TargetRegisterInfo.cpp 19.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
//==- TargetRegisterInfo.cpp - Target Register Information Implementation --==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetRegisterInfo interface.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Printable.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <utility>

#define DEBUG_TYPE "target-reg-info"

using namespace llvm;

static cl::opt<unsigned>
    HugeSizeForSplit("huge-size-for-split", cl::Hidden,
                     cl::desc("A threshold of live range size which may cause "
                              "high compile time cost in global splitting."),
                     cl::init(5000));

TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
                             regclass_iterator RCB, regclass_iterator RCE,
                             const char *const *SRINames,
                             const LaneBitmask *SRILaneMasks,
                             LaneBitmask SRICoveringLanes,
                             const RegClassInfo *const RCIs,
                             unsigned Mode)
  : InfoDesc(ID), SubRegIndexNames(SRINames),
    SubRegIndexLaneMasks(SRILaneMasks),
    RegClassBegin(RCB), RegClassEnd(RCE),
    CoveringLanes(SRICoveringLanes),
    RCInfos(RCIs), HwMode(Mode) {
}

TargetRegisterInfo::~TargetRegisterInfo() = default;

bool TargetRegisterInfo::shouldRegionSplitForVirtReg(
    const MachineFunction &MF, const LiveInterval &VirtReg) const {
  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  MachineInstr *MI = MRI.getUniqueVRegDef(VirtReg.reg());
  if (MI && TII->isTriviallyReMaterializable(*MI) &&
      VirtReg.size() > HugeSizeForSplit)
    return false;
  return true;
}

void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet,
                                       MCRegister Reg) const {
  for (MCSuperRegIterator AI(Reg, this, true); AI.isValid(); ++AI)
    RegisterSet.set(*AI);
}

bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet,
    ArrayRef<MCPhysReg> Exceptions) const {
  // Check that all super registers of reserved regs are reserved as well.
  BitVector Checked(getNumRegs());
  for (unsigned Reg : RegisterSet.set_bits()) {
    if (Checked[Reg])
      continue;
    for (MCSuperRegIterator SR(Reg, this); SR.isValid(); ++SR) {
      if (!RegisterSet[*SR] && !is_contained(Exceptions, Reg)) {
        dbgs() << "Error: Super register " << printReg(*SR, this)
               << " of reserved register " << printReg(Reg, this)
               << " is not reserved.\n";
        return false;
      }

      // We transitively check superregs. So we can remember this for later
      // to avoid compiletime explosion in deep register hierarchies.
      Checked.set(*SR);
    }
  }
  return true;
}

namespace llvm {

Printable printReg(Register Reg, const TargetRegisterInfo *TRI,
                   unsigned SubIdx, const MachineRegisterInfo *MRI) {
  return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) {
    if (!Reg)
      OS << "$noreg";
    else if (Register::isStackSlot(Reg))
      OS << "SS#" << Register::stackSlot2Index(Reg);
    else if (Register::isVirtualRegister(Reg)) {
      StringRef Name = MRI ? MRI->getVRegName(Reg) : "";
      if (Name != "") {
        OS << '%' << Name;
      } else {
        OS << '%' << Register::virtReg2Index(Reg);
      }
    } else if (!TRI)
      OS << '$' << "physreg" << Reg;
    else if (Reg < TRI->getNumRegs()) {
      OS << '$';
      printLowerCase(TRI->getName(Reg), OS);
    } else
      llvm_unreachable("Register kind is unsupported.");

    if (SubIdx) {
      if (TRI)
        OS << ':' << TRI->getSubRegIndexName(SubIdx);
      else
        OS << ":sub(" << SubIdx << ')';
    }
  });
}

Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
  return Printable([Unit, TRI](raw_ostream &OS) {
    // Generic printout when TRI is missing.
    if (!TRI) {
      OS << "Unit~" << Unit;
      return;
    }

    // Check for invalid register units.
    if (Unit >= TRI->getNumRegUnits()) {
      OS << "BadUnit~" << Unit;
      return;
    }

    // Normal units have at least one root.
    MCRegUnitRootIterator Roots(Unit, TRI);
    assert(Roots.isValid() && "Unit has no roots.");
    OS << TRI->getName(*Roots);
    for (++Roots; Roots.isValid(); ++Roots)
      OS << '~' << TRI->getName(*Roots);
  });
}

Printable printVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
  return Printable([Unit, TRI](raw_ostream &OS) {
    if (Register::isVirtualRegister(Unit)) {
      OS << '%' << Register::virtReg2Index(Unit);
    } else {
      OS << printRegUnit(Unit, TRI);
    }
  });
}

Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo,
                              const TargetRegisterInfo *TRI) {
  return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) {
    if (RegInfo.getRegClassOrNull(Reg))
      OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower();
    else if (RegInfo.getRegBankOrNull(Reg))
      OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower();
    else {
      OS << "_";
      assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) &&
             "Generic registers must have a valid type");
    }
  });
}

} // end namespace llvm

/// getAllocatableClass - Return the maximal subclass of the given register
/// class that is alloctable, or NULL.
const TargetRegisterClass *
TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
  if (!RC || RC->isAllocatable())
    return RC;

  for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
       ++It) {
    const TargetRegisterClass *SubRC = getRegClass(It.getID());
    if (SubRC->isAllocatable())
      return SubRC;
  }
  return nullptr;
}

/// getMinimalPhysRegClass - Returns the Register Class of a physical
/// register of the given type, picking the most sub register class of
/// the right type that contains this physreg.
const TargetRegisterClass *
TargetRegisterInfo::getMinimalPhysRegClass(MCRegister reg, MVT VT) const {
  assert(Register::isPhysicalRegister(reg) &&
         "reg must be a physical register");

  // Pick the most sub register class of the right type that contains
  // this physreg.
  const TargetRegisterClass* BestRC = nullptr;
  for (const TargetRegisterClass* RC : regclasses()) {
    if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) &&
        RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC)))
      BestRC = RC;
  }

  assert(BestRC && "Couldn't find the register class");
  return BestRC;
}

/// getAllocatableSetForRC - Toggle the bits that represent allocatable
/// registers for the specific register class.
static void getAllocatableSetForRC(const MachineFunction &MF,
                                   const TargetRegisterClass *RC, BitVector &R){
  assert(RC->isAllocatable() && "invalid for nonallocatable sets");
  ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
  for (unsigned i = 0; i != Order.size(); ++i)
    R.set(Order[i]);
}

BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
                                          const TargetRegisterClass *RC) const {
  BitVector Allocatable(getNumRegs());
  if (RC) {
    // A register class with no allocatable subclass returns an empty set.
    const TargetRegisterClass *SubClass = getAllocatableClass(RC);
    if (SubClass)
      getAllocatableSetForRC(MF, SubClass, Allocatable);
  } else {
    for (const TargetRegisterClass *C : regclasses())
      if (C->isAllocatable())
        getAllocatableSetForRC(MF, C, Allocatable);
  }

  // Mask out the reserved registers
  BitVector Reserved = getReservedRegs(MF);
  Allocatable &= Reserved.flip();

  return Allocatable;
}

static inline
const TargetRegisterClass *firstCommonClass(const uint32_t *A,
                                            const uint32_t *B,
                                            const TargetRegisterInfo *TRI) {
  for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
    if (unsigned Common = *A++ & *B++)
      return TRI->getRegClass(I + countTrailingZeros(Common));
  return nullptr;
}

const TargetRegisterClass *
TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
                                      const TargetRegisterClass *B) const {
  // First take care of the trivial cases.
  if (A == B)
    return A;
  if (!A || !B)
    return nullptr;

  // Register classes are ordered topologically, so the largest common
  // sub-class it the common sub-class with the smallest ID.
  return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
}

const TargetRegisterClass *
TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
                                             const TargetRegisterClass *B,
                                             unsigned Idx) const {
  assert(A && B && "Missing register class");
  assert(Idx && "Bad sub-register index");

  // Find Idx in the list of super-register indices.
  for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
    if (RCI.getSubReg() == Idx)
      // The bit mask contains all register classes that are projected into B
      // by Idx. Find a class that is also a sub-class of A.
      return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
  return nullptr;
}

const TargetRegisterClass *TargetRegisterInfo::
getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
                       const TargetRegisterClass *RCB, unsigned SubB,
                       unsigned &PreA, unsigned &PreB) const {
  assert(RCA && SubA && RCB && SubB && "Invalid arguments");

  // Search all pairs of sub-register indices that project into RCA and RCB
  // respectively. This is quadratic, but usually the sets are very small. On
  // most targets like X86, there will only be a single sub-register index
  // (e.g., sub_16bit projecting into GR16).
  //
  // The worst case is a register class like DPR on ARM.
  // We have indices dsub_0..dsub_7 projecting into that class.
  //
  // It is very common that one register class is a sub-register of the other.
  // Arrange for RCA to be the larger register so the answer will be found in
  // the first iteration. This makes the search linear for the most common
  // case.
  const TargetRegisterClass *BestRC = nullptr;
  unsigned *BestPreA = &PreA;
  unsigned *BestPreB = &PreB;
  if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) {
    std::swap(RCA, RCB);
    std::swap(SubA, SubB);
    std::swap(BestPreA, BestPreB);
  }

  // Also terminate the search one we have found a register class as small as
  // RCA.
  unsigned MinSize = getRegSizeInBits(*RCA);

  for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
    unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
    for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
      // Check if a common super-register class exists for this index pair.
      const TargetRegisterClass *RC =
        firstCommonClass(IA.getMask(), IB.getMask(), this);
      if (!RC || getRegSizeInBits(*RC) < MinSize)
        continue;

      // The indexes must compose identically: PreA+SubA == PreB+SubB.
      unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
      if (FinalA != FinalB)
        continue;

      // Is RC a better candidate than BestRC?
      if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC))
        continue;

      // Yes, RC is the smallest super-register seen so far.
      BestRC = RC;
      *BestPreA = IA.getSubReg();
      *BestPreB = IB.getSubReg();

      // Bail early if we reached MinSize. We won't find a better candidate.
      if (getRegSizeInBits(*BestRC) == MinSize)
        return BestRC;
    }
  }
  return BestRC;
}

/// Check if the registers defined by the pair (RegisterClass, SubReg)
/// share the same register file.
static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
                                  const TargetRegisterClass *DefRC,
                                  unsigned DefSubReg,
                                  const TargetRegisterClass *SrcRC,
                                  unsigned SrcSubReg) {
  // Same register class.
  if (DefRC == SrcRC)
    return true;

  // Both operands are sub registers. Check if they share a register class.
  unsigned SrcIdx, DefIdx;
  if (SrcSubReg && DefSubReg) {
    return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
                                      SrcIdx, DefIdx) != nullptr;
  }

  // At most one of the register is a sub register, make it Src to avoid
  // duplicating the test.
  if (!SrcSubReg) {
    std::swap(DefSubReg, SrcSubReg);
    std::swap(DefRC, SrcRC);
  }

  // One of the register is a sub register, check if we can get a superclass.
  if (SrcSubReg)
    return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;

  // Plain copy.
  return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
}

bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
                                              unsigned DefSubReg,
                                              const TargetRegisterClass *SrcRC,
                                              unsigned SrcSubReg) const {
  // If this source does not incur a cross register bank copy, use it.
  return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
}

// Compute target-independent register allocator hints to help eliminate copies.
bool TargetRegisterInfo::getRegAllocationHints(
    Register VirtReg, ArrayRef<MCPhysReg> Order,
    SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF,
    const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const {
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  const std::pair<Register, SmallVector<Register, 4>> &Hints_MRI =
    MRI.getRegAllocationHints(VirtReg);

  SmallSet<Register, 32> HintedRegs;
  // First hint may be a target hint.
  bool Skip = (Hints_MRI.first != 0);
  for (auto Reg : Hints_MRI.second) {
    if (Skip) {
      Skip = false;
      continue;
    }

    // Target-independent hints are either a physical or a virtual register.
    Register Phys = Reg;
    if (VRM && Phys.isVirtual())
      Phys = VRM->getPhys(Phys);

    // Don't add the same reg twice (Hints_MRI may contain multiple virtual
    // registers allocated to the same physreg).
    if (!HintedRegs.insert(Phys).second)
      continue;
    // Check that Phys is a valid hint in VirtReg's register class.
    if (!Phys.isPhysical())
      continue;
    if (MRI.isReserved(Phys))
      continue;
    // Check that Phys is in the allocation order. We shouldn't heed hints
    // from VirtReg's register class if they aren't in the allocation order. The
    // target probably has a reason for removing the register.
    if (!is_contained(Order, Phys))
      continue;

    // All clear, tell the register allocator to prefer this register.
    Hints.push_back(Phys);
  }
  return false;
}

bool TargetRegisterInfo::isCalleeSavedPhysReg(
    MCRegister PhysReg, const MachineFunction &MF) const {
  if (PhysReg == 0)
    return false;
  const uint32_t *callerPreservedRegs =
      getCallPreservedMask(MF, MF.getFunction().getCallingConv());
  if (callerPreservedRegs) {
    assert(Register::isPhysicalRegister(PhysReg) &&
           "Expected physical register");
    return (callerPreservedRegs[PhysReg / 32] >> PhysReg % 32) & 1;
  }
  return false;
}

bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
  return !MF.getFunction().hasFnAttribute("no-realign-stack");
}

bool TargetRegisterInfo::needsStackRealignment(
    const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
  const Function &F = MF.getFunction();
  Align StackAlign = TFI->getStackAlign();
  bool requiresRealignment = ((MFI.getMaxAlign() > StackAlign) ||
                              F.hasFnAttribute(Attribute::StackAlignment));
  if (F.hasFnAttribute("stackrealign") || requiresRealignment) {
    if (canRealignStack(MF))
      return true;
    LLVM_DEBUG(dbgs() << "Can't realign function's stack: " << F.getName()
                      << "\n");
  }
  return false;
}

bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
                                            const uint32_t *mask1) const {
  unsigned N = (getNumRegs()+31) / 32;
  for (unsigned I = 0; I < N; ++I)
    if ((mask0[I] & mask1[I]) != mask0[I])
      return false;
  return true;
}

unsigned
TargetRegisterInfo::getRegSizeInBits(Register Reg,
                                     const MachineRegisterInfo &MRI) const {
  const TargetRegisterClass *RC{};
  if (Reg.isPhysical()) {
    // The size is not directly available for physical registers.
    // Instead, we need to access a register class that contains Reg and
    // get the size of that register class.
    RC = getMinimalPhysRegClass(Reg);
  } else {
    LLT Ty = MRI.getType(Reg);
    unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0;
    // If Reg is not a generic register, query the register class to
    // get its size.
    if (RegSize)
      return RegSize;
    // Since Reg is not a generic register, it must have a register class.
    RC = MRI.getRegClass(Reg);
  }
  assert(RC && "Unable to deduce the register class");
  return getRegSizeInBits(*RC);
}

Register
TargetRegisterInfo::lookThruCopyLike(Register SrcReg,
                                     const MachineRegisterInfo *MRI) const {
  while (true) {
    const MachineInstr *MI = MRI->getVRegDef(SrcReg);
    if (!MI->isCopyLike())
      return SrcReg;

    Register CopySrcReg;
    if (MI->isCopy())
      CopySrcReg = MI->getOperand(1).getReg();
    else {
      assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
      CopySrcReg = MI->getOperand(2).getReg();
    }

    if (!CopySrcReg.isVirtual())
      return CopySrcReg;

    SrcReg = CopySrcReg;
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD
void TargetRegisterInfo::dumpReg(Register Reg, unsigned SubRegIndex,
                                 const TargetRegisterInfo *TRI) {
  dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n";
}
#endif