SelectionDAGBuilder.h 37.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
//===- SelectionDAGBuilder.h - Selection-DAG building -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements routines for translating from LLVM IR into SelectionDAG IR.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
#define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H

#include "StatepointLowering.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/SwitchLoweringUtils.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Instruction.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>
#include <vector>

namespace llvm {

class AAResults;
class AllocaInst;
class AtomicCmpXchgInst;
class AtomicRMWInst;
class BasicBlock;
class BranchInst;
class CallInst;
class CallBrInst;
class CatchPadInst;
class CatchReturnInst;
class CatchSwitchInst;
class CleanupPadInst;
class CleanupReturnInst;
class Constant;
class ConstrainedFPIntrinsic;
class DbgValueInst;
class DataLayout;
class DIExpression;
class DILocalVariable;
class DILocation;
class FenceInst;
class FunctionLoweringInfo;
class GCFunctionInfo;
class GCRelocateInst;
class GCResultInst;
class GCStatepointInst;
class IndirectBrInst;
class InvokeInst;
class LandingPadInst;
class LLVMContext;
class LoadInst;
class MachineBasicBlock;
class PHINode;
class ResumeInst;
class ReturnInst;
class SDDbgValue;
class SelectionDAG;
class StoreInst;
class SwiftErrorValueTracking;
class SwitchInst;
class TargetLibraryInfo;
class TargetMachine;
class Type;
class VAArgInst;
class UnreachableInst;
class Use;
class User;
class Value;

//===----------------------------------------------------------------------===//
/// SelectionDAGBuilder - This is the common target-independent lowering
/// implementation that is parameterized by a TargetLowering object.
///
class SelectionDAGBuilder {
  /// The current instruction being visited.
  const Instruction *CurInst = nullptr;

  DenseMap<const Value*, SDValue> NodeMap;

  /// Maps argument value for unused arguments. This is used
  /// to preserve debug information for incoming arguments.
  DenseMap<const Value*, SDValue> UnusedArgNodeMap;

  /// Helper type for DanglingDebugInfoMap.
  class DanglingDebugInfo {
    const DbgValueInst* DI = nullptr;
    DebugLoc dl;
    unsigned SDNodeOrder = 0;

  public:
    DanglingDebugInfo() = default;
    DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO)
        : DI(di), dl(std::move(DL)), SDNodeOrder(SDNO) {}

    const DbgValueInst* getDI() { return DI; }
    DebugLoc getdl() { return dl; }
    unsigned getSDNodeOrder() { return SDNodeOrder; }
  };

  /// Helper type for DanglingDebugInfoMap.
  typedef std::vector<DanglingDebugInfo> DanglingDebugInfoVector;

  /// Keeps track of dbg_values for which we have not yet seen the referent.
  /// We defer handling these until we do see it.
  MapVector<const Value*, DanglingDebugInfoVector> DanglingDebugInfoMap;

public:
  /// Loads are not emitted to the program immediately.  We bunch them up and
  /// then emit token factor nodes when possible.  This allows us to get simple
  /// disambiguation between loads without worrying about alias analysis.
  SmallVector<SDValue, 8> PendingLoads;

  /// State used while lowering a statepoint sequence (gc_statepoint,
  /// gc_relocate, and gc_result).  See StatepointLowering.hpp/cpp for details.
  StatepointLoweringState StatepointLowering;

private:
  /// CopyToReg nodes that copy values to virtual registers for export to other
  /// blocks need to be emitted before any terminator instruction, but they have
  /// no other ordering requirements. We bunch them up and the emit a single
  /// tokenfactor for them just before terminator instructions.
  SmallVector<SDValue, 8> PendingExports;

  /// Similar to loads, nodes corresponding to constrained FP intrinsics are
  /// bunched up and emitted when necessary.  These can be moved across each
  /// other and any (normal) memory operation (load or store), but not across
  /// calls or instructions having unspecified side effects.  As a special
  /// case, constrained FP intrinsics using fpexcept.strict may not be deleted
  /// even if otherwise unused, so they need to be chained before any
  /// terminator instruction (like PendingExports).  We track the latter
  /// set of nodes in a separate list.
  SmallVector<SDValue, 8> PendingConstrainedFP;
  SmallVector<SDValue, 8> PendingConstrainedFPStrict;

  /// Update root to include all chains from the Pending list.
  SDValue updateRoot(SmallVectorImpl<SDValue> &Pending);

  /// A unique monotonically increasing number used to order the SDNodes we
  /// create.
  unsigned SDNodeOrder;

  /// Determine the rank by weight of CC in [First,Last]. If CC has more weight
  /// than each cluster in the range, its rank is 0.
  unsigned caseClusterRank(const SwitchCG::CaseCluster &CC,
                           SwitchCG::CaseClusterIt First,
                           SwitchCG::CaseClusterIt Last);

  /// Emit comparison and split W into two subtrees.
  void splitWorkItem(SwitchCG::SwitchWorkList &WorkList,
                     const SwitchCG::SwitchWorkListItem &W, Value *Cond,
                     MachineBasicBlock *SwitchMBB);

  /// Lower W.
  void lowerWorkItem(SwitchCG::SwitchWorkListItem W, Value *Cond,
                     MachineBasicBlock *SwitchMBB,
                     MachineBasicBlock *DefaultMBB);

  /// Peel the top probability case if it exceeds the threshold
  MachineBasicBlock *
  peelDominantCaseCluster(const SwitchInst &SI,
                          SwitchCG::CaseClusterVector &Clusters,
                          BranchProbability &PeeledCaseProb);

  /// A class which encapsulates all of the information needed to generate a
  /// stack protector check and signals to isel via its state being initialized
  /// that a stack protector needs to be generated.
  ///
  /// *NOTE* The following is a high level documentation of SelectionDAG Stack
  /// Protector Generation. The reason that it is placed here is for a lack of
  /// other good places to stick it.
  ///
  /// High Level Overview of SelectionDAG Stack Protector Generation:
  ///
  /// Previously, generation of stack protectors was done exclusively in the
  /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
  /// splitting basic blocks at the IR level to create the success/failure basic
  /// blocks in the tail of the basic block in question. As a result of this,
  /// calls that would have qualified for the sibling call optimization were no
  /// longer eligible for optimization since said calls were no longer right in
  /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
  /// instruction).
  ///
  /// Then it was noticed that since the sibling call optimization causes the
  /// callee to reuse the caller's stack, if we could delay the generation of
  /// the stack protector check until later in CodeGen after the sibling call
  /// decision was made, we get both the tail call optimization and the stack
  /// protector check!
  ///
  /// A few goals in solving this problem were:
  ///
  ///   1. Preserve the architecture independence of stack protector generation.
  ///
  ///   2. Preserve the normal IR level stack protector check for platforms like
  ///      OpenBSD for which we support platform-specific stack protector
  ///      generation.
  ///
  /// The main problem that guided the present solution is that one can not
  /// solve this problem in an architecture independent manner at the IR level
  /// only. This is because:
  ///
  ///   1. The decision on whether or not to perform a sibling call on certain
  ///      platforms (for instance i386) requires lower level information
  ///      related to available registers that can not be known at the IR level.
  ///
  ///   2. Even if the previous point were not true, the decision on whether to
  ///      perform a tail call is done in LowerCallTo in SelectionDAG which
  ///      occurs after the Stack Protector Pass. As a result, one would need to
  ///      put the relevant callinst into the stack protector check success
  ///      basic block (where the return inst is placed) and then move it back
  ///      later at SelectionDAG/MI time before the stack protector check if the
  ///      tail call optimization failed. The MI level option was nixed
  ///      immediately since it would require platform-specific pattern
  ///      matching. The SelectionDAG level option was nixed because
  ///      SelectionDAG only processes one IR level basic block at a time
  ///      implying one could not create a DAG Combine to move the callinst.
  ///
  /// To get around this problem a few things were realized:
  ///
  ///   1. While one can not handle multiple IR level basic blocks at the
  ///      SelectionDAG Level, one can generate multiple machine basic blocks
  ///      for one IR level basic block. This is how we handle bit tests and
  ///      switches.
  ///
  ///   2. At the MI level, tail calls are represented via a special return
  ///      MIInst called "tcreturn". Thus if we know the basic block in which we
  ///      wish to insert the stack protector check, we get the correct behavior
  ///      by always inserting the stack protector check right before the return
  ///      statement. This is a "magical transformation" since no matter where
  ///      the stack protector check intrinsic is, we always insert the stack
  ///      protector check code at the end of the BB.
  ///
  /// Given the aforementioned constraints, the following solution was devised:
  ///
  ///   1. On platforms that do not support SelectionDAG stack protector check
  ///      generation, allow for the normal IR level stack protector check
  ///      generation to continue.
  ///
  ///   2. On platforms that do support SelectionDAG stack protector check
  ///      generation:
  ///
  ///     a. Use the IR level stack protector pass to decide if a stack
  ///        protector is required/which BB we insert the stack protector check
  ///        in by reusing the logic already therein. If we wish to generate a
  ///        stack protector check in a basic block, we place a special IR
  ///        intrinsic called llvm.stackprotectorcheck right before the BB's
  ///        returninst or if there is a callinst that could potentially be
  ///        sibling call optimized, before the call inst.
  ///
  ///     b. Then when a BB with said intrinsic is processed, we codegen the BB
  ///        normally via SelectBasicBlock. In said process, when we visit the
  ///        stack protector check, we do not actually emit anything into the
  ///        BB. Instead, we just initialize the stack protector descriptor
  ///        class (which involves stashing information/creating the success
  ///        mbbb and the failure mbb if we have not created one for this
  ///        function yet) and export the guard variable that we are going to
  ///        compare.
  ///
  ///     c. After we finish selecting the basic block, in FinishBasicBlock if
  ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is
  ///        initialized, we produce the validation code with one of these
  ///        techniques:
  ///          1) with a call to a guard check function
  ///          2) with inlined instrumentation
  ///
  ///        1) We insert a call to the check function before the terminator.
  ///
  ///        2) We first find a splice point in the parent basic block
  ///        before the terminator and then splice the terminator of said basic
  ///        block into the success basic block. Then we code-gen a new tail for
  ///        the parent basic block consisting of the two loads, the comparison,
  ///        and finally two branches to the success/failure basic blocks. We
  ///        conclude by code-gening the failure basic block if we have not
  ///        code-gened it already (all stack protector checks we generate in
  ///        the same function, use the same failure basic block).
  class StackProtectorDescriptor {
  public:
    StackProtectorDescriptor() = default;

    /// Returns true if all fields of the stack protector descriptor are
    /// initialized implying that we should/are ready to emit a stack protector.
    bool shouldEmitStackProtector() const {
      return ParentMBB && SuccessMBB && FailureMBB;
    }

    bool shouldEmitFunctionBasedCheckStackProtector() const {
      return ParentMBB && !SuccessMBB && !FailureMBB;
    }

    /// Initialize the stack protector descriptor structure for a new basic
    /// block.
    void initialize(const BasicBlock *BB, MachineBasicBlock *MBB,
                    bool FunctionBasedInstrumentation) {
      // Make sure we are not initialized yet.
      assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
             "already initialized!");
      ParentMBB = MBB;
      if (!FunctionBasedInstrumentation) {
        SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true);
        FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB);
      }
    }

    /// Reset state that changes when we handle different basic blocks.
    ///
    /// This currently includes:
    ///
    /// 1. The specific basic block we are generating a
    /// stack protector for (ParentMBB).
    ///
    /// 2. The successor machine basic block that will contain the tail of
    /// parent mbb after we create the stack protector check (SuccessMBB). This
    /// BB is visited only on stack protector check success.
    void resetPerBBState() {
      ParentMBB = nullptr;
      SuccessMBB = nullptr;
    }

    /// Reset state that only changes when we switch functions.
    ///
    /// This currently includes:
    ///
    /// 1. FailureMBB since we reuse the failure code path for all stack
    /// protector checks created in an individual function.
    ///
    /// 2.The guard variable since the guard variable we are checking against is
    /// always the same.
    void resetPerFunctionState() {
      FailureMBB = nullptr;
    }

    MachineBasicBlock *getParentMBB() { return ParentMBB; }
    MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
    MachineBasicBlock *getFailureMBB() { return FailureMBB; }

  private:
    /// The basic block for which we are generating the stack protector.
    ///
    /// As a result of stack protector generation, we will splice the
    /// terminators of this basic block into the successor mbb SuccessMBB and
    /// replace it with a compare/branch to the successor mbbs
    /// SuccessMBB/FailureMBB depending on whether or not the stack protector
    /// was violated.
    MachineBasicBlock *ParentMBB = nullptr;

    /// A basic block visited on stack protector check success that contains the
    /// terminators of ParentMBB.
    MachineBasicBlock *SuccessMBB = nullptr;

    /// This basic block visited on stack protector check failure that will
    /// contain a call to __stack_chk_fail().
    MachineBasicBlock *FailureMBB = nullptr;

    /// Add a successor machine basic block to ParentMBB. If the successor mbb
    /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
    /// block will be created. Assign a large weight if IsLikely is true.
    MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
                                       MachineBasicBlock *ParentMBB,
                                       bool IsLikely,
                                       MachineBasicBlock *SuccMBB = nullptr);
  };

private:
  const TargetMachine &TM;

public:
  /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
  /// nodes without a corresponding SDNode.
  static const unsigned LowestSDNodeOrder = 1;

  SelectionDAG &DAG;
  const DataLayout *DL = nullptr;
  AAResults *AA = nullptr;
  const TargetLibraryInfo *LibInfo;

  class SDAGSwitchLowering : public SwitchCG::SwitchLowering {
  public:
    SDAGSwitchLowering(SelectionDAGBuilder *sdb, FunctionLoweringInfo &funcinfo)
        : SwitchCG::SwitchLowering(funcinfo), SDB(sdb) {}

    virtual void addSuccessorWithProb(
        MachineBasicBlock *Src, MachineBasicBlock *Dst,
        BranchProbability Prob = BranchProbability::getUnknown()) override {
      SDB->addSuccessorWithProb(Src, Dst, Prob);
    }

  private:
    SelectionDAGBuilder *SDB;
  };

  // Data related to deferred switch lowerings. Used to construct additional
  // Basic Blocks in SelectionDAGISel::FinishBasicBlock.
  std::unique_ptr<SDAGSwitchLowering> SL;

  /// A StackProtectorDescriptor structure used to communicate stack protector
  /// information in between SelectBasicBlock and FinishBasicBlock.
  StackProtectorDescriptor SPDescriptor;

  // Emit PHI-node-operand constants only once even if used by multiple
  // PHI nodes.
  DenseMap<const Constant *, unsigned> ConstantsOut;

  /// Information about the function as a whole.
  FunctionLoweringInfo &FuncInfo;

  /// Information about the swifterror values used throughout the function.
  SwiftErrorValueTracking &SwiftError;

  /// Garbage collection metadata for the function.
  GCFunctionInfo *GFI;

  /// Map a landing pad to the call site indexes.
  DenseMap<MachineBasicBlock *, SmallVector<unsigned, 4>> LPadToCallSiteMap;

  /// This is set to true if a call in the current block has been translated as
  /// a tail call. In this case, no subsequent DAG nodes should be created.
  bool HasTailCall = false;

  LLVMContext *Context;

  SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
                      SwiftErrorValueTracking &swifterror, CodeGenOpt::Level ol)
      : SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()), DAG(dag),
        SL(std::make_unique<SDAGSwitchLowering>(this, funcinfo)), FuncInfo(funcinfo),
        SwiftError(swifterror) {}

  void init(GCFunctionInfo *gfi, AAResults *AA,
            const TargetLibraryInfo *li);

  /// Clear out the current SelectionDAG and the associated state and prepare
  /// this SelectionDAGBuilder object to be used for a new block. This doesn't
  /// clear out information about additional blocks that are needed to complete
  /// switch lowering or PHI node updating; that information is cleared out as
  /// it is consumed.
  void clear();

  /// Clear the dangling debug information map. This function is separated from
  /// the clear so that debug information that is dangling in a basic block can
  /// be properly resolved in a different basic block. This allows the
  /// SelectionDAG to resolve dangling debug information attached to PHI nodes.
  void clearDanglingDebugInfo();

  /// Return the current virtual root of the Selection DAG, flushing any
  /// PendingLoad items. This must be done before emitting a store or any other
  /// memory node that may need to be ordered after any prior load instructions.
  SDValue getMemoryRoot();

  /// Similar to getMemoryRoot, but also flushes PendingConstrainedFP(Strict)
  /// items. This must be done before emitting any call other any other node
  /// that may need to be ordered after FP instructions due to other side
  /// effects.
  SDValue getRoot();

  /// Similar to getRoot, but instead of flushing all the PendingLoad items,
  /// flush all the PendingExports (and PendingConstrainedFPStrict) items.
  /// It is necessary to do this before emitting a terminator instruction.
  SDValue getControlRoot();

  SDLoc getCurSDLoc() const {
    return SDLoc(CurInst, SDNodeOrder);
  }

  DebugLoc getCurDebugLoc() const {
    return CurInst ? CurInst->getDebugLoc() : DebugLoc();
  }

  void CopyValueToVirtualRegister(const Value *V, unsigned Reg);

  void visit(const Instruction &I);

  void visit(unsigned Opcode, const User &I);

  /// If there was virtual register allocated for the value V emit CopyFromReg
  /// of the specified type Ty. Return empty SDValue() otherwise.
  SDValue getCopyFromRegs(const Value *V, Type *Ty);

  /// If we have dangling debug info that describes \p Variable, or an
  /// overlapping part of variable considering the \p Expr, then this method
  /// will drop that debug info as it isn't valid any longer.
  void dropDanglingDebugInfo(const DILocalVariable *Variable,
                             const DIExpression *Expr);

  /// If we saw an earlier dbg_value referring to V, generate the debug data
  /// structures now that we've seen its definition.
  void resolveDanglingDebugInfo(const Value *V, SDValue Val);

  /// For the given dangling debuginfo record, perform last-ditch efforts to
  /// resolve the debuginfo to something that is represented in this DAG. If
  /// this cannot be done, produce an Undef debug value record.
  void salvageUnresolvedDbgValue(DanglingDebugInfo &DDI);

  /// For a given Value, attempt to create and record a SDDbgValue in the
  /// SelectionDAG.
  bool handleDebugValue(const Value *V, DILocalVariable *Var,
                        DIExpression *Expr, DebugLoc CurDL,
                        DebugLoc InstDL, unsigned Order);

  /// Evict any dangling debug information, attempting to salvage it first.
  void resolveOrClearDbgInfo();

  SDValue getValue(const Value *V);

  SDValue getNonRegisterValue(const Value *V);
  SDValue getValueImpl(const Value *V);

  void setValue(const Value *V, SDValue NewN) {
    SDValue &N = NodeMap[V];
    assert(!N.getNode() && "Already set a value for this node!");
    N = NewN;
  }

  void setUnusedArgValue(const Value *V, SDValue NewN) {
    SDValue &N = UnusedArgNodeMap[V];
    assert(!N.getNode() && "Already set a value for this node!");
    N = NewN;
  }

  void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
                            MachineBasicBlock *SwitchBB,
                            Instruction::BinaryOps Opc, BranchProbability TProb,
                            BranchProbability FProb, bool InvertCond);
  void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
                                    MachineBasicBlock *FBB,
                                    MachineBasicBlock *CurBB,
                                    MachineBasicBlock *SwitchBB,
                                    BranchProbability TProb, BranchProbability FProb,
                                    bool InvertCond);
  bool ShouldEmitAsBranches(const std::vector<SwitchCG::CaseBlock> &Cases);
  bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
  void CopyToExportRegsIfNeeded(const Value *V);
  void ExportFromCurrentBlock(const Value *V);
  void LowerCallTo(const CallBase &CB, SDValue Callee, bool IsTailCall,
                   const BasicBlock *EHPadBB = nullptr);

  // Lower range metadata from 0 to N to assert zext to an integer of nearest
  // floor power of two.
  SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I,
                                 SDValue Op);

  void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI,
                                const CallBase *Call, unsigned ArgIdx,
                                unsigned NumArgs, SDValue Callee,
                                Type *ReturnTy, bool IsPatchPoint);

  std::pair<SDValue, SDValue>
  lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
                 const BasicBlock *EHPadBB = nullptr);

  /// When an MBB was split during scheduling, update the
  /// references that need to refer to the last resulting block.
  void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);

  /// Describes a gc.statepoint or a gc.statepoint like thing for the purposes
  /// of lowering into a STATEPOINT node.
  struct StatepointLoweringInfo {
    /// Bases[i] is the base pointer for Ptrs[i].  Together they denote the set
    /// of gc pointers this STATEPOINT has to relocate.
    SmallVector<const Value *, 16> Bases;
    SmallVector<const Value *, 16> Ptrs;

    /// The set of gc.relocate calls associated with this gc.statepoint.
    SmallVector<const GCRelocateInst *, 16> GCRelocates;

    /// The full list of gc arguments to the gc.statepoint being lowered.
    ArrayRef<const Use> GCArgs;

    /// The gc.statepoint instruction.
    const Instruction *StatepointInstr = nullptr;

    /// The list of gc transition arguments present in the gc.statepoint being
    /// lowered.
    ArrayRef<const Use> GCTransitionArgs;

    /// The ID that the resulting STATEPOINT instruction has to report.
    unsigned ID = -1;

    /// Information regarding the underlying call instruction.
    TargetLowering::CallLoweringInfo CLI;

    /// The deoptimization state associated with this gc.statepoint call, if
    /// any.
    ArrayRef<const Use> DeoptState;

    /// Flags associated with the meta arguments being lowered.
    uint64_t StatepointFlags = -1;

    /// The number of patchable bytes the call needs to get lowered into.
    unsigned NumPatchBytes = -1;

    /// The exception handling unwind destination, in case this represents an
    /// invoke of gc.statepoint.
    const BasicBlock *EHPadBB = nullptr;

    explicit StatepointLoweringInfo(SelectionDAG &DAG) : CLI(DAG) {}
  };

  /// Lower \p SLI into a STATEPOINT instruction.
  SDValue LowerAsSTATEPOINT(StatepointLoweringInfo &SI);

  // This function is responsible for the whole statepoint lowering process.
  // It uniformly handles invoke and call statepoints.
  void LowerStatepoint(const GCStatepointInst &I,
                       const BasicBlock *EHPadBB = nullptr);

  void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee,
                                    const BasicBlock *EHPadBB);

  void LowerDeoptimizeCall(const CallInst *CI);
  void LowerDeoptimizingReturn();

  void LowerCallSiteWithDeoptBundleImpl(const CallBase *Call, SDValue Callee,
                                        const BasicBlock *EHPadBB,
                                        bool VarArgDisallowed,
                                        bool ForceVoidReturnTy);

  /// Returns the type of FrameIndex and TargetFrameIndex nodes.
  MVT getFrameIndexTy() {
    return DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout());
  }

private:
  // Terminator instructions.
  void visitRet(const ReturnInst &I);
  void visitBr(const BranchInst &I);
  void visitSwitch(const SwitchInst &I);
  void visitIndirectBr(const IndirectBrInst &I);
  void visitUnreachable(const UnreachableInst &I);
  void visitCleanupRet(const CleanupReturnInst &I);
  void visitCatchSwitch(const CatchSwitchInst &I);
  void visitCatchRet(const CatchReturnInst &I);
  void visitCatchPad(const CatchPadInst &I);
  void visitCleanupPad(const CleanupPadInst &CPI);

  BranchProbability getEdgeProbability(const MachineBasicBlock *Src,
                                       const MachineBasicBlock *Dst) const;
  void addSuccessorWithProb(
      MachineBasicBlock *Src, MachineBasicBlock *Dst,
      BranchProbability Prob = BranchProbability::getUnknown());

public:
  void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB);
  void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
                               MachineBasicBlock *ParentBB);
  void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
  void visitBitTestHeader(SwitchCG::BitTestBlock &B,
                          MachineBasicBlock *SwitchBB);
  void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB,
                        BranchProbability BranchProbToNext, unsigned Reg,
                        SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB);
  void visitJumpTable(SwitchCG::JumpTable &JT);
  void visitJumpTableHeader(SwitchCG::JumpTable &JT,
                            SwitchCG::JumpTableHeader &JTH,
                            MachineBasicBlock *SwitchBB);

private:
  // These all get lowered before this pass.
  void visitInvoke(const InvokeInst &I);
  void visitCallBr(const CallBrInst &I);
  void visitResume(const ResumeInst &I);

  void visitUnary(const User &I, unsigned Opcode);
  void visitFNeg(const User &I) { visitUnary(I, ISD::FNEG); }

  void visitBinary(const User &I, unsigned Opcode);
  void visitShift(const User &I, unsigned Opcode);
  void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
  void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
  void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
  void visitFSub(const User &I) { visitBinary(I, ISD::FSUB); }
  void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
  void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
  void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
  void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
  void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
  void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
  void visitSDiv(const User &I);
  void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
  void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
  void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
  void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
  void visitShl (const User &I) { visitShift(I, ISD::SHL); }
  void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
  void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
  void visitICmp(const User &I);
  void visitFCmp(const User &I);
  // Visit the conversion instructions
  void visitTrunc(const User &I);
  void visitZExt(const User &I);
  void visitSExt(const User &I);
  void visitFPTrunc(const User &I);
  void visitFPExt(const User &I);
  void visitFPToUI(const User &I);
  void visitFPToSI(const User &I);
  void visitUIToFP(const User &I);
  void visitSIToFP(const User &I);
  void visitPtrToInt(const User &I);
  void visitIntToPtr(const User &I);
  void visitBitCast(const User &I);
  void visitAddrSpaceCast(const User &I);

  void visitExtractElement(const User &I);
  void visitInsertElement(const User &I);
  void visitShuffleVector(const User &I);

  void visitExtractValue(const User &I);
  void visitInsertValue(const User &I);
  void visitLandingPad(const LandingPadInst &LP);

  void visitGetElementPtr(const User &I);
  void visitSelect(const User &I);

  void visitAlloca(const AllocaInst &I);
  void visitLoad(const LoadInst &I);
  void visitStore(const StoreInst &I);
  void visitMaskedLoad(const CallInst &I, bool IsExpanding = false);
  void visitMaskedStore(const CallInst &I, bool IsCompressing = false);
  void visitMaskedGather(const CallInst &I);
  void visitMaskedScatter(const CallInst &I);
  void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
  void visitAtomicRMW(const AtomicRMWInst &I);
  void visitFence(const FenceInst &I);
  void visitPHI(const PHINode &I);
  void visitCall(const CallInst &I);
  bool visitMemCmpBCmpCall(const CallInst &I);
  bool visitMemPCpyCall(const CallInst &I);
  bool visitMemChrCall(const CallInst &I);
  bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
  bool visitStrCmpCall(const CallInst &I);
  bool visitStrLenCall(const CallInst &I);
  bool visitStrNLenCall(const CallInst &I);
  bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
  bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode);
  void visitAtomicLoad(const LoadInst &I);
  void visitAtomicStore(const StoreInst &I);
  void visitLoadFromSwiftError(const LoadInst &I);
  void visitStoreToSwiftError(const StoreInst &I);
  void visitFreeze(const FreezeInst &I);

  void visitInlineAsm(const CallBase &Call);
  void visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
  void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
  void visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic &FPI);

  void visitVAStart(const CallInst &I);
  void visitVAArg(const VAArgInst &I);
  void visitVAEnd(const CallInst &I);
  void visitVACopy(const CallInst &I);
  void visitStackmap(const CallInst &I);
  void visitPatchpoint(const CallBase &CB, const BasicBlock *EHPadBB = nullptr);

  // These two are implemented in StatepointLowering.cpp
  void visitGCRelocate(const GCRelocateInst &Relocate);
  void visitGCResult(const GCResultInst &I);

  void visitVectorReduce(const CallInst &I, unsigned Intrinsic);

  void visitUserOp1(const Instruction &I) {
    llvm_unreachable("UserOp1 should not exist at instruction selection time!");
  }
  void visitUserOp2(const Instruction &I) {
    llvm_unreachable("UserOp2 should not exist at instruction selection time!");
  }

  void processIntegerCallValue(const Instruction &I,
                               SDValue Value, bool IsSigned);

  void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);

  void emitInlineAsmError(const CallBase &Call, const Twine &Message);

  /// If V is an function argument then create corresponding DBG_VALUE machine
  /// instruction for it now. At the end of instruction selection, they will be
  /// inserted to the entry BB.
  bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable,
                                DIExpression *Expr, DILocation *DL,
                                bool IsDbgDeclare, const SDValue &N);

  /// Return the next block after MBB, or nullptr if there is none.
  MachineBasicBlock *NextBlock(MachineBasicBlock *MBB);

  /// Update the DAG and DAG builder with the relevant information after
  /// a new root node has been created which could be a tail call.
  void updateDAGForMaybeTailCall(SDValue MaybeTC);

  /// Return the appropriate SDDbgValue based on N.
  SDDbgValue *getDbgValue(SDValue N, DILocalVariable *Variable,
                          DIExpression *Expr, const DebugLoc &dl,
                          unsigned DbgSDNodeOrder);

  /// Lowers CallInst to an external symbol.
  void lowerCallToExternalSymbol(const CallInst &I, const char *FunctionName);
};

/// This struct represents the registers (physical or virtual)
/// that a particular set of values is assigned, and the type information about
/// the value. The most common situation is to represent one value at a time,
/// but struct or array values are handled element-wise as multiple values.  The
/// splitting of aggregates is performed recursively, so that we never have
/// aggregate-typed registers. The values at this point do not necessarily have
/// legal types, so each value may require one or more registers of some legal
/// type.
///
struct RegsForValue {
  /// The value types of the values, which may not be legal, and
  /// may need be promoted or synthesized from one or more registers.
  SmallVector<EVT, 4> ValueVTs;

  /// The value types of the registers. This is the same size as ValueVTs and it
  /// records, for each value, what the type of the assigned register or
  /// registers are. (Individual values are never synthesized from more than one
  /// type of register.)
  ///
  /// With virtual registers, the contents of RegVTs is redundant with TLI's
  /// getRegisterType member function, however when with physical registers
  /// it is necessary to have a separate record of the types.
  SmallVector<MVT, 4> RegVTs;

  /// This list holds the registers assigned to the values.
  /// Each legal or promoted value requires one register, and each
  /// expanded value requires multiple registers.
  SmallVector<unsigned, 4> Regs;

  /// This list holds the number of registers for each value.
  SmallVector<unsigned, 4> RegCount;

  /// Records if this value needs to be treated in an ABI dependant manner,
  /// different to normal type legalization.
  Optional<CallingConv::ID> CallConv;

  RegsForValue() = default;
  RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt, EVT valuevt,
               Optional<CallingConv::ID> CC = None);
  RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
               const DataLayout &DL, unsigned Reg, Type *Ty,
               Optional<CallingConv::ID> CC);

  bool isABIMangled() const {
    return CallConv.hasValue();
  }

  /// Add the specified values to this one.
  void append(const RegsForValue &RHS) {
    ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
    RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
    Regs.append(RHS.Regs.begin(), RHS.Regs.end());
    RegCount.push_back(RHS.Regs.size());
  }

  /// Emit a series of CopyFromReg nodes that copies from this value and returns
  /// the result as a ValueVTs value. This uses Chain/Flag as the input and
  /// updates them for the output Chain/Flag. If the Flag pointer is NULL, no
  /// flag is used.
  SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
                          const SDLoc &dl, SDValue &Chain, SDValue *Flag,
                          const Value *V = nullptr) const;

  /// Emit a series of CopyToReg nodes that copies the specified value into the
  /// registers specified by this object. This uses Chain/Flag as the input and
  /// updates them for the output Chain/Flag. If the Flag pointer is nullptr, no
  /// flag is used. If V is not nullptr, then it is used in printing better
  /// diagnostic messages on error.
  void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl,
                     SDValue &Chain, SDValue *Flag, const Value *V = nullptr,
                     ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;

  /// Add this value to the specified inlineasm node operand list. This adds the
  /// code marker, matching input operand index (if applicable), and includes
  /// the number of values added into it.
  void AddInlineAsmOperands(unsigned Code, bool HasMatching,
                            unsigned MatchingIdx, const SDLoc &dl,
                            SelectionDAG &DAG, std::vector<SDValue> &Ops) const;

  /// Check if the total RegCount is greater than one.
  bool occupiesMultipleRegs() const {
    return std::accumulate(RegCount.begin(), RegCount.end(), 0) > 1;
  }

  /// Return a list of registers and their sizes.
  SmallVector<std::pair<unsigned, unsigned>, 4> getRegsAndSizes() const;
};

} // end namespace llvm

#endif // LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H