUG
  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
             TargetLowering::TypeLegal &&
           "Unexpected illegal type!");

  for (const SDValue &Op : Node->op_values())
    assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
              TargetLowering::TypeLegal ||
            Op.getOpcode() == ISD::TargetConstant ||
            Op.getOpcode() == ISD::Register) &&
            "Unexpected illegal type!");
#endif

  // Figure out the correct action; the way to query this varies by opcode
  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
  bool SimpleFinishLegalizing = true;
  switch (Node->getOpcode()) {
  case ISD::INTRINSIC_W_CHAIN:
  case ISD::INTRINSIC_WO_CHAIN:
  case ISD::INTRINSIC_VOID:
  case ISD::STACKSAVE:
    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
    break;
  case ISD::GET_DYNAMIC_AREA_OFFSET:
    Action = TLI.getOperationAction(Node->getOpcode(),
                                    Node->getValueType(0));
    break;
  case ISD::VAARG:
    Action = TLI.getOperationAction(Node->getOpcode(),
                                    Node->getValueType(0));
    if (Action != TargetLowering::Promote)
      Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
    break;
  case ISD::FP_TO_FP16:
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:
  case ISD::EXTRACT_VECTOR_ELT:
  case ISD::LROUND:
  case ISD::LLROUND:
  case ISD::LRINT:
  case ISD::LLRINT:
    Action = TLI.getOperationAction(Node->getOpcode(),
                                    Node->getOperand(0).getValueType());
    break;
  case ISD::STRICT_FP_TO_FP16:
  case ISD::STRICT_SINT_TO_FP:
  case ISD::STRICT_UINT_TO_FP:
  case ISD::STRICT_LRINT:
  case ISD::STRICT_LLRINT:
  case ISD::STRICT_LROUND:
  case ISD::STRICT_LLROUND:
    // These pseudo-ops are the same as the other STRICT_ ops except
    // they are registered with setOperationAction() using the input type
    // instead of the output type.
    Action = TLI.getOperationAction(Node->getOpcode(),
                                    Node->getOperand(1).getValueType());
    break;
  case ISD::SIGN_EXTEND_INREG: {
    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
    break;
  }
  case ISD::ATOMIC_STORE:
    Action = TLI.getOperationAction(Node->getOpcode(),
                                    Node->getOperand(2).getValueType());
    break;
  case ISD::SELECT_CC:
  case ISD::STRICT_FSETCC:
  case ISD::STRICT_FSETCCS:
  case ISD::SETCC:
  case ISD::BR_CC: {
    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
                         Node->getOpcode() == ISD::STRICT_FSETCC ? 3 :
                         Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 :
                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 :
                              Node->getOpcode() == ISD::STRICT_FSETCC ? 1 :
                              Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0;
    MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
    ISD::CondCode CCCode =
        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
    Action = TLI.getCondCodeAction(CCCode, OpVT);
    if (Action == TargetLowering::Legal) {
      if (Node->getOpcode() == ISD::SELECT_CC)
        Action = TLI.getOperationAction(Node->getOpcode(),
                                        Node->getValueType(0));
      else
        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
    }
    break;
  }
  case ISD::LOAD:
  case ISD::STORE:
    // FIXME: Model these properly.  LOAD and STORE are complicated, and
    // STORE expects the unlegalized operand in some cases.
    SimpleFinishLegalizing = false;
    break;
  case ISD::CALLSEQ_START:
  case ISD::CALLSEQ_END:
    // FIXME: This shouldn't be necessary.  These nodes have special properties
    // dealing with the recursive nature of legalization.  Removing this
    // special case should be done as part of making LegalizeDAG non-recursive.
    SimpleFinishLegalizing = false;
    break;
  case ISD::EXTRACT_ELEMENT:
  case ISD::FLT_ROUNDS_:
  case ISD::MERGE_VALUES:
  case ISD::EH_RETURN:
  case ISD::FRAME_TO_ARGS_OFFSET:
  case ISD::EH_DWARF_CFA:
  case ISD::EH_SJLJ_SETJMP:
  case ISD::EH_SJLJ_LONGJMP:
  case ISD::EH_SJLJ_SETUP_DISPATCH:
    // These operations lie about being legal: when they claim to be legal,
    // they should actually be expanded.
    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
    if (Action == TargetLowering::Legal)
      Action = TargetLowering::Expand;
    break;
  case ISD::INIT_TRAMPOLINE:
  case ISD::ADJUST_TRAMPOLINE:
  case ISD::FRAMEADDR:
  case ISD::RETURNADDR:
  case ISD::ADDROFRETURNADDR:
  case ISD::SPONENTRY:
    // These operations lie about being legal: when they claim to be legal,
    // they should actually be custom-lowered.
    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
    if (Action == TargetLowering::Legal)
      Action = TargetLowering::Custom;
    break;
  case ISD::READCYCLECOUNTER:
    // READCYCLECOUNTER returns an i64, even if type legalization might have
    // expanded that to several smaller types.
    Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
    break;
  case ISD::READ_REGISTER:
  case ISD::WRITE_REGISTER:
    // Named register is legal in the DAG, but blocked by register name
    // selection if not implemented by target (to chose the correct register)
    // They'll be converted to Copy(To/From)Reg.
    Action = TargetLowering::Legal;
    break;
  case ISD::DEBUGTRAP:
    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
    if (Action == TargetLowering::Expand) {
      // replace ISD::DEBUGTRAP with ISD::TRAP
      SDValue NewVal;
      NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
                           Node->getOperand(0));
      ReplaceNode(Node, NewVal.getNode());
      LegalizeOp(NewVal.getNode());
      return;
    }
    break;
  case ISD::SADDSAT:
  case ISD::UADDSAT:
  case ISD::SSUBSAT:
  case ISD::USUBSAT:
  case ISD::SSHLSAT:
  case ISD::USHLSAT: {
    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
    break;
  }
  case ISD::SMULFIX:
  case ISD::SMULFIXSAT:
  case ISD::UMULFIX:
  case ISD::UMULFIXSAT:
  case ISD::SDIVFIX:
  case ISD::SDIVFIXSAT:
  case ISD::UDIVFIX:
  case ISD::UDIVFIXSAT: {
    unsigned Scale = Node->getConstantOperandVal(2);
    Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
                                              Node->getValueType(0), Scale);
    break;
  }
  case ISD::MSCATTER:
    Action = TLI.getOperationAction(Node->getOpcode(),
                    cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
    break;
  case ISD::MSTORE:
    Action = TLI.getOperationAction(Node->getOpcode(),
                    cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
    break;
  case ISD::VECREDUCE_FADD:
  case ISD::VECREDUCE_FMUL:
  case ISD::VECREDUCE_ADD:
  case ISD::VECREDUCE_MUL:
  case ISD::VECREDUCE_AND:
  case ISD::VECREDUCE_OR:
  case ISD::VECREDUCE_XOR:
  case ISD::VECREDUCE_SMAX:
  case ISD::VECREDUCE_SMIN:
  case ISD::VECREDUCE_UMAX:
  case ISD::VECREDUCE_UMIN:
  case ISD::VECREDUCE_FMAX:
  case ISD::VECREDUCE_FMIN:
    Action = TLI.getOperationAction(
        Node->getOpcode(), Node->getOperand(0).getValueType());
    break;
  default:
    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
      Action = TargetLowering::Legal;
    } else {
      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
    }
    break;
  }

  if (SimpleFinishLegalizing) {
    SDNode *NewNode = Node;
    switch (Node->getOpcode()) {
    default: break;
    case ISD::SHL:
    case ISD::SRL:
    case ISD::SRA:
    case ISD::ROTL:
    case ISD::ROTR: {
      // Legalizing shifts/rotates requires adjusting the shift amount
      // to the appropriate width.
      SDValue Op0 = Node->getOperand(0);
      SDValue Op1 = Node->getOperand(1);
      if (!Op1.getValueType().isVector()) {
        SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
        // The getShiftAmountOperand() may create a new operand node or
        // return the existing one. If new operand is created we need
        // to update the parent node.
        // Do not try to legalize SAO here! It will be automatically legalized
        // in the next round.
        if (SAO != Op1)
          NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
      }
    }
    break;
    case ISD::FSHL:
    case ISD::FSHR:
    case ISD::SRL_PARTS:
    case ISD::SRA_PARTS:
    case ISD::SHL_PARTS: {
      // Legalizing shifts/rotates requires adjusting the shift amount
      // to the appropriate width.
      SDValue Op0 = Node->getOperand(0);
      SDValue Op1 = Node->getOperand(1);
      SDValue Op2 = Node->getOperand(2);
      if (!Op2.getValueType().isVector()) {
        SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
        // The getShiftAmountOperand() may create a new operand node or
        // return the existing one. If new operand is created we need
        // to update the parent node.
        if (SAO != Op2)
          NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
      }
      break;
    }
    }

    if (NewNode != Node) {
      ReplaceNode(Node, NewNode);
      Node = NewNode;
    }
    switch (Action) {
    case TargetLowering::Legal:
      LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
      return;
    case TargetLowering::Custom:
      LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
      // FIXME: The handling for custom lowering with multiple results is
      // a complete mess.
      if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
        if (!(Res.getNode() != Node || Res.getResNo() != 0))
          return;

        if (Node->getNumValues() == 1) {
          LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
          // We can just directly replace this node with the lowered value.
          ReplaceNode(SDValue(Node, 0), Res);
          return;
        }

        SmallVector<SDValue, 8> ResultVals;
        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
          ResultVals.push_back(Res.getValue(i));
        LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
        ReplaceNode(Node, ResultVals.data());
        return;
      }
      LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
      LLVM_FALLTHROUGH;
    case TargetLowering::Expand:
      if (ExpandNode(Node))
        return;
      LLVM_FALLTHROUGH;
    case TargetLowering::LibCall:
      ConvertNodeToLibcall(Node);
      return;
    case TargetLowering::Promote:
      PromoteNode(Node);
      return;
    }
  }

  switch (Node->getOpcode()) {
  default:
#ifndef NDEBUG
    dbgs() << "NODE: ";
    Node->dump( &DAG);
    dbgs() << "\n";
#endif
    llvm_unreachable("Do not know how to legalize this operator!");

  case ISD::CALLSEQ_START:
  case ISD::CALLSEQ_END:
    break;
  case ISD::LOAD:
    return LegalizeLoadOps(Node);
  case ISD::STORE:
    return LegalizeStoreOps(Node);
  }
}

SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
  SDValue Vec = Op.getOperand(0);
  SDValue Idx = Op.getOperand(1);
  SDLoc dl(Op);

  // Before we generate a new store to a temporary stack slot, see if there is
  // already one that we can use. There often is because when we scalarize
  // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
  // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
  // the vector. If all are expanded here, we don't want one store per vector
  // element.

  // Caches for hasPredecessorHelper
  SmallPtrSet<const SDNode *, 32> Visited;
  SmallVector<const SDNode *, 16> Worklist;
  Visited.insert(Op.getNode());
  Worklist.push_back(Idx.getNode());
  SDValue StackPtr, Ch;
  for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
       UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
    SDNode *User = *UI;
    if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
      if (ST->isIndexed() || ST->isTruncatingStore() ||
          ST->getValue() != Vec)
        continue;

      // Make sure that nothing else could have stored into the destination of
      // this store.
      if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
        continue;

      // If the index is dependent on the store we will introduce a cycle when
      // creating the load (the load uses the index, and by replacing the chain
      // we will make the index dependent on the load). Also, the store might be
      // dependent on the extractelement and introduce a cycle when creating
      // the load.
      if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
          ST->hasPredecessor(Op.getNode()))
        continue;

      StackPtr = ST->getBasePtr();
      Ch = SDValue(ST, 0);
      break;
    }
  }

  EVT VecVT = Vec.getValueType();

  if (!Ch.getNode()) {
    // Store the value to a temporary stack slot, then LOAD the returned part.
    StackPtr = DAG.CreateStackTemporary(VecVT);
    Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
                      MachinePointerInfo());
  }

  StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);

  SDValue NewLoad;

  if (Op.getValueType().isVector())
    NewLoad =
        DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
  else
    NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
                             MachinePointerInfo(),
                             VecVT.getVectorElementType());

  // Replace the chain going out of the store, by the one out of the load.
  DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));

  // We introduced a cycle though, so update the loads operands, making sure
  // to use the original store's chain as an incoming chain.
  SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
                                          NewLoad->op_end());
  NewLoadOperands[0] = Ch;
  NewLoad =
      SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
  return NewLoad;
}

SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");

  SDValue Vec  = Op.getOperand(0);
  SDValue Part = Op.getOperand(1);
  SDValue Idx  = Op.getOperand(2);
  SDLoc dl(Op);

  // Store the value to a temporary stack slot, then LOAD the returned part.
  EVT VecVT = Vec.getValueType();
  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
  MachinePointerInfo PtrInfo =
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);

  // First store the whole vector.
  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);

  // Then store the inserted part.
  SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);

  // Store the subvector.
  Ch = DAG.getStore(
      Ch, dl, Part, SubStackPtr,
      MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));

  // Finally, load the updated vector.
  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
}

SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
  assert((Node->getOpcode() == ISD::BUILD_VECTOR ||
          Node->getOpcode() == ISD::CONCAT_VECTORS) &&
         "Unexpected opcode!");

  // We can't handle this case efficiently.  Allocate a sufficiently
  // aligned object on the stack, store each operand into it, then load
  // the result as a vector.
  // Create the stack frame object.
  EVT VT = Node->getValueType(0);
  EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType()
                                           : Node->getOperand(0).getValueType();
  SDLoc dl(Node);
  SDValue FIPtr = DAG.CreateStackTemporary(VT);
  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
  MachinePointerInfo PtrInfo =
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);

  // Emit a store of each element to the stack slot.
  SmallVector<SDValue, 8> Stores;
  unsigned TypeByteSize = MemVT.getSizeInBits() / 8;
  assert(TypeByteSize > 0 && "Vector element type too small for stack store!");

  // If the destination vector element type of a BUILD_VECTOR is narrower than
  // the source element type, only store the bits necessary.
  bool Truncate = isa<BuildVectorSDNode>(Node) &&
                  MemVT.bitsLT(Node->getOperand(0).getValueType());

  // Store (in the right endianness) the elements to memory.
  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
    // Ignore undef elements.
    if (Node->getOperand(i).isUndef()) continue;

    unsigned Offset = TypeByteSize*i;

    SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl);

    if (Truncate)
      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
                                         Node->getOperand(i), Idx,
                                         PtrInfo.getWithOffset(Offset), MemVT));
    else
      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
                                    Idx, PtrInfo.getWithOffset(Offset)));
  }

  SDValue StoreChain;
  if (!Stores.empty())    // Not all undef elements?
    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
  else
    StoreChain = DAG.getEntryNode();

  // Result is a load from the stack slot.
  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
}

/// Bitcast a floating-point value to an integer value. Only bitcast the part
/// containing the sign bit if the target has no integer value capable of
/// holding all bits of the floating-point value.
void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
                                             const SDLoc &DL,
                                             SDValue Value) const {
  EVT FloatVT = Value.getValueType();
  unsigned NumBits = FloatVT.getSizeInBits();
  State.FloatVT = FloatVT;
  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
  // Convert to an integer of the same size.
  if (TLI.isTypeLegal(IVT)) {
    State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
    State.SignMask = APInt::getSignMask(NumBits);
    State.SignBit = NumBits - 1;
    return;
  }

  auto &DataLayout = DAG.getDataLayout();
  // Store the float to memory, then load the sign part out as an integer.
  MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
  // First create a temporary that is aligned for both the load and store.
  SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
  // Then store the float to it.
  State.FloatPtr = StackPtr;
  MachineFunction &MF = DAG.getMachineFunction();
  State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
  State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
                             State.FloatPointerInfo);

  SDValue IntPtr;
  if (DataLayout.isBigEndian()) {
    assert(FloatVT.isByteSized() && "Unsupported floating point type!");
    // Load out a legal integer with the same sign bit as the float.
    IntPtr = StackPtr;
    State.IntPointerInfo = State.FloatPointerInfo;
  } else {
    // Advance the pointer so that the loaded byte will contain the sign bit.
    unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
    IntPtr =
        DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL);
    State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
                                                             ByteOffset);
  }

  State.IntPtr = IntPtr;
  State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
                                  State.IntPointerInfo, MVT::i8);
  State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
  State.SignBit = 7;
}

/// Replace the integer value produced by getSignAsIntValue() with a new value
/// and cast the result back to a floating-point type.
SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
                                              const SDLoc &DL,
                                              SDValue NewIntValue) const {
  if (!State.Chain)
    return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);

  // Override the part containing the sign bit in the value stored on the stack.
  SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
                                    State.IntPointerInfo, MVT::i8);
  return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
                     State.FloatPointerInfo);
}

SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
  SDLoc DL(Node);
  SDValue Mag = Node->getOperand(0);
  SDValue Sign = Node->getOperand(1);

  // Get sign bit into an integer value.
  FloatSignAsInt SignAsInt;
  getSignAsIntValue(SignAsInt, DL, Sign);

  EVT IntVT = SignAsInt.IntValue.getValueType();
  SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
  SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
                                SignMask);

  // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
  EVT FloatVT = Mag.getValueType();
  if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
      TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
    SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
    SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
    SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
                                DAG.getConstant(0, DL, IntVT), ISD::SETNE);
    return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
  }

  // Transform Mag value to integer, and clear the sign bit.
  FloatSignAsInt MagAsInt;
  getSignAsIntValue(MagAsInt, DL, Mag);
  EVT MagVT = MagAsInt.IntValue.getValueType();
  SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
  SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
                                    ClearSignMask);

  // Get the signbit at the right position for MagAsInt.
  int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
  EVT ShiftVT = IntVT;
  if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
    SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
    ShiftVT = MagVT;
  }
  if (ShiftAmount > 0) {
    SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
    SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
  } else if (ShiftAmount < 0) {
    SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
    SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
  }
  if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
    SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
  }

  // Store the part with the modified sign and convert back to float.
  SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
  return modifySignAsInt(MagAsInt, DL, CopiedSign);
}

SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const {
  // Get the sign bit as an integer.
  SDLoc DL(Node);
  FloatSignAsInt SignAsInt;
  getSignAsIntValue(SignAsInt, DL, Node->getOperand(0));
  EVT IntVT = SignAsInt.IntValue.getValueType();

  // Flip the sign.
  SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
  SDValue SignFlip =
      DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask);

  // Convert back to float.
  return modifySignAsInt(SignAsInt, DL, SignFlip);
}

SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
  SDLoc DL(Node);
  SDValue Value = Node->getOperand(0);

  // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
  EVT FloatVT = Value.getValueType();
  if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
    SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
    return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
  }

  // Transform value to integer, clear the sign bit and transform back.
  FloatSignAsInt ValueAsInt;
  getSignAsIntValue(ValueAsInt, DL, Value);
  EVT IntVT = ValueAsInt.IntValue.getValueType();
  SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
  SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
                                    ClearSignMask);
  return modifySignAsInt(ValueAsInt, DL, ClearedSign);
}

void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
                                           SmallVectorImpl<SDValue> &Results) {
  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
          " not tell us which reg is the stack pointer!");
  SDLoc dl(Node);
  EVT VT = Node->getValueType(0);
  SDValue Tmp1 = SDValue(Node, 0);
  SDValue Tmp2 = SDValue(Node, 1);
  SDValue Tmp3 = Node->getOperand(2);
  SDValue Chain = Tmp1.getOperand(0);

  // Chain the dynamic stack allocation so that it doesn't modify the stack
  // pointer when other instructions are using the stack.
  Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);

  SDValue Size  = Tmp2.getOperand(1);
  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
  Chain = SP.getValue(1);
  Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue();
  const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering();
  unsigned Opc =
    TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
    ISD::ADD : ISD::SUB;

  Align StackAlign = TFL->getStackAlign();
  Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size);       // Value
  if (Alignment > StackAlign)
    Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
                       DAG.getConstant(-Alignment.value(), dl, VT));
  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain

  Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
                            DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);

  Results.push_back(Tmp1);
  Results.push_back(Tmp2);
}

/// Legalize a SETCC with given LHS and RHS and condition code CC on the current
/// target.
///
/// If the SETCC has been legalized using AND / OR, then the legalized node
/// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
/// will be set to false.
///
/// If the SETCC has been legalized by using getSetCCSwappedOperands(),
/// then the values of LHS and RHS will be swapped, CC will be set to the
/// new condition, and NeedInvert will be set to false.
///
/// If the SETCC has been legalized using the inverse condcode, then LHS and
/// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
/// will be set to true. The caller must invert the result of the SETCC with
/// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
/// of a true/false result.
///
/// \returns true if the SetCC has been legalized, false if it hasn't.
bool SelectionDAGLegalize::LegalizeSetCCCondCode(
    EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert,
    const SDLoc &dl, SDValue &Chain, bool IsSignaling) {
  MVT OpVT = LHS.getSimpleValueType();
  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
  NeedInvert = false;
  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
  default: llvm_unreachable("Unknown condition code action!");
  case TargetLowering::Legal:
    // Nothing to do.
    break;
  case TargetLowering::Expand: {
    ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
    if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
      std::swap(LHS, RHS);
      CC = DAG.getCondCode(InvCC);
      return true;
    }
    // Swapping operands didn't work. Try inverting the condition.
    bool NeedSwap = false;
    InvCC = getSetCCInverse(CCCode, OpVT);
    if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
      // If inverting the condition is not enough, try swapping operands
      // on top of it.
      InvCC = ISD::getSetCCSwappedOperands(InvCC);
      NeedSwap = true;
    }
    if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
      CC = DAG.getCondCode(InvCC);
      NeedInvert = true;
      if (NeedSwap)
        std::swap(LHS, RHS);
      return true;
    }

    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
    unsigned Opc = 0;
    switch (CCCode) {
    default: llvm_unreachable("Don't know how to expand this condition!");
    case ISD::SETO:
        assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT)
            && "If SETO is expanded, SETOEQ must be legal!");
        CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
    case ISD::SETUO:
        assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT)
            && "If SETUO is expanded, SETUNE must be legal!");
        CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
    case ISD::SETOEQ:
    case ISD::SETOGT:
    case ISD::SETOGE:
    case ISD::SETOLT:
    case ISD::SETOLE:
    case ISD::SETONE:
    case ISD::SETUEQ:
    case ISD::SETUNE:
    case ISD::SETUGT:
    case ISD::SETUGE:
    case ISD::SETULT:
    case ISD::SETULE:
        // If we are floating point, assign and break, otherwise fall through.
        if (!OpVT.isInteger()) {
          // We can use the 4th bit to tell if we are the unordered
          // or ordered version of the opcode.
          CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
          Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
          CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
          break;
        }
        // Fallthrough if we are unsigned integer.
        LLVM_FALLTHROUGH;
    case ISD::SETLE:
    case ISD::SETGT:
    case ISD::SETGE:
    case ISD::SETLT:
    case ISD::SETNE:
    case ISD::SETEQ:
      // If all combinations of inverting the condition and swapping operands
      // didn't work then we have no means to expand the condition.
      llvm_unreachable("Don't know how to expand this condition!");
    }

    SDValue SetCC1, SetCC2;
    if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
      // If we aren't the ordered or unorder operation,
      // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
      SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, SDNodeFlags(), Chain,
                            IsSignaling);
      SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, SDNodeFlags(), Chain,
                            IsSignaling);
    } else {
      // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
      SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, SDNodeFlags(), Chain,
                            IsSignaling);
      SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, SDNodeFlags(), Chain,
                            IsSignaling);
    }
    if (Chain)
      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
                          SetCC2.getValue(1));
    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
    RHS = SDValue();
    CC  = SDValue();
    return true;
  }
  }
  return false;
}

/// Emit a store/load combination to the stack.  This stores
/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
/// a load from the stack slot to DestVT, extending it if needed.
/// The resultant code need not be legal.
SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
                                               EVT DestVT, const SDLoc &dl) {
  return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
}

SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
                                               EVT DestVT, const SDLoc &dl,
                                               SDValue Chain) {
  // Create the stack frame object.
  Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign(
      SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign);

  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
  int SPFI = StackPtrFI->getIndex();
  MachinePointerInfo PtrInfo =
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);

  unsigned SrcSize = SrcOp.getValueSizeInBits();
  unsigned SlotSize = SlotVT.getSizeInBits();
  unsigned DestSize = DestVT.getSizeInBits();
  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
  Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType);

  // Emit a store to the stack slot.  Use a truncstore if the input value is
  // later than DestVT.
  SDValue Store;

  if (SrcSize > SlotSize) 
    Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
                              SlotVT, SrcAlign);
  else {
    assert(SrcSize == SlotSize && "Invalid store");
    Store =
        DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
  }

  // Result is a load from the stack slot.
  if (SlotSize == DestSize)
    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);

  assert(SlotSize < DestSize && "Unknown extension!");
  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
                        DestAlign);
}

SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
  SDLoc dl(Node);
  // Create a vector sized/aligned stack slot, store the value to element #0,
  // then load the whole vector back out.
  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));

  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
  int SPFI = StackPtrFI->getIndex();

  SDValue Ch = DAG.getTruncStore(
      DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
      Node->getValueType(0).getVectorElementType());
  return DAG.getLoad(
      Node->getValueType(0), dl, Ch, StackPtr,
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
}

static bool
ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
                     const TargetLowering &TLI, SDValue &Res) {
  unsigned NumElems = Node->getNumOperands();
  SDLoc dl(Node);
  EVT VT = Node->getValueType(0);

  // Try to group the scalars into pairs, shuffle the pairs together, then
  // shuffle the pairs of pairs together, etc. until the vector has
  // been built. This will work only if all of the necessary shuffle masks
  // are legal.

  // We do this in two phases; first to check the legality of the shuffles,
  // and next, assuming that all shuffles are legal, to create the new nodes.
  for (int Phase = 0; Phase < 2; ++Phase) {
    SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
                                                              NewIntermedVals;
    for (unsigned i = 0; i < NumElems; ++i) {
      SDValue V = Node->getOperand(i);
      if (V.isUndef())
        continue;

      SDValue Vec;
      if (Phase)
        Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
      IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
    }

    while (IntermedVals.size() > 2) {
      NewIntermedVals.clear();
      for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
        // This vector and the next vector are shuffled together (simply to
        // append the one to the other).
        SmallVector<int, 16> ShuffleVec(NumElems, -1);

        SmallVector<int, 16> FinalIndices;
        FinalIndices.reserve(IntermedVals[i].second.size() +
                             IntermedVals[i+1].second.size());

        int k = 0;
        for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
             ++j, ++k) {
          ShuffleVec[k] = j;
          FinalIndices.push_back(IntermedVals[i].second[j]);
        }
        for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
             ++j, ++k) {
          ShuffleVec[k] = NumElems + j;
          FinalIndices.push_back(IntermedVals[i+1].second[j]);
        }

        SDValue Shuffle;
        if (Phase)
          Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
                                         IntermedVals[i+1].first,
                                         ShuffleVec);
        else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
          return false;
        NewIntermedVals.push_back(
            std::make_pair(Shuffle, std::move(FinalIndices)));
      }

      // If we had an odd number of defined values, then append the last
      // element to the array of new vectors.
      if ((IntermedVals.size() & 1) != 0)
        NewIntermedVals.push_back(IntermedVals.back());

      IntermedVals.swap(NewIntermedVals);
    }

    assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
           "Invalid number of intermediate vectors");
    SDValue Vec1 = IntermedVals[0].first;
    SDValue Vec2;
    if (IntermedVals.size() > 1)
      Vec2 = IntermedVals[1].first;
    else if (Phase)
      Vec2 = DAG.getUNDEF(VT);

    SmallVector<int, 16> ShuffleVec(NumElems, -1);
    for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
      ShuffleVec[IntermedVals[0].second[i]] = i;
    for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
      ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;

    if (Phase)
      Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
    else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
      return false;
  }

  return true;
}

/// Expand a BUILD_VECTOR node on targets that don't
/// support the operation, but do support the resultant vector type.
SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
  unsigned NumElems = Node->getNumOperands();
  SDValue Value1, Value2;
  SDLoc dl(Node);
  EVT VT = Node->getValueType(0);
  EVT OpVT = Node->getOperand(0).getValueType();
  EVT EltVT = VT.getVectorElementType();

  // If the only non-undef value is the low element, turn this into a
  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
  bool isOnlyLowElement = true;
  bool MoreThanTwoValues = false;
  bool isConstant = true;
  for (unsigned i = 0; i < NumElems; ++i) {
    SDValue V = Node->getOperand(i);
    if (V.isUndef())
      continue;
    if (i > 0)
      isOnlyLowElement = false;
    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
      isConstant = false;

    if (!Value1.getNode()) {
      Value1 = V;
    } else if (!Value2.getNode()) {
      if (V != Value1)
        Value2 = V;
    } else if (V != Value1 && V != Value2) {
      MoreThanTwoValues = true;
    }
  }

  if (!Value1.getNode())
    return DAG.getUNDEF(VT);

  if (isOnlyLowElement)
    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));

  // If all elements are constants, create a load from the constant pool.
  if (isConstant) {
    SmallVector<Constant*, 16> CV;
    for (unsigned i = 0, e = NumElems; i != e; ++i) {
      if (ConstantFPSDNode *V =
          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
      } else if (ConstantSDNode *V =
                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
        if (OpVT==EltVT)
          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
        else {
          // If OpVT and EltVT don't match, EltVT is not legal and the
          // element values have been promoted/truncated earlier.  Undo this;
          // we don't want a v16i8 to become a v16i32 for example.
          const ConstantInt *CI = V->getConstantIntValue();
          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
                                        CI->getZExtValue()));
        }
      } else {
        assert(Node->getOperand(i).isUndef());
        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
        CV.push_back(UndefValue::get(OpNTy));
      }
    }
    Constant *CP = ConstantVector::get(CV);
    SDValue CPIdx =
        DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
    Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
    return DAG.getLoad(
        VT, dl, DAG.getEntryNode(), CPIdx,
        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
        Alignment);
  }

  SmallSet<SDValue, 16> DefinedValues;
  for (unsigned i = 0; i < NumElems; ++i) {
    if (Node->getOperand(i).isUndef())
      continue;
    DefinedValues.insert(Node->getOperand(i));
  }

  if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
    if (!MoreThanTwoValues) {
      SmallVector<int, 8> ShuffleVec(NumElems, -1);
      for (unsigned i = 0; i < NumElems; ++i) {
        SDValue V = Node->getOperand(i);
        if (V.isUndef())
          continue;
        ShuffleVec[i] = V == Value1 ? 0 : NumElems;
      }
      if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
        // Get the splatted value into the low element of a vector register.
        SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
        SDValue Vec2;
        if (Value2.getNode())
          Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
        else
          Vec2 = DAG.getUNDEF(VT);

        // Return shuffle(LowValVec, undef, <0,0,0,0>)
        return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
      }
    } else {
      SDValue Res;
      if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
        return Res;
    }
  }

  // Otherwise, we can't handle this case efficiently.
  return ExpandVectorBuildThroughStack(Node);
}

SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
  SDLoc DL(Node);
  EVT VT = Node->getValueType(0);
  SDValue SplatVal = Node->getOperand(0);

  return DAG.getSplatBuildVector(VT, DL, SplatVal);
}

// Expand a node into a call to a libcall.  If the result value
// does not fit into a register, return the lo part and set the hi part to the
// by-reg argument.  If it does fit into a single register, return the result
// and leave the Hi part unset.
SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
                                            bool isSigned) {
  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;
  for (const SDValue &Op : Node->op_values()) {
    EVT ArgVT = Op.getValueType();
    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
    Entry.Node = Op;
    Entry.Ty = ArgTy;
    Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
    Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
    Args.push_back(Entry);
  }
  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
                                         TLI.getPointerTy(DAG.getDataLayout()));

  EVT RetVT = Node->getValueType(0);
  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());

  // By default, the input chain to this libcall is the entry node of the
  // function. If the libcall is going to be emitted as a tail call then
  // TLI.isUsedByReturnOnly will change it to the right chain if the return
  // node which is being folded has a non-entry input chain.
  SDValue InChain = DAG.getEntryNode();

  // isTailCall may be true since the callee does not reference caller stack
  // frame. Check if it's in the right position and that the return types match.
  SDValue TCChain = InChain;
  const Function &F = DAG.getMachineFunction().getFunction();
  bool isTailCall =
      TLI.isInTailCallPosition(DAG, Node, TCChain) &&
      (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
  if (isTailCall)
    InChain = TCChain;

  TargetLowering::CallLoweringInfo CLI(DAG);
  bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
  CLI.setDebugLoc(SDLoc(Node))
      .setChain(InChain)
      .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
                    std::move(Args))
      .setTailCall(isTailCall)
      .setSExtResult(signExtend)
      .setZExtResult(!signExtend)
      .setIsPostTypeLegalization(true);

  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);

  if (!CallInfo.second.getNode()) {
    LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG));
    // It's a tailcall, return the chain (which is the DAG root).
    return DAG.getRoot();
  }

  LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG));
  return CallInfo.first;
}

void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
                                           RTLIB::Libcall Call_F32,
                                           RTLIB::Libcall Call_F64,
                                           RTLIB::Libcall Call_F80,
                                           RTLIB::Libcall Call_F128,
                                           RTLIB::Libcall Call_PPCF128,
                                           SmallVectorImpl<SDValue> &Results) {
  RTLIB::Libcall LC;
  switch (Node->getSimpleValueType(0).SimpleTy) {
  default: llvm_unreachable("Unexpected request for libcall!");
  case MVT::f32: LC = Call_F32; break;
  case MVT::f64: LC = Call_F64; break;
  case MVT::f80: LC = Call_F80; break;
  case MVT::f128: LC = Call_F128; break;
  case MVT::ppcf128: LC = Call_PPCF128; break;
  }

  if (Node->isStrictFPOpcode()) {
    EVT RetVT = Node->getValueType(0);
    SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
    TargetLowering::MakeLibCallOptions CallOptions;
    // FIXME: This doesn't support tail calls.
    std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
                                                      Ops, CallOptions,
                                                      SDLoc(Node),
                                                      Node->getOperand(0));
    Results.push_back(Tmp.first);
    Results.push_back(Tmp.second);
  } else {
    SDValue Tmp = ExpandLibCall(LC, Node, false);
    Results.push_back(Tmp);
  }
}

SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
                                               RTLIB::Libcall Call_I8,
                                               RTLIB::Libcall Call_I16,
                                               RTLIB::Libcall Call_I32,
                                               RTLIB::Libcall Call_I64,
                                               RTLIB::Libcall Call_I128) {
  RTLIB::Libcall LC;
  switch (Node->getSimpleValueType(0).SimpleTy) {
  default: llvm_unreachable("Unexpected request for libcall!");
  case MVT::i8:   LC = Call_I8; break;
  case MVT::i16:  LC = Call_I16; break;
  case MVT::i32:  LC = Call_I32; break;
  case MVT::i64:  LC = Call_I64; break;
  case MVT::i128: LC = Call_I128; break;
  }
  return ExpandLibCall(LC, Node, isSigned);
}

/// Expand the node to a libcall based on first argument type (for instance
/// lround and its variant).
void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
                                            RTLIB::Libcall Call_F32,
                                            RTLIB::Libcall Call_F64,
                                            RTLIB::Libcall Call_F80,
                                            RTLIB::Libcall Call_F128,
                                            RTLIB::Libcall Call_PPCF128,
                                            SmallVectorImpl<SDValue> &Results) {
  EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType();

  RTLIB::Libcall LC;
  switch (InVT.getSimpleVT().SimpleTy) {
  default: llvm_unreachable("Unexpected request for libcall!");
  case MVT::f32:     LC = Call_F32; break;
  case MVT::f64:     LC = Call_F64; break;
  case MVT::f80:     LC = Call_F80; break;
  case MVT::f128:    LC = Call_F128; break;
  case MVT::ppcf128: LC = Call_PPCF128; break;
  }

  if (Node->isStrictFPOpcode()) {
    EVT RetVT = Node->getValueType(0);
    SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
    TargetLowering::MakeLibCallOptions CallOptions;
    // FIXME: This doesn't support tail calls.
    std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
                                                      Ops, CallOptions,
                                                      SDLoc(Node),
                                                      Node->getOperand(0));
    Results.push_back(Tmp.first);
    Results.push_back(Tmp.second);
  } else {
    SDValue Tmp = ExpandLibCall(LC, Node, false);
    Results.push_back(Tmp);
  }
}

/// Issue libcalls to __{u}divmod to compute div / rem pairs.
void
SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
                                          SmallVectorImpl<SDValue> &Results) {
  unsigned Opcode = Node->getOpcode();
  bool isSigned = Opcode == ISD::SDIVREM;

  RTLIB::Libcall LC;
  switch (Node->getSimpleValueType(0).SimpleTy) {
  default: llvm_unreachable("Unexpected request for libcall!");
  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
  }

  // The input chain to this libcall is the entry node of the function.
  // Legalizing the call will automatically add the previous call to the
  // dependence.
  SDValue InChain = DAG.getEntryNode();

  EVT RetVT = Node->getValueType(0);
  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());

  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;
  for (const SDValue &Op : Node->op_values()) {
    EVT ArgVT = Op.getValueType();
    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
    Entry.Node = Op;
    Entry.Ty = ArgTy;
    Entry.IsSExt = isSigned;
    Entry.IsZExt = !isSigned;
    Args.push_back(Entry);
  }

  // Also pass the return address of the remainder.
  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
  Entry.Node = FIPtr;
  Entry.Ty = RetTy->getPointerTo();
  Entry.IsSExt = isSigned;
  Entry.IsZExt = !isSigned;
  Args.push_back(Entry);

  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
                                         TLI.getPointerTy(DAG.getDataLayout()));

  SDLoc dl(Node);
  TargetLowering::CallLoweringInfo CLI(DAG);
  CLI.setDebugLoc(dl)
      .setChain(InChain)
      .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
                    std::move(Args))
      .setSExtResult(isSigned)
      .setZExtResult(!isSigned);

  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);

  // Remainder is loaded back from the stack frame.
  SDValue Rem =
      DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
  Results.push_back(CallInfo.first);
  Results.push_back(Rem);
}

/// Return true if sincos libcall is available.
static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
  RTLIB::Libcall LC;
  switch (Node->getSimpleValueType(0).SimpleTy) {
  default: llvm_unreachable("Unexpected request for libcall!");
  case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
  case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
  case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
  case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
  }
  return TLI.getLibcallName(LC) != nullptr;
}

/// Only issue sincos libcall if both sin and cos are needed.
static bool useSinCos(SDNode *Node) {
  unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
    ? ISD::FCOS : ISD::FSIN;

  SDValue Op0 = Node->getOperand(0);
  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
       UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
    SDNode *User = *UI;
    if (User == Node)
      continue;
    // The other user might have been turned into sincos already.
    if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
      return true;
  }
  return false;
}

/// Issue libcalls to sincos to compute sin / cos pairs.
void
SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
                                          SmallVectorImpl<SDValue> &Results) {
  RTLIB::Libcall LC;
  switch (Node->getSimpleValueType(0).SimpleTy) {
  default: llvm_unreachable("Unexpected request for libcall!");
  case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
  case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
  case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
  case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
  }

  // The input chain to this libcall is the entry node of the function.
  // Legalizing the call will automatically add the previous call to the
  // dependence.
  SDValue InChain = DAG.getEntryNode();

  EVT RetVT = Node->getValueType(0);
  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());

  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;

  // Pass the argument.
  Entry.Node = Node->getOperand(0);
  Entry.Ty = RetTy;
  Entry.IsSExt = false;
  Entry.IsZExt = false;
  Args.push_back(Entry);

  // Pass the return address of sin.
  SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
  Entry.Node = SinPtr;
  Entry.Ty = RetTy->getPointerTo();
  Entry.IsSExt = false;
  Entry.IsZExt = false;
  Args.push_back(Entry);

  // Also pass the return address of the cos.
  SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
  Entry.Node = CosPtr;
  Entry.Ty = RetTy->getPointerTo();
  Entry.IsSExt = false;
  Entry.IsZExt = false;
  Args.push_back(Entry);

  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
                                         TLI.getPointerTy(DAG.getDataLayout()));

  SDLoc dl(Node);
  TargetLowering::CallLoweringInfo CLI(DAG);
  CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
      TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
      std::move(Args));

  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);

  Results.push_back(
      DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
  Results.push_back(
      DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
}

/// This function is responsible for legalizing a
/// INT_TO_FP operation of the specified operand when the target requests that
/// we expand it.  At this point, we know that the result and operand types are
/// legal for the target.
SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
                                                   SDValue &Chain) {
  bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
                   Node->getOpcode() == ISD::SINT_TO_FP);
  EVT DestVT = Node->getValueType(0);
  SDLoc dl(Node);
  unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
  SDValue Op0 = Node->getOperand(OpNo);
  EVT SrcVT = Op0.getValueType();

  // TODO: Should any fast-math-flags be set for the created nodes?
  LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
  if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
    LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
                         "expansion\n");

    // Get the stack frame index of a 8 byte buffer.
    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);

    SDValue Lo = Op0;
    // if signed map to unsigned space
    if (isSigned) {
      // Invert sign bit (signed to unsigned mapping).
      Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo,
                       DAG.getConstant(0x80000000u, dl, MVT::i32));
    }
    // Initial hi portion of constructed double.
    SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32);

    // If this a big endian target, swap the lo and high data.
    if (DAG.getDataLayout().isBigEndian())
      std::swap(Lo, Hi);

    SDValue MemChain = DAG.getEntryNode();

    // Store the lo of the constructed double.
    SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot,
                                  MachinePointerInfo());
    // Store the hi of the constructed double.
    SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl);
    SDValue Store2 =
        DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo());
    MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);

    // load the constructed double
    SDValue Load =
        DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo());
    // FP constant to bias correct the final result
    SDValue Bias = DAG.getConstantFP(isSigned ?
                                     BitsToDouble(0x4330000080000000ULL) :
                                     BitsToDouble(0x4330000000000000ULL),
                                     dl, MVT::f64);
    // Subtract the bias and get the final result.
    SDValue Sub;
    SDValue Result;
    if (Node->isStrictFPOpcode()) {
      Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
                        {Node->getOperand(0), Load, Bias});
      Chain = Sub.getValue(1);
      if (DestVT != Sub.getValueType()) {
        std::pair<SDValue, SDValue> ResultPair;
        ResultPair =
            DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT);
        Result = ResultPair.first;
        Chain = ResultPair.second;
      }
      else
        Result = Sub;
    } else {
      Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
      Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
    }
    return Result;
  }
  // Code below here assumes !isSigned without checking again.
  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");

  // TODO: Generalize this for use with other types.
  if ((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) {
    LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32\n");
    // For unsigned conversions, convert them to signed conversions using the
    // algorithm from the x86_64 __floatundisf in compiler_rt. That method
    // should be valid for i32->f32 as well.

    // TODO: This really should be implemented using a branch rather than a
    // select.  We happen to get lucky and machinesink does the right
    // thing most of the time.  This would be a good candidate for a
    // pseudo-op, or, even better, for whole-function isel.
    EVT SetCCVT = getSetCCResultType(SrcVT);

    SDValue SignBitTest = DAG.getSetCC(
        dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);

    EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout());
    SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
    SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst);
    SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
    SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst);
    SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);

    SDValue Slow, Fast;
    if (Node->isStrictFPOpcode()) {
      // In strict mode, we must avoid spurious exceptions, and therefore
      // must make sure to only emit a single STRICT_SINT_TO_FP.
      SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0);
      Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
                         { Node->getOperand(0), InCvt });
      Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
                         { Fast.getValue(1), Fast, Fast });
      Chain = Slow.getValue(1);
      // The STRICT_SINT_TO_FP inherits the exception mode from the
      // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can
      // never raise any exception.
      SDNodeFlags Flags;
      Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept());
      Fast->setFlags(Flags);
      Flags.setNoFPExcept(true);
      Slow->setFlags(Flags);
    } else {
      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or);
      Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt);
      Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
    }

    return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast);
  }

  // The following optimization is valid only if every value in SrcVT (when
  // treated as signed) is representable in DestVT.  Check that the mantissa
  // size of DestVT is >= than the number of bits in SrcVT -1.
  assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >=
             SrcVT.getSizeInBits() - 1 &&
         "Cannot perform lossless SINT_TO_FP!");

  SDValue Tmp1;
  if (Node->isStrictFPOpcode()) {
    Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
                       { Node->getOperand(0), Op0 });
  } else
    Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);

  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
                                 DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
  SDValue Zero = DAG.getIntPtrConstant(0, dl),
          Four = DAG.getIntPtrConstant(4, dl);
  SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
                                    SignSet, Four, Zero);

  // If the sign bit of the integer is set, the large number will be treated
  // as a negative number.  To counteract this, the dynamic code adds an
  // offset depending on the data type.
  uint64_t FF;
  switch (SrcVT.getSimpleVT().SimpleTy) {
  default: llvm_unreachable("Unsupported integer type!");
  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
  }
  if (DAG.getDataLayout().isLittleEndian())
    FF <<= 32;
  Constant *FudgeFactor = ConstantInt::get(
                                       Type::getInt64Ty(*DAG.getContext()), FF);

  SDValue CPIdx =
      DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
  Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
  CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
  Alignment = commonAlignment(Alignment, 4);
  SDValue FudgeInReg;
  if (DestVT == MVT::f32)
    FudgeInReg = DAG.getLoad(
        MVT::f32, dl, DAG.getEntryNode(), CPIdx,
        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
        Alignment);
  else {
    SDValue Load = DAG.getExtLoad(
        ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
        Alignment);
    HandleSDNode Handle(Load);
    LegalizeOp(Load.getNode());
    FudgeInReg = Handle.getValue();
  }

  if (Node->isStrictFPOpcode()) {
    SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
                                 { Tmp1.getValue(1), Tmp1, FudgeInReg });
    Chain = Result.getValue(1);
    return Result;
  }

  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
}

/// This function is responsible for legalizing a
/// *INT_TO_FP operation of the specified operand when the target requests that
/// we promote it.  At this point, we know that the result and operand types are
/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
/// operation that takes a larger input.
void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
    SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) {
  bool IsStrict = N->isStrictFPOpcode();
  bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
                  N->getOpcode() == ISD::STRICT_SINT_TO_FP;
  EVT DestVT = N->getValueType(0);
  SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
  unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP;
  unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP;

  // First step, figure out the appropriate *INT_TO_FP operation to use.
  EVT NewInTy = LegalOp.getValueType();

  unsigned OpToUse = 0;

  // Scan for the appropriate larger type to use.
  while (true) {
    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
    assert(NewInTy.isInteger() && "Ran out of possibilities!");

    // If the target supports SINT_TO_FP of this type, use it.
    if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) {
      OpToUse = SIntOp;
      break;
    }
    if (IsSigned)
      continue;

    // If the target supports UINT_TO_FP of this type, use it.
    if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) {
      OpToUse = UIntOp;
      break;
    }

    // Otherwise, try a larger type.
  }

  // Okay, we found the operation and type to use.  Zero extend our input to the
  // desired type then run the operation on it.
  if (IsStrict) {
    SDValue Res =
        DAG.getNode(OpToUse, dl, {DestVT, MVT::Other},
                    {N->getOperand(0),
                     DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
                                 dl, NewInTy, LegalOp)});
    Results.push_back(Res);
    Results.push_back(Res.getValue(1));
    return;
  }

  Results.push_back(
      DAG.getNode(OpToUse, dl, DestVT,
                  DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
                              dl, NewInTy, LegalOp)));
}

/// This function is responsible for legalizing a
/// FP_TO_*INT operation of the specified operand when the target requests that
/// we promote it.  At this point, we know that the result and operand types are
/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
/// operation that returns a larger result.
void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
                                                 SmallVectorImpl<SDValue> &Results) {
  bool IsStrict = N->isStrictFPOpcode();
  bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
                  N->getOpcode() == ISD::STRICT_FP_TO_SINT;
  EVT DestVT = N->getValueType(0);
  SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
  // First step, figure out the appropriate FP_TO*INT operation to use.
  EVT NewOutTy = DestVT;

  unsigned OpToUse = 0;

  // Scan for the appropriate larger type to use.
  while (true) {
    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
    assert(NewOutTy.isInteger() && "Ran out of possibilities!");

    // A larger signed type can hold all unsigned values of the requested type,
    // so using FP_TO_SINT is valid
    OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT;
    if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
      break;

    // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
    OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT;
    if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
      break;

    // Otherwise, try a larger type.
  }

  // Okay, we found the operation and type to use.
  SDValue Operation;
  if (IsStrict) {
    SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other);
    Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp);
  } else
    Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);

  // Truncate the result of the extended FP_TO_*INT operation to the desired
  // size.
  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
  Results.push_back(Trunc);
  if (IsStrict)
    Results.push_back(Operation.getValue(1));
}

/// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
  EVT VT = Op.getValueType();
  EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
  unsigned Sz = VT.getScalarSizeInBits();

  SDValue Tmp, Tmp2, Tmp3;

  // If we can, perform BSWAP first and then the mask+swap the i4, then i2
  // and finally the i1 pairs.
  // TODO: We can easily support i4/i2 legal types if any target ever does.
  if (Sz >= 8 && isPowerOf2_32(Sz)) {
    // Create the masks - repeating the pattern every byte.
    APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
    APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
    APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
    APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
    APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
    APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));

    // BSWAP if the type is wider than a single byte.
    Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);

    // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);

    // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);

    // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
    return Tmp;
  }

  Tmp = DAG.getConstant(0, dl, VT);
  for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
    if (I < J)
      Tmp2 =
          DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
    else
      Tmp2 =
          DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));

    APInt Shift(Sz, 1);
    Shift <<= J;
    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
  }

  return Tmp;
}

/// Open code the operations for BSWAP of the specified operation.
SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
  EVT VT = Op.getValueType();
  EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
  switch (VT.getSimpleVT().getScalarType().SimpleTy) {
  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
  case MVT::i16:
    // Use a rotate by 8. This can be further expanded if necessary.
    return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
  case MVT::i32:
    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
                       DAG.getConstant(0xFF0000, dl, VT));
    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
  case MVT::i64:
    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
                       DAG.getConstant(255ULL<<48, dl, VT));
    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
                       DAG.getConstant(255ULL<<40, dl, VT));
    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
                       DAG.getConstant(255ULL<<32, dl, VT));
    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
                       DAG.getConstant(255ULL<<24, dl, VT));
    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
                       DAG.getConstant(255ULL<<16, dl, VT));
    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
                       DAG.getConstant(255ULL<<8 , dl, VT));
    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
  }
}

/// Open code the operations for PARITY of the specified operation.
SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) {
  EVT VT = Op.getValueType();
  EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
  unsigned Sz = VT.getScalarSizeInBits();

  // If CTPOP is legal, use it. Otherwise use shifts and xor.
  SDValue Result;
  if (TLI.isOperationLegal(ISD::CTPOP, VT)) {
    Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
  } else {
    Result = Op;
    for (unsigned i = Log2_32_Ceil(Sz); i != 0;) {
      SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result,
                                  DAG.getConstant(1ULL << (--i), dl, ShVT));
      Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift);
    }
  }

  return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT));
}

bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
  LLVM_DEBUG(dbgs() << "Trying to expand node\n");
  SmallVector<SDValue, 8> Results;
  SDLoc dl(Node);
  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
  bool NeedInvert;
  switch (Node->getOpcode()) {
  case ISD::ABS:
    if (TLI.expandABS(Node, Tmp1, DAG))
      Results.push_back(Tmp1);
    break;
  case ISD::CTPOP:
    if (TLI.expandCTPOP(Node, Tmp1, DAG))
      Results.push_back(Tmp1);
    break;
  case ISD::CTLZ:
  case ISD::CTLZ_ZERO_UNDEF:
    if (TLI.expandCTLZ(Node, Tmp1, DAG))
      Results.push_back(Tmp1);
    break;
  case ISD::CTTZ:
  case ISD::CTTZ_ZERO_UNDEF:
    if (TLI.expandCTTZ(Node, Tmp1, DAG))
      Results.push_back(Tmp1);
    break;
  case ISD::BITREVERSE:
    Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
    break;
  case ISD::BSWAP:
    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
    break;
  case ISD::PARITY:
    Results.push_back(ExpandPARITY(Node->getOperand(0), dl));
    break;
  case ISD::FRAMEADDR:
  case ISD::RETURNADDR:
  case ISD::FRAME_TO_ARGS_OFFSET:
    Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
    break;
  case ISD::EH_DWARF_CFA: {
    SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
                                        TLI.getPointerTy(DAG.getDataLayout()));
    SDValue Offset = DAG.getNode(ISD::ADD, dl,
                                 CfaArg.getValueType(),
                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
                                             CfaArg.getValueType()),
                                 CfaArg);
    SDValue FA = DAG.getNode(
        ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
        DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
    Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
                                  FA, Offset));
    break;
  }
  case ISD::FLT_ROUNDS_:
    Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
    Results.push_back(Node->getOperand(0));
    break;
  case ISD::EH_RETURN:
  case ISD::EH_LABEL:
  case ISD::PREFETCH:
  case ISD::VAEND:
  case ISD::EH_SJLJ_LONGJMP:
    // If the target didn't expand these, there's nothing to do, so just
    // preserve the chain and be done.
    Results.push_back(Node->getOperand(0));
    break;
  case ISD::READCYCLECOUNTER:
    // If the target didn't expand this, just return 'zero' and preserve the
    // chain.
    Results.append(Node->getNumValues() - 1,
                   DAG.getConstant(0, dl, Node->getValueType(0)));
    Results.push_back(Node->getOperand(0));
    break;
  case ISD::EH_SJLJ_SETJMP:
    // If the target didn't expand this, just return 'zero' and preserve the
    // chain.
    Results.push_back(DAG.getConstant(0, dl, MVT::i32));
    Results.push_back(Node->getOperand(0));
    break;
  case ISD::ATOMIC_LOAD: {
    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
    SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
    SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
    SDValue Swap = DAG.getAtomicCmpSwap(
        ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
        Node->getOperand(0), Node->getOperand(1), Zero, Zero,
        cast<AtomicSDNode>(Node)->getMemOperand());
    Results.push_back(Swap.getValue(0));
    Results.push_back(Swap.getValue(1));
    break;
  }
  case ISD::ATOMIC_STORE: {
    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
                                 Node->getOperand(0),
                                 Node->getOperand(1), Node->getOperand(2),
                                 cast<AtomicSDNode>(Node)->getMemOperand());
    Results.push_back(Swap.getValue(1));
    break;
  }
  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
    // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
    // splits out the success value as a comparison. Expanding the resulting
    // ATOMIC_CMP_SWAP will produce a libcall.
    SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
    SDValue Res = DAG.getAtomicCmpSwap(
        ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
        Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
        Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());

    SDValue ExtRes = Res;
    SDValue LHS = Res;
    SDValue RHS = Node->getOperand(1);

    EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
    EVT OuterType = Node->getValueType(0);
    switch (TLI.getExtendForAtomicOps()) {
    case ISD::SIGN_EXTEND:
      LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
                        DAG.getValueType(AtomicType));
      RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
                        Node->getOperand(2), DAG.getValueType(AtomicType));
      ExtRes = LHS;
      break;
    case ISD::ZERO_EXTEND:
      LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
                        DAG.getValueType(AtomicType));
      RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
      ExtRes = LHS;
      break;
    case ISD::ANY_EXTEND:
      LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
      RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
      break;
    default:
      llvm_unreachable("Invalid atomic op extension");
    }

    SDValue Success =
        DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);

    Results.push_back(ExtRes.getValue(0));
    Results.push_back(Success);
    Results.push_back(Res.getValue(1));
    break;
  }
  case ISD::DYNAMIC_STACKALLOC:
    ExpandDYNAMIC_STACKALLOC(Node, Results);
    break;
  case ISD::MERGE_VALUES:
    for (unsigned i = 0; i < Node->getNumValues(); i++)
      Results.push_back(Node->getOperand(i));
    break;
  case ISD::UNDEF: {
    EVT VT = Node->getValueType(0);
    if (VT.isInteger())
      Results.push_back(DAG.getConstant(0, dl, VT));
    else {
      assert(VT.isFloatingPoint() && "Unknown value type!");
      Results.push_back(DAG.getConstantFP(0, dl, VT));
    }
    break;
  }
  case ISD::STRICT_FP_ROUND:
    // When strict mode is enforced we can't do expansion because it
    // does not honor the "strict" properties. Only libcall is allowed.
    if (TLI.isStrictFPEnabled())
      break;
    // We might as well mutate to FP_ROUND when FP_ROUND operation is legal
    // since this operation is more efficient than stack operation.
    if (TLI.getStrictFPOperationAction(Node->getOpcode(),
                                       Node->getValueType(0))
        == TargetLowering::Legal)
      break;
    // We fall back to use stack operation when the FP_ROUND operation
    // isn't available.
    Tmp1 = EmitStackConvert(Node->getOperand(1), 
                            Node->getValueType(0),
                            Node->getValueType(0), dl, Node->getOperand(0));
    ReplaceNode(Node, Tmp1.getNode());
    LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
    return true;
  case ISD::FP_ROUND:
  case ISD::BITCAST:
    Tmp1 = EmitStackConvert(Node->getOperand(0), 
                            Node->getValueType(0),
                            Node->getValueType(0), dl);
    Results.push_back(Tmp1);
    break;
  case ISD::STRICT_FP_EXTEND:
    // When strict mode is enforced we can't do expansion because it
    // does not honor the "strict" properties. Only libcall is allowed.
    if (TLI.isStrictFPEnabled())
      break;
    // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal
    // since this operation is more efficient than stack operation.
    if (TLI.getStrictFPOperationAction(Node->getOpcode(),
                                       Node->getValueType(0))
        == TargetLowering::Legal)
      break;
    // We fall back to use stack operation when the FP_EXTEND operation
    // isn't available.
    Tmp1 = EmitStackConvert(Node->getOperand(1),
                            Node->getOperand(1).getValueType(),
                            Node->getValueType(0), dl, Node->getOperand(0));
    ReplaceNode(Node, Tmp1.getNode());
    LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
    return true;
  case ISD::FP_EXTEND:
    Tmp1 = EmitStackConvert(Node->getOperand(0),
                            Node->getOperand(0).getValueType(),
                            Node->getValueType(0), dl);
    Results.push_back(Tmp1);
    break;
  case ISD::SIGN_EXTEND_INREG: {
    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
    EVT VT = Node->getValueType(0);

    // An in-register sign-extend of a boolean is a negation:
    // 'true' (1) sign-extended is -1.
    // 'false' (0) sign-extended is 0.
    // However, we must mask the high bits of the source operand because the
    // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.

    // TODO: Do this for vectors too?
    if (ExtraVT.getSizeInBits() == 1) {
      SDValue One = DAG.getConstant(1, dl, VT);
      SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
      SDValue Zero = DAG.getConstant(0, dl, VT);
      SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
      Results.push_back(Neg);
      break;
    }

    // NOTE: we could fall back on load/store here too for targets without
    // SRA.  However, it is doubtful that any exist.
    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
    unsigned BitsDiff = VT.getScalarSizeInBits() -
                        ExtraVT.getScalarSizeInBits();
    SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
                       Node->getOperand(0), ShiftCst);
    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
    Results.push_back(Tmp1);
    break;
  }
  case ISD::UINT_TO_FP:
  case ISD::STRICT_UINT_TO_FP:
    if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) {
      Results.push_back(Tmp1);
      if (Node->isStrictFPOpcode())
        Results.push_back(Tmp2);
      break;
    }
    LLVM_FALLTHROUGH;
  case ISD::SINT_TO_FP:
  case ISD::STRICT_SINT_TO_FP:
    Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2);
    Results.push_back(Tmp1);
    if (Node->isStrictFPOpcode())
      Results.push_back(Tmp2);
    break;
  case ISD::FP_TO_SINT:
    if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
      Results.push_back(Tmp1);
    break;
  case ISD::STRICT_FP_TO_SINT:
    if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) {
      ReplaceNode(Node, Tmp1.getNode());
      LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
      return true;
    }
    break;
  case ISD::FP_TO_UINT:
    if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG))
      Results.push_back(Tmp1);
    break;
  case ISD::STRICT_FP_TO_UINT:
    if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) {
      // Relink the chain.
      DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2);
      // Replace the new UINT result.
      ReplaceNodeWithValue(SDValue(Node, 0), Tmp1);
      LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
      return true;
    }
    break;
  case ISD::VAARG:
    Results.push_back(DAG.expandVAArg(Node));
    Results.push_back(Results[0].getValue(1));
    break;
  case ISD::VACOPY:
    Results.push_back(DAG.expandVACopy(Node));
    break;
  case ISD::EXTRACT_VECTOR_ELT:
    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
      // This must be an access of the only element.  Return it.
      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
                         Node->getOperand(0));
    else
      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
    Results.push_back(Tmp1);
    break;
  case ISD::EXTRACT_SUBVECTOR:
    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
    break;
  case ISD::INSERT_SUBVECTOR:
    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
    break;
  case ISD::CONCAT_VECTORS:
    Results.push_back(ExpandVectorBuildThroughStack(Node));
    break;
  case ISD::SCALAR_TO_VECTOR:
    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
    break;
  case ISD::INSERT_VECTOR_ELT:
    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
                                              Node->getOperand(1),
                                              Node->getOperand(2), dl));
    break;
  case ISD::VECTOR_SHUFFLE: {
    SmallVector<int, 32> NewMask;
    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();

    EVT VT = Node->getValueType(0);
    EVT EltVT = VT.getVectorElementType();
    SDValue Op0 = Node->getOperand(0);
    SDValue Op1 = Node->getOperand(1);
    if (!TLI.isTypeLegal(EltVT)) {
      EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);

      // BUILD_VECTOR operands are allowed to be wider than the element type.
      // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
      // it.
      if (NewEltVT.bitsLT(EltVT)) {
        // Convert shuffle node.
        // If original node was v4i64 and the new EltVT is i32,
        // cast operands to v8i32 and re-build the mask.

        // Calculate new VT, the size of the new VT should be equal to original.
        EVT NewVT =
            EVT::getVectorVT(*DAG.getContext(), NewEltVT,
                             VT.getSizeInBits() / NewEltVT.getSizeInBits());
        assert(NewVT.bitsEq(VT));

        // cast operands to new VT
        Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
        Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);

        // Convert the shuffle mask
        unsigned int factor =
                         NewVT.getVectorNumElements()/VT.getVectorNumElements();

        // EltVT gets smaller
        assert(factor > 0);

        for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
          if (Mask[i] < 0) {
            for (unsigned fi = 0; fi < factor; ++fi)
              NewMask.push_back(Mask[i]);
          }
          else {
            for (unsigned fi = 0; fi < factor; ++fi)
              NewMask.push_back(Mask[i]*factor+fi);
          }
        }
        Mask = NewMask;
        VT = NewVT;
      }
      EltVT = NewEltVT;
    }
    unsigned NumElems = VT.getVectorNumElements();
    SmallVector<SDValue, 16> Ops;
    for (unsigned i = 0; i != NumElems; ++i) {
      if (Mask[i] < 0) {
        Ops.push_back(DAG.getUNDEF(EltVT));
        continue;
      }
      unsigned Idx = Mask[i];
      if (Idx < NumElems)
        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
                                  DAG.getVectorIdxConstant(Idx, dl)));
      else
        Ops.push_back(
            DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
                        DAG.getVectorIdxConstant(Idx - NumElems, dl)));
    }

    Tmp1 = DAG.getBuildVector(VT, dl, Ops);
    // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
    Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
    Results.push_back(Tmp1);
    break;
  }
  case ISD::EXTRACT_ELEMENT: {
    EVT OpTy = Node->getOperand(0).getValueType();
    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
      // 1 -> Hi
      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
                         DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
                                         TLI.getShiftAmountTy(
                                             Node->getOperand(0).getValueType(),
                                             DAG.getDataLayout())));
      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
    } else {
      // 0 -> Lo
      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
                         Node->getOperand(0));
    }
    Results.push_back(Tmp1);
    break;
  }
  case ISD::STACKSAVE:
    // Expand to CopyFromReg if the target set
    // StackPointerRegisterToSaveRestore.
    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
                                           Node->getValueType(0)));
      Results.push_back(Results[0].getValue(1));
    } else {
      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
      Results.push_back(Node->getOperand(0));
    }
    break;
  case ISD::STACKRESTORE:
    // Expand to CopyToReg if the target set
    // StackPointerRegisterToSaveRestore.
    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
                                         Node->getOperand(1)));
    } else {
      Results.push_back(Node->getOperand(0));
    }
    break;
  case ISD::GET_DYNAMIC_AREA_OFFSET:
    Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
    Results.push_back(Results[0].getValue(0));
    break;
  case ISD::FCOPYSIGN:
    Results.push_back(ExpandFCOPYSIGN(Node));
    break;
  case ISD::FNEG:
    Results.push_back(ExpandFNEG(Node));
    break;
  case ISD::FABS:
    Results.push_back(ExpandFABS(Node));
    break;
  case ISD::SMIN:
  case ISD::SMAX:
  case ISD::UMIN:
  case ISD::UMAX: {
    // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
    ISD::CondCode Pred;
    switch (Node->getOpcode()) {
    default: llvm_unreachable("How did we get here?");
    case ISD::SMAX: Pred = ISD::SETGT; break;
    case ISD::SMIN: Pred = ISD::SETLT; break;
    case ISD::UMAX: Pred = ISD::SETUGT; break;
    case ISD::UMIN: Pred = ISD::SETULT; break;
    }
    Tmp1 = Node->getOperand(0);
    Tmp2 = Node->getOperand(1);
    Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
    Results.push_back(Tmp1);
    break;
  }
  case ISD::FMINNUM:
  case ISD::FMAXNUM: {
    if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
      Results.push_back(Expanded);
    break;
  }
  case ISD::FSIN:
  case ISD::FCOS: {
    EVT VT = Node->getValueType(0);
    // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
    // fcos which share the same operand and both are used.
    if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
         isSinCosLibcallAvailable(Node, TLI))
        && useSinCos(Node)) {
      SDVTList VTs = DAG.getVTList(VT, VT);
      Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
      if (Node->getOpcode() == ISD::FCOS)
        Tmp1 = Tmp1.getValue(1);
      Results.push_back(Tmp1);
    }
    break;
  }
  case ISD::FMAD:
    llvm_unreachable("Illegal fmad should never be formed");

  case ISD::FP16_TO_FP:
    if (Node->getValueType(0) != MVT::f32) {
      // We can extend to types bigger than f32 in two steps without changing
      // the result. Since "f16 -> f32" is much more commonly available, give
      // CodeGen the option of emitting that before resorting to a libcall.
      SDValue Res =
          DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
      Results.push_back(
          DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
    }
    break;
  case ISD::STRICT_FP16_TO_FP:
    if (Node->getValueType(0) != MVT::f32) {
      // We can extend to types bigger than f32 in two steps without changing
      // the result. Since "f16 -> f32" is much more commonly available, give
      // CodeGen the option of emitting that before resorting to a libcall.
      SDValue Res =
          DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other},
                      {Node->getOperand(0), Node->getOperand(1)});
      Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
                        {Node->getValueType(0), MVT::Other},
                        {Res.getValue(1), Res});
      Results.push_back(Res);
      Results.push_back(Res.getValue(1));
    }
    break;
  case ISD::FP_TO_FP16:
    LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
    if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
      SDValue Op = Node->getOperand(0);
      MVT SVT = Op.getSimpleValueType();
      if ((SVT == MVT::f64 || SVT == MVT::f80) &&
          TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
        // Under fastmath, we can expand this node into a fround followed by
        // a float-half conversion.
        SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
                                       DAG.getIntPtrConstant(0, dl));
        Results.push_back(
            DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
      }
    }
    break;
  case ISD::ConstantFP: {
    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
    // Check to see if this FP immediate is already legal.
    // If this is a legal constant, turn it into a TargetConstantFP node.
    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
                          DAG.shouldOptForSize()))
      Results.push_back(ExpandConstantFP(CFP, true));
    break;
  }
  case ISD::Constant: {
    ConstantSDNode *CP = cast<ConstantSDNode>(Node);
    Results.push_back(ExpandConstant(CP));
    break;
  }
  case ISD::FSUB: {
    EVT VT = Node->getValueType(0);
    if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
        TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
      const SDNodeFlags Flags = Node->getFlags();
      Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
      Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
      Results.push_back(Tmp1);
    }
    break;
  }
  case ISD::SUB: {
    EVT VT = Node->getValueType(0);
    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
           "Don't know how to expand this subtraction!");
    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
                               VT));
    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
    break;
  }
  case ISD::UREM:
  case ISD::SREM:
    if (TLI.expandREM(Node, Tmp1, DAG))
      Results.push_back(Tmp1);
    break;
  case ISD::UDIV:
  case ISD::SDIV: {
    bool isSigned = Node->getOpcode() == ISD::SDIV;
    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
    EVT VT = Node->getValueType(0);
    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
      SDVTList VTs = DAG.getVTList(VT, VT);
      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
                         Node->getOperand(1));
      Results.push_back(Tmp1);
    }
    break;
  }
  case ISD::MULHU:
  case ISD::MULHS: {
    unsigned ExpandOpcode =
        Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
    EVT VT = Node->getValueType(0);
    SDVTList VTs = DAG.getVTList(VT, VT);

    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
                       Node->getOperand(1));
    Results.push_back(Tmp1.getValue(1));
    break;
  }
  case ISD::UMUL_LOHI:
  case ISD::SMUL_LOHI: {
    SDValue LHS = Node->getOperand(0);
    SDValue RHS = Node->getOperand(1);
    MVT VT = LHS.getSimpleValueType();
    unsigned MULHOpcode =
        Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;

    if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
      Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
      Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
      break;
    }

    SmallVector<SDValue, 4> Halves;
    EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
    assert(TLI.isTypeLegal(HalfType));
    if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves,
                           HalfType, DAG,
                           TargetLowering::MulExpansionKind::Always)) {
      for (unsigned i = 0; i < 2; ++i) {
        SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
        SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
        SDValue Shift = DAG.getConstant(
            HalfType.getScalarSizeInBits(), dl,
            TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
        Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
        Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
      }
      break;
    }
    break;
  }
  case ISD::MUL: {
    EVT VT = Node->getValueType(0);
    SDVTList VTs = DAG.getVTList(VT, VT);
    // See if multiply or divide can be lowered using two-result operations.
    // We just need the low half of the multiply; try both the signed
    // and unsigned forms. If the target supports both SMUL_LOHI and
    // UMUL_LOHI, form a preference by checking which forms of plain
    // MULH it supports.
    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
    unsigned OpToUse = 0;
    if (HasSMUL_LOHI && !HasMULHS) {
      OpToUse = ISD::SMUL_LOHI;
    } else if (HasUMUL_LOHI && !HasMULHU) {
      OpToUse = ISD::UMUL_LOHI;
    } else if (HasSMUL_LOHI) {
      OpToUse = ISD::SMUL_LOHI;
    } else if (HasUMUL_LOHI) {
      OpToUse = ISD::UMUL_LOHI;
    }
    if (OpToUse) {
      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
                                    Node->getOperand(1)));
      break;
    }

    SDValue Lo, Hi;
    EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
    if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
        TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
        TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
        TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
        TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
                      TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
      Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
      Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
      SDValue Shift =
          DAG.getConstant(HalfType.getSizeInBits(), dl,
                          TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
      Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
      Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
    }
    break;
  }
  case ISD::FSHL:
  case ISD::FSHR:
    if (TLI.expandFunnelShift(Node, Tmp1, DAG))
      Results.push_back(Tmp1);
    break;
  case ISD::ROTL:
  case ISD::ROTR:
    if (TLI.expandROT(Node, Tmp1, DAG))
      Results.push_back(Tmp1);
    break;
  case ISD::SADDSAT:
  case ISD::UADDSAT:
  case ISD::SSUBSAT:
  case ISD::USUBSAT:
    Results.push_back(TLI.expandAddSubSat(Node, DAG));
    break;
  case ISD::SSHLSAT:
  case ISD::USHLSAT:
    Results.push_back(TLI.expandShlSat(Node, DAG));
    break;
  case ISD::SMULFIX:
  case ISD::SMULFIXSAT:
  case ISD::UMULFIX:
  case ISD::UMULFIXSAT:
    Results.push_back(TLI.expandFixedPointMul(Node, DAG));
    break;
  case ISD::SDIVFIX:
  case ISD::SDIVFIXSAT:
  case ISD::UDIVFIX:
  case ISD::UDIVFIXSAT:
    if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node),
                                            Node->getOperand(0),
                                            Node->getOperand(1),
                                            Node->getConstantOperandVal(2),
                                            DAG)) {
      Results.push_back(V);
      break;
    }
    // FIXME: We might want to retry here with a wider type if we fail, if that
    // type is legal.
    // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is
    // <= 128 (which is the case for all of the default Embedded-C types),
    // we will only get here with types and scales that we could always expand
    // if we were allowed to generate libcalls to division functions of illegal
    // type. But we cannot do that.
    llvm_unreachable("Cannot expand DIVFIX!");
  case ISD::ADDCARRY:
  case ISD::SUBCARRY: {
    SDValue LHS = Node->getOperand(0);
    SDValue RHS = Node->getOperand(1);
    SDValue Carry = Node->getOperand(2);

    bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;

    // Initial add of the 2 operands.
    unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
    EVT VT = LHS.getValueType();
    SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);

    // Initial check for overflow.
    EVT CarryType = Node->getValueType(1);
    EVT SetCCType = getSetCCResultType(Node->getValueType(0));
    ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
    SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);

    // Add of the sum and the carry.
    SDValue One = DAG.getConstant(1, dl, VT);
    SDValue CarryExt =
        DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One);
    SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);

    // Second check for overflow. If we are adding, we can only overflow if the
    // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
    // If we are subtracting, we can only overflow if the initial sum is 0 and
    // the carry is set, resulting in a new sum of all 1s.
    SDValue Zero = DAG.getConstant(0, dl, VT);
    SDValue Overflow2 =
        IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
              : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
    Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
                            DAG.getZExtOrTrunc(Carry, dl, SetCCType));

    SDValue ResultCarry =
        DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);

    Results.push_back(Sum2);
    Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
    break;
  }
  case ISD::SADDO:
  case ISD::SSUBO: {
    SDValue Result, Overflow;
    TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
    Results.push_back(Result);
    Results.push_back(Overflow);
    break;
  }
  case ISD::UADDO:
  case ISD::USUBO: {
    SDValue Result, Overflow;
    TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
    Results.push_back(Result);
    Results.push_back(Overflow);
    break;
  }
  case ISD::UMULO:
  case ISD::SMULO: {
    SDValue Result, Overflow;
    if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
      Results.push_back(Result);
      Results.push_back(Overflow);
    }
    break;
  }
  case ISD::BUILD_PAIR: {
    EVT PairTy = Node->getValueType(0);
    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
    Tmp2 = DAG.getNode(
        ISD::SHL, dl, PairTy, Tmp2,
        DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
                        TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
    break;
  }
  case ISD::SELECT:
    Tmp1 = Node->getOperand(0);
    Tmp2 = Node->getOperand(1);
    Tmp3 = Node->getOperand(2);
    if (Tmp1.getOpcode() == ISD::SETCC) {
      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
                             Tmp2, Tmp3,
                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
    } else {
      Tmp1 = DAG.getSelectCC(dl, Tmp1,
                             DAG.getConstant(0, dl, Tmp1.getValueType()),
                             Tmp2, Tmp3, ISD::SETNE);
    }
    Tmp1->setFlags(Node->getFlags());
    Results.push_back(Tmp1);
    break;
  case ISD::BR_JT: {
    SDValue Chain = Node->getOperand(0);
    SDValue Table = Node->getOperand(1);
    SDValue Index = Node->getOperand(2);

    const DataLayout &TD = DAG.getDataLayout();
    EVT PTy = TLI.getPointerTy(TD);

    unsigned EntrySize =
      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);

    // For power-of-two jumptable entry sizes convert multiplication to a shift.
    // This transformation needs to be done here since otherwise the MIPS
    // backend will end up emitting a three instruction multiply sequence
    // instead of a single shift and MSP430 will call a runtime function.
    if (llvm::isPowerOf2_32(EntrySize))
      Index = DAG.getNode(
          ISD::SHL, dl, Index.getValueType(), Index,
          DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
    else
      Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
                          DAG.getConstant(EntrySize, dl, Index.getValueType()));
    SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
                               Index, Table);

    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
    SDValue LD = DAG.getExtLoad(
        ISD::SEXTLOAD, dl, PTy, Chain, Addr,
        MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
    Addr = LD;
    if (TLI.isJumpTableRelative()) {
      // For PIC, the sequence is:
      // BRIND(load(Jumptable + index) + RelocBase)
      // RelocBase can be JumpTable, GOT or some sort of global base.
      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
                          TLI.getPICJumpTableRelocBase(Table, DAG));
    }

    Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
    Results.push_back(Tmp1);
    break;
  }
  case ISD::BRCOND:
    // Expand brcond's setcc into its constituent parts and create a BR_CC
    // Node.
    Tmp1 = Node->getOperand(0);
    Tmp2 = Node->getOperand(1);
    if (Tmp2.getOpcode() == ISD::SETCC) {
      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
                         Tmp1, Tmp2.getOperand(2),
                         Tmp2.getOperand(0), Tmp2.getOperand(1),
                         Node->getOperand(2));
    } else {
      // We test only the i1 bit.  Skip the AND if UNDEF or another AND.
      if (Tmp2.isUndef() ||
          (Tmp2.getOpcode() == ISD::AND &&
           isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
           cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
        Tmp3 = Tmp2;
      else
        Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
                           DAG.getConstant(1, dl, Tmp2.getValueType()));
      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
                         DAG.getCondCode(ISD::SETNE), Tmp3,
                         DAG.getConstant(0, dl, Tmp3.getValueType()),
                         Node->getOperand(2));
    }
    Results.push_back(Tmp1);
    break;
  case ISD::SETCC:
  case ISD::STRICT_FSETCC:
  case ISD::STRICT_FSETCCS: {
    bool IsStrict = Node->getOpcode() != ISD::SETCC;
    bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
    SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
    unsigned Offset = IsStrict ? 1 : 0;
    Tmp1 = Node->getOperand(0 + Offset);
    Tmp2 = Node->getOperand(1 + Offset);
    Tmp3 = Node->getOperand(2 + Offset);
    bool Legalized =
        LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3,
                              NeedInvert, dl, Chain, IsSignaling);

    if (Legalized) {
      // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
      // condition code, create a new SETCC node.
      if (Tmp3.getNode())
        Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
                           Tmp1, Tmp2, Tmp3, Node->getFlags());

      // If we expanded the SETCC by inverting the condition code, then wrap
      // the existing SETCC in a NOT to restore the intended condition.
      if (NeedInvert)
        Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));

      Results.push_back(Tmp1);
      if (IsStrict)
        Results.push_back(Chain);

      break;
    }

    // FIXME: It seems Legalized is false iff CCCode is Legal. I don't
    // understand if this code is useful for strict nodes.
    assert(!IsStrict && "Don't know how to expand for strict nodes.");

    // Otherwise, SETCC for the given comparison type must be completely
    // illegal; expand it into a SELECT_CC.
    EVT VT = Node->getValueType(0);
    int TrueValue;
    switch (TLI.getBooleanContents(Tmp1.getValueType())) {
    case TargetLowering::ZeroOrOneBooleanContent:
    case TargetLowering::UndefinedBooleanContent:
      TrueValue = 1;
      break;
    case TargetLowering::ZeroOrNegativeOneBooleanContent:
      TrueValue = -1;
      break;
    }
    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
                       DAG.getConstant(TrueValue, dl, VT),
                       DAG.getConstant(0, dl, VT),
                       Tmp3);
    Tmp1->setFlags(Node->getFlags());
    Results.push_back(Tmp1);
    break;
  }
  case ISD::SELECT_CC: {
    // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS
    Tmp1 = Node->getOperand(0);   // LHS
    Tmp2 = Node->getOperand(1);   // RHS
    Tmp3 = Node->getOperand(2);   // True
    Tmp4 = Node->getOperand(3);   // False
    EVT VT = Node->getValueType(0);
    SDValue Chain;
    SDValue CC = Node->getOperand(4);
    ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();

    if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
      // If the condition code is legal, then we need to expand this
      // node using SETCC and SELECT.
      EVT CmpVT = Tmp1.getValueType();
      assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
             "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
             "expanded.");
      EVT CCVT = getSetCCResultType(CmpVT);
      SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
      Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
      break;
    }

    // SELECT_CC is legal, so the condition code must not be.
    bool Legalized = false;
    // Try to legalize by inverting the condition.  This is for targets that
    // might support an ordered version of a condition, but not the unordered
    // version (or vice versa).
    ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType());
    if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
      // Use the new condition code and swap true and false
      Legalized = true;
      Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
      Tmp1->setFlags(Node->getFlags());
    } else {
      // If The inverse is not legal, then try to swap the arguments using
      // the inverse condition code.
      ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
      if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
        // The swapped inverse condition is legal, so swap true and false,
        // lhs and rhs.
        Legalized = true;
        Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
        Tmp1->setFlags(Node->getFlags());
      }
    }

    if (!Legalized) {
      Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()),
                                        Tmp1, Tmp2, CC, NeedInvert, dl, Chain);

      assert(Legalized && "Can't legalize SELECT_CC with legal condition!");

      // If we expanded the SETCC by inverting the condition code, then swap
      // the True/False operands to match.
      if (NeedInvert)
        std::swap(Tmp3, Tmp4);

      // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
      // condition code, create a new SELECT_CC node.
      if (CC.getNode()) {
        Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
                           Tmp1, Tmp2, Tmp3, Tmp4, CC);
      } else {
        Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
        CC = DAG.getCondCode(ISD::SETNE);
        Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
                           Tmp2, Tmp3, Tmp4, CC);
      }
      Tmp1->setFlags(Node->getFlags());
    }
    Results.push_back(Tmp1);
    break;
  }
  case ISD::BR_CC: {
    // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS
    SDValue Chain;
    Tmp1 = Node->getOperand(0);              // Chain
    Tmp2 = Node->getOperand(2);              // LHS
    Tmp3 = Node->getOperand(3);              // RHS
    Tmp4 = Node->getOperand(1);              // CC

    bool Legalized =
        LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2,
                              Tmp3, Tmp4, NeedInvert, dl, Chain);
    (void)Legalized;
    assert(Legalized && "Can't legalize BR_CC with legal condition!");

    assert(!NeedInvert && "Don't know how to invert BR_CC!");

    // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
    // node.
    if (Tmp4.getNode()) {
      Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
                         Tmp4, Tmp2, Tmp3, Node->getOperand(4));
    } else {
      Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
      Tmp4 = DAG.getCondCode(ISD::SETNE);
      Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
                         Tmp2, Tmp3, Node->getOperand(4));
    }
    Results.push_back(Tmp1);
    break;
  }
  case ISD::BUILD_VECTOR:
    Results.push_back(ExpandBUILD_VECTOR(Node));
    break;
  case ISD::SPLAT_VECTOR:
    Results.push_back(ExpandSPLAT_VECTOR(Node));
    break;
  case ISD::SRA:
  case ISD::SRL:
  case ISD::SHL: {
    // Scalarize vector SRA/SRL/SHL.
    EVT VT = Node->getValueType(0);
    assert(VT.isVector() && "Unable to legalize non-vector shift");
    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
    unsigned NumElem = VT.getVectorNumElements();

    SmallVector<SDValue, 8> Scalars;
    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
      SDValue Ex =
          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
                      Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl));
      SDValue Sh =
          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
                      Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl));
      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
                                    VT.getScalarType(), Ex, Sh));
    }

    SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
    Results.push_back(Result);
    break;
  }
  case ISD::VECREDUCE_FADD:
  case ISD::VECREDUCE_FMUL:
  case ISD::VECREDUCE_ADD:
  case ISD::VECREDUCE_MUL:
  case ISD::VECREDUCE_AND:
  case ISD::VECREDUCE_OR:
  case ISD::VECREDUCE_XOR:
  case ISD::VECREDUCE_SMAX:
  case ISD::VECREDUCE_SMIN:
  case ISD::VECREDUCE_UMAX:
  case ISD::VECREDUCE_UMIN:
  case ISD::VECREDUCE_FMAX:
  case ISD::VECREDUCE_FMIN:
    Results.push_back(TLI.expandVecReduce(Node, DAG));
    break;
  case ISD::GLOBAL_OFFSET_TABLE:
  case ISD::GlobalAddress:
  case ISD::GlobalTLSAddress:
  case ISD::ExternalSymbol:
  case ISD::ConstantPool:
  case ISD::JumpTable:
  case ISD::INTRINSIC_W_CHAIN:
  case ISD::INTRINSIC_WO_CHAIN:
  case ISD::INTRINSIC_VOID:
    // FIXME: Custom lowering for these operations shouldn't return null!
    // Return true so that we don't call ConvertNodeToLibcall which also won't
    // do anything.
    return true;
  }

  if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) {
    // FIXME: We were asked to expand a strict floating-point operation,
    // but there is currently no expansion implemented that would preserve
    // the "strict" properties.  For now, we just fall back to the non-strict
    // version if that is legal on the target.  The actual mutation of the
    // operation will happen in SelectionDAGISel::DoInstructionSelection.
    switch (Node->getOpcode()) {
    default:
      if (TLI.getStrictFPOperationAction(Node->getOpcode(),
                                         Node->getValueType(0))
          == TargetLowering::Legal)
        return true;
      break;
    case ISD::STRICT_FSUB: {
      if (TLI.getStrictFPOperationAction(
              ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal)
        return true;
      if (TLI.getStrictFPOperationAction(
              ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal)
        break;

      EVT VT = Node->getValueType(0);
      const SDNodeFlags Flags = Node->getFlags();
      SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags);
      SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(),
                                 {Node->getOperand(0), Node->getOperand(1), Neg},
                         Flags);

      Results.push_back(Fadd);
      Results.push_back(Fadd.getValue(1));
      break;
    }
    case ISD::STRICT_LRINT:
    case ISD::STRICT_LLRINT:
    case ISD::STRICT_LROUND:
    case ISD::STRICT_LLROUND:
      // These are registered by the operand type instead of the value
      // type. Reflect that here.
      if (TLI.getStrictFPOperationAction(Node->getOpcode(),
                                         Node->getOperand(1).getValueType())
          == TargetLowering::Legal)
        return true;
      break;
    }
  }

  // Replace the original node with the legalized result.
  if (Results.empty()) {
    LLVM_DEBUG(dbgs() << "Cannot expand node\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
  ReplaceNode(Node, Results.data());
  return true;
}

void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
  LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
  SmallVector<SDValue, 8> Results;
  SDLoc dl(Node);
  // FIXME: Check flags on the node to see if we can use a finite call.
  unsigned Opc = Node->getOpcode();
  switch (Opc) {
  case ISD::ATOMIC_FENCE: {
    // If the target didn't lower this, lower it to '__sync_synchronize()' call
    // FIXME: handle "fence singlethread" more efficiently.
    TargetLowering::ArgListTy Args;

    TargetLowering::CallLoweringInfo CLI(DAG);
    CLI.setDebugLoc(dl)
        .setChain(Node->getOperand(0))
        .setLibCallee(
            CallingConv::C, Type::getVoidTy(*DAG.getContext()),
            DAG.getExternalSymbol("__sync_synchronize",
                                  TLI.getPointerTy(DAG.getDataLayout())),
            std::move(Args));

    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);

    Results.push_back(CallResult.second);
    break;
  }
  // By default, atomic intrinsics are marked Legal and lowered. Targets
  // which don't support them directly, however, may want libcalls, in which
  // case they mark them Expand, and we get here.
  case ISD::ATOMIC_SWAP:
  case ISD::ATOMIC_LOAD_ADD:
  case ISD::ATOMIC_LOAD_SUB:
  case ISD::ATOMIC_LOAD_AND:
  case ISD::ATOMIC_LOAD_CLR:
  case ISD::ATOMIC_LOAD_OR:
  case ISD::ATOMIC_LOAD_XOR:
  case ISD::ATOMIC_LOAD_NAND:
  case ISD::ATOMIC_LOAD_MIN:
  case ISD::ATOMIC_LOAD_MAX:
  case ISD::ATOMIC_LOAD_UMIN:
  case ISD::ATOMIC_LOAD_UMAX:
  case ISD::ATOMIC_CMP_SWAP: {
    MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
    RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
    assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");

    EVT RetVT = Node->getValueType(0);
    SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
    TargetLowering::MakeLibCallOptions CallOptions;
    std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
                                                      Ops, CallOptions,
                                                      SDLoc(Node),
                                                      Node->getOperand(0));
    Results.push_back(Tmp.first);
    Results.push_back(Tmp.second);
    break;
  }
  case ISD::TRAP: {
    // If this operation is not supported, lower it to 'abort()' call
    TargetLowering::ArgListTy Args;
    TargetLowering::CallLoweringInfo CLI(DAG);
    CLI.setDebugLoc(dl)
        .setChain(Node->getOperand(0))
        .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
                      DAG.getExternalSymbol(
                          "abort", TLI.getPointerTy(DAG.getDataLayout())),
                      std::move(Args));
    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);

    Results.push_back(CallResult.second);
    break;
  }
  case ISD::FMINNUM:
  case ISD::STRICT_FMINNUM:
    ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
                    RTLIB::FMIN_F80, RTLIB::FMIN_F128,
                    RTLIB::FMIN_PPCF128, Results);
    break;
  case ISD::FMAXNUM:
  case ISD::STRICT_FMAXNUM:
    ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
                    RTLIB::FMAX_F80, RTLIB::FMAX_F128,
                    RTLIB::FMAX_PPCF128, Results);
    break;
  case ISD::FSQRT:
  case ISD::STRICT_FSQRT:
    ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
                    RTLIB::SQRT_F80, RTLIB::SQRT_F128,
                    RTLIB::SQRT_PPCF128, Results);
    break;
  case ISD::FCBRT:
    ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
                    RTLIB::CBRT_F80, RTLIB::CBRT_F128,
                    RTLIB::CBRT_PPCF128, Results);
    break;
  case ISD::FSIN:
  case ISD::STRICT_FSIN:
    ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
                    RTLIB::SIN_F80, RTLIB::SIN_F128,
                    RTLIB::SIN_PPCF128, Results);
    break;
  case ISD::FCOS:
  case ISD::STRICT_FCOS:
    ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
                    RTLIB::COS_F80, RTLIB::COS_F128,
                    RTLIB::COS_PPCF128, Results);
    break;
  case ISD::FSINCOS:
    // Expand into sincos libcall.
    ExpandSinCosLibCall(Node, Results);
    break;
  case ISD::FLOG:
  case ISD::STRICT_FLOG:
    ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
                    RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results);
    break;
  case ISD::FLOG2:
  case ISD::STRICT_FLOG2:
    ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
                    RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results);
    break;
  case ISD::FLOG10:
  case ISD::STRICT_FLOG10:
    ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
                    RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results);
    break;
  case ISD::FEXP:
  case ISD::STRICT_FEXP:
    ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
                    RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results);
    break;
  case ISD::FEXP2:
  case ISD::STRICT_FEXP2:
    ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
                    RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results);
    break;
  case ISD::FTRUNC:
  case ISD::STRICT_FTRUNC:
    ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
                    RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
                    RTLIB::TRUNC_PPCF128, Results);
    break;
  case ISD::FFLOOR:
  case ISD::STRICT_FFLOOR:
    ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
                    RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
                    RTLIB::FLOOR_PPCF128, Results);
    break;
  case ISD::FCEIL:
  case ISD::STRICT_FCEIL:
    ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
                    RTLIB::CEIL_F80, RTLIB::CEIL_F128,
                    RTLIB::CEIL_PPCF128, Results);
    break;
  case ISD::FRINT:
  case ISD::STRICT_FRINT:
    ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
                    RTLIB::RINT_F80, RTLIB::RINT_F128,
                    RTLIB::RINT_PPCF128, Results);
    break;
  case ISD::FNEARBYINT:
  case ISD::STRICT_FNEARBYINT:
    ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
                    RTLIB::NEARBYINT_F64,
                    RTLIB::NEARBYINT_F80,
                    RTLIB::NEARBYINT_F128,
                    RTLIB::NEARBYINT_PPCF128, Results);
    break;
  case ISD::FROUND:
  case ISD::STRICT_FROUND:
    ExpandFPLibCall(Node, RTLIB::ROUND_F32,
                    RTLIB::ROUND_F64,
                    RTLIB::ROUND_F80,
                    RTLIB::ROUND_F128,
                    RTLIB::ROUND_PPCF128, Results);
    break;
  case ISD::FROUNDEVEN:
  case ISD::STRICT_FROUNDEVEN:
    ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32,
                    RTLIB::ROUNDEVEN_F64,
                    RTLIB::ROUNDEVEN_F80,
                    RTLIB::ROUNDEVEN_F128,
                    RTLIB::ROUNDEVEN_PPCF128, Results);
    break;
  case ISD::FPOWI:
  case ISD::STRICT_FPOWI: {
    RTLIB::Libcall LC;
    switch (Node->getSimpleValueType(0).SimpleTy) {
    default: llvm_unreachable("Unexpected request for libcall!");
    case MVT::f32: LC = RTLIB::POWI_F32; break;
    case MVT::f64: LC = RTLIB::POWI_F64; break;
    case MVT::f80: LC = RTLIB::POWI_F80; break;
    case MVT::f128: LC = RTLIB::POWI_F128; break;
    case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break;
    }
    if (!TLI.getLibcallName(LC)) {
      // Some targets don't have a powi libcall; use pow instead.
      SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node),
                                     Node->getValueType(0),
                                     Node->getOperand(1));
      Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node),
                                    Node->getValueType(0), Node->getOperand(0),
                                    Exponent));
      break;
    }
    ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
                    RTLIB::POWI_F80, RTLIB::POWI_F128,
                    RTLIB::POWI_PPCF128, Results);
    break;
  }
  case ISD::FPOW:
  case ISD::STRICT_FPOW:
    ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
                    RTLIB::POW_F128, RTLIB::POW_PPCF128, Results);
    break;
  case ISD::LROUND:
  case ISD::STRICT_LROUND:
    ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
                       RTLIB::LROUND_F64, RTLIB::LROUND_F80,
                       RTLIB::LROUND_F128,
                       RTLIB::LROUND_PPCF128, Results);
    break;
  case ISD::LLROUND:
  case ISD::STRICT_LLROUND:
    ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
                       RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
                       RTLIB::LLROUND_F128,
                       RTLIB::LLROUND_PPCF128, Results);
    break;
  case ISD::LRINT:
  case ISD::STRICT_LRINT:
    ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
                       RTLIB::LRINT_F64, RTLIB::LRINT_F80,
                       RTLIB::LRINT_F128,
                       RTLIB::LRINT_PPCF128, Results);
    break;
  case ISD::LLRINT:
  case ISD::STRICT_LLRINT:
    ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
                       RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
                       RTLIB::LLRINT_F128,
                       RTLIB::LLRINT_PPCF128, Results);
    break;
  case ISD::FDIV:
  case ISD::STRICT_FDIV:
    ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
                    RTLIB::DIV_F80, RTLIB::DIV_F128,
                    RTLIB::DIV_PPCF128, Results);
    break;
  case ISD::FREM:
  case ISD::STRICT_FREM:
    ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
                    RTLIB::REM_F80, RTLIB::REM_F128,
                    RTLIB::REM_PPCF128, Results);
    break;
  case ISD::FMA:
  case ISD::STRICT_FMA:
    ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
                    RTLIB::FMA_F80, RTLIB::FMA_F128,
                    RTLIB::FMA_PPCF128, Results);
    break;
  case ISD::FADD:
  case ISD::STRICT_FADD:
    ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
                    RTLIB::ADD_F80, RTLIB::ADD_F128,
                    RTLIB::ADD_PPCF128, Results);
    break;
  case ISD::FMUL:
  case ISD::STRICT_FMUL:
    ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
                    RTLIB::MUL_F80, RTLIB::MUL_F128,
                    RTLIB::MUL_PPCF128, Results);
    break;
  case ISD::FP16_TO_FP:
    if (Node->getValueType(0) == MVT::f32) {
      Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
    }
    break;
  case ISD::STRICT_FP16_TO_FP: {
    if (Node->getValueType(0) == MVT::f32) {
      TargetLowering::MakeLibCallOptions CallOptions;
      std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(
          DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions,
          SDLoc(Node), Node->getOperand(0));
      Results.push_back(Tmp.first);
      Results.push_back(Tmp.second);
    }
    break;
  }
  case ISD::FP_TO_FP16: {
    RTLIB::Libcall LC =
        RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
    assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
    Results.push_back(ExpandLibCall(LC, Node, false));
    break;
  }
  case ISD::STRICT_FP_TO_FP16: {
    RTLIB::Libcall LC =
        RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16);
    assert(LC != RTLIB::UNKNOWN_LIBCALL &&
           "Unable to expand strict_fp_to_fp16");
    TargetLowering::MakeLibCallOptions CallOptions;
    std::pair<SDValue, SDValue> Tmp =
        TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1),
                        CallOptions, SDLoc(Node), Node->getOperand(0));
    Results.push_back(Tmp.first);
    Results.push_back(Tmp.second);
    break;
  }
  case ISD::FSUB:
  case ISD::STRICT_FSUB:
    ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
                    RTLIB::SUB_F80, RTLIB::SUB_F128,
                    RTLIB::SUB_PPCF128, Results);
    break;
  case ISD::SREM:
    Results.push_back(ExpandIntLibCall(Node, true,
                                       RTLIB::SREM_I8,
                                       RTLIB::SREM_I16, RTLIB::SREM_I32,
                                       RTLIB::SREM_I64, RTLIB::SREM_I128));
    break;
  case ISD::UREM:
    Results.push_back(ExpandIntLibCall(Node, false,
                                       RTLIB::UREM_I8,
                                       RTLIB::UREM_I16, RTLIB::UREM_I32,
                                       RTLIB::UREM_I64, RTLIB::UREM_I128));
    break;
  case ISD::SDIV:
    Results.push_back(ExpandIntLibCall(Node, true,
                                       RTLIB::SDIV_I8,
                                       RTLIB::SDIV_I16, RTLIB::SDIV_I32,
                                       RTLIB::SDIV_I64, RTLIB::SDIV_I128));
    break;
  case ISD::UDIV:
    Results.push_back(ExpandIntLibCall(Node, false,
                                       RTLIB::UDIV_I8,
                                       RTLIB::UDIV_I16, RTLIB::UDIV_I32,
                                       RTLIB::UDIV_I64, RTLIB::UDIV_I128));
    break;
  case ISD::SDIVREM:
  case ISD::UDIVREM:
    // Expand into divrem libcall
    ExpandDivRemLibCall(Node, Results);
    break;
  case ISD::MUL:
    Results.push_back(ExpandIntLibCall(Node, false,
                                       RTLIB::MUL_I8,
                                       RTLIB::MUL_I16, RTLIB::MUL_I32,
                                       RTLIB::MUL_I64, RTLIB::MUL_I128));
    break;
  case ISD::CTLZ_ZERO_UNDEF:
    switch (Node->getSimpleValueType(0).SimpleTy) {
    default:
      llvm_unreachable("LibCall explicitly requested, but not available");
    case MVT::i32:
      Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
      break;
    case MVT::i64:
      Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
      break;
    case MVT::i128:
      Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
      break;
    }
    break;
  }

  // Replace the original node with the legalized result.
  if (!Results.empty()) {
    LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
    ReplaceNode(Node, Results.data());
  } else
    LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
}

// Determine the vector type to use in place of an original scalar element when
// promoting equally sized vectors.
static MVT getPromotedVectorElementType(const TargetLowering &TLI,
                                        MVT EltVT, MVT NewEltVT) {
  unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
  MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
  assert(TLI.isTypeLegal(MidVT) && "unexpected");
  return MidVT;
}

void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
  LLVM_DEBUG(dbgs() << "Trying to promote node\n");
  SmallVector<SDValue, 8> Results;
  MVT OVT = Node->getSimpleValueType(0);
  if (Node->getOpcode() == ISD::UINT_TO_FP ||
      Node->getOpcode() == ISD::SINT_TO_FP ||
      Node->getOpcode() == ISD::SETCC ||
      Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
      Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
    OVT = Node->getOperand(0).getSimpleValueType();
  }
  if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP ||
      Node->getOpcode() == ISD::STRICT_SINT_TO_FP)
    OVT = Node->getOperand(1).getSimpleValueType();
  if (Node->getOpcode() == ISD::BR_CC)
    OVT = Node->getOperand(2).getSimpleValueType();
  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
  SDLoc dl(Node);
  SDValue Tmp1, Tmp2, Tmp3;
  switch (Node->getOpcode()) {
  case ISD::CTTZ:
  case ISD::CTTZ_ZERO_UNDEF:
  case ISD::CTLZ:
  case ISD::CTLZ_ZERO_UNDEF:
  case ISD::CTPOP:
    // Zero extend the argument unless its cttz, then use any_extend.
    if (Node->getOpcode() == ISD::CTTZ ||
        Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
      Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
    else
      Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));

    if (Node->getOpcode() == ISD::CTTZ) {
      // The count is the same in the promoted type except if the original
      // value was zero.  This can be handled by setting the bit just off
      // the top of the original type.
      auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
                                        OVT.getSizeInBits());
      Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
                         DAG.getConstant(TopBit, dl, NVT));
    }
    // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
    // already the correct result.
    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
    if (Node->getOpcode() == ISD::CTLZ ||
        Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
                          DAG.getConstant(NVT.getSizeInBits() -
                                          OVT.getSizeInBits(), dl, NVT));
    }
    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
    break;
  case ISD::BITREVERSE:
  case ISD::BSWAP: {
    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
    Tmp1 = DAG.getNode(
        ISD::SRL, dl, NVT, Tmp1,
        DAG.getConstant(DiffBits, dl,
                        TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));

    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
    break;
  }
  case ISD::FP_TO_UINT:
  case ISD::STRICT_FP_TO_UINT:
  case ISD::FP_TO_SINT:
  case ISD::STRICT_FP_TO_SINT:
    PromoteLegalFP_TO_INT(Node, dl, Results);
    break;
  case ISD::UINT_TO_FP:
  case ISD::STRICT_UINT_TO_FP:
  case ISD::SINT_TO_FP:
  case ISD::STRICT_SINT_TO_FP:
    PromoteLegalINT_TO_FP(Node, dl, Results);
    break;
  case ISD::VAARG: {
    SDValue Chain = Node->getOperand(0); // Get the chain.
    SDValue Ptr = Node->getOperand(1); // Get the pointer.

    unsigned TruncOp;
    if (OVT.isVector()) {
      TruncOp = ISD::BITCAST;
    } else {
      assert(OVT.isInteger()
        && "VAARG promotion is supported only for vectors or integer types");
      TruncOp = ISD::TRUNCATE;
    }

    // Perform the larger operation, then convert back
    Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
             Node->getConstantOperandVal(3));
    Chain = Tmp1.getValue(1);

    Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);

    // Modified the chain result - switch anything that used the old chain to
    // use the new one.
    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
    if (UpdatedNodes) {
      UpdatedNodes->insert(Tmp2.getNode());
      UpdatedNodes->insert(Chain.getNode());
    }
    ReplacedNode(Node);
    break;
  }
  case ISD::MUL:
  case ISD::SDIV:
  case ISD::SREM:
  case ISD::UDIV:
  case ISD::UREM:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR: {
    unsigned ExtOp, TruncOp;
    if (OVT.isVector()) {
      ExtOp   = ISD::BITCAST;
      TruncOp = ISD::BITCAST;
    } else {
      assert(OVT.isInteger() && "Cannot promote logic operation");

      switch (Node->getOpcode()) {
      default:
        ExtOp = ISD::ANY_EXTEND;
        break;
      case ISD::SDIV:
      case ISD::SREM:
        ExtOp = ISD::SIGN_EXTEND;
        break;
      case ISD::UDIV:
      case ISD::UREM:
        ExtOp = ISD::ZERO_EXTEND;
        break;
      }
      TruncOp = ISD::TRUNCATE;
    }
    // Promote each of the values to the new type.
    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
    // Perform the larger operation, then convert back
    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
    break;
  }
  case ISD::UMUL_LOHI:
  case ISD::SMUL_LOHI: {
    // Promote to a multiply in a wider integer type.
    unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
                                                         : ISD::SIGN_EXTEND;
    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
    Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);

    auto &DL = DAG.getDataLayout();
    unsigned OriginalSize = OVT.getScalarSizeInBits();
    Tmp2 = DAG.getNode(
        ISD::SRL, dl, NVT, Tmp1,
        DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
    break;
  }
  case ISD::SELECT: {
    unsigned ExtOp, TruncOp;
    if (Node->getValueType(0).isVector() ||
        Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
      ExtOp   = ISD::BITCAST;
      TruncOp = ISD::BITCAST;
    } else if (Node->getValueType(0).isInteger()) {
      ExtOp   = ISD::ANY_EXTEND;
      TruncOp = ISD::TRUNCATE;
    } else {
      ExtOp   = ISD::FP_EXTEND;
      TruncOp = ISD::FP_ROUND;
    }
    Tmp1 = Node->getOperand(0);
    // Promote each of the values to the new type.
    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
    // Perform the larger operation, then round down.
    Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
    Tmp1->setFlags(Node->getFlags());
    if (TruncOp != ISD::FP_ROUND)
      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
    else
      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
                         DAG.getIntPtrConstant(0, dl));
    Results.push_back(Tmp1);
    break;
  }
  case ISD::VECTOR_SHUFFLE: {
    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();

    // Cast the two input vectors.
    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));

    // Convert the shuffle mask to the right # elements.
    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
    Results.push_back(Tmp1);
    break;
  }
  case ISD::SETCC: {
    unsigned ExtOp = ISD::FP_EXTEND;
    if (NVT.isInteger()) {
      ISD::CondCode CCCode =
        cast<CondCodeSDNode>(Node->getOperand(2))->get();
      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
    }
    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
                                  Tmp2, Node->getOperand(2), Node->getFlags()));
    break;
  }
  case ISD::BR_CC: {
    unsigned ExtOp = ISD::FP_EXTEND;
    if (NVT.isInteger()) {
      ISD::CondCode CCCode =
        cast<CondCodeSDNode>(Node->getOperand(1))->get();
      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
    }
    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
    Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
                                  Node->getOperand(0), Node->getOperand(1),
                                  Tmp1, Tmp2, Node->getOperand(4)));
    break;
  }
  case ISD::FADD:
  case ISD::FSUB:
  case ISD::FMUL:
  case ISD::FDIV:
  case ISD::FREM:
  case ISD::FMINNUM:
  case ISD::FMAXNUM:
  case ISD::FPOW:
    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
                       Node->getFlags());
    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
                                  Tmp3, DAG.getIntPtrConstant(0, dl)));
    break;
  case ISD::STRICT_FREM:
  case ISD::STRICT_FPOW:
    Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
                       {Node->getOperand(0), Node->getOperand(1)});
    Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
                       {Node->getOperand(0), Node->getOperand(2)});
    Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1),
                       Tmp2.getValue(1));
    Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
                       {Tmp3, Tmp1, Tmp2});
    Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
                       {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)});
    Results.push_back(Tmp1);
    Results.push_back(Tmp1.getValue(1));
    break;
  case ISD::FMA:
    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
    Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
    Results.push_back(
        DAG.getNode(ISD::FP_ROUND, dl, OVT,
                    DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
                    DAG.getIntPtrConstant(0, dl)));
    break;
  case ISD::FCOPYSIGN:
  case ISD::FPOWI: {
    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
    Tmp2 = Node->getOperand(1);
    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);

    // fcopysign doesn't change anything but the sign bit, so
    //   (fp_round (fcopysign (fpext a), b))
    // is as precise as
    //   (fp_round (fpext a))
    // which is a no-op. Mark it as a TRUNCating FP_ROUND.
    const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
                                  Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
    break;
  }
  case ISD::FFLOOR:
  case ISD::FCEIL:
  case ISD::FRINT:
  case ISD::FNEARBYINT:
  case ISD::FROUND:
  case ISD::FROUNDEVEN:
  case ISD::FTRUNC:
  case ISD::FNEG:
  case ISD::FSQRT:
  case ISD::FSIN:
  case ISD::FCOS:
  case ISD::FLOG:
  case ISD::FLOG2:
  case ISD::FLOG10:
  case ISD::FABS:
  case ISD::FEXP:
  case ISD::FEXP2:
    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
    Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
                                  Tmp2, DAG.getIntPtrConstant(0, dl)));
    break;
  case ISD::STRICT_FFLOOR:
  case ISD::STRICT_FCEIL:
  case ISD::STRICT_FSIN:
  case ISD::STRICT_FCOS:
  case ISD::STRICT_FLOG:
  case ISD::STRICT_FLOG10:
  case ISD::STRICT_FEXP:
    Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
                       {Node->getOperand(0), Node->getOperand(1)});
    Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
                       {Tmp1.getValue(1), Tmp1});
    Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
                       {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)});
    Results.push_back(Tmp3);
    Results.push_back(Tmp3.getValue(1));
    break;
  case ISD::BUILD_VECTOR: {
    MVT EltVT = OVT.getVectorElementType();
    MVT NewEltVT = NVT.getVectorElementType();

    // Handle bitcasts to a different vector type with the same total bit size
    //
    // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
    //  =>
    //  v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))

    assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
           "Invalid promote type for build_vector");
    assert(NewEltVT.bitsLT(EltVT) && "not handled");

    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);

    SmallVector<SDValue, 8> NewOps;
    for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
      SDValue Op = Node->getOperand(I);
      NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
    }

    SDLoc SL(Node);
    SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
    SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
    Results.push_back(CvtVec);
    break;
  }
  case ISD::EXTRACT_VECTOR_ELT: {
    MVT EltVT = OVT.getVectorElementType();
    MVT NewEltVT = NVT.getVectorElementType();

    // Handle bitcasts to a different vector type with the same total bit size.
    //
    // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
    //  =>
    //  v4i32:castx = bitcast x:v2i64
    //
    // i64 = bitcast
    //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
    //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
    //

    assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
           "Invalid promote type for extract_vector_elt");
    assert(NewEltVT.bitsLT(EltVT) && "not handled");

    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
    unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();

    SDValue Idx = Node->getOperand(1);
    EVT IdxVT = Idx.getValueType();
    SDLoc SL(Node);
    SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
    SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);

    SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));

    SmallVector<SDValue, 8> NewOps;
    for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
      SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
      SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);

      SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
                                CastVec, TmpIdx);
      NewOps.push_back(Elt);
    }

    SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
    Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
    break;
  }
  case ISD::INSERT_VECTOR_ELT: {
    MVT EltVT = OVT.getVectorElementType();
    MVT NewEltVT = NVT.getVectorElementType();

    // Handle bitcasts to a different vector type with the same total bit size
    //
    // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
    //  =>
    //  v4i32:castx = bitcast x:v2i64
    //  v2i32:casty = bitcast y:i64
    //
    // v2i64 = bitcast
    //   (v4i32 insert_vector_elt
    //       (v4i32 insert_vector_elt v4i32:castx,
    //                                (extract_vector_elt casty, 0), 2 * z),
    //        (extract_vector_elt casty, 1), (2 * z + 1))

    assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
           "Invalid promote type for insert_vector_elt");
    assert(NewEltVT.bitsLT(EltVT) && "not handled");

    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
    unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();

    SDValue Val = Node->getOperand(1);
    SDValue Idx = Node->getOperand(2);
    EVT IdxVT = Idx.getValueType();
    SDLoc SL(Node);

    SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
    SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);

    SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
    SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);

    SDValue NewVec = CastVec;
    for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
      SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
      SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);

      SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
                                CastVal, IdxOffset);

      NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
                           NewVec, Elt, InEltIdx);
    }

    Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
    break;
  }
  case ISD::SCALAR_TO_VECTOR: {
    MVT EltVT = OVT.getVectorElementType();
    MVT NewEltVT = NVT.getVectorElementType();

    // Handle bitcasts to different vector type with the same total bit size.
    //
    // e.g. v2i64 = scalar_to_vector x:i64
    //   =>
    //  concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
    //

    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
    SDValue Val = Node->getOperand(0);
    SDLoc SL(Node);

    SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
    SDValue Undef = DAG.getUNDEF(MidVT);

    SmallVector<SDValue, 8> NewElts;
    NewElts.push_back(CastVal);
    for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
      NewElts.push_back(Undef);

    SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
    SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
    Results.push_back(CvtVec);
    break;
  }
  case ISD::ATOMIC_SWAP: {
    AtomicSDNode *AM = cast<AtomicSDNode>(Node);
    SDLoc SL(Node);
    SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
    assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
           "unexpected promotion type");
    assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
           "unexpected atomic_swap with illegal type");

    SDValue NewAtomic
      = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
                      DAG.getVTList(NVT, MVT::Other),
                      { AM->getChain(), AM->getBasePtr(), CastVal },
                      AM->getMemOperand());
    Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
    Results.push_back(NewAtomic.getValue(1));
    break;
  }
  }

  // Replace the original node with the legalized result.
  if (!Results.empty()) {
    LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
    ReplaceNode(Node, Results.data());
  } else
    LLVM_DEBUG(dbgs() << "Could not promote node\n");
}

/// This is the entry point for the file.
void SelectionDAG::Legalize() {
  AssignTopologicalOrder();

  SmallPtrSet<SDNode *, 16> LegalizedNodes;
  // Use a delete listener to remove nodes which were deleted during
  // legalization from LegalizeNodes. This is needed to handle the situation
  // where a new node is allocated by the object pool to the same address of a
  // previously deleted node.
  DAGNodeDeletedListener DeleteListener(
      *this,
      [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });

  SelectionDAGLegalize Legalizer(*this, LegalizedNodes);

  // Visit all the nodes. We start in topological order, so that we see
  // nodes with their original operands intact. Legalization can produce
  // new nodes which may themselves need to be legalized. Iterate until all
  // nodes have been legalized.
  while (true) {
    bool AnyLegalized = false;
    for (auto NI = allnodes_end(); NI != allnodes_begin();) {
      --NI;

      SDNode *N = &*NI;
      if (N->use_empty() && N != getRoot().getNode()) {
        ++NI;
        DeleteNode(N);
        continue;
      }

      if (LegalizedNodes.insert(N).second) {
        AnyLegalized = true;
        Legalizer.LegalizeOp(N);

        if (N->use_empty() && N != getRoot().getNode()) {
          ++NI;
          DeleteNode(N);
        }
      }
    }
    if (!AnyLegalized)
      break;

  }

  // Remove dead nodes now.
  RemoveDeadNodes();
}

bool SelectionDAG::LegalizeOp(SDNode *N,
                              SmallSetVector<SDNode *, 16> &UpdatedNodes) {
  SmallPtrSet<SDNode *, 16> LegalizedNodes;
  SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);

  // Directly insert the node in question, and legalize it. This will recurse
  // as needed through operands.
  LegalizedNodes.insert(N);
  Legalizer.LegalizeOp(N);

  return LegalizedNodes.count(N);
}