StatepointLowering.cpp 48.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
//===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file includes support code use by SelectionDAGBuilder when lowering a
// statepoint sequence in SelectionDAG IR.
//
//===----------------------------------------------------------------------===//

#include "StatepointLowering.h"
#include "SelectionDAGBuilder.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/GCMetadata.h"
#include "llvm/CodeGen/GCStrategy.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "statepoint-lowering"

STATISTIC(NumSlotsAllocatedForStatepoints,
          "Number of stack slots allocated for statepoints");
STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
STATISTIC(StatepointMaxSlotsRequired,
          "Maximum number of stack slots required for a singe statepoint");

cl::opt<bool> UseRegistersForDeoptValues(
    "use-registers-for-deopt-values", cl::Hidden, cl::init(false),
    cl::desc("Allow using registers for non pointer deopt args"));

cl::opt<unsigned> MaxRegistersForGCPointers(
    "max-registers-for-gc-values", cl::Hidden, cl::init(0),
    cl::desc("Max number of VRegs allowed to pass GC pointer meta args in"));

cl::opt<bool> AlwaysSpillBase("statepoint-always-spill-base", cl::Hidden,
                              cl::init(true),
                              cl::desc("Force spilling of base GC pointers"));

typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType;

static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
                                 SelectionDAGBuilder &Builder, uint64_t Value) {
  SDLoc L = Builder.getCurSDLoc();
  Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
                                              MVT::i64));
  Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
}

void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
  // Consistency check
  assert(PendingGCRelocateCalls.empty() &&
         "Trying to visit statepoint before finished processing previous one");
  Locations.clear();
  NextSlotToAllocate = 0;
  // Need to resize this on each safepoint - we need the two to stay in sync and
  // the clear patterns of a SelectionDAGBuilder have no relation to
  // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
  AllocatedStackSlots.clear();
  AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
}

void StatepointLoweringState::clear() {
  Locations.clear();
  AllocatedStackSlots.clear();
  assert(PendingGCRelocateCalls.empty() &&
         "cleared before statepoint sequence completed");
}

SDValue
StatepointLoweringState::allocateStackSlot(EVT ValueType,
                                           SelectionDAGBuilder &Builder) {
  NumSlotsAllocatedForStatepoints++;
  MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();

  unsigned SpillSize = ValueType.getStoreSize();
  assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");

  // First look for a previously created stack slot which is not in
  // use (accounting for the fact arbitrary slots may already be
  // reserved), or to create a new stack slot and use it.

  const size_t NumSlots = AllocatedStackSlots.size();
  assert(NextSlotToAllocate <= NumSlots && "Broken invariant");

  assert(AllocatedStackSlots.size() ==
         Builder.FuncInfo.StatepointStackSlots.size() &&
         "Broken invariant");

  for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
    if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
      const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
      if (MFI.getObjectSize(FI) == SpillSize) {
        AllocatedStackSlots.set(NextSlotToAllocate);
        // TODO: Is ValueType the right thing to use here?
        return Builder.DAG.getFrameIndex(FI, ValueType);
      }
    }
  }

  // Couldn't find a free slot, so create a new one:

  SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
  const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
  MFI.markAsStatepointSpillSlotObjectIndex(FI);

  Builder.FuncInfo.StatepointStackSlots.push_back(FI);
  AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
  assert(AllocatedStackSlots.size() ==
         Builder.FuncInfo.StatepointStackSlots.size() &&
         "Broken invariant");

  StatepointMaxSlotsRequired.updateMax(
      Builder.FuncInfo.StatepointStackSlots.size());

  return SpillSlot;
}

/// Utility function for reservePreviousStackSlotForValue. Tries to find
/// stack slot index to which we have spilled value for previous statepoints.
/// LookUpDepth specifies maximum DFS depth this function is allowed to look.
static Optional<int> findPreviousSpillSlot(const Value *Val,
                                           SelectionDAGBuilder &Builder,
                                           int LookUpDepth) {
  // Can not look any further - give up now
  if (LookUpDepth <= 0)
    return None;

  // Spill location is known for gc relocates
  if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
    const auto &RelocationMap =
        Builder.FuncInfo.StatepointRelocationMaps[Relocate->getStatepoint()];

    auto It = RelocationMap.find(Relocate->getDerivedPtr());
    if (It == RelocationMap.end())
      return None;

    auto &Record = It->second;
    if (Record.type != RecordType::Spill)
      return None;

    return Record.payload.FI;
  }

  // Look through bitcast instructions.
  if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
    return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);

  // Look through phi nodes
  // All incoming values should have same known stack slot, otherwise result
  // is unknown.
  if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
    Optional<int> MergedResult = None;

    for (auto &IncomingValue : Phi->incoming_values()) {
      Optional<int> SpillSlot =
          findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
      if (!SpillSlot.hasValue())
        return None;

      if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
        return None;

      MergedResult = SpillSlot;
    }
    return MergedResult;
  }

  // TODO: We can do better for PHI nodes. In cases like this:
  //   ptr = phi(relocated_pointer, not_relocated_pointer)
  //   statepoint(ptr)
  // We will return that stack slot for ptr is unknown. And later we might
  // assign different stack slots for ptr and relocated_pointer. This limits
  // llvm's ability to remove redundant stores.
  // Unfortunately it's hard to accomplish in current infrastructure.
  // We use this function to eliminate spill store completely, while
  // in example we still need to emit store, but instead of any location
  // we need to use special "preferred" location.

  // TODO: handle simple updates.  If a value is modified and the original
  // value is no longer live, it would be nice to put the modified value in the
  // same slot.  This allows folding of the memory accesses for some
  // instructions types (like an increment).
  //   statepoint (i)
  //   i1 = i+1
  //   statepoint (i1)
  // However we need to be careful for cases like this:
  //   statepoint(i)
  //   i1 = i+1
  //   statepoint(i, i1)
  // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
  // put handling of simple modifications in this function like it's done
  // for bitcasts we might end up reserving i's slot for 'i+1' because order in
  // which we visit values is unspecified.

  // Don't know any information about this instruction
  return None;
}

/// Return true if-and-only-if the given SDValue can be lowered as either a
/// constant argument or a stack reference.  The key point is that the value
/// doesn't need to be spilled or tracked as a vreg use.
static bool willLowerDirectly(SDValue Incoming) {
  // We are making an unchecked assumption that the frame size <= 2^16 as that
  // is the largest offset which can be encoded in the stackmap format.
  if (isa<FrameIndexSDNode>(Incoming))
    return true;

  // The largest constant describeable in the StackMap format is 64 bits.
  // Potential Optimization:  Constants values are sign extended by consumer,
  // and thus there are many constants of static type > 64 bits whose value
  // happens to be sext(Con64) and could thus be lowered directly.
  if (Incoming.getValueType().getSizeInBits() > 64)
    return false;

  return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) ||
          Incoming.isUndef());
}

/// Try to find existing copies of the incoming values in stack slots used for
/// statepoint spilling.  If we can find a spill slot for the incoming value,
/// mark that slot as allocated, and reuse the same slot for this safepoint.
/// This helps to avoid series of loads and stores that only serve to reshuffle
/// values on the stack between calls.
static void reservePreviousStackSlotForValue(const Value *IncomingValue,
                                             SelectionDAGBuilder &Builder) {
  SDValue Incoming = Builder.getValue(IncomingValue);

  // If we won't spill this, we don't need to check for previously allocated
  // stack slots.
  if (willLowerDirectly(Incoming))
    return;

  SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
  if (OldLocation.getNode())
    // Duplicates in input
    return;

  const int LookUpDepth = 6;
  Optional<int> Index =
      findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
  if (!Index.hasValue())
    return;

  const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;

  auto SlotIt = find(StatepointSlots, *Index);
  assert(SlotIt != StatepointSlots.end() &&
         "Value spilled to the unknown stack slot");

  // This is one of our dedicated lowering slots
  const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
  if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
    // stack slot already assigned to someone else, can't use it!
    // TODO: currently we reserve space for gc arguments after doing
    // normal allocation for deopt arguments.  We should reserve for
    // _all_ deopt and gc arguments, then start allocating.  This
    // will prevent some moves being inserted when vm state changes,
    // but gc state doesn't between two calls.
    return;
  }
  // Reserve this stack slot
  Builder.StatepointLowering.reserveStackSlot(Offset);

  // Cache this slot so we find it when going through the normal
  // assignment loop.
  SDValue Loc =
      Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
  Builder.StatepointLowering.setLocation(Incoming, Loc);
}

/// Extract call from statepoint, lower it and return pointer to the
/// call node. Also update NodeMap so that getValue(statepoint) will
/// reference lowered call result
static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
    SelectionDAGBuilder::StatepointLoweringInfo &SI,
    SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
  SDValue ReturnValue, CallEndVal;
  std::tie(ReturnValue, CallEndVal) =
      Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
  SDNode *CallEnd = CallEndVal.getNode();

  // Get a call instruction from the call sequence chain.  Tail calls are not
  // allowed.  The following code is essentially reverse engineering X86's
  // LowerCallTo.
  //
  // We are expecting DAG to have the following form:
  //
  // ch = eh_label (only in case of invoke statepoint)
  //   ch, glue = callseq_start ch
  //   ch, glue = X86::Call ch, glue
  //   ch, glue = callseq_end ch, glue
  //   get_return_value ch, glue
  //
  // get_return_value can either be a sequence of CopyFromReg instructions
  // to grab the return value from the return register(s), or it can be a LOAD
  // to load a value returned by reference via a stack slot.

  bool HasDef = !SI.CLI.RetTy->isVoidTy();
  if (HasDef) {
    if (CallEnd->getOpcode() == ISD::LOAD)
      CallEnd = CallEnd->getOperand(0).getNode();
    else
      while (CallEnd->getOpcode() == ISD::CopyFromReg)
        CallEnd = CallEnd->getOperand(0).getNode();
  }

  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
  return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
}

static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
                                               FrameIndexSDNode &FI) {
  auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
  auto MMOFlags = MachineMemOperand::MOStore |
    MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
  auto &MFI = MF.getFrameInfo();
  return MF.getMachineMemOperand(PtrInfo, MMOFlags,
                                 MFI.getObjectSize(FI.getIndex()),
                                 MFI.getObjectAlign(FI.getIndex()));
}

/// Spill a value incoming to the statepoint. It might be either part of
/// vmstate
/// or gcstate. In both cases unconditionally spill it on the stack unless it
/// is a null constant. Return pair with first element being frame index
/// containing saved value and second element with outgoing chain from the
/// emitted store
static std::tuple<SDValue, SDValue, MachineMemOperand*>
spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
                             SelectionDAGBuilder &Builder) {
  SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
  MachineMemOperand* MMO = nullptr;

  // Emit new store if we didn't do it for this ptr before
  if (!Loc.getNode()) {
    Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
                                                       Builder);
    int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
    // We use TargetFrameIndex so that isel will not select it into LEA
    Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());

    // Right now we always allocate spill slots that are of the same
    // size as the value we're about to spill (the size of spillee can
    // vary since we spill vectors of pointers too).  At some point we
    // can consider allowing spills of smaller values to larger slots
    // (i.e. change the '==' in the assert below to a '>=').
    MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
    assert((MFI.getObjectSize(Index) * 8) ==
           (int64_t)Incoming.getValueSizeInBits() &&
           "Bad spill:  stack slot does not match!");

    // Note: Using the alignment of the spill slot (rather than the abi or
    // preferred alignment) is required for correctness when dealing with spill
    // slots with preferred alignments larger than frame alignment..
    auto &MF = Builder.DAG.getMachineFunction();
    auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
    auto *StoreMMO = MF.getMachineMemOperand(
        PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
        MFI.getObjectAlign(Index));
    Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
                                 StoreMMO);

    MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));

    Builder.StatepointLowering.setLocation(Incoming, Loc);
  }

  assert(Loc.getNode());
  return std::make_tuple(Loc, Chain, MMO);
}

/// Lower a single value incoming to a statepoint node.  This value can be
/// either a deopt value or a gc value, the handling is the same.  We special
/// case constants and allocas, then fall back to spilling if required.
static void
lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
                             SmallVectorImpl<SDValue> &Ops,
                             SmallVectorImpl<MachineMemOperand *> &MemRefs,
                             SelectionDAGBuilder &Builder) {
  
  if (willLowerDirectly(Incoming)) {
    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
      // This handles allocas as arguments to the statepoint (this is only
      // really meaningful for a deopt value.  For GC, we'd be trying to
      // relocate the address of the alloca itself?)
      assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
             "Incoming value is a frame index!");
      Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
                                                    Builder.getFrameIndexTy()));

      auto &MF = Builder.DAG.getMachineFunction();
      auto *MMO = getMachineMemOperand(MF, *FI);
      MemRefs.push_back(MMO);
      return;
    }

    assert(Incoming.getValueType().getSizeInBits() <= 64);
    
    if (Incoming.isUndef()) {
      // Put an easily recognized constant that's unlikely to be a valid
      // value so that uses of undef by the consumer of the stackmap is
      // easily recognized. This is legal since the compiler is always
      // allowed to chose an arbitrary value for undef.
      pushStackMapConstant(Ops, Builder, 0xFEFEFEFE);
      return;
    }

    // If the original value was a constant, make sure it gets recorded as
    // such in the stackmap.  This is required so that the consumer can
    // parse any internal format to the deopt state.  It also handles null
    // pointers and other constant pointers in GC states.
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
      pushStackMapConstant(Ops, Builder, C->getSExtValue());
      return;
    } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) {
      pushStackMapConstant(Ops, Builder,
                           C->getValueAPF().bitcastToAPInt().getZExtValue());
      return;
    }

    llvm_unreachable("unhandled direct lowering case");
  }



  if (!RequireSpillSlot) {
    // If this value is live in (not live-on-return, or live-through), we can
    // treat it the same way patchpoint treats it's "live in" values.  We'll
    // end up folding some of these into stack references, but they'll be
    // handled by the register allocator.  Note that we do not have the notion
    // of a late use so these values might be placed in registers which are
    // clobbered by the call.  This is fine for live-in. For live-through
    // fix-up pass should be executed to force spilling of such registers.
    Ops.push_back(Incoming);
  } else {
    // Otherwise, locate a spill slot and explicitly spill it so it can be
    // found by the runtime later.  Note: We know all of these spills are
    // independent, but don't bother to exploit that chain wise.  DAGCombine
    // will happily do so as needed, so doing it here would be a small compile
    // time win at most. 
    SDValue Chain = Builder.getRoot();
    auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
    Ops.push_back(std::get<0>(Res));
    if (auto *MMO = std::get<2>(Res))
      MemRefs.push_back(MMO);
    Chain = std::get<1>(Res);;
    Builder.DAG.setRoot(Chain);
  }

}

/// Lower deopt state and gc pointer arguments of the statepoint.  The actual
/// lowering is described in lowerIncomingStatepointValue.  This function is
/// responsible for lowering everything in the right position and playing some
/// tricks to avoid redundant stack manipulation where possible.  On
/// completion, 'Ops' will contain ready to use operands for machine code
/// statepoint. The chain nodes will have already been created and the DAG root
/// will be set to the last value spilled (if any were).
static void
lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
                        SmallVectorImpl<MachineMemOperand *> &MemRefs,
                        DenseMap<SDValue, int> &LowerAsVReg,
                        SelectionDAGBuilder::StatepointLoweringInfo &SI,
                        SelectionDAGBuilder &Builder) {
  // Lower the deopt and gc arguments for this statepoint.  Layout will be:
  // deopt argument length, deopt arguments.., gc arguments...
#ifndef NDEBUG
  if (auto *GFI = Builder.GFI) {
    // Check that each of the gc pointer and bases we've gotten out of the
    // safepoint is something the strategy thinks might be a pointer (or vector
    // of pointers) into the GC heap.  This is basically just here to help catch
    // errors during statepoint insertion. TODO: This should actually be in the
    // Verifier, but we can't get to the GCStrategy from there (yet).
    GCStrategy &S = GFI->getStrategy();
    for (const Value *V : SI.Bases) {
      auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
      if (Opt.hasValue()) {
        assert(Opt.getValue() &&
               "non gc managed base pointer found in statepoint");
      }
    }
    for (const Value *V : SI.Ptrs) {
      auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
      if (Opt.hasValue()) {
        assert(Opt.getValue() &&
               "non gc managed derived pointer found in statepoint");
      }
    }
    assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
  } else {
    assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
    assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
  }
#endif

  // Figure out what lowering strategy we're going to use for each part
  // Note: Is is conservatively correct to lower both "live-in" and "live-out"
  // as "live-through". A "live-through" variable is one which is "live-in",
  // "live-out", and live throughout the lifetime of the call (i.e. we can find
  // it from any PC within the transitive callee of the statepoint).  In
  // particular, if the callee spills callee preserved registers we may not
  // be able to find a value placed in that register during the call.  This is
  // fine for live-out, but not for live-through.  If we were willing to make
  // assumptions about the code generator producing the callee, we could
  // potentially allow live-through values in callee saved registers.
  const bool LiveInDeopt =
    SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;

  // Decide which deriver pointers will go on VRegs
  const unsigned MaxTiedRegs = 15; // Max  number of tied regs MI can have.
  unsigned MaxVRegPtrs =
      std::min(MaxTiedRegs, MaxRegistersForGCPointers.getValue());

  LLVM_DEBUG(dbgs() << "Desiding how to lower GC Pointers:\n");
  unsigned CurNumVRegs = 0;
  for (const Value *P : SI.Ptrs) {
    if (LowerAsVReg.size() == MaxVRegPtrs)
      break;
    SDValue PtrSD = Builder.getValue(P);
    if (willLowerDirectly(PtrSD) || P->getType()->isVectorTy()) {
      LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG));
      continue;
    }
    LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG));
    LowerAsVReg[PtrSD] = CurNumVRegs++;
  }
  LLVM_DEBUG(dbgs() << LowerAsVReg.size()
                    << " derived pointers will go in vregs\n");

  auto isGCValue = [&](const Value *V) {
    auto *Ty = V->getType();
    if (!Ty->isPtrOrPtrVectorTy())
      return false;
    if (auto *GFI = Builder.GFI)
      if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
        return *IsManaged;
    return true; // conservative
  };

  auto requireSpillSlot = [&](const Value *V) {
    if (isGCValue(V))
      return !LowerAsVReg.count(Builder.getValue(V));
    return !(LiveInDeopt || UseRegistersForDeoptValues);
  };

  // Before we actually start lowering (and allocating spill slots for values),
  // reserve any stack slots which we judge to be profitable to reuse for a
  // particular value.  This is purely an optimization over the code below and
  // doesn't change semantics at all.  It is important for performance that we
  // reserve slots for both deopt and gc values before lowering either.
  for (const Value *V : SI.DeoptState) {
    if (requireSpillSlot(V))
      reservePreviousStackSlotForValue(V, Builder);
  }

  for (unsigned i = 0; i < SI.Bases.size(); ++i) {
    SDValue SDV = Builder.getValue(SI.Bases[i]);
    if (AlwaysSpillBase || !LowerAsVReg.count(SDV))
      reservePreviousStackSlotForValue(SI.Bases[i], Builder);
    SDV = Builder.getValue(SI.Ptrs[i]);
    if (!LowerAsVReg.count(SDV))
      reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
  }

  // First, prefix the list with the number of unique values to be
  // lowered.  Note that this is the number of *Values* not the
  // number of SDValues required to lower them.
  const int NumVMSArgs = SI.DeoptState.size();
  pushStackMapConstant(Ops, Builder, NumVMSArgs);

  // The vm state arguments are lowered in an opaque manner.  We do not know
  // what type of values are contained within.
  LLVM_DEBUG(dbgs() << "Lowering deopt state\n");
  for (const Value *V : SI.DeoptState) {
    SDValue Incoming;
    // If this is a function argument at a static frame index, generate it as
    // the frame index.
    if (const Argument *Arg = dyn_cast<Argument>(V)) {
      int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
      if (FI != INT_MAX)
        Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
    }
    if (!Incoming.getNode())
      Incoming = Builder.getValue(V);
    LLVM_DEBUG(dbgs() << "Value " << *V
                      << " requireSpillSlot = " << requireSpillSlot(V) << "\n");
    lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
                                 Builder);
  }

  // Finally, go ahead and lower all the gc arguments.  There's no prefixed
  // length for this one.  After lowering, we'll have the base and pointer
  // arrays interwoven with each (lowered) base pointer immediately followed by
  // it's (lowered) derived pointer.  i.e
  // (base[0], ptr[0], base[1], ptr[1], ...)
  for (unsigned i = 0; i < SI.Bases.size(); ++i) {
    bool RequireSpillSlot;
    SDValue Base = Builder.getValue(SI.Bases[i]);
    RequireSpillSlot = AlwaysSpillBase || !LowerAsVReg.count(Base);
    lowerIncomingStatepointValue(Base, RequireSpillSlot, Ops, MemRefs,
                                 Builder);

    SDValue Derived = Builder.getValue(SI.Ptrs[i]);
    RequireSpillSlot = !LowerAsVReg.count(Derived);
    lowerIncomingStatepointValue(Derived, RequireSpillSlot, Ops, MemRefs,
                                 Builder);
  }

  // If there are any explicit spill slots passed to the statepoint, record
  // them, but otherwise do not do anything special.  These are user provided
  // allocas and give control over placement to the consumer.  In this case,
  // it is the contents of the slot which may get updated, not the pointer to
  // the alloca
  for (Value *V : SI.GCArgs) {
    SDValue Incoming = Builder.getValue(V);
    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
      // This handles allocas as arguments to the statepoint
      assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
             "Incoming value is a frame index!");
      Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
                                                    Builder.getFrameIndexTy()));

      auto &MF = Builder.DAG.getMachineFunction();
      auto *MMO = getMachineMemOperand(MF, *FI);
      MemRefs.push_back(MMO);
    }
  }
}

SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
    SelectionDAGBuilder::StatepointLoweringInfo &SI) {
  // The basic scheme here is that information about both the original call and
  // the safepoint is encoded in the CallInst.  We create a temporary call and
  // lower it, then reverse engineer the calling sequence.

  NumOfStatepoints++;
  // Clear state
  StatepointLowering.startNewStatepoint(*this);
  assert(SI.Bases.size() == SI.Ptrs.size() &&
         SI.Ptrs.size() <= SI.GCRelocates.size());

  LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n");
#ifndef NDEBUG
  for (auto *Reloc : SI.GCRelocates)
    if (Reloc->getParent() == SI.StatepointInstr->getParent())
      StatepointLowering.scheduleRelocCall(*Reloc);
#endif

  // Lower statepoint vmstate and gcstate arguments
  SmallVector<SDValue, 10> LoweredMetaArgs;
  SmallVector<MachineMemOperand*, 16> MemRefs;
  // Maps derived pointer SDValue to statepoint result of relocated pointer.
  DenseMap<SDValue, int> LowerAsVReg;
  lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LowerAsVReg, SI, *this);

  // Now that we've emitted the spills, we need to update the root so that the
  // call sequence is ordered correctly.
  SI.CLI.setChain(getRoot());

  // Get call node, we will replace it later with statepoint
  SDValue ReturnVal;
  SDNode *CallNode;
  std::tie(ReturnVal, CallNode) =
      lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);

  // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
  // nodes with all the appropriate arguments and return values.

  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
  SDValue Chain = CallNode->getOperand(0);

  SDValue Glue;
  bool CallHasIncomingGlue = CallNode->getGluedNode();
  if (CallHasIncomingGlue) {
    // Glue is always last operand
    Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
  }

  // Build the GC_TRANSITION_START node if necessary.
  //
  // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
  // order in which they appear in the call to the statepoint intrinsic. If
  // any of the operands is a pointer-typed, that operand is immediately
  // followed by a SRCVALUE for the pointer that may be used during lowering
  // (e.g. to form MachinePointerInfo values for loads/stores).
  const bool IsGCTransition =
      (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
      (uint64_t)StatepointFlags::GCTransition;
  if (IsGCTransition) {
    SmallVector<SDValue, 8> TSOps;

    // Add chain
    TSOps.push_back(Chain);

    // Add GC transition arguments
    for (const Value *V : SI.GCTransitionArgs) {
      TSOps.push_back(getValue(V));
      if (V->getType()->isPointerTy())
        TSOps.push_back(DAG.getSrcValue(V));
    }

    // Add glue if necessary
    if (CallHasIncomingGlue)
      TSOps.push_back(Glue);

    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);

    SDValue GCTransitionStart =
        DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);

    Chain = GCTransitionStart.getValue(0);
    Glue = GCTransitionStart.getValue(1);
  }

  // TODO: Currently, all of these operands are being marked as read/write in
  // PrologEpilougeInserter.cpp, we should special case the VMState arguments
  // and flags to be read-only.
  SmallVector<SDValue, 40> Ops;

  // Add the <id> and <numBytes> constants.
  Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
  Ops.push_back(
      DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));

  // Calculate and push starting position of vmstate arguments
  // Get number of arguments incoming directly into call node
  unsigned NumCallRegArgs =
      CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));

  // Add call target
  SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
  Ops.push_back(CallTarget);

  // Add call arguments
  // Get position of register mask in the call
  SDNode::op_iterator RegMaskIt;
  if (CallHasIncomingGlue)
    RegMaskIt = CallNode->op_end() - 2;
  else
    RegMaskIt = CallNode->op_end() - 1;
  Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);

  // Add a constant argument for the calling convention
  pushStackMapConstant(Ops, *this, SI.CLI.CallConv);

  // Add a constant argument for the flags
  uint64_t Flags = SI.StatepointFlags;
  assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
         "Unknown flag used");
  pushStackMapConstant(Ops, *this, Flags);

  // Insert all vmstate and gcstate arguments
  Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());

  // Add register mask from call node
  Ops.push_back(*RegMaskIt);

  // Add chain
  Ops.push_back(Chain);

  // Same for the glue, but we add it only if original call had it
  if (Glue.getNode())
    Ops.push_back(Glue);

  // Compute return values.  Provide a glue output since we consume one as
  // input.  This allows someone else to chain off us as needed.
  SmallVector<EVT, 8> NodeTys;
  for (auto &Ptr : SI.Ptrs) {
    SDValue SD = getValue(Ptr);
    if (!LowerAsVReg.count(SD))
      continue;
    NodeTys.push_back(SD.getValueType());
  }
  LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n");
  assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering");
  NodeTys.push_back(MVT::Other);
  NodeTys.push_back(MVT::Glue);

  unsigned NumResults = NodeTys.size();
  MachineSDNode *StatepointMCNode =
    DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
  DAG.setNodeMemRefs(StatepointMCNode, MemRefs);

  // For values lowered to tied-defs, create the virtual registers.  Note that
  // for simplicity, we *always* create a vreg even within a single block.
  DenseMap<SDValue, Register> VirtRegs;
  for (const auto *Relocate : SI.GCRelocates) {
    Value *Derived = Relocate->getDerivedPtr();
    SDValue SD = getValue(Derived);
    if (!LowerAsVReg.count(SD))
      continue;

    // Handle multiple gc.relocates of the same input efficiently.
    if (VirtRegs.count(SD))
      continue;

    SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]);

    auto *RetTy = Relocate->getType();
    Register Reg = FuncInfo.CreateRegs(RetTy);
    RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
                     DAG.getDataLayout(), Reg, RetTy, None);
    SDValue Chain = DAG.getRoot();
    RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr);
    PendingExports.push_back(Chain);

    VirtRegs[SD] = Reg;
  }

  // Record for later use how each relocation was lowered.  This is needed to
  // allow later gc.relocates to mirror the lowering chosen.
  const Instruction *StatepointInstr = SI.StatepointInstr;
  auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr];
  for (const GCRelocateInst *Relocate : SI.GCRelocates) {
    const Value *V = Relocate->getDerivedPtr();
    SDValue SDV = getValue(V);
    SDValue Loc = StatepointLowering.getLocation(SDV);

    RecordType Record;
    if (LowerAsVReg.count(SDV)) {
      Record.type = RecordType::VReg;
      assert(VirtRegs.count(SDV));
      Record.payload.Reg = VirtRegs[SDV];
    } else if (Loc.getNode()) {
      Record.type = RecordType::Spill;
      Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex();
    } else {
      Record.type = RecordType::NoRelocate;
      // If we didn't relocate a value, we'll essentialy end up inserting an
      // additional use of the original value when lowering the gc.relocate.
      // We need to make sure the value is available at the new use, which
      // might be in another block.
      if (Relocate->getParent() != StatepointInstr->getParent())
        ExportFromCurrentBlock(V);
    }
    RelocationMap[V] = Record;
  }

  

  SDNode *SinkNode = StatepointMCNode;

  // Build the GC_TRANSITION_END node if necessary.
  //
  // See the comment above regarding GC_TRANSITION_START for the layout of
  // the operands to the GC_TRANSITION_END node.
  if (IsGCTransition) {
    SmallVector<SDValue, 8> TEOps;

    // Add chain
    TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2));

    // Add GC transition arguments
    for (const Value *V : SI.GCTransitionArgs) {
      TEOps.push_back(getValue(V));
      if (V->getType()->isPointerTy())
        TEOps.push_back(DAG.getSrcValue(V));
    }

    // Add glue
    TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1));

    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);

    SDValue GCTransitionStart =
        DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);

    SinkNode = GCTransitionStart.getNode();
  }

  // Replace original call
  // Call: ch,glue = CALL ...
  // Statepoint: [gc relocates],ch,glue = STATEPOINT ...
  unsigned NumSinkValues = SinkNode->getNumValues();
  SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2),
                                 SDValue(SinkNode, NumSinkValues - 1)};
  DAG.ReplaceAllUsesWith(CallNode, StatepointValues);
  // Remove original call node
  DAG.DeleteNode(CallNode);

  // Since we always emit CopyToRegs (even for local relocates), we must
  // update root, so that they are emitted before any local uses.
  (void)getControlRoot();

  // TODO: A better future implementation would be to emit a single variable
  // argument, variable return value STATEPOINT node here and then hookup the
  // return value of each gc.relocate to the respective output of the
  // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
  // to actually be possible today.

  return ReturnVal;
}

void
SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I,
                                     const BasicBlock *EHPadBB /*= nullptr*/) {
  assert(I.getCallingConv() != CallingConv::AnyReg &&
         "anyregcc is not supported on statepoints!");

#ifndef NDEBUG
  // Check that the associated GCStrategy expects to encounter statepoints.
  assert(GFI->getStrategy().useStatepoints() &&
         "GCStrategy does not expect to encounter statepoints");
#endif

  SDValue ActualCallee;
  SDValue Callee = getValue(I.getActualCalledOperand());

  if (I.getNumPatchBytes() > 0) {
    // If we've been asked to emit a nop sequence instead of a call instruction
    // for this statepoint then don't lower the call target, but use a constant
    // `undef` instead.  Not lowering the call target lets statepoint clients
    // get away without providing a physical address for the symbolic call
    // target at link time.
    ActualCallee = DAG.getUNDEF(Callee.getValueType());
  } else {
    ActualCallee = Callee;
  }

  StatepointLoweringInfo SI(DAG);
  populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos,
                           I.getNumCallArgs(), ActualCallee,
                           I.getActualReturnType(), false /* IsPatchPoint */);

  // There may be duplication in the gc.relocate list; such as two copies of
  // each relocation on normal and exceptional path for an invoke.  We only
  // need to spill once and record one copy in the stackmap, but we need to
  // reload once per gc.relocate.  (Dedupping gc.relocates is trickier and best
  // handled as a CSE problem elsewhere.)
  // TODO: There a couple of major stackmap size optimizations we could do
  // here if we wished.
  // 1) If we've encountered a derived pair {B, D}, we don't need to actually
  // record {B,B} if it's seen later.
  // 2) Due to rematerialization, actual derived pointers are somewhat rare;
  // given that, we could change the format to record base pointer relocations
  // separately with half the space. This would require a format rev and a
  // fairly major rework of the STATEPOINT node though.
  SmallSet<SDValue, 8> Seen;
  for (const GCRelocateInst *Relocate : I.getGCRelocates()) {
    SI.GCRelocates.push_back(Relocate);

    SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
    if (Seen.insert(DerivedSD).second) {
      SI.Bases.push_back(Relocate->getBasePtr());
      SI.Ptrs.push_back(Relocate->getDerivedPtr());
    }
  }

  SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end());
  SI.StatepointInstr = &I;
  SI.ID = I.getID();

  SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end());
  SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(),
                                            I.gc_transition_args_end());

  SI.StatepointFlags = I.getFlags();
  SI.NumPatchBytes = I.getNumPatchBytes();
  SI.EHPadBB = EHPadBB;

  SDValue ReturnValue = LowerAsSTATEPOINT(SI);

  // Export the result value if needed
  const GCResultInst *GCResult = I.getGCResult();
  Type *RetTy = I.getActualReturnType();

  if (RetTy->isVoidTy() || !GCResult) {
    // The return value is not needed, just generate a poison value. 
    setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc()));
    return;
  }

  if (GCResult->getParent() == I.getParent()) {
    // Result value will be used in a same basic block. Don't export it or
    // perform any explicit register copies. The gc_result will simply grab
    // this value. 
    setValue(&I, ReturnValue);
    return;
  }

  // Result value will be used in a different basic block so we need to export
  // it now.  Default exporting mechanism will not work here because statepoint
  // call has a different type than the actual call. It means that by default
  // llvm will create export register of the wrong type (always i32 in our
  // case). So instead we need to create export register with correct type
  // manually.
  // TODO: To eliminate this problem we can remove gc.result intrinsics
  //       completely and make statepoint call to return a tuple.
  unsigned Reg = FuncInfo.CreateRegs(RetTy);
  RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
                   DAG.getDataLayout(), Reg, RetTy,
                   I.getCallingConv());
  SDValue Chain = DAG.getEntryNode();
  
  RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
  PendingExports.push_back(Chain);
  FuncInfo.ValueMap[&I] = Reg;
}

void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
    const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
    bool VarArgDisallowed, bool ForceVoidReturnTy) {
  StatepointLoweringInfo SI(DAG);
  unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
  populateCallLoweringInfo(
      SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee,
      ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
      false);
  if (!VarArgDisallowed)
    SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();

  auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);

  unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;

  auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
  SI.ID = SD.StatepointID.getValueOr(DefaultID);
  SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);

  SI.DeoptState =
      ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
  SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
  SI.EHPadBB = EHPadBB;

  // NB! The GC arguments are deliberately left empty.

  if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
    ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
    setValue(Call, ReturnVal);
  }
}

void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
    const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
  LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
                                   /* VarArgDisallowed = */ false,
                                   /* ForceVoidReturnTy  = */ false);
}

void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
  // The result value of the gc_result is simply the result of the actual
  // call.  We've already emitted this, so just grab the value.
  const GCStatepointInst *SI = CI.getStatepoint();

  if (SI->getParent() == CI.getParent()) {
    setValue(&CI, getValue(SI));
    return;
  }
  // Statepoint is in different basic block so we should have stored call
  // result in a virtual register.
  // We can not use default getValue() functionality to copy value from this
  // register because statepoint and actual call return types can be
  // different, and getValue() will use CopyFromReg of the wrong type,
  // which is always i32 in our case.
  Type *RetTy = SI->getActualReturnType();
  SDValue CopyFromReg = getCopyFromRegs(SI, RetTy);
  
  assert(CopyFromReg.getNode());
  setValue(&CI, CopyFromReg);
}

void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
#ifndef NDEBUG
  // Consistency check
  // We skip this check for relocates not in the same basic block as their
  // statepoint. It would be too expensive to preserve validation info through
  // different basic blocks.
  if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
    StatepointLowering.relocCallVisited(Relocate);

  auto *Ty = Relocate.getType()->getScalarType();
  if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
    assert(*IsManaged && "Non gc managed pointer relocated!");
#endif

  const Value *DerivedPtr = Relocate.getDerivedPtr();
  auto &RelocationMap =
    FuncInfo.StatepointRelocationMaps[Relocate.getStatepoint()];
  auto SlotIt = RelocationMap.find(DerivedPtr);
  assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value");
  const RecordType &Record = SlotIt->second;

  // If relocation was done via virtual register..
  if (Record.type == RecordType::VReg) {
    Register InReg = Record.payload.Reg;
    RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
                     DAG.getDataLayout(), InReg, Relocate.getType(),
                     None); // This is not an ABI copy.
    // We generate copy to/from regs even for local uses, hence we must
    // chain with current root to ensure proper ordering of copies w.r.t.
    // statepoint.
    SDValue Chain = DAG.getRoot();
    SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
                                             Chain, nullptr, nullptr);
    setValue(&Relocate, Relocation);
    return;
  }
  
  SDValue SD = getValue(DerivedPtr);

  if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) {
    // Lowering relocate(undef) as arbitrary constant. Current constant value
    // is chosen such that it's unlikely to be a valid pointer.
    setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64));
    return;
  }


  // We didn't need to spill these special cases (constants and allocas).
  // See the handling in spillIncomingValueForStatepoint for detail.
  if (Record.type == RecordType::NoRelocate) {
    setValue(&Relocate, SD);
    return;
  }

  assert(Record.type == RecordType::Spill);

  unsigned Index = Record.payload.FI;;
  SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());

  // All the reloads are independent and are reading memory only modified by
  // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
  // this this let's CSE kick in for free and allows reordering of instructions
  // if possible.  The lowering for statepoint sets the root, so this is
  // ordering all reloads with the either a) the statepoint node itself, or b)
  // the entry of the current block for an invoke statepoint.
  const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()

  auto &MF = DAG.getMachineFunction();
  auto &MFI = MF.getFrameInfo();
  auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
  auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
                                          MFI.getObjectSize(Index),
                                          MFI.getObjectAlign(Index));

  auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
                                                         Relocate.getType());

  SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain,
                                  SpillSlot, LoadMMO);
  PendingLoads.push_back(SpillLoad.getValue(1));

  assert(SpillLoad.getNode());
  setValue(&Relocate, SpillLoad);
}

void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
  const auto &TLI = DAG.getTargetLoweringInfo();
  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
                                         TLI.getPointerTy(DAG.getDataLayout()));

  // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
  // call.  We also do not lower the return value to any virtual register, and
  // change the immediately following return to a trap instruction.
  LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
                                   /* VarArgDisallowed = */ true,
                                   /* ForceVoidReturnTy = */ true);
}

void SelectionDAGBuilder::LowerDeoptimizingReturn() {
  // We do not lower the return value from llvm.deoptimize to any virtual
  // register, and change the immediately following return to a trap
  // instruction.
  if (DAG.getTarget().Options.TrapUnreachable)
    DAG.setRoot(
        DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
}