TargetLoweringBase.cpp 83.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
//===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the TargetLoweringBase class.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <string>
#include <tuple>
#include <utility>

using namespace llvm;

static cl::opt<bool> JumpIsExpensiveOverride(
    "jump-is-expensive", cl::init(false),
    cl::desc("Do not create extra branches to split comparison logic."),
    cl::Hidden);

static cl::opt<unsigned> MinimumJumpTableEntries
  ("min-jump-table-entries", cl::init(4), cl::Hidden,
   cl::desc("Set minimum number of entries to use a jump table."));

static cl::opt<unsigned> MaximumJumpTableSize
  ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
   cl::desc("Set maximum size of jump tables."));

/// Minimum jump table density for normal functions.
static cl::opt<unsigned>
    JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
                     cl::desc("Minimum density for building a jump table in "
                              "a normal function"));

/// Minimum jump table density for -Os or -Oz functions.
static cl::opt<unsigned> OptsizeJumpTableDensity(
    "optsize-jump-table-density", cl::init(40), cl::Hidden,
    cl::desc("Minimum density for building a jump table in "
             "an optsize function"));

// FIXME: This option is only to test if the strict fp operation processed
// correctly by preventing mutating strict fp operation to normal fp operation
// during development. When the backend supports strict float operation, this
// option will be meaningless.
static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
       cl::desc("Don't mutate strict-float node to a legalize node"),
       cl::init(false), cl::Hidden);

static bool darwinHasSinCos(const Triple &TT) {
  assert(TT.isOSDarwin() && "should be called with darwin triple");
  // Don't bother with 32 bit x86.
  if (TT.getArch() == Triple::x86)
    return false;
  // Macos < 10.9 has no sincos_stret.
  if (TT.isMacOSX())
    return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
  // iOS < 7.0 has no sincos_stret.
  if (TT.isiOS())
    return !TT.isOSVersionLT(7, 0);
  // Any other darwin such as WatchOS/TvOS is new enough.
  return true;
}

// Although this default value is arbitrary, it is not random. It is assumed
// that a condition that evaluates the same way by a higher percentage than this
// is best represented as control flow. Therefore, the default value N should be
// set such that the win from N% correct executions is greater than the loss
// from (100 - N)% mispredicted executions for the majority of intended targets.
static cl::opt<int> MinPercentageForPredictableBranch(
    "min-predictable-branch", cl::init(99),
    cl::desc("Minimum percentage (0-100) that a condition must be either true "
             "or false to assume that the condition is predictable"),
    cl::Hidden);

void TargetLoweringBase::InitLibcalls(const Triple &TT) {
#define HANDLE_LIBCALL(code, name) \
  setLibcallName(RTLIB::code, name);
#include "llvm/IR/RuntimeLibcalls.def"
#undef HANDLE_LIBCALL
  // Initialize calling conventions to their default.
  for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
    setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);

  // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
  if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
    setLibcallName(RTLIB::ADD_F128, "__addkf3");
    setLibcallName(RTLIB::SUB_F128, "__subkf3");
    setLibcallName(RTLIB::MUL_F128, "__mulkf3");
    setLibcallName(RTLIB::DIV_F128, "__divkf3");
    setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
    setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
    setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
    setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
    setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
    setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
    setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
    setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
    setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
    setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
    setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
    setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
    setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
    setLibcallName(RTLIB::UNE_F128, "__nekf2");
    setLibcallName(RTLIB::OGE_F128, "__gekf2");
    setLibcallName(RTLIB::OLT_F128, "__ltkf2");
    setLibcallName(RTLIB::OLE_F128, "__lekf2");
    setLibcallName(RTLIB::OGT_F128, "__gtkf2");
    setLibcallName(RTLIB::UO_F128, "__unordkf2");
  }

  // A few names are different on particular architectures or environments.
  if (TT.isOSDarwin()) {
    // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
    // of the gnueabi-style __gnu_*_ieee.
    // FIXME: What about other targets?
    setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
    setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");

    // Some darwins have an optimized __bzero/bzero function.
    switch (TT.getArch()) {
    case Triple::x86:
    case Triple::x86_64:
      if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
        setLibcallName(RTLIB::BZERO, "__bzero");
      break;
    case Triple::aarch64:
    case Triple::aarch64_32:
      setLibcallName(RTLIB::BZERO, "bzero");
      break;
    default:
      break;
    }

    if (darwinHasSinCos(TT)) {
      setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
      setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
      if (TT.isWatchABI()) {
        setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
                              CallingConv::ARM_AAPCS_VFP);
        setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
                              CallingConv::ARM_AAPCS_VFP);
      }
    }
  } else {
    setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
    setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
  }

  if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
      (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
    setLibcallName(RTLIB::SINCOS_F64, "sincos");
    setLibcallName(RTLIB::SINCOS_F80, "sincosl");
    setLibcallName(RTLIB::SINCOS_F128, "sincosl");
    setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
  }

  if (TT.isPS4CPU()) {
    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
    setLibcallName(RTLIB::SINCOS_F64, "sincos");
  }

  if (TT.isOSOpenBSD()) {
    setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
  }
}

/// getFPEXT - Return the FPEXT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
  if (OpVT == MVT::f16) {
    if (RetVT == MVT::f32)
      return FPEXT_F16_F32;
  } else if (OpVT == MVT::f32) {
    if (RetVT == MVT::f64)
      return FPEXT_F32_F64;
    if (RetVT == MVT::f128)
      return FPEXT_F32_F128;
    if (RetVT == MVT::ppcf128)
      return FPEXT_F32_PPCF128;
  } else if (OpVT == MVT::f64) {
    if (RetVT == MVT::f128)
      return FPEXT_F64_F128;
    else if (RetVT == MVT::ppcf128)
      return FPEXT_F64_PPCF128;
  } else if (OpVT == MVT::f80) {
    if (RetVT == MVT::f128)
      return FPEXT_F80_F128;
  }

  return UNKNOWN_LIBCALL;
}

/// getFPROUND - Return the FPROUND_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
  if (RetVT == MVT::f16) {
    if (OpVT == MVT::f32)
      return FPROUND_F32_F16;
    if (OpVT == MVT::f64)
      return FPROUND_F64_F16;
    if (OpVT == MVT::f80)
      return FPROUND_F80_F16;
    if (OpVT == MVT::f128)
      return FPROUND_F128_F16;
    if (OpVT == MVT::ppcf128)
      return FPROUND_PPCF128_F16;
  } else if (RetVT == MVT::f32) {
    if (OpVT == MVT::f64)
      return FPROUND_F64_F32;
    if (OpVT == MVT::f80)
      return FPROUND_F80_F32;
    if (OpVT == MVT::f128)
      return FPROUND_F128_F32;
    if (OpVT == MVT::ppcf128)
      return FPROUND_PPCF128_F32;
  } else if (RetVT == MVT::f64) {
    if (OpVT == MVT::f80)
      return FPROUND_F80_F64;
    if (OpVT == MVT::f128)
      return FPROUND_F128_F64;
    if (OpVT == MVT::ppcf128)
      return FPROUND_PPCF128_F64;
  } else if (RetVT == MVT::f80) {
    if (OpVT == MVT::f128)
      return FPROUND_F128_F80;
  }

  return UNKNOWN_LIBCALL;
}

/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
  if (OpVT == MVT::f32) {
    if (RetVT == MVT::i32)
      return FPTOSINT_F32_I32;
    if (RetVT == MVT::i64)
      return FPTOSINT_F32_I64;
    if (RetVT == MVT::i128)
      return FPTOSINT_F32_I128;
  } else if (OpVT == MVT::f64) {
    if (RetVT == MVT::i32)
      return FPTOSINT_F64_I32;
    if (RetVT == MVT::i64)
      return FPTOSINT_F64_I64;
    if (RetVT == MVT::i128)
      return FPTOSINT_F64_I128;
  } else if (OpVT == MVT::f80) {
    if (RetVT == MVT::i32)
      return FPTOSINT_F80_I32;
    if (RetVT == MVT::i64)
      return FPTOSINT_F80_I64;
    if (RetVT == MVT::i128)
      return FPTOSINT_F80_I128;
  } else if (OpVT == MVT::f128) {
    if (RetVT == MVT::i32)
      return FPTOSINT_F128_I32;
    if (RetVT == MVT::i64)
      return FPTOSINT_F128_I64;
    if (RetVT == MVT::i128)
      return FPTOSINT_F128_I128;
  } else if (OpVT == MVT::ppcf128) {
    if (RetVT == MVT::i32)
      return FPTOSINT_PPCF128_I32;
    if (RetVT == MVT::i64)
      return FPTOSINT_PPCF128_I64;
    if (RetVT == MVT::i128)
      return FPTOSINT_PPCF128_I128;
  }
  return UNKNOWN_LIBCALL;
}

/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
  if (OpVT == MVT::f32) {
    if (RetVT == MVT::i32)
      return FPTOUINT_F32_I32;
    if (RetVT == MVT::i64)
      return FPTOUINT_F32_I64;
    if (RetVT == MVT::i128)
      return FPTOUINT_F32_I128;
  } else if (OpVT == MVT::f64) {
    if (RetVT == MVT::i32)
      return FPTOUINT_F64_I32;
    if (RetVT == MVT::i64)
      return FPTOUINT_F64_I64;
    if (RetVT == MVT::i128)
      return FPTOUINT_F64_I128;
  } else if (OpVT == MVT::f80) {
    if (RetVT == MVT::i32)
      return FPTOUINT_F80_I32;
    if (RetVT == MVT::i64)
      return FPTOUINT_F80_I64;
    if (RetVT == MVT::i128)
      return FPTOUINT_F80_I128;
  } else if (OpVT == MVT::f128) {
    if (RetVT == MVT::i32)
      return FPTOUINT_F128_I32;
    if (RetVT == MVT::i64)
      return FPTOUINT_F128_I64;
    if (RetVT == MVT::i128)
      return FPTOUINT_F128_I128;
  } else if (OpVT == MVT::ppcf128) {
    if (RetVT == MVT::i32)
      return FPTOUINT_PPCF128_I32;
    if (RetVT == MVT::i64)
      return FPTOUINT_PPCF128_I64;
    if (RetVT == MVT::i128)
      return FPTOUINT_PPCF128_I128;
  }
  return UNKNOWN_LIBCALL;
}

/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
  if (OpVT == MVT::i32) {
    if (RetVT == MVT::f32)
      return SINTTOFP_I32_F32;
    if (RetVT == MVT::f64)
      return SINTTOFP_I32_F64;
    if (RetVT == MVT::f80)
      return SINTTOFP_I32_F80;
    if (RetVT == MVT::f128)
      return SINTTOFP_I32_F128;
    if (RetVT == MVT::ppcf128)
      return SINTTOFP_I32_PPCF128;
  } else if (OpVT == MVT::i64) {
    if (RetVT == MVT::f32)
      return SINTTOFP_I64_F32;
    if (RetVT == MVT::f64)
      return SINTTOFP_I64_F64;
    if (RetVT == MVT::f80)
      return SINTTOFP_I64_F80;
    if (RetVT == MVT::f128)
      return SINTTOFP_I64_F128;
    if (RetVT == MVT::ppcf128)
      return SINTTOFP_I64_PPCF128;
  } else if (OpVT == MVT::i128) {
    if (RetVT == MVT::f32)
      return SINTTOFP_I128_F32;
    if (RetVT == MVT::f64)
      return SINTTOFP_I128_F64;
    if (RetVT == MVT::f80)
      return SINTTOFP_I128_F80;
    if (RetVT == MVT::f128)
      return SINTTOFP_I128_F128;
    if (RetVT == MVT::ppcf128)
      return SINTTOFP_I128_PPCF128;
  }
  return UNKNOWN_LIBCALL;
}

/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
  if (OpVT == MVT::i32) {
    if (RetVT == MVT::f32)
      return UINTTOFP_I32_F32;
    if (RetVT == MVT::f64)
      return UINTTOFP_I32_F64;
    if (RetVT == MVT::f80)
      return UINTTOFP_I32_F80;
    if (RetVT == MVT::f128)
      return UINTTOFP_I32_F128;
    if (RetVT == MVT::ppcf128)
      return UINTTOFP_I32_PPCF128;
  } else if (OpVT == MVT::i64) {
    if (RetVT == MVT::f32)
      return UINTTOFP_I64_F32;
    if (RetVT == MVT::f64)
      return UINTTOFP_I64_F64;
    if (RetVT == MVT::f80)
      return UINTTOFP_I64_F80;
    if (RetVT == MVT::f128)
      return UINTTOFP_I64_F128;
    if (RetVT == MVT::ppcf128)
      return UINTTOFP_I64_PPCF128;
  } else if (OpVT == MVT::i128) {
    if (RetVT == MVT::f32)
      return UINTTOFP_I128_F32;
    if (RetVT == MVT::f64)
      return UINTTOFP_I128_F64;
    if (RetVT == MVT::f80)
      return UINTTOFP_I128_F80;
    if (RetVT == MVT::f128)
      return UINTTOFP_I128_F128;
    if (RetVT == MVT::ppcf128)
      return UINTTOFP_I128_PPCF128;
  }
  return UNKNOWN_LIBCALL;
}

RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
#define OP_TO_LIBCALL(Name, Enum)                                              \
  case Name:                                                                   \
    switch (VT.SimpleTy) {                                                     \
    default:                                                                   \
      return UNKNOWN_LIBCALL;                                                  \
    case MVT::i8:                                                              \
      return Enum##_1;                                                         \
    case MVT::i16:                                                             \
      return Enum##_2;                                                         \
    case MVT::i32:                                                             \
      return Enum##_4;                                                         \
    case MVT::i64:                                                             \
      return Enum##_8;                                                         \
    case MVT::i128:                                                            \
      return Enum##_16;                                                        \
    }

  switch (Opc) {
    OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
    OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
  }

#undef OP_TO_LIBCALL

  return UNKNOWN_LIBCALL;
}

RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
  switch (ElementSize) {
  case 1:
    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
  case 2:
    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
  case 4:
    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
  case 8:
    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
  case 16:
    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
  default:
    return UNKNOWN_LIBCALL;
  }
}

RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
  switch (ElementSize) {
  case 1:
    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
  case 2:
    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
  case 4:
    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
  case 8:
    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
  case 16:
    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
  default:
    return UNKNOWN_LIBCALL;
  }
}

RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
  switch (ElementSize) {
  case 1:
    return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
  case 2:
    return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
  case 4:
    return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
  case 8:
    return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
  case 16:
    return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
  default:
    return UNKNOWN_LIBCALL;
  }
}

/// InitCmpLibcallCCs - Set default comparison libcall CC.
static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
  CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
  CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
  CCs[RTLIB::UNE_F32] = ISD::SETNE;
  CCs[RTLIB::UNE_F64] = ISD::SETNE;
  CCs[RTLIB::UNE_F128] = ISD::SETNE;
  CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
  CCs[RTLIB::OGE_F32] = ISD::SETGE;
  CCs[RTLIB::OGE_F64] = ISD::SETGE;
  CCs[RTLIB::OGE_F128] = ISD::SETGE;
  CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
  CCs[RTLIB::OLT_F32] = ISD::SETLT;
  CCs[RTLIB::OLT_F64] = ISD::SETLT;
  CCs[RTLIB::OLT_F128] = ISD::SETLT;
  CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
  CCs[RTLIB::OLE_F32] = ISD::SETLE;
  CCs[RTLIB::OLE_F64] = ISD::SETLE;
  CCs[RTLIB::OLE_F128] = ISD::SETLE;
  CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
  CCs[RTLIB::OGT_F32] = ISD::SETGT;
  CCs[RTLIB::OGT_F64] = ISD::SETGT;
  CCs[RTLIB::OGT_F128] = ISD::SETGT;
  CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
  CCs[RTLIB::UO_F32] = ISD::SETNE;
  CCs[RTLIB::UO_F64] = ISD::SETNE;
  CCs[RTLIB::UO_F128] = ISD::SETNE;
  CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
}

/// NOTE: The TargetMachine owns TLOF.
TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
  initActions();

  // Perform these initializations only once.
  MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
      MaxLoadsPerMemcmp = 8;
  MaxGluedStoresPerMemcpy = 0;
  MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
      MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
  HasMultipleConditionRegisters = false;
  HasExtractBitsInsn = false;
  JumpIsExpensive = JumpIsExpensiveOverride;
  PredictableSelectIsExpensive = false;
  EnableExtLdPromotion = false;
  StackPointerRegisterToSaveRestore = 0;
  BooleanContents = UndefinedBooleanContent;
  BooleanFloatContents = UndefinedBooleanContent;
  BooleanVectorContents = UndefinedBooleanContent;
  SchedPreferenceInfo = Sched::ILP;
  GatherAllAliasesMaxDepth = 18;
  IsStrictFPEnabled = DisableStrictNodeMutation;
  // TODO: the default will be switched to 0 in the next commit, along
  // with the Target-specific changes necessary.
  MaxAtomicSizeInBitsSupported = 1024;

  MinCmpXchgSizeInBits = 0;
  SupportsUnalignedAtomics = false;

  std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);

  InitLibcalls(TM.getTargetTriple());
  InitCmpLibcallCCs(CmpLibcallCCs);
}

void TargetLoweringBase::initActions() {
  // All operations default to being supported.
  memset(OpActions, 0, sizeof(OpActions));
  memset(LoadExtActions, 0, sizeof(LoadExtActions));
  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
  memset(CondCodeActions, 0, sizeof(CondCodeActions));
  std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
  std::fill(std::begin(TargetDAGCombineArray),
            std::end(TargetDAGCombineArray), 0);

  for (MVT VT : MVT::fp_valuetypes()) {
    MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
    if (IntVT.isValid()) {
      setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
      AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
    }
  }

  // Set default actions for various operations.
  for (MVT VT : MVT::all_valuetypes()) {
    // Default all indexed load / store to expand.
    for (unsigned IM = (unsigned)ISD::PRE_INC;
         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
      setIndexedLoadAction(IM, VT, Expand);
      setIndexedStoreAction(IM, VT, Expand);
      setIndexedMaskedLoadAction(IM, VT, Expand);
      setIndexedMaskedStoreAction(IM, VT, Expand);
    }

    // Most backends expect to see the node which just returns the value loaded.
    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);

    // These operations default to expand.
    setOperationAction(ISD::FGETSIGN, VT, Expand);
    setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
    setOperationAction(ISD::FMINNUM, VT, Expand);
    setOperationAction(ISD::FMAXNUM, VT, Expand);
    setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
    setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
    setOperationAction(ISD::FMINIMUM, VT, Expand);
    setOperationAction(ISD::FMAXIMUM, VT, Expand);
    setOperationAction(ISD::FMAD, VT, Expand);
    setOperationAction(ISD::SMIN, VT, Expand);
    setOperationAction(ISD::SMAX, VT, Expand);
    setOperationAction(ISD::UMIN, VT, Expand);
    setOperationAction(ISD::UMAX, VT, Expand);
    setOperationAction(ISD::ABS, VT, Expand);
    setOperationAction(ISD::FSHL, VT, Expand);
    setOperationAction(ISD::FSHR, VT, Expand);
    setOperationAction(ISD::SADDSAT, VT, Expand);
    setOperationAction(ISD::UADDSAT, VT, Expand);
    setOperationAction(ISD::SSUBSAT, VT, Expand);
    setOperationAction(ISD::USUBSAT, VT, Expand);
    setOperationAction(ISD::SSHLSAT, VT, Expand);
    setOperationAction(ISD::USHLSAT, VT, Expand);
    setOperationAction(ISD::SMULFIX, VT, Expand);
    setOperationAction(ISD::SMULFIXSAT, VT, Expand);
    setOperationAction(ISD::UMULFIX, VT, Expand);
    setOperationAction(ISD::UMULFIXSAT, VT, Expand);
    setOperationAction(ISD::SDIVFIX, VT, Expand);
    setOperationAction(ISD::SDIVFIXSAT, VT, Expand);
    setOperationAction(ISD::UDIVFIX, VT, Expand);
    setOperationAction(ISD::UDIVFIXSAT, VT, Expand);

    // Overflow operations default to expand
    setOperationAction(ISD::SADDO, VT, Expand);
    setOperationAction(ISD::SSUBO, VT, Expand);
    setOperationAction(ISD::UADDO, VT, Expand);
    setOperationAction(ISD::USUBO, VT, Expand);
    setOperationAction(ISD::SMULO, VT, Expand);
    setOperationAction(ISD::UMULO, VT, Expand);

    // ADDCARRY operations default to expand
    setOperationAction(ISD::ADDCARRY, VT, Expand);
    setOperationAction(ISD::SUBCARRY, VT, Expand);
    setOperationAction(ISD::SETCCCARRY, VT, Expand);

    // ADDC/ADDE/SUBC/SUBE default to expand.
    setOperationAction(ISD::ADDC, VT, Expand);
    setOperationAction(ISD::ADDE, VT, Expand);
    setOperationAction(ISD::SUBC, VT, Expand);
    setOperationAction(ISD::SUBE, VT, Expand);

    // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);

    setOperationAction(ISD::BITREVERSE, VT, Expand);
    setOperationAction(ISD::PARITY, VT, Expand);

    // These library functions default to expand.
    setOperationAction(ISD::FROUND, VT, Expand);
    setOperationAction(ISD::FROUNDEVEN, VT, Expand);
    setOperationAction(ISD::FPOWI, VT, Expand);

    // These operations default to expand for vector types.
    if (VT.isVector()) {
      setOperationAction(ISD::FCOPYSIGN, VT, Expand);
      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
      setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
      setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
      setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
      setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
    }

    // Constrained floating-point operations default to expand.
#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
    setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
#include "llvm/IR/ConstrainedOps.def"

    // For most targets @llvm.get.dynamic.area.offset just returns 0.
    setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);

    // Vector reduction default to expand.
    setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
    setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
    setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
    setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
    setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
    setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
    setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
    setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
    setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
    setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
    setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
    setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
    setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
  }

  // Most targets ignore the @llvm.prefetch intrinsic.
  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);

  // Most targets also ignore the @llvm.readcyclecounter intrinsic.
  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);

  // ConstantFP nodes default to expand.  Targets can either change this to
  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
  // to optimize expansions for certain constants.
  setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
  setOperationAction(ISD::ConstantFP, MVT::f128, Expand);

  // These library functions default to expand.
  for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
    setOperationAction(ISD::FCBRT,      VT, Expand);
    setOperationAction(ISD::FLOG ,      VT, Expand);
    setOperationAction(ISD::FLOG2,      VT, Expand);
    setOperationAction(ISD::FLOG10,     VT, Expand);
    setOperationAction(ISD::FEXP ,      VT, Expand);
    setOperationAction(ISD::FEXP2,      VT, Expand);
    setOperationAction(ISD::FFLOOR,     VT, Expand);
    setOperationAction(ISD::FNEARBYINT, VT, Expand);
    setOperationAction(ISD::FCEIL,      VT, Expand);
    setOperationAction(ISD::FRINT,      VT, Expand);
    setOperationAction(ISD::FTRUNC,     VT, Expand);
    setOperationAction(ISD::FROUND,     VT, Expand);
    setOperationAction(ISD::FROUNDEVEN, VT, Expand);
    setOperationAction(ISD::LROUND,     VT, Expand);
    setOperationAction(ISD::LLROUND,    VT, Expand);
    setOperationAction(ISD::LRINT,      VT, Expand);
    setOperationAction(ISD::LLRINT,     VT, Expand);
  }

  // Default ISD::TRAP to expand (which turns it into abort).
  setOperationAction(ISD::TRAP, MVT::Other, Expand);

  // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
  // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
}

MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
                                               EVT) const {
  return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
}

EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
                                         bool LegalTypes) const {
  assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
  if (LHSTy.isVector())
    return LHSTy;
  return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
                    : getPointerTy(DL);
}

bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
  assert(isTypeLegal(VT));
  switch (Op) {
  default:
    return false;
  case ISD::SDIV:
  case ISD::UDIV:
  case ISD::SREM:
  case ISD::UREM:
    return true;
  }
}

bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
                                             unsigned DestAS) const {
  return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
}

void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
  // If the command-line option was specified, ignore this request.
  if (!JumpIsExpensiveOverride.getNumOccurrences())
    JumpIsExpensive = isExpensive;
}

TargetLoweringBase::LegalizeKind
TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
  // If this is a simple type, use the ComputeRegisterProp mechanism.
  if (VT.isSimple()) {
    MVT SVT = VT.getSimpleVT();
    assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
    MVT NVT = TransformToType[SVT.SimpleTy];
    LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);

    assert((LA == TypeLegal || LA == TypeSoftenFloat ||
            LA == TypeSoftPromoteHalf ||
            (NVT.isVector() ||
             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
           "Promote may not follow Expand or Promote");

    if (LA == TypeSplitVector)
      return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
    if (LA == TypeScalarizeVector)
      return LegalizeKind(LA, SVT.getVectorElementType());
    return LegalizeKind(LA, NVT);
  }

  // Handle Extended Scalar Types.
  if (!VT.isVector()) {
    assert(VT.isInteger() && "Float types must be simple");
    unsigned BitSize = VT.getSizeInBits();
    // First promote to a power-of-two size, then expand if necessary.
    if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
      EVT NVT = VT.getRoundIntegerType(Context);
      assert(NVT != VT && "Unable to round integer VT");
      LegalizeKind NextStep = getTypeConversion(Context, NVT);
      // Avoid multi-step promotion.
      if (NextStep.first == TypePromoteInteger)
        return NextStep;
      // Return rounded integer type.
      return LegalizeKind(TypePromoteInteger, NVT);
    }

    return LegalizeKind(TypeExpandInteger,
                        EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
  }

  // Handle vector types.
  ElementCount NumElts = VT.getVectorElementCount();
  EVT EltVT = VT.getVectorElementType();

  // Vectors with only one element are always scalarized.
  if (NumElts == 1)
    return LegalizeKind(TypeScalarizeVector, EltVT);

  if (VT.getVectorElementCount() == ElementCount::getScalable(1))
    report_fatal_error("Cannot legalize this vector");

  // Try to widen vector elements until the element type is a power of two and
  // promote it to a legal type later on, for example:
  // <3 x i8> -> <4 x i8> -> <4 x i32>
  if (EltVT.isInteger()) {
    // Vectors with a number of elements that is not a power of two are always
    // widened, for example <3 x i8> -> <4 x i8>.
    if (!VT.isPow2VectorType()) {
      NumElts = NumElts.NextPowerOf2();
      EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
      return LegalizeKind(TypeWidenVector, NVT);
    }

    // Examine the element type.
    LegalizeKind LK = getTypeConversion(Context, EltVT);

    // If type is to be expanded, split the vector.
    //  <4 x i140> -> <2 x i140>
    if (LK.first == TypeExpandInteger)
      return LegalizeKind(TypeSplitVector,
                          VT.getHalfNumVectorElementsVT(Context));

    // Promote the integer element types until a legal vector type is found
    // or until the element integer type is too big. If a legal type was not
    // found, fallback to the usual mechanism of widening/splitting the
    // vector.
    EVT OldEltVT = EltVT;
    while (true) {
      // Increase the bitwidth of the element to the next pow-of-two
      // (which is greater than 8 bits).
      EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
                  .getRoundIntegerType(Context);

      // Stop trying when getting a non-simple element type.
      // Note that vector elements may be greater than legal vector element
      // types. Example: X86 XMM registers hold 64bit element on 32bit
      // systems.
      if (!EltVT.isSimple())
        break;

      // Build a new vector type and check if it is legal.
      MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
      // Found a legal promoted vector type.
      if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
        return LegalizeKind(TypePromoteInteger,
                            EVT::getVectorVT(Context, EltVT, NumElts));
    }

    // Reset the type to the unexpanded type if we did not find a legal vector
    // type with a promoted vector element type.
    EltVT = OldEltVT;
  }

  // Try to widen the vector until a legal type is found.
  // If there is no wider legal type, split the vector.
  while (true) {
    // Round up to the next power of 2.
    NumElts = NumElts.NextPowerOf2();

    // If there is no simple vector type with this many elements then there
    // cannot be a larger legal vector type.  Note that this assumes that
    // there are no skipped intermediate vector types in the simple types.
    if (!EltVT.isSimple())
      break;
    MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
    if (LargerVector == MVT())
      break;

    // If this type is legal then widen the vector.
    if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
      return LegalizeKind(TypeWidenVector, LargerVector);
  }

  // Widen odd vectors to next power of two.
  if (!VT.isPow2VectorType()) {
    EVT NVT = VT.getPow2VectorType(Context);
    return LegalizeKind(TypeWidenVector, NVT);
  }

  // Vectors with illegal element types are expanded.
  EVT NVT = EVT::getVectorVT(Context, EltVT,
                             VT.getVectorElementCount().divideCoefficientBy(2));
  return LegalizeKind(TypeSplitVector, NVT);
}

static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
                                          unsigned &NumIntermediates,
                                          MVT &RegisterVT,
                                          TargetLoweringBase *TLI) {
  // Figure out the right, legal destination reg to copy into.
  ElementCount EC = VT.getVectorElementCount();
  MVT EltTy = VT.getVectorElementType();

  unsigned NumVectorRegs = 1;

  // Scalable vectors cannot be scalarized, so splitting or widening is
  // required.
  if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
    llvm_unreachable(
        "Splitting or widening of non-power-of-2 MVTs is not implemented.");

  // FIXME: We don't support non-power-of-2-sized vectors for now.
  // Ideally we could break down into LHS/RHS like LegalizeDAG does.
  if (!isPowerOf2_32(EC.getKnownMinValue())) {
    // Split EC to unit size (scalable property is preserved).
    NumVectorRegs = EC.getKnownMinValue();
    EC = ElementCount::getFixed(1);
  }

  // Divide the input until we get to a supported size. This will
  // always end up with an EC that represent a scalar or a scalable
  // scalar.
  while (EC.getKnownMinValue() > 1 &&
         !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
    EC = EC.divideCoefficientBy(2);
    NumVectorRegs <<= 1;
  }

  NumIntermediates = NumVectorRegs;

  MVT NewVT = MVT::getVectorVT(EltTy, EC);
  if (!TLI->isTypeLegal(NewVT))
    NewVT = EltTy;
  IntermediateVT = NewVT;

  unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();

  // Convert sizes such as i33 to i64.
  if (!isPowerOf2_32(LaneSizeInBits))
    LaneSizeInBits = NextPowerOf2(LaneSizeInBits);

  MVT DestVT = TLI->getRegisterType(NewVT);
  RegisterVT = DestVT;
  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
    return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());

  // Otherwise, promotion or legal types use the same number of registers as
  // the vector decimated to the appropriate level.
  return NumVectorRegs;
}

/// isLegalRC - Return true if the value types that can be represented by the
/// specified register class are all legal.
bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
                                   const TargetRegisterClass &RC) const {
  for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
    if (isTypeLegal(*I))
      return true;
  return false;
}

/// Replace/modify any TargetFrameIndex operands with a targte-dependent
/// sequence of memory operands that is recognized by PrologEpilogInserter.
MachineBasicBlock *
TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
                                   MachineBasicBlock *MBB) const {
  MachineInstr *MI = &InitialMI;
  MachineFunction &MF = *MI->getMF();
  MachineFrameInfo &MFI = MF.getFrameInfo();

  // We're handling multiple types of operands here:
  // PATCHPOINT MetaArgs - live-in, read only, direct
  // STATEPOINT Deopt Spill - live-through, read only, indirect
  // STATEPOINT Deopt Alloca - live-through, read only, direct
  // (We're currently conservative and mark the deopt slots read/write in
  // practice.)
  // STATEPOINT GC Spill - live-through, read/write, indirect
  // STATEPOINT GC Alloca - live-through, read/write, direct
  // The live-in vs live-through is handled already (the live through ones are
  // all stack slots), but we need to handle the different type of stackmap
  // operands and memory effects here.

  if (!llvm::any_of(MI->operands(),
                    [](MachineOperand &Operand) { return Operand.isFI(); }))
    return MBB;

  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());

  // Inherit previous memory operands.
  MIB.cloneMemRefs(*MI);

  for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isFI()) {
      // Index of Def operand this Use it tied to.
      // Since Defs are coming before Uses, if Use is tied, then
      // index of Def must be smaller that index of that Use.
      // Also, Defs preserve their position in new MI.
      unsigned TiedTo = i;
      if (MO.isReg() && MO.isTied())
        TiedTo = MI->findTiedOperandIdx(i);
      MIB.add(MO);
      if (TiedTo < i)
        MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
      continue;
    }

    // foldMemoryOperand builds a new MI after replacing a single FI operand
    // with the canonical set of five x86 addressing-mode operands.
    int FI = MO.getIndex();

    // Add frame index operands recognized by stackmaps.cpp
    if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
      // indirect-mem-ref tag, size, #FI, offset.
      // Used for spills inserted by StatepointLowering.  This codepath is not
      // used for patchpoints/stackmaps at all, for these spilling is done via
      // foldMemoryOperand callback only.
      assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
      MIB.addImm(StackMaps::IndirectMemRefOp);
      MIB.addImm(MFI.getObjectSize(FI));
      MIB.add(MO);
      MIB.addImm(0);
    } else {
      // direct-mem-ref tag, #FI, offset.
      // Used by patchpoint, and direct alloca arguments to statepoints
      MIB.addImm(StackMaps::DirectMemRefOp);
      MIB.add(MO);
      MIB.addImm(0);
    }

    assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");

    // Add a new memory operand for this FI.
    assert(MFI.getObjectOffset(FI) != -1);

    // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
    // PATCHPOINT should be updated to do the same. (TODO)
    if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
      auto Flags = MachineMemOperand::MOLoad;
      MachineMemOperand *MMO = MF.getMachineMemOperand(
          MachinePointerInfo::getFixedStack(MF, FI), Flags,
          MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
      MIB->addMemOperand(MF, MMO);
    }
  }
  MBB->insert(MachineBasicBlock::iterator(MI), MIB);
  MI->eraseFromParent();
  return MBB;
}

MachineBasicBlock *
TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
                                        MachineBasicBlock *MBB) const {
  assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
         "Called emitXRayCustomEvent on the wrong MI!");
  auto &MF = *MI.getMF();
  auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
  for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
    MIB.add(MI.getOperand(OpIdx));

  MBB->insert(MachineBasicBlock::iterator(MI), MIB);
  MI.eraseFromParent();
  return MBB;
}

MachineBasicBlock *
TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
                                       MachineBasicBlock *MBB) const {
  assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
         "Called emitXRayTypedEvent on the wrong MI!");
  auto &MF = *MI.getMF();
  auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
  for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
    MIB.add(MI.getOperand(OpIdx));

  MBB->insert(MachineBasicBlock::iterator(MI), MIB);
  MI.eraseFromParent();
  return MBB;
}

/// findRepresentativeClass - Return the largest legal super-reg register class
/// of the register class for the specified type and its associated "cost".
// This function is in TargetLowering because it uses RegClassForVT which would
// need to be moved to TargetRegisterInfo and would necessitate moving
// isTypeLegal over as well - a massive change that would just require
// TargetLowering having a TargetRegisterInfo class member that it would use.
std::pair<const TargetRegisterClass *, uint8_t>
TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
                                            MVT VT) const {
  const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
  if (!RC)
    return std::make_pair(RC, 0);

  // Compute the set of all super-register classes.
  BitVector SuperRegRC(TRI->getNumRegClasses());
  for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
    SuperRegRC.setBitsInMask(RCI.getMask());

  // Find the first legal register class with the largest spill size.
  const TargetRegisterClass *BestRC = RC;
  for (unsigned i : SuperRegRC.set_bits()) {
    const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
    // We want the largest possible spill size.
    if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
      continue;
    if (!isLegalRC(*TRI, *SuperRC))
      continue;
    BestRC = SuperRC;
  }
  return std::make_pair(BestRC, 1);
}

/// computeRegisterProperties - Once all of the register classes are added,
/// this allows us to compute derived properties we expose.
void TargetLoweringBase::computeRegisterProperties(
    const TargetRegisterInfo *TRI) {
  static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
                "Too many value types for ValueTypeActions to hold!");

  // Everything defaults to needing one register.
  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
    NumRegistersForVT[i] = 1;
    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
  }
  // ...except isVoid, which doesn't need any registers.
  NumRegistersForVT[MVT::isVoid] = 0;

  // Find the largest integer register class.
  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
  for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");

  // Every integer value type larger than this largest register takes twice as
  // many registers to represent as the previous ValueType.
  for (unsigned ExpandedReg = LargestIntReg + 1;
       ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
    ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
                                   TypeExpandInteger);
  }

  // Inspect all of the ValueType's smaller than the largest integer
  // register to see which ones need promotion.
  unsigned LegalIntReg = LargestIntReg;
  for (unsigned IntReg = LargestIntReg - 1;
       IntReg >= (unsigned)MVT::i1; --IntReg) {
    MVT IVT = (MVT::SimpleValueType)IntReg;
    if (isTypeLegal(IVT)) {
      LegalIntReg = IntReg;
    } else {
      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
        (MVT::SimpleValueType)LegalIntReg;
      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
    }
  }

  // ppcf128 type is really two f64's.
  if (!isTypeLegal(MVT::ppcf128)) {
    if (isTypeLegal(MVT::f64)) {
      NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
      RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
      TransformToType[MVT::ppcf128] = MVT::f64;
      ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
    } else {
      NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
      RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
      TransformToType[MVT::ppcf128] = MVT::i128;
      ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
    }
  }

  // Decide how to handle f128. If the target does not have native f128 support,
  // expand it to i128 and we will be generating soft float library calls.
  if (!isTypeLegal(MVT::f128)) {
    NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
    RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
    TransformToType[MVT::f128] = MVT::i128;
    ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
  }

  // Decide how to handle f64. If the target does not have native f64 support,
  // expand it to i64 and we will be generating soft float library calls.
  if (!isTypeLegal(MVT::f64)) {
    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
    TransformToType[MVT::f64] = MVT::i64;
    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
  }

  // Decide how to handle f32. If the target does not have native f32 support,
  // expand it to i32 and we will be generating soft float library calls.
  if (!isTypeLegal(MVT::f32)) {
    NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
    RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
    TransformToType[MVT::f32] = MVT::i32;
    ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
  }

  // Decide how to handle f16. If the target does not have native f16 support,
  // promote it to f32, because there are no f16 library calls (except for
  // conversions).
  if (!isTypeLegal(MVT::f16)) {
    // Allow targets to control how we legalize half.
    if (softPromoteHalfType()) {
      NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
      RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
      TransformToType[MVT::f16] = MVT::f32;
      ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
    } else {
      NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
      RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
      TransformToType[MVT::f16] = MVT::f32;
      ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
    }
  }

  // Loop over all of the vector value types to see which need transformations.
  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
    MVT VT = (MVT::SimpleValueType) i;
    if (isTypeLegal(VT))
      continue;

    MVT EltVT = VT.getVectorElementType();
    ElementCount EC = VT.getVectorElementCount();
    bool IsLegalWiderType = false;
    bool IsScalable = VT.isScalableVector();
    LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
    switch (PreferredAction) {
    case TypePromoteInteger: {
      MVT::SimpleValueType EndVT = IsScalable ?
                                   MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
                                   MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
      // Try to promote the elements of integer vectors. If no legal
      // promotion was found, fall through to the widen-vector method.
      for (unsigned nVT = i + 1;
           (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
        MVT SVT = (MVT::SimpleValueType) nVT;
        // Promote vectors of integers to vectors with the same number
        // of elements, with a wider element type.
        if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
            SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
          TransformToType[i] = SVT;
          RegisterTypeForVT[i] = SVT;
          NumRegistersForVT[i] = 1;
          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
          IsLegalWiderType = true;
          break;
        }
      }
      if (IsLegalWiderType)
        break;
      LLVM_FALLTHROUGH;
    }

    case TypeWidenVector:
      if (isPowerOf2_32(EC.getKnownMinValue())) {
        // Try to widen the vector.
        for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
          MVT SVT = (MVT::SimpleValueType) nVT;
          if (SVT.getVectorElementType() == EltVT &&
              SVT.isScalableVector() == IsScalable &&
              SVT.getVectorElementCount().getKnownMinValue() >
                  EC.getKnownMinValue() &&
              isTypeLegal(SVT)) {
            TransformToType[i] = SVT;
            RegisterTypeForVT[i] = SVT;
            NumRegistersForVT[i] = 1;
            ValueTypeActions.setTypeAction(VT, TypeWidenVector);
            IsLegalWiderType = true;
            break;
          }
        }
        if (IsLegalWiderType)
          break;
      } else {
        // Only widen to the next power of 2 to keep consistency with EVT.
        MVT NVT = VT.getPow2VectorType();
        if (isTypeLegal(NVT)) {
          TransformToType[i] = NVT;
          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
          RegisterTypeForVT[i] = NVT;
          NumRegistersForVT[i] = 1;
          break;
        }
      }
      LLVM_FALLTHROUGH;

    case TypeSplitVector:
    case TypeScalarizeVector: {
      MVT IntermediateVT;
      MVT RegisterVT;
      unsigned NumIntermediates;
      unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
          NumIntermediates, RegisterVT, this);
      NumRegistersForVT[i] = NumRegisters;
      assert(NumRegistersForVT[i] == NumRegisters &&
             "NumRegistersForVT size cannot represent NumRegisters!");
      RegisterTypeForVT[i] = RegisterVT;

      MVT NVT = VT.getPow2VectorType();
      if (NVT == VT) {
        // Type is already a power of 2.  The default action is to split.
        TransformToType[i] = MVT::Other;
        if (PreferredAction == TypeScalarizeVector)
          ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
        else if (PreferredAction == TypeSplitVector)
          ValueTypeActions.setTypeAction(VT, TypeSplitVector);
        else if (EC.getKnownMinValue() > 1)
          ValueTypeActions.setTypeAction(VT, TypeSplitVector);
        else
          ValueTypeActions.setTypeAction(VT, EC.isScalable()
                                                 ? TypeScalarizeScalableVector
                                                 : TypeScalarizeVector);
      } else {
        TransformToType[i] = NVT;
        ValueTypeActions.setTypeAction(VT, TypeWidenVector);
      }
      break;
    }
    default:
      llvm_unreachable("Unknown vector legalization action!");
    }
  }

  // Determine the 'representative' register class for each value type.
  // An representative register class is the largest (meaning one which is
  // not a sub-register class / subreg register class) legal register class for
  // a group of value types. For example, on i386, i8, i16, and i32
  // representative would be GR32; while on x86_64 it's GR64.
  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
    const TargetRegisterClass* RRC;
    uint8_t Cost;
    std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
    RepRegClassForVT[i] = RRC;
    RepRegClassCostForVT[i] = Cost;
  }
}

EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
                                           EVT VT) const {
  assert(!VT.isVector() && "No default SetCC type for vectors!");
  return getPointerTy(DL).SimpleTy;
}

MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
  return MVT::i32; // return the default value
}

/// getVectorTypeBreakdown - Vector types are broken down into some number of
/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
///
/// This method returns the number of registers needed, and the VT for each
/// register.  It also returns the VT and quantity of the intermediate values
/// before they are promoted/expanded.
unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
                                                EVT &IntermediateVT,
                                                unsigned &NumIntermediates,
                                                MVT &RegisterVT) const {
  ElementCount EltCnt = VT.getVectorElementCount();

  // If there is a wider vector type with the same element type as this one,
  // or a promoted vector type that has the same number of elements which
  // are wider, then we should convert to that legal vector type.
  // This handles things like <2 x float> -> <4 x float> and
  // <4 x i1> -> <4 x i32>.
  LegalizeTypeAction TA = getTypeAction(Context, VT);
  if (EltCnt.getKnownMinValue() != 1 &&
      (TA == TypeWidenVector || TA == TypePromoteInteger)) {
    EVT RegisterEVT = getTypeToTransformTo(Context, VT);
    if (isTypeLegal(RegisterEVT)) {
      IntermediateVT = RegisterEVT;
      RegisterVT = RegisterEVT.getSimpleVT();
      NumIntermediates = 1;
      return 1;
    }
  }

  // Figure out the right, legal destination reg to copy into.
  EVT EltTy = VT.getVectorElementType();

  unsigned NumVectorRegs = 1;

  // Scalable vectors cannot be scalarized, so handle the legalisation of the
  // types like done elsewhere in SelectionDAG.
  if (VT.isScalableVector() && !isPowerOf2_32(EltCnt.getKnownMinValue())) {
    LegalizeKind LK;
    EVT PartVT = VT;
    do {
      // Iterate until we've found a legal (part) type to hold VT.
      LK = getTypeConversion(Context, PartVT);
      PartVT = LK.second;
    } while (LK.first != TypeLegal);

    NumIntermediates = VT.getVectorElementCount().getKnownMinValue() /
                       PartVT.getVectorElementCount().getKnownMinValue();

    // FIXME: This code needs to be extended to handle more complex vector
    // breakdowns, like nxv7i64 -> nxv8i64 -> 4 x nxv2i64. Currently the only
    // supported cases are vectors that are broken down into equal parts
    // such as nxv6i64 -> 3 x nxv2i64.
    assert((PartVT.getVectorElementCount() * NumIntermediates) ==
               VT.getVectorElementCount() &&
           "Expected an integer multiple of PartVT");
    IntermediateVT = PartVT;
    RegisterVT = getRegisterType(Context, IntermediateVT);
    return NumIntermediates;
  }

  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
  // we could break down into LHS/RHS like LegalizeDAG does.
  if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
    NumVectorRegs = EltCnt.getKnownMinValue();
    EltCnt = ElementCount::getFixed(1);
  }

  // Divide the input until we get to a supported size.  This will always
  // end with a scalar if the target doesn't support vectors.
  while (EltCnt.getKnownMinValue() > 1 &&
         !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
    EltCnt = EltCnt.divideCoefficientBy(2);
    NumVectorRegs <<= 1;
  }

  NumIntermediates = NumVectorRegs;

  EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
  if (!isTypeLegal(NewVT))
    NewVT = EltTy;
  IntermediateVT = NewVT;

  MVT DestVT = getRegisterType(Context, NewVT);
  RegisterVT = DestVT;

  if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
    TypeSize NewVTSize = NewVT.getSizeInBits();
    // Convert sizes such as i33 to i64.
    if (!isPowerOf2_32(NewVTSize.getKnownMinSize()))
      NewVTSize = NewVTSize.NextPowerOf2();
    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
  }

  // Otherwise, promotion or legal types use the same number of registers as
  // the vector decimated to the appropriate level.
  return NumVectorRegs;
}

bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
                                                uint64_t NumCases,
                                                uint64_t Range,
                                                ProfileSummaryInfo *PSI,
                                                BlockFrequencyInfo *BFI) const {
  // FIXME: This function check the maximum table size and density, but the
  // minimum size is not checked. It would be nice if the minimum size is
  // also combined within this function. Currently, the minimum size check is
  // performed in findJumpTable() in SelectionDAGBuiler and
  // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
  const bool OptForSize =
      SI->getParent()->getParent()->hasOptSize() ||
      llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
  const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
  const unsigned MaxJumpTableSize = getMaximumJumpTableSize();

  // Check whether the number of cases is small enough and
  // the range is dense enough for a jump table.
  return (OptForSize || Range <= MaxJumpTableSize) &&
         (NumCases * 100 >= Range * MinDensity);
}

/// Get the EVTs and ArgFlags collections that represent the legalized return
/// type of the given function.  This does not require a DAG or a return value,
/// and is suitable for use before any DAGs for the function are constructed.
/// TODO: Move this out of TargetLowering.cpp.
void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
                         AttributeList attr,
                         SmallVectorImpl<ISD::OutputArg> &Outs,
                         const TargetLowering &TLI, const DataLayout &DL) {
  SmallVector<EVT, 4> ValueVTs;
  ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
  unsigned NumValues = ValueVTs.size();
  if (NumValues == 0) return;

  for (unsigned j = 0, f = NumValues; j != f; ++j) {
    EVT VT = ValueVTs[j];
    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;

    if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
      ExtendKind = ISD::SIGN_EXTEND;
    else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
      ExtendKind = ISD::ZERO_EXTEND;

    // FIXME: C calling convention requires the return type to be promoted to
    // at least 32-bit. But this is not necessary for non-C calling
    // conventions. The frontend should mark functions whose return values
    // require promoting with signext or zeroext attributes.
    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
      MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
      if (VT.bitsLT(MinVT))
        VT = MinVT;
    }

    unsigned NumParts =
        TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
    MVT PartVT =
        TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);

    // 'inreg' on function refers to return value
    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
    if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
      Flags.setInReg();

    // Propagate extension type if any
    if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
      Flags.setSExt();
    else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
      Flags.setZExt();

    for (unsigned i = 0; i < NumParts; ++i)
      Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
  }
}

/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area.  This is the actual
/// alignment, not its logarithm.
unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
                                                   const DataLayout &DL) const {
  return DL.getABITypeAlign(Ty).value();
}

bool TargetLoweringBase::allowsMemoryAccessForAlignment(
    LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
    Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
  // Check if the specified alignment is sufficient based on the data layout.
  // TODO: While using the data layout works in practice, a better solution
  // would be to implement this check directly (make this a virtual function).
  // For example, the ABI alignment may change based on software platform while
  // this function should only be affected by hardware implementation.
  Type *Ty = VT.getTypeForEVT(Context);
  if (Alignment >= DL.getABITypeAlign(Ty)) {
    // Assume that an access that meets the ABI-specified alignment is fast.
    if (Fast != nullptr)
      *Fast = true;
    return true;
  }

  // This is a misaligned access.
  return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment.value(), Flags,
                                        Fast);
}

bool TargetLoweringBase::allowsMemoryAccessForAlignment(
    LLVMContext &Context, const DataLayout &DL, EVT VT,
    const MachineMemOperand &MMO, bool *Fast) const {
  return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
                                        MMO.getAlign(), MMO.getFlags(), Fast);
}

bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
                                            const DataLayout &DL, EVT VT,
                                            unsigned AddrSpace, Align Alignment,
                                            MachineMemOperand::Flags Flags,
                                            bool *Fast) const {
  return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
                                        Flags, Fast);
}

bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
                                            const DataLayout &DL, EVT VT,
                                            const MachineMemOperand &MMO,
                                            bool *Fast) const {
  return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
                            MMO.getFlags(), Fast);
}

BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
  return BranchProbability(MinPercentageForPredictableBranch, 100);
}

//===----------------------------------------------------------------------===//
//  TargetTransformInfo Helpers
//===----------------------------------------------------------------------===//

int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
  enum InstructionOpcodes {
#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
#include "llvm/IR/Instruction.def"
  };
  switch (static_cast<InstructionOpcodes>(Opcode)) {
  case Ret:            return 0;
  case Br:             return 0;
  case Switch:         return 0;
  case IndirectBr:     return 0;
  case Invoke:         return 0;
  case CallBr:         return 0;
  case Resume:         return 0;
  case Unreachable:    return 0;
  case CleanupRet:     return 0;
  case CatchRet:       return 0;
  case CatchPad:       return 0;
  case CatchSwitch:    return 0;
  case CleanupPad:     return 0;
  case FNeg:           return ISD::FNEG;
  case Add:            return ISD::ADD;
  case FAdd:           return ISD::FADD;
  case Sub:            return ISD::SUB;
  case FSub:           return ISD::FSUB;
  case Mul:            return ISD::MUL;
  case FMul:           return ISD::FMUL;
  case UDiv:           return ISD::UDIV;
  case SDiv:           return ISD::SDIV;
  case FDiv:           return ISD::FDIV;
  case URem:           return ISD::UREM;
  case SRem:           return ISD::SREM;
  case FRem:           return ISD::FREM;
  case Shl:            return ISD::SHL;
  case LShr:           return ISD::SRL;
  case AShr:           return ISD::SRA;
  case And:            return ISD::AND;
  case Or:             return ISD::OR;
  case Xor:            return ISD::XOR;
  case Alloca:         return 0;
  case Load:           return ISD::LOAD;
  case Store:          return ISD::STORE;
  case GetElementPtr:  return 0;
  case Fence:          return 0;
  case AtomicCmpXchg:  return 0;
  case AtomicRMW:      return 0;
  case Trunc:          return ISD::TRUNCATE;
  case ZExt:           return ISD::ZERO_EXTEND;
  case SExt:           return ISD::SIGN_EXTEND;
  case FPToUI:         return ISD::FP_TO_UINT;
  case FPToSI:         return ISD::FP_TO_SINT;
  case UIToFP:         return ISD::UINT_TO_FP;
  case SIToFP:         return ISD::SINT_TO_FP;
  case FPTrunc:        return ISD::FP_ROUND;
  case FPExt:          return ISD::FP_EXTEND;
  case PtrToInt:       return ISD::BITCAST;
  case IntToPtr:       return ISD::BITCAST;
  case BitCast:        return ISD::BITCAST;
  case AddrSpaceCast:  return ISD::ADDRSPACECAST;
  case ICmp:           return ISD::SETCC;
  case FCmp:           return ISD::SETCC;
  case PHI:            return 0;
  case Call:           return 0;
  case Select:         return ISD::SELECT;
  case UserOp1:        return 0;
  case UserOp2:        return 0;
  case VAArg:          return 0;
  case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
  case InsertElement:  return ISD::INSERT_VECTOR_ELT;
  case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
  case ExtractValue:   return ISD::MERGE_VALUES;
  case InsertValue:    return ISD::MERGE_VALUES;
  case LandingPad:     return 0;
  case Freeze:         return ISD::FREEZE;
  }

  llvm_unreachable("Unknown instruction type encountered!");
}

std::pair<int, MVT>
TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
                                            Type *Ty) const {
  LLVMContext &C = Ty->getContext();
  EVT MTy = getValueType(DL, Ty);

  int Cost = 1;
  // We keep legalizing the type until we find a legal kind. We assume that
  // the only operation that costs anything is the split. After splitting
  // we need to handle two types.
  while (true) {
    LegalizeKind LK = getTypeConversion(C, MTy);

    if (LK.first == TypeLegal)
      return std::make_pair(Cost, MTy.getSimpleVT());

    if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
      Cost *= 2;

    // Do not loop with f128 type.
    if (MTy == LK.second)
      return std::make_pair(Cost, MTy.getSimpleVT());

    // Keep legalizing the type.
    MTy = LK.second;
  }
}

Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
                                                              bool UseTLS) const {
  // compiler-rt provides a variable with a magic name.  Targets that do not
  // link with compiler-rt may also provide such a variable.
  Module *M = IRB.GetInsertBlock()->getParent()->getParent();
  const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
  auto UnsafeStackPtr =
      dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));

  Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());

  if (!UnsafeStackPtr) {
    auto TLSModel = UseTLS ?
        GlobalValue::InitialExecTLSModel :
        GlobalValue::NotThreadLocal;
    // The global variable is not defined yet, define it ourselves.
    // We use the initial-exec TLS model because we do not support the
    // variable living anywhere other than in the main executable.
    UnsafeStackPtr = new GlobalVariable(
        *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
        UnsafeStackPtrVar, nullptr, TLSModel);
  } else {
    // The variable exists, check its type and attributes.
    if (UnsafeStackPtr->getValueType() != StackPtrTy)
      report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
    if (UseTLS != UnsafeStackPtr->isThreadLocal())
      report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
                         (UseTLS ? "" : "not ") + "be thread-local");
  }
  return UnsafeStackPtr;
}

Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
  if (!TM.getTargetTriple().isAndroid())
    return getDefaultSafeStackPointerLocation(IRB, true);

  // Android provides a libc function to retrieve the address of the current
  // thread's unsafe stack pointer.
  Module *M = IRB.GetInsertBlock()->getParent()->getParent();
  Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
  FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
                                             StackPtrTy->getPointerTo(0));
  return IRB.CreateCall(Fn);
}

//===----------------------------------------------------------------------===//
//  Loop Strength Reduction hooks
//===----------------------------------------------------------------------===//

/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
                                               const AddrMode &AM, Type *Ty,
                                               unsigned AS, Instruction *I) const {
  // The default implementation of this implements a conservative RISCy, r+r and
  // r+i addr mode.

  // Allows a sign-extended 16-bit immediate field.
  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
    return false;

  // No global is ever allowed as a base.
  if (AM.BaseGV)
    return false;

  // Only support r+r,
  switch (AM.Scale) {
  case 0:  // "r+i" or just "i", depending on HasBaseReg.
    break;
  case 1:
    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
      return false;
    // Otherwise we have r+r or r+i.
    break;
  case 2:
    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
      return false;
    // Allow 2*r as r+r.
    break;
  default: // Don't allow n * r
    return false;
  }

  return true;
}

//===----------------------------------------------------------------------===//
//  Stack Protector
//===----------------------------------------------------------------------===//

// For OpenBSD return its special guard variable. Otherwise return nullptr,
// so that SelectionDAG handle SSP.
Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
  if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
    Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
    PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
    Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
    if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
      G->setVisibility(GlobalValue::HiddenVisibility);
    return C;
  }
  return nullptr;
}

// Currently only support "standard" __stack_chk_guard.
// TODO: add LOAD_STACK_GUARD support.
void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
  if (!M.getNamedValue("__stack_chk_guard"))
    new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
                       GlobalVariable::ExternalLinkage,
                       nullptr, "__stack_chk_guard");
}

// Currently only support "standard" __stack_chk_guard.
// TODO: add LOAD_STACK_GUARD support.
Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
  return M.getNamedValue("__stack_chk_guard");
}

Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
  return nullptr;
}

unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
  return MinimumJumpTableEntries;
}

void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
  MinimumJumpTableEntries = Val;
}

unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
  return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
}

unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
  return MaximumJumpTableSize;
}

void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
  MaximumJumpTableSize = Val;
}

bool TargetLoweringBase::isJumpTableRelative() const {
  return getTargetMachine().isPositionIndependent();
}

//===----------------------------------------------------------------------===//
//  Reciprocal Estimates
//===----------------------------------------------------------------------===//

/// Get the reciprocal estimate attribute string for a function that will
/// override the target defaults.
static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
  const Function &F = MF.getFunction();
  return F.getFnAttribute("reciprocal-estimates").getValueAsString();
}

/// Construct a string for the given reciprocal operation of the given type.
/// This string should match the corresponding option to the front-end's
/// "-mrecip" flag assuming those strings have been passed through in an
/// attribute string. For example, "vec-divf" for a division of a vXf32.
static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
  std::string Name = VT.isVector() ? "vec-" : "";

  Name += IsSqrt ? "sqrt" : "div";

  // TODO: Handle "half" or other float types?
  if (VT.getScalarType() == MVT::f64) {
    Name += "d";
  } else {
    assert(VT.getScalarType() == MVT::f32 &&
           "Unexpected FP type for reciprocal estimate");
    Name += "f";
  }

  return Name;
}

/// Return the character position and value (a single numeric character) of a
/// customized refinement operation in the input string if it exists. Return
/// false if there is no customized refinement step count.
static bool parseRefinementStep(StringRef In, size_t &Position,
                                uint8_t &Value) {
  const char RefStepToken = ':';
  Position = In.find(RefStepToken);
  if (Position == StringRef::npos)
    return false;

  StringRef RefStepString = In.substr(Position + 1);
  // Allow exactly one numeric character for the additional refinement
  // step parameter.
  if (RefStepString.size() == 1) {
    char RefStepChar = RefStepString[0];
    if (RefStepChar >= '0' && RefStepChar <= '9') {
      Value = RefStepChar - '0';
      return true;
    }
  }
  report_fatal_error("Invalid refinement step for -recip.");
}

/// For the input attribute string, return one of the ReciprocalEstimate enum
/// status values (enabled, disabled, or not specified) for this operation on
/// the specified data type.
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
  if (Override.empty())
    return TargetLoweringBase::ReciprocalEstimate::Unspecified;

  SmallVector<StringRef, 4> OverrideVector;
  Override.split(OverrideVector, ',');
  unsigned NumArgs = OverrideVector.size();

  // Check if "all", "none", or "default" was specified.
  if (NumArgs == 1) {
    // Look for an optional setting of the number of refinement steps needed
    // for this type of reciprocal operation.
    size_t RefPos;
    uint8_t RefSteps;
    if (parseRefinementStep(Override, RefPos, RefSteps)) {
      // Split the string for further processing.
      Override = Override.substr(0, RefPos);
    }

    // All reciprocal types are enabled.
    if (Override == "all")
      return TargetLoweringBase::ReciprocalEstimate::Enabled;

    // All reciprocal types are disabled.
    if (Override == "none")
      return TargetLoweringBase::ReciprocalEstimate::Disabled;

    // Target defaults for enablement are used.
    if (Override == "default")
      return TargetLoweringBase::ReciprocalEstimate::Unspecified;
  }

  // The attribute string may omit the size suffix ('f'/'d').
  std::string VTName = getReciprocalOpName(IsSqrt, VT);
  std::string VTNameNoSize = VTName;
  VTNameNoSize.pop_back();
  static const char DisabledPrefix = '!';

  for (StringRef RecipType : OverrideVector) {
    size_t RefPos;
    uint8_t RefSteps;
    if (parseRefinementStep(RecipType, RefPos, RefSteps))
      RecipType = RecipType.substr(0, RefPos);

    // Ignore the disablement token for string matching.
    bool IsDisabled = RecipType[0] == DisabledPrefix;
    if (IsDisabled)
      RecipType = RecipType.substr(1);

    if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
      return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
                        : TargetLoweringBase::ReciprocalEstimate::Enabled;
  }

  return TargetLoweringBase::ReciprocalEstimate::Unspecified;
}

/// For the input attribute string, return the customized refinement step count
/// for this operation on the specified data type. If the step count does not
/// exist, return the ReciprocalEstimate enum value for unspecified.
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
  if (Override.empty())
    return TargetLoweringBase::ReciprocalEstimate::Unspecified;

  SmallVector<StringRef, 4> OverrideVector;
  Override.split(OverrideVector, ',');
  unsigned NumArgs = OverrideVector.size();

  // Check if "all", "default", or "none" was specified.
  if (NumArgs == 1) {
    // Look for an optional setting of the number of refinement steps needed
    // for this type of reciprocal operation.
    size_t RefPos;
    uint8_t RefSteps;
    if (!parseRefinementStep(Override, RefPos, RefSteps))
      return TargetLoweringBase::ReciprocalEstimate::Unspecified;

    // Split the string for further processing.
    Override = Override.substr(0, RefPos);
    assert(Override != "none" &&
           "Disabled reciprocals, but specifed refinement steps?");

    // If this is a general override, return the specified number of steps.
    if (Override == "all" || Override == "default")
      return RefSteps;
  }

  // The attribute string may omit the size suffix ('f'/'d').
  std::string VTName = getReciprocalOpName(IsSqrt, VT);
  std::string VTNameNoSize = VTName;
  VTNameNoSize.pop_back();

  for (StringRef RecipType : OverrideVector) {
    size_t RefPos;
    uint8_t RefSteps;
    if (!parseRefinementStep(RecipType, RefPos, RefSteps))
      continue;

    RecipType = RecipType.substr(0, RefPos);
    if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
      return RefSteps;
  }

  return TargetLoweringBase::ReciprocalEstimate::Unspecified;
}

int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
                                                    MachineFunction &MF) const {
  return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
}

int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
                                                   MachineFunction &MF) const {
  return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
}

int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
                                               MachineFunction &MF) const {
  return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
}

int TargetLoweringBase::getDivRefinementSteps(EVT VT,
                                              MachineFunction &MF) const {
  return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
}

void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
  MF.getRegInfo().freezeReservedRegs(MF);
}

MachineMemOperand::Flags
TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI,
                                           const DataLayout &DL) const {
  MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
  if (LI.isVolatile())
    Flags |= MachineMemOperand::MOVolatile;

  if (LI.hasMetadata(LLVMContext::MD_nontemporal))
    Flags |= MachineMemOperand::MONonTemporal;

  if (LI.hasMetadata(LLVMContext::MD_invariant_load))
    Flags |= MachineMemOperand::MOInvariant;

  if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL))
    Flags |= MachineMemOperand::MODereferenceable;

  Flags |= getTargetMMOFlags(LI);
  return Flags;
}

MachineMemOperand::Flags
TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
                                            const DataLayout &DL) const {
  MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;

  if (SI.isVolatile())
    Flags |= MachineMemOperand::MOVolatile;

  if (SI.hasMetadata(LLVMContext::MD_nontemporal))
    Flags |= MachineMemOperand::MONonTemporal;

  // FIXME: Not preserving dereferenceable
  Flags |= getTargetMMOFlags(SI);
  return Flags;
}

MachineMemOperand::Flags
TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
                                             const DataLayout &DL) const {
  auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;

  if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
    if (RMW->isVolatile())
      Flags |= MachineMemOperand::MOVolatile;
  } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
    if (CmpX->isVolatile())
      Flags |= MachineMemOperand::MOVolatile;
  } else
    llvm_unreachable("not an atomic instruction");

  // FIXME: Not preserving dereferenceable
  Flags |= getTargetMMOFlags(AI);
  return Flags;
}

//===----------------------------------------------------------------------===//
//  GlobalISel Hooks
//===----------------------------------------------------------------------===//

bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
                                        const TargetTransformInfo *TTI) const {
  auto &MF = *MI.getMF();
  auto &MRI = MF.getRegInfo();
  // Assuming a spill and reload of a value has a cost of 1 instruction each,
  // this helper function computes the maximum number of uses we should consider
  // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
  // break even in terms of code size when the original MI has 2 users vs
  // choosing to potentially spill. Any more than 2 users we we have a net code
  // size increase. This doesn't take into account register pressure though.
  auto maxUses = [](unsigned RematCost) {
    // A cost of 1 means remats are basically free.
    if (RematCost == 1)
      return UINT_MAX;
    if (RematCost == 2)
      return 2U;

    // Remat is too expensive, only sink if there's one user.
    if (RematCost > 2)
      return 1U;
    llvm_unreachable("Unexpected remat cost");
  };

  // Helper to walk through uses and terminate if we've reached a limit. Saves
  // us spending time traversing uses if all we want to know is if it's >= min.
  auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
    unsigned NumUses = 0;
    auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end();
    for (; UI != UE && NumUses < MaxUses; ++UI) {
      NumUses++;
    }
    // If we haven't reached the end yet then there are more than MaxUses users.
    return UI == UE;
  };

  switch (MI.getOpcode()) {
  default:
    return false;
  // Constants-like instructions should be close to their users.
  // We don't want long live-ranges for them.
  case TargetOpcode::G_CONSTANT:
  case TargetOpcode::G_FCONSTANT:
  case TargetOpcode::G_FRAME_INDEX:
  case TargetOpcode::G_INTTOPTR:
    return true;
  case TargetOpcode::G_GLOBAL_VALUE: {
    unsigned RematCost = TTI->getGISelRematGlobalCost();
    Register Reg = MI.getOperand(0).getReg();
    unsigned MaxUses = maxUses(RematCost);
    if (MaxUses == UINT_MAX)
      return true; // Remats are "free" so always localize.
    bool B = isUsesAtMost(Reg, MaxUses);
    return B;
  }
  }
}