TwoAddressInstructionPass.cpp 62.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
//===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the TwoAddress instruction pass which is used
// by most register allocators. Two-Address instructions are rewritten
// from:
//
//     A = B op C
//
// to:
//
//     A = B
//     A op= C
//
// Note that if a register allocator chooses to use this pass, that it
// has to be capable of handling the non-SSA nature of these rewritten
// virtual registers.
//
// It is also worth noting that the duplicate operand of the two
// address instruction is removed.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <iterator>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "twoaddressinstruction"

STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");

// Temporary flag to disable rescheduling.
static cl::opt<bool>
EnableRescheduling("twoaddr-reschedule",
                   cl::desc("Coalesce copies by rescheduling (default=true)"),
                   cl::init(true), cl::Hidden);

// Limit the number of dataflow edges to traverse when evaluating the benefit
// of commuting operands.
static cl::opt<unsigned> MaxDataFlowEdge(
    "dataflow-edge-limit", cl::Hidden, cl::init(3),
    cl::desc("Maximum number of dataflow edges to traverse when evaluating "
             "the benefit of commuting operands"));

namespace {

class TwoAddressInstructionPass : public MachineFunctionPass {
  MachineFunction *MF;
  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;
  const InstrItineraryData *InstrItins;
  MachineRegisterInfo *MRI;
  LiveVariables *LV;
  LiveIntervals *LIS;
  AliasAnalysis *AA;
  CodeGenOpt::Level OptLevel;

  // The current basic block being processed.
  MachineBasicBlock *MBB;

  // Keep track the distance of a MI from the start of the current basic block.
  DenseMap<MachineInstr*, unsigned> DistanceMap;

  // Set of already processed instructions in the current block.
  SmallPtrSet<MachineInstr*, 8> Processed;

  // A map from virtual registers to physical registers which are likely targets
  // to be coalesced to due to copies from physical registers to virtual
  // registers. e.g. v1024 = move r0.
  DenseMap<unsigned, unsigned> SrcRegMap;

  // A map from virtual registers to physical registers which are likely targets
  // to be coalesced to due to copies to physical registers from virtual
  // registers. e.g. r1 = move v1024.
  DenseMap<unsigned, unsigned> DstRegMap;

  bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen);

  bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);

  bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
                             MachineInstr *MI, unsigned Dist);

  bool commuteInstruction(MachineInstr *MI, unsigned DstIdx,
                          unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);

  bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);

  bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
                          MachineBasicBlock::iterator &nmi,
                          unsigned RegA, unsigned RegB, unsigned Dist);

  bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);

  bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
                             MachineBasicBlock::iterator &nmi,
                             unsigned Reg);
  bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
                             MachineBasicBlock::iterator &nmi,
                             unsigned Reg);

  bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
                               MachineBasicBlock::iterator &nmi,
                               unsigned SrcIdx, unsigned DstIdx,
                               unsigned Dist, bool shouldOnlyCommute);

  bool tryInstructionCommute(MachineInstr *MI,
                             unsigned DstOpIdx,
                             unsigned BaseOpIdx,
                             bool BaseOpKilled,
                             unsigned Dist);
  void scanUses(unsigned DstReg);

  void processCopy(MachineInstr *MI);

  using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>;
  using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>;

  bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
  void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
  void eliminateRegSequence(MachineBasicBlock::iterator&);

public:
  static char ID; // Pass identification, replacement for typeid

  TwoAddressInstructionPass() : MachineFunctionPass(ID) {
    initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addUsedIfAvailable<AAResultsWrapperPass>();
    AU.addUsedIfAvailable<LiveVariables>();
    AU.addPreserved<LiveVariables>();
    AU.addPreserved<SlotIndexes>();
    AU.addPreserved<LiveIntervals>();
    AU.addPreservedID(MachineLoopInfoID);
    AU.addPreservedID(MachineDominatorsID);
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  /// Pass entry point.
  bool runOnMachineFunction(MachineFunction&) override;
};

} // end anonymous namespace

char TwoAddressInstructionPass::ID = 0;

char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;

INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE,
                "Two-Address instruction pass", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE,
                "Two-Address instruction pass", false, false)

static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);

/// Return the MachineInstr* if it is the single def of the Reg in current BB.
static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB,
                                  const MachineRegisterInfo *MRI) {
  MachineInstr *Ret = nullptr;
  for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
    if (DefMI.getParent() != BB || DefMI.isDebugValue())
      continue;
    if (!Ret)
      Ret = &DefMI;
    else if (Ret != &DefMI)
      return nullptr;
  }
  return Ret;
}

/// Check if there is a reversed copy chain from FromReg to ToReg:
/// %Tmp1 = copy %Tmp2;
/// %FromReg = copy %Tmp1;
/// %ToReg = add %FromReg ...
/// %Tmp2 = copy %ToReg;
/// MaxLen specifies the maximum length of the copy chain the func
/// can walk through.
bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg,
                                               int Maxlen) {
  unsigned TmpReg = FromReg;
  for (int i = 0; i < Maxlen; i++) {
    MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
    if (!Def || !Def->isCopy())
      return false;

    TmpReg = Def->getOperand(1).getReg();

    if (TmpReg == ToReg)
      return true;
  }
  return false;
}

/// Return true if there are no intervening uses between the last instruction
/// in the MBB that defines the specified register and the two-address
/// instruction which is being processed. It also returns the last def location
/// by reference.
bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
                                                  unsigned &LastDef) {
  LastDef = 0;
  unsigned LastUse = Dist;
  for (MachineOperand &MO : MRI->reg_operands(Reg)) {
    MachineInstr *MI = MO.getParent();
    if (MI->getParent() != MBB || MI->isDebugValue())
      continue;
    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    if (DI == DistanceMap.end())
      continue;
    if (MO.isUse() && DI->second < LastUse)
      LastUse = DI->second;
    if (MO.isDef() && DI->second > LastDef)
      LastDef = DI->second;
  }

  return !(LastUse > LastDef && LastUse < Dist);
}

/// Return true if the specified MI is a copy instruction or an extract_subreg
/// instruction. It also returns the source and destination registers and
/// whether they are physical registers by reference.
static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
                        unsigned &SrcReg, unsigned &DstReg,
                        bool &IsSrcPhys, bool &IsDstPhys) {
  SrcReg = 0;
  DstReg = 0;
  if (MI.isCopy()) {
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();
  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(2).getReg();
  } else
    return false;

  IsSrcPhys = Register::isPhysicalRegister(SrcReg);
  IsDstPhys = Register::isPhysicalRegister(DstReg);
  return true;
}

/// Test if the given register value, which is used by the
/// given instruction, is killed by the given instruction.
static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
                            LiveIntervals *LIS) {
  if (LIS && Register::isVirtualRegister(Reg) && !LIS->isNotInMIMap(*MI)) {
    // FIXME: Sometimes tryInstructionTransform() will add instructions and
    // test whether they can be folded before keeping them. In this case it
    // sets a kill before recursively calling tryInstructionTransform() again.
    // If there is no interval available, we assume that this instruction is
    // one of those. A kill flag is manually inserted on the operand so the
    // check below will handle it.
    LiveInterval &LI = LIS->getInterval(Reg);
    // This is to match the kill flag version where undefs don't have kill
    // flags.
    if (!LI.hasAtLeastOneValue())
      return false;

    SlotIndex useIdx = LIS->getInstructionIndex(*MI);
    LiveInterval::const_iterator I = LI.find(useIdx);
    assert(I != LI.end() && "Reg must be live-in to use.");
    return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
  }

  return MI->killsRegister(Reg);
}

/// Test if the given register value, which is used by the given
/// instruction, is killed by the given instruction. This looks through
/// coalescable copies to see if the original value is potentially not killed.
///
/// For example, in this code:
///
///   %reg1034 = copy %reg1024
///   %reg1035 = copy killed %reg1025
///   %reg1036 = add killed %reg1034, killed %reg1035
///
/// %reg1034 is not considered to be killed, since it is copied from a
/// register which is not killed. Treating it as not killed lets the
/// normal heuristics commute the (two-address) add, which lets
/// coalescing eliminate the extra copy.
///
/// If allowFalsePositives is true then likely kills are treated as kills even
/// if it can't be proven that they are kills.
static bool isKilled(MachineInstr &MI, unsigned Reg,
                     const MachineRegisterInfo *MRI,
                     const TargetInstrInfo *TII,
                     LiveIntervals *LIS,
                     bool allowFalsePositives) {
  MachineInstr *DefMI = &MI;
  while (true) {
    // All uses of physical registers are likely to be kills.
    if (Register::isPhysicalRegister(Reg) &&
        (allowFalsePositives || MRI->hasOneUse(Reg)))
      return true;
    if (!isPlainlyKilled(DefMI, Reg, LIS))
      return false;
    if (Register::isPhysicalRegister(Reg))
      return true;
    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
    // If there are multiple defs, we can't do a simple analysis, so just
    // go with what the kill flag says.
    if (std::next(Begin) != MRI->def_end())
      return true;
    DefMI = Begin->getParent();
    bool IsSrcPhys, IsDstPhys;
    unsigned SrcReg,  DstReg;
    // If the def is something other than a copy, then it isn't going to
    // be coalesced, so follow the kill flag.
    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
      return true;
    Reg = SrcReg;
  }
}

/// Return true if the specified MI uses the specified register as a two-address
/// use. If so, return the destination register by reference.
static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
  for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
      continue;
    unsigned ti;
    if (MI.isRegTiedToDefOperand(i, &ti)) {
      DstReg = MI.getOperand(ti).getReg();
      return true;
    }
  }
  return false;
}

/// Given a register, if has a single in-basic block use, return the use
/// instruction if it's a copy or a two-address use.
static
MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
                                     MachineRegisterInfo *MRI,
                                     const TargetInstrInfo *TII,
                                     bool &IsCopy,
                                     unsigned &DstReg, bool &IsDstPhys) {
  if (!MRI->hasOneNonDBGUse(Reg))
    // None or more than one use.
    return nullptr;
  MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
  if (UseMI.getParent() != MBB)
    return nullptr;
  unsigned SrcReg;
  bool IsSrcPhys;
  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
    IsCopy = true;
    return &UseMI;
  }
  IsDstPhys = false;
  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
    IsDstPhys = Register::isPhysicalRegister(DstReg);
    return &UseMI;
  }
  return nullptr;
}

/// Return the physical register the specified virtual register might be mapped
/// to.
static unsigned
getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
  while (Register::isVirtualRegister(Reg)) {
    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
    if (SI == RegMap.end())
      return 0;
    Reg = SI->second;
  }
  if (Register::isPhysicalRegister(Reg))
    return Reg;
  return 0;
}

/// Return true if the two registers are equal or aliased.
static bool
regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
  if (RegA == RegB)
    return true;
  if (!RegA || !RegB)
    return false;
  return TRI->regsOverlap(RegA, RegB);
}

// Returns true if Reg is equal or aliased to at least one register in Set.
static bool regOverlapsSet(const SmallVectorImpl<unsigned> &Set, unsigned Reg,
                           const TargetRegisterInfo *TRI) {
  for (unsigned R : Set)
    if (TRI->regsOverlap(R, Reg))
      return true;

  return false;
}

/// Return true if it's potentially profitable to commute the two-address
/// instruction that's being processed.
bool
TwoAddressInstructionPass::
isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
                      MachineInstr *MI, unsigned Dist) {
  if (OptLevel == CodeGenOpt::None)
    return false;

  // Determine if it's profitable to commute this two address instruction. In
  // general, we want no uses between this instruction and the definition of
  // the two-address register.
  // e.g.
  // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
  // %reg1029 = COPY %reg1028
  // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
  // insert => %reg1030 = COPY %reg1028
  // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
  // In this case, it might not be possible to coalesce the second COPY
  // instruction if the first one is coalesced. So it would be profitable to
  // commute it:
  // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
  // %reg1029 = COPY %reg1028
  // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
  // insert => %reg1030 = COPY %reg1029
  // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags

  if (!isPlainlyKilled(MI, regC, LIS))
    return false;

  // Ok, we have something like:
  // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
  // let's see if it's worth commuting it.

  // Look for situations like this:
  // %reg1024 = MOV r1
  // %reg1025 = MOV r0
  // %reg1026 = ADD %reg1024, %reg1025
  // r0            = MOV %reg1026
  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
  unsigned ToRegA = getMappedReg(regA, DstRegMap);
  if (ToRegA) {
    unsigned FromRegB = getMappedReg(regB, SrcRegMap);
    unsigned FromRegC = getMappedReg(regC, SrcRegMap);
    bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
    bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);

    // Compute if any of the following are true:
    // -RegB is not tied to a register and RegC is compatible with RegA.
    // -RegB is tied to the wrong physical register, but RegC is.
    // -RegB is tied to the wrong physical register, and RegC isn't tied.
    if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
      return true;
    // Don't compute if any of the following are true:
    // -RegC is not tied to a register and RegB is compatible with RegA.
    // -RegC is tied to the wrong physical register, but RegB is.
    // -RegC is tied to the wrong physical register, and RegB isn't tied.
    if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
      return false;
  }

  // If there is a use of regC between its last def (could be livein) and this
  // instruction, then bail.
  unsigned LastDefC = 0;
  if (!noUseAfterLastDef(regC, Dist, LastDefC))
    return false;

  // If there is a use of regB between its last def (could be livein) and this
  // instruction, then go ahead and make this transformation.
  unsigned LastDefB = 0;
  if (!noUseAfterLastDef(regB, Dist, LastDefB))
    return true;

  // Look for situation like this:
  // %reg101 = MOV %reg100
  // %reg102 = ...
  // %reg103 = ADD %reg102, %reg101
  // ... = %reg103 ...
  // %reg100 = MOV %reg103
  // If there is a reversed copy chain from reg101 to reg103, commute the ADD
  // to eliminate an otherwise unavoidable copy.
  // FIXME:
  // We can extend the logic further: If an pair of operands in an insn has
  // been merged, the insn could be regarded as a virtual copy, and the virtual
  // copy could also be used to construct a copy chain.
  // To more generally minimize register copies, ideally the logic of two addr
  // instruction pass should be integrated with register allocation pass where
  // interference graph is available.
  if (isRevCopyChain(regC, regA, MaxDataFlowEdge))
    return true;

  if (isRevCopyChain(regB, regA, MaxDataFlowEdge))
    return false;

  // Since there are no intervening uses for both registers, then commute
  // if the def of regC is closer. Its live interval is shorter.
  return LastDefB && LastDefC && LastDefC > LastDefB;
}

/// Commute a two-address instruction and update the basic block, distance map,
/// and live variables if needed. Return true if it is successful.
bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
                                                   unsigned DstIdx,
                                                   unsigned RegBIdx,
                                                   unsigned RegCIdx,
                                                   unsigned Dist) {
  Register RegC = MI->getOperand(RegCIdx).getReg();
  LLVM_DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
  MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx);

  if (NewMI == nullptr) {
    LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
  assert(NewMI == MI &&
         "TargetInstrInfo::commuteInstruction() should not return a new "
         "instruction unless it was requested.");

  // Update source register map.
  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
  if (FromRegC) {
    Register RegA = MI->getOperand(DstIdx).getReg();
    SrcRegMap[RegA] = FromRegC;
  }

  return true;
}

/// Return true if it is profitable to convert the given 2-address instruction
/// to a 3-address one.
bool
TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
  // Look for situations like this:
  // %reg1024 = MOV r1
  // %reg1025 = MOV r0
  // %reg1026 = ADD %reg1024, %reg1025
  // r2            = MOV %reg1026
  // Turn ADD into a 3-address instruction to avoid a copy.
  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
  if (!FromRegB)
    return false;
  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
}

/// Convert the specified two-address instruction into a three address one.
/// Return true if this transformation was successful.
bool
TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
                                              MachineBasicBlock::iterator &nmi,
                                              unsigned RegA, unsigned RegB,
                                              unsigned Dist) {
  // FIXME: Why does convertToThreeAddress() need an iterator reference?
  MachineFunction::iterator MFI = MBB->getIterator();
  MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV);
  assert(MBB->getIterator() == MFI &&
         "convertToThreeAddress changed iterator reference");
  if (!NewMI)
    return false;

  LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
  LLVM_DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);

  if (LIS)
    LIS->ReplaceMachineInstrInMaps(*mi, *NewMI);

  MBB->erase(mi); // Nuke the old inst.

  DistanceMap.insert(std::make_pair(NewMI, Dist));
  mi = NewMI;
  nmi = std::next(mi);

  // Update source and destination register maps.
  SrcRegMap.erase(RegA);
  DstRegMap.erase(RegB);
  return true;
}

/// Scan forward recursively for only uses, update maps if the use is a copy or
/// a two-address instruction.
void
TwoAddressInstructionPass::scanUses(unsigned DstReg) {
  SmallVector<unsigned, 4> VirtRegPairs;
  bool IsDstPhys;
  bool IsCopy = false;
  unsigned NewReg = 0;
  unsigned Reg = DstReg;
  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
                                                      NewReg, IsDstPhys)) {
    if (IsCopy && !Processed.insert(UseMI).second)
      break;

    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
    if (DI != DistanceMap.end())
      // Earlier in the same MBB.Reached via a back edge.
      break;

    if (IsDstPhys) {
      VirtRegPairs.push_back(NewReg);
      break;
    }
    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
    if (!isNew)
      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
    VirtRegPairs.push_back(NewReg);
    Reg = NewReg;
  }

  if (!VirtRegPairs.empty()) {
    unsigned ToReg = VirtRegPairs.back();
    VirtRegPairs.pop_back();
    while (!VirtRegPairs.empty()) {
      unsigned FromReg = VirtRegPairs.back();
      VirtRegPairs.pop_back();
      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
      if (!isNew)
        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
      ToReg = FromReg;
    }
    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
    if (!isNew)
      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
  }
}

/// If the specified instruction is not yet processed, process it if it's a
/// copy. For a copy instruction, we find the physical registers the
/// source and destination registers might be mapped to. These are kept in
/// point-to maps used to determine future optimizations. e.g.
/// v1024 = mov r0
/// v1025 = mov r1
/// v1026 = add v1024, v1025
/// r1    = mov r1026
/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
/// potentially joined with r1 on the output side. It's worthwhile to commute
/// 'add' to eliminate a copy.
void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
  if (Processed.count(MI))
    return;

  bool IsSrcPhys, IsDstPhys;
  unsigned SrcReg, DstReg;
  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
    return;

  if (IsDstPhys && !IsSrcPhys)
    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
  else if (!IsDstPhys && IsSrcPhys) {
    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
    if (!isNew)
      assert(SrcRegMap[DstReg] == SrcReg &&
             "Can't map to two src physical registers!");

    scanUses(DstReg);
  }

  Processed.insert(MI);
}

/// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
/// consider moving the instruction below the kill instruction in order to
/// eliminate the need for the copy.
bool TwoAddressInstructionPass::
rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
                      MachineBasicBlock::iterator &nmi,
                      unsigned Reg) {
  // Bail immediately if we don't have LV or LIS available. We use them to find
  // kills efficiently.
  if (!LV && !LIS)
    return false;

  MachineInstr *MI = &*mi;
  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
  if (DI == DistanceMap.end())
    // Must be created from unfolded load. Don't waste time trying this.
    return false;

  MachineInstr *KillMI = nullptr;
  if (LIS) {
    LiveInterval &LI = LIS->getInterval(Reg);
    assert(LI.end() != LI.begin() &&
           "Reg should not have empty live interval.");

    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
    if (I != LI.end() && I->start < MBBEndIdx)
      return false;

    --I;
    KillMI = LIS->getInstructionFromIndex(I->end);
  } else {
    KillMI = LV->getVarInfo(Reg).findKill(MBB);
  }
  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
    // Don't mess with copies, they may be coalesced later.
    return false;

  if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
      KillMI->isBranch() || KillMI->isTerminator())
    // Don't move pass calls, etc.
    return false;

  unsigned DstReg;
  if (isTwoAddrUse(*KillMI, Reg, DstReg))
    return false;

  bool SeenStore = true;
  if (!MI->isSafeToMove(AA, SeenStore))
    return false;

  if (TII->getInstrLatency(InstrItins, *MI) > 1)
    // FIXME: Needs more sophisticated heuristics.
    return false;

  SmallVector<unsigned, 2> Uses;
  SmallVector<unsigned, 2> Kills;
  SmallVector<unsigned, 2> Defs;
  for (const MachineOperand &MO : MI->operands()) {
    if (!MO.isReg())
      continue;
    Register MOReg = MO.getReg();
    if (!MOReg)
      continue;
    if (MO.isDef())
      Defs.push_back(MOReg);
    else {
      Uses.push_back(MOReg);
      if (MOReg != Reg && (MO.isKill() ||
                           (LIS && isPlainlyKilled(MI, MOReg, LIS))))
        Kills.push_back(MOReg);
    }
  }

  // Move the copies connected to MI down as well.
  MachineBasicBlock::iterator Begin = MI;
  MachineBasicBlock::iterator AfterMI = std::next(Begin);
  MachineBasicBlock::iterator End = AfterMI;
  while (End != MBB->end()) {
    End = skipDebugInstructionsForward(End, MBB->end());
    if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI))
      Defs.push_back(End->getOperand(0).getReg());
    else
      break;
    ++End;
  }

  // Check if the reschedule will not break dependencies.
  unsigned NumVisited = 0;
  MachineBasicBlock::iterator KillPos = KillMI;
  ++KillPos;
  for (MachineInstr &OtherMI : make_range(End, KillPos)) {
    // Debug instructions cannot be counted against the limit.
    if (OtherMI.isDebugInstr())
      continue;
    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
      return false;
    ++NumVisited;
    if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
        OtherMI.isBranch() || OtherMI.isTerminator())
      // Don't move pass calls, etc.
      return false;
    for (const MachineOperand &MO : OtherMI.operands()) {
      if (!MO.isReg())
        continue;
      Register MOReg = MO.getReg();
      if (!MOReg)
        continue;
      if (MO.isDef()) {
        if (regOverlapsSet(Uses, MOReg, TRI))
          // Physical register use would be clobbered.
          return false;
        if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI))
          // May clobber a physical register def.
          // FIXME: This may be too conservative. It's ok if the instruction
          // is sunken completely below the use.
          return false;
      } else {
        if (regOverlapsSet(Defs, MOReg, TRI))
          return false;
        bool isKill =
            MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS));
        if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) ||
                             regOverlapsSet(Kills, MOReg, TRI)))
          // Don't want to extend other live ranges and update kills.
          return false;
        if (MOReg == Reg && !isKill)
          // We can't schedule across a use of the register in question.
          return false;
        // Ensure that if this is register in question, its the kill we expect.
        assert((MOReg != Reg || &OtherMI == KillMI) &&
               "Found multiple kills of a register in a basic block");
      }
    }
  }

  // Move debug info as well.
  while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr())
    --Begin;

  nmi = End;
  MachineBasicBlock::iterator InsertPos = KillPos;
  if (LIS) {
    // We have to move the copies first so that the MBB is still well-formed
    // when calling handleMove().
    for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
      auto CopyMI = MBBI++;
      MBB->splice(InsertPos, MBB, CopyMI);
      LIS->handleMove(*CopyMI);
      InsertPos = CopyMI;
    }
    End = std::next(MachineBasicBlock::iterator(MI));
  }

  // Copies following MI may have been moved as well.
  MBB->splice(InsertPos, MBB, Begin, End);
  DistanceMap.erase(DI);

  // Update live variables
  if (LIS) {
    LIS->handleMove(*MI);
  } else {
    LV->removeVirtualRegisterKilled(Reg, *KillMI);
    LV->addVirtualRegisterKilled(Reg, *MI);
  }

  LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
  return true;
}

/// Return true if the re-scheduling will put the given instruction too close
/// to the defs of its register dependencies.
bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
                                              MachineInstr *MI) {
  for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
    if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
      continue;
    if (&DefMI == MI)
      return true; // MI is defining something KillMI uses
    DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
    if (DDI == DistanceMap.end())
      return true;  // Below MI
    unsigned DefDist = DDI->second;
    assert(Dist > DefDist && "Visited def already?");
    if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
      return true;
  }
  return false;
}

/// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
/// consider moving the kill instruction above the current two-address
/// instruction in order to eliminate the need for the copy.
bool TwoAddressInstructionPass::
rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
                      MachineBasicBlock::iterator &nmi,
                      unsigned Reg) {
  // Bail immediately if we don't have LV or LIS available. We use them to find
  // kills efficiently.
  if (!LV && !LIS)
    return false;

  MachineInstr *MI = &*mi;
  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
  if (DI == DistanceMap.end())
    // Must be created from unfolded load. Don't waste time trying this.
    return false;

  MachineInstr *KillMI = nullptr;
  if (LIS) {
    LiveInterval &LI = LIS->getInterval(Reg);
    assert(LI.end() != LI.begin() &&
           "Reg should not have empty live interval.");

    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
    if (I != LI.end() && I->start < MBBEndIdx)
      return false;

    --I;
    KillMI = LIS->getInstructionFromIndex(I->end);
  } else {
    KillMI = LV->getVarInfo(Reg).findKill(MBB);
  }
  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
    // Don't mess with copies, they may be coalesced later.
    return false;

  unsigned DstReg;
  if (isTwoAddrUse(*KillMI, Reg, DstReg))
    return false;

  bool SeenStore = true;
  if (!KillMI->isSafeToMove(AA, SeenStore))
    return false;

  SmallSet<unsigned, 2> Uses;
  SmallSet<unsigned, 2> Kills;
  SmallSet<unsigned, 2> Defs;
  SmallSet<unsigned, 2> LiveDefs;
  for (const MachineOperand &MO : KillMI->operands()) {
    if (!MO.isReg())
      continue;
    Register MOReg = MO.getReg();
    if (MO.isUse()) {
      if (!MOReg)
        continue;
      if (isDefTooClose(MOReg, DI->second, MI))
        return false;
      bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
      if (MOReg == Reg && !isKill)
        return false;
      Uses.insert(MOReg);
      if (isKill && MOReg != Reg)
        Kills.insert(MOReg);
    } else if (Register::isPhysicalRegister(MOReg)) {
      Defs.insert(MOReg);
      if (!MO.isDead())
        LiveDefs.insert(MOReg);
    }
  }

  // Check if the reschedule will not break depedencies.
  unsigned NumVisited = 0;
  for (MachineInstr &OtherMI :
       make_range(mi, MachineBasicBlock::iterator(KillMI))) {
    // Debug instructions cannot be counted against the limit.
    if (OtherMI.isDebugInstr())
      continue;
    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
      return false;
    ++NumVisited;
    if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
        OtherMI.isBranch() || OtherMI.isTerminator())
      // Don't move pass calls, etc.
      return false;
    SmallVector<unsigned, 2> OtherDefs;
    for (const MachineOperand &MO : OtherMI.operands()) {
      if (!MO.isReg())
        continue;
      Register MOReg = MO.getReg();
      if (!MOReg)
        continue;
      if (MO.isUse()) {
        if (Defs.count(MOReg))
          // Moving KillMI can clobber the physical register if the def has
          // not been seen.
          return false;
        if (Kills.count(MOReg))
          // Don't want to extend other live ranges and update kills.
          return false;
        if (&OtherMI != MI && MOReg == Reg &&
            !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))))
          // We can't schedule across a use of the register in question.
          return false;
      } else {
        OtherDefs.push_back(MOReg);
      }
    }

    for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
      unsigned MOReg = OtherDefs[i];
      if (Uses.count(MOReg))
        return false;
      if (Register::isPhysicalRegister(MOReg) && LiveDefs.count(MOReg))
        return false;
      // Physical register def is seen.
      Defs.erase(MOReg);
    }
  }

  // Move the old kill above MI, don't forget to move debug info as well.
  MachineBasicBlock::iterator InsertPos = mi;
  while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr())
    --InsertPos;
  MachineBasicBlock::iterator From = KillMI;
  MachineBasicBlock::iterator To = std::next(From);
  while (std::prev(From)->isDebugInstr())
    --From;
  MBB->splice(InsertPos, MBB, From, To);

  nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
  DistanceMap.erase(DI);

  // Update live variables
  if (LIS) {
    LIS->handleMove(*KillMI);
  } else {
    LV->removeVirtualRegisterKilled(Reg, *KillMI);
    LV->addVirtualRegisterKilled(Reg, *MI);
  }

  LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
  return true;
}

/// Tries to commute the operand 'BaseOpIdx' and some other operand in the
/// given machine instruction to improve opportunities for coalescing and
/// elimination of a register to register copy.
///
/// 'DstOpIdx' specifies the index of MI def operand.
/// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
/// operand is killed by the given instruction.
/// The 'Dist' arguments provides the distance of MI from the start of the
/// current basic block and it is used to determine if it is profitable
/// to commute operands in the instruction.
///
/// Returns true if the transformation happened. Otherwise, returns false.
bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
                                                      unsigned DstOpIdx,
                                                      unsigned BaseOpIdx,
                                                      bool BaseOpKilled,
                                                      unsigned Dist) {
  if (!MI->isCommutable())
    return false;

  bool MadeChange = false;
  Register DstOpReg = MI->getOperand(DstOpIdx).getReg();
  Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
  unsigned OpsNum = MI->getDesc().getNumOperands();
  unsigned OtherOpIdx = MI->getDesc().getNumDefs();
  for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
    // The call of findCommutedOpIndices below only checks if BaseOpIdx
    // and OtherOpIdx are commutable, it does not really search for
    // other commutable operands and does not change the values of passed
    // variables.
    if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() ||
        !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx))
      continue;

    Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
    bool AggressiveCommute = false;

    // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
    // operands. This makes the live ranges of DstOp and OtherOp joinable.
    bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false);
    bool DoCommute = !BaseOpKilled && OtherOpKilled;

    if (!DoCommute &&
        isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
      DoCommute = true;
      AggressiveCommute = true;
    }

    // If it's profitable to commute, try to do so.
    if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx,
                                        Dist)) {
      MadeChange = true;
      ++NumCommuted;
      if (AggressiveCommute)
        ++NumAggrCommuted;

      // There might be more than two commutable operands, update BaseOp and
      // continue scanning.
      // FIXME: This assumes that the new instruction's operands are in the
      // same positions and were simply swapped.
      BaseOpReg = OtherOpReg;
      BaseOpKilled = OtherOpKilled;
      // Resamples OpsNum in case the number of operands was reduced. This
      // happens with X86.
      OpsNum = MI->getDesc().getNumOperands();
    }
  }
  return MadeChange;
}

/// For the case where an instruction has a single pair of tied register
/// operands, attempt some transformations that may either eliminate the tied
/// operands or improve the opportunities for coalescing away the register copy.
/// Returns true if no copy needs to be inserted to untie mi's operands
/// (either because they were untied, or because mi was rescheduled, and will
/// be visited again later). If the shouldOnlyCommute flag is true, only
/// instruction commutation is attempted.
bool TwoAddressInstructionPass::
tryInstructionTransform(MachineBasicBlock::iterator &mi,
                        MachineBasicBlock::iterator &nmi,
                        unsigned SrcIdx, unsigned DstIdx,
                        unsigned Dist, bool shouldOnlyCommute) {
  if (OptLevel == CodeGenOpt::None)
    return false;

  MachineInstr &MI = *mi;
  Register regA = MI.getOperand(DstIdx).getReg();
  Register regB = MI.getOperand(SrcIdx).getReg();

  assert(Register::isVirtualRegister(regB) &&
         "cannot make instruction into two-address form");
  bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);

  if (Register::isVirtualRegister(regA))
    scanUses(regA);

  bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);

  // If the instruction is convertible to 3 Addr, instead
  // of returning try 3 Addr transformation aggressively and
  // use this variable to check later. Because it might be better.
  // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
  // instead of the following code.
  //   addl     %esi, %edi
  //   movl     %edi, %eax
  //   ret
  if (Commuted && !MI.isConvertibleTo3Addr())
    return false;

  if (shouldOnlyCommute)
    return false;

  // If there is one more use of regB later in the same MBB, consider
  // re-schedule this MI below it.
  if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
    ++NumReSchedDowns;
    return true;
  }

  // If we commuted, regB may have changed so we should re-sample it to avoid
  // confusing the three address conversion below.
  if (Commuted) {
    regB = MI.getOperand(SrcIdx).getReg();
    regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
  }

  if (MI.isConvertibleTo3Addr()) {
    // This instruction is potentially convertible to a true
    // three-address instruction.  Check if it is profitable.
    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
      // Try to convert it.
      if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
        ++NumConvertedTo3Addr;
        return true; // Done with this instruction.
      }
    }
  }

  // Return if it is commuted but 3 addr conversion is failed.
  if (Commuted)
    return false;

  // If there is one more use of regB later in the same MBB, consider
  // re-schedule it before this MI if it's legal.
  if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
    ++NumReSchedUps;
    return true;
  }

  // If this is an instruction with a load folded into it, try unfolding
  // the load, e.g. avoid this:
  //   movq %rdx, %rcx
  //   addq (%rax), %rcx
  // in favor of this:
  //   movq (%rax), %rcx
  //   addq %rdx, %rcx
  // because it's preferable to schedule a load than a register copy.
  if (MI.mayLoad() && !regBKilled) {
    // Determine if a load can be unfolded.
    unsigned LoadRegIndex;
    unsigned NewOpc =
      TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
                                      /*UnfoldLoad=*/true,
                                      /*UnfoldStore=*/false,
                                      &LoadRegIndex);
    if (NewOpc != 0) {
      const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
      if (UnfoldMCID.getNumDefs() == 1) {
        // Unfold the load.
        LLVM_DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
        const TargetRegisterClass *RC =
          TRI->getAllocatableClass(
            TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
        Register Reg = MRI->createVirtualRegister(RC);
        SmallVector<MachineInstr *, 2> NewMIs;
        if (!TII->unfoldMemoryOperand(*MF, MI, Reg,
                                      /*UnfoldLoad=*/true,
                                      /*UnfoldStore=*/false, NewMIs)) {
          LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
          return false;
        }
        assert(NewMIs.size() == 2 &&
               "Unfolded a load into multiple instructions!");
        // The load was previously folded, so this is the only use.
        NewMIs[1]->addRegisterKilled(Reg, TRI);

        // Tentatively insert the instructions into the block so that they
        // look "normal" to the transformation logic.
        MBB->insert(mi, NewMIs[0]);
        MBB->insert(mi, NewMIs[1]);

        LLVM_DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
                          << "2addr:    NEW INST: " << *NewMIs[1]);

        // Transform the instruction, now that it no longer has a load.
        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
        MachineBasicBlock::iterator NewMI = NewMIs[1];
        bool TransformResult =
          tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
        (void)TransformResult;
        assert(!TransformResult &&
               "tryInstructionTransform() should return false.");
        if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
          // Success, or at least we made an improvement. Keep the unfolded
          // instructions and discard the original.
          if (LV) {
            for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
              MachineOperand &MO = MI.getOperand(i);
              if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
                if (MO.isUse()) {
                  if (MO.isKill()) {
                    if (NewMIs[0]->killsRegister(MO.getReg()))
                      LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]);
                    else {
                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
                             "Kill missing after load unfold!");
                      LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]);
                    }
                  }
                } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) {
                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
                    LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]);
                  else {
                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
                           "Dead flag missing after load unfold!");
                    LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]);
                  }
                }
              }
            }
            LV->addVirtualRegisterKilled(Reg, *NewMIs[1]);
          }

          SmallVector<Register, 4> OrigRegs;
          if (LIS) {
            for (const MachineOperand &MO : MI.operands()) {
              if (MO.isReg())
                OrigRegs.push_back(MO.getReg());
            }
          }

          MI.eraseFromParent();

          // Update LiveIntervals.
          if (LIS) {
            MachineBasicBlock::iterator Begin(NewMIs[0]);
            MachineBasicBlock::iterator End(NewMIs[1]);
            LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
          }

          mi = NewMIs[1];
        } else {
          // Transforming didn't eliminate the tie and didn't lead to an
          // improvement. Clean up the unfolded instructions and keep the
          // original.
          LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
          NewMIs[0]->eraseFromParent();
          NewMIs[1]->eraseFromParent();
        }
      }
    }
  }

  return false;
}

// Collect tied operands of MI that need to be handled.
// Rewrite trivial cases immediately.
// Return true if any tied operands where found, including the trivial ones.
bool TwoAddressInstructionPass::
collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
  const MCInstrDesc &MCID = MI->getDesc();
  bool AnyOps = false;
  unsigned NumOps = MI->getNumOperands();

  for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
    unsigned DstIdx = 0;
    if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
      continue;
    AnyOps = true;
    MachineOperand &SrcMO = MI->getOperand(SrcIdx);
    MachineOperand &DstMO = MI->getOperand(DstIdx);
    Register SrcReg = SrcMO.getReg();
    Register DstReg = DstMO.getReg();
    // Tied constraint already satisfied?
    if (SrcReg == DstReg)
      continue;

    assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");

    // Deal with undef uses immediately - simply rewrite the src operand.
    if (SrcMO.isUndef() && !DstMO.getSubReg()) {
      // Constrain the DstReg register class if required.
      if (Register::isVirtualRegister(DstReg))
        if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
                                                             TRI, *MF))
          MRI->constrainRegClass(DstReg, RC);
      SrcMO.setReg(DstReg);
      SrcMO.setSubReg(0);
      LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
      continue;
    }
    TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
  }
  return AnyOps;
}

// Process a list of tied MI operands that all use the same source register.
// The tied pairs are of the form (SrcIdx, DstIdx).
void
TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
                                            TiedPairList &TiedPairs,
                                            unsigned &Dist) {
  bool IsEarlyClobber = false;
  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
    const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
    IsEarlyClobber |= DstMO.isEarlyClobber();
  }

  bool RemovedKillFlag = false;
  bool AllUsesCopied = true;
  unsigned LastCopiedReg = 0;
  SlotIndex LastCopyIdx;
  unsigned RegB = 0;
  unsigned SubRegB = 0;
  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
    unsigned SrcIdx = TiedPairs[tpi].first;
    unsigned DstIdx = TiedPairs[tpi].second;

    const MachineOperand &DstMO = MI->getOperand(DstIdx);
    Register RegA = DstMO.getReg();

    // Grab RegB from the instruction because it may have changed if the
    // instruction was commuted.
    RegB = MI->getOperand(SrcIdx).getReg();
    SubRegB = MI->getOperand(SrcIdx).getSubReg();

    if (RegA == RegB) {
      // The register is tied to multiple destinations (or else we would
      // not have continued this far), but this use of the register
      // already matches the tied destination.  Leave it.
      AllUsesCopied = false;
      continue;
    }
    LastCopiedReg = RegA;

    assert(Register::isVirtualRegister(RegB) &&
           "cannot make instruction into two-address form");

#ifndef NDEBUG
    // First, verify that we don't have a use of "a" in the instruction
    // (a = b + a for example) because our transformation will not
    // work. This should never occur because we are in SSA form.
    for (unsigned i = 0; i != MI->getNumOperands(); ++i)
      assert(i == DstIdx ||
             !MI->getOperand(i).isReg() ||
             MI->getOperand(i).getReg() != RegA);
#endif

    // Emit a copy.
    MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
                                      TII->get(TargetOpcode::COPY), RegA);
    // If this operand is folding a truncation, the truncation now moves to the
    // copy so that the register classes remain valid for the operands.
    MIB.addReg(RegB, 0, SubRegB);
    const TargetRegisterClass *RC = MRI->getRegClass(RegB);
    if (SubRegB) {
      if (Register::isVirtualRegister(RegA)) {
        assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
                                             SubRegB) &&
               "tied subregister must be a truncation");
        // The superreg class will not be used to constrain the subreg class.
        RC = nullptr;
      } else {
        assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
               && "tied subregister must be a truncation");
      }
    }

    // Update DistanceMap.
    MachineBasicBlock::iterator PrevMI = MI;
    --PrevMI;
    DistanceMap.insert(std::make_pair(&*PrevMI, Dist));
    DistanceMap[MI] = ++Dist;

    if (LIS) {
      LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot();

      if (Register::isVirtualRegister(RegA)) {
        LiveInterval &LI = LIS->getInterval(RegA);
        VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
        SlotIndex endIdx =
            LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber);
        LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
      }
    }

    LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);

    MachineOperand &MO = MI->getOperand(SrcIdx);
    assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
           "inconsistent operand info for 2-reg pass");
    if (MO.isKill()) {
      MO.setIsKill(false);
      RemovedKillFlag = true;
    }

    // Make sure regA is a legal regclass for the SrcIdx operand.
    if (Register::isVirtualRegister(RegA) && Register::isVirtualRegister(RegB))
      MRI->constrainRegClass(RegA, RC);
    MO.setReg(RegA);
    // The getMatchingSuper asserts guarantee that the register class projected
    // by SubRegB is compatible with RegA with no subregister. So regardless of
    // whether the dest oper writes a subreg, the source oper should not.
    MO.setSubReg(0);

    // Propagate SrcRegMap.
    SrcRegMap[RegA] = RegB;
  }

  if (AllUsesCopied) {
    bool ReplacedAllUntiedUses = true;
    if (!IsEarlyClobber) {
      // Replace other (un-tied) uses of regB with LastCopiedReg.
      for (MachineOperand &MO : MI->operands()) {
        if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
          if (MO.getSubReg() == SubRegB) {
            if (MO.isKill()) {
              MO.setIsKill(false);
              RemovedKillFlag = true;
            }
            MO.setReg(LastCopiedReg);
            MO.setSubReg(0);
          } else {
            ReplacedAllUntiedUses = false;
          }
        }
      }
    }

    // Update live variables for regB.
    if (RemovedKillFlag && ReplacedAllUntiedUses &&
        LV && LV->getVarInfo(RegB).removeKill(*MI)) {
      MachineBasicBlock::iterator PrevMI = MI;
      --PrevMI;
      LV->addVirtualRegisterKilled(RegB, *PrevMI);
    }

    // Update LiveIntervals.
    if (LIS) {
      LiveInterval &LI = LIS->getInterval(RegB);
      SlotIndex MIIdx = LIS->getInstructionIndex(*MI);
      LiveInterval::const_iterator I = LI.find(MIIdx);
      assert(I != LI.end() && "RegB must be live-in to use.");

      SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
      if (I->end == UseIdx)
        LI.removeSegment(LastCopyIdx, UseIdx);
    }
  } else if (RemovedKillFlag) {
    // Some tied uses of regB matched their destination registers, so
    // regB is still used in this instruction, but a kill flag was
    // removed from a different tied use of regB, so now we need to add
    // a kill flag to one of the remaining uses of regB.
    for (MachineOperand &MO : MI->operands()) {
      if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
        MO.setIsKill(true);
        break;
      }
    }
  }
}

/// Reduce two-address instructions to two operands.
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
  MF = &Func;
  const TargetMachine &TM = MF->getTarget();
  MRI = &MF->getRegInfo();
  TII = MF->getSubtarget().getInstrInfo();
  TRI = MF->getSubtarget().getRegisterInfo();
  InstrItins = MF->getSubtarget().getInstrItineraryData();
  LV = getAnalysisIfAvailable<LiveVariables>();
  LIS = getAnalysisIfAvailable<LiveIntervals>();
  if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>())
    AA = &AAPass->getAAResults();
  else
    AA = nullptr;
  OptLevel = TM.getOptLevel();
  // Disable optimizations if requested. We cannot skip the whole pass as some
  // fixups are necessary for correctness.
  if (skipFunction(Func.getFunction()))
    OptLevel = CodeGenOpt::None;

  bool MadeChange = false;

  LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
  LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n');

  // This pass takes the function out of SSA form.
  MRI->leaveSSA();

  // This pass will rewrite the tied-def to meet the RegConstraint.
  MF->getProperties()
      .set(MachineFunctionProperties::Property::TiedOpsRewritten);

  TiedOperandMap TiedOperands;
  for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
       MBBI != MBBE; ++MBBI) {
    MBB = &*MBBI;
    unsigned Dist = 0;
    DistanceMap.clear();
    SrcRegMap.clear();
    DstRegMap.clear();
    Processed.clear();
    for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
         mi != me; ) {
      MachineBasicBlock::iterator nmi = std::next(mi);
      // Skip debug instructions.
      if (mi->isDebugInstr()) {
        mi = nmi;
        continue;
      }

      // Expand REG_SEQUENCE instructions. This will position mi at the first
      // expanded instruction.
      if (mi->isRegSequence())
        eliminateRegSequence(mi);

      DistanceMap.insert(std::make_pair(&*mi, ++Dist));

      processCopy(&*mi);

      // First scan through all the tied register uses in this instruction
      // and record a list of pairs of tied operands for each register.
      if (!collectTiedOperands(&*mi, TiedOperands)) {
        mi = nmi;
        continue;
      }

      ++NumTwoAddressInstrs;
      MadeChange = true;
      LLVM_DEBUG(dbgs() << '\t' << *mi);

      // If the instruction has a single pair of tied operands, try some
      // transformations that may either eliminate the tied operands or
      // improve the opportunities for coalescing away the register copy.
      if (TiedOperands.size() == 1) {
        SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs
          = TiedOperands.begin()->second;
        if (TiedPairs.size() == 1) {
          unsigned SrcIdx = TiedPairs[0].first;
          unsigned DstIdx = TiedPairs[0].second;
          Register SrcReg = mi->getOperand(SrcIdx).getReg();
          Register DstReg = mi->getOperand(DstIdx).getReg();
          if (SrcReg != DstReg &&
              tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
            // The tied operands have been eliminated or shifted further down
            // the block to ease elimination. Continue processing with 'nmi'.
            TiedOperands.clear();
            mi = nmi;
            continue;
          }
        }
      }

      // Now iterate over the information collected above.
      for (auto &TO : TiedOperands) {
        processTiedPairs(&*mi, TO.second, Dist);
        LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
      }

      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
      if (mi->isInsertSubreg()) {
        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
        // To   %reg:subidx = COPY %subreg
        unsigned SubIdx = mi->getOperand(3).getImm();
        mi->RemoveOperand(3);
        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
        mi->getOperand(0).setSubReg(SubIdx);
        mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
        mi->RemoveOperand(1);
        mi->setDesc(TII->get(TargetOpcode::COPY));
        LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
      }

      // Clear TiedOperands here instead of at the top of the loop
      // since most instructions do not have tied operands.
      TiedOperands.clear();
      mi = nmi;
    }
  }

  if (LIS)
    MF->verify(this, "After two-address instruction pass");

  return MadeChange;
}

/// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
///
/// The instruction is turned into a sequence of sub-register copies:
///
///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
///
/// Becomes:
///
///   undef %dst:ssub0 = COPY %v1
///   %dst:ssub1 = COPY %v2
void TwoAddressInstructionPass::
eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
  MachineInstr &MI = *MBBI;
  Register DstReg = MI.getOperand(0).getReg();
  if (MI.getOperand(0).getSubReg() || Register::isPhysicalRegister(DstReg) ||
      !(MI.getNumOperands() & 1)) {
    LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI);
    llvm_unreachable(nullptr);
  }

  SmallVector<Register, 4> OrigRegs;
  if (LIS) {
    OrigRegs.push_back(MI.getOperand(0).getReg());
    for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2)
      OrigRegs.push_back(MI.getOperand(i).getReg());
  }

  bool DefEmitted = false;
  for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) {
    MachineOperand &UseMO = MI.getOperand(i);
    Register SrcReg = UseMO.getReg();
    unsigned SubIdx = MI.getOperand(i+1).getImm();
    // Nothing needs to be inserted for undef operands.
    if (UseMO.isUndef())
      continue;

    // Defer any kill flag to the last operand using SrcReg. Otherwise, we
    // might insert a COPY that uses SrcReg after is was killed.
    bool isKill = UseMO.isKill();
    if (isKill)
      for (unsigned j = i + 2; j < e; j += 2)
        if (MI.getOperand(j).getReg() == SrcReg) {
          MI.getOperand(j).setIsKill();
          UseMO.setIsKill(false);
          isKill = false;
          break;
        }

    // Insert the sub-register copy.
    MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
                                   TII->get(TargetOpcode::COPY))
                               .addReg(DstReg, RegState::Define, SubIdx)
                               .add(UseMO);

    // The first def needs an undef flag because there is no live register
    // before it.
    if (!DefEmitted) {
      CopyMI->getOperand(0).setIsUndef(true);
      // Return an iterator pointing to the first inserted instr.
      MBBI = CopyMI;
    }
    DefEmitted = true;

    // Update LiveVariables' kill info.
    if (LV && isKill && !Register::isPhysicalRegister(SrcReg))
      LV->replaceKillInstruction(SrcReg, MI, *CopyMI);

    LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI);
  }

  MachineBasicBlock::iterator EndMBBI =
      std::next(MachineBasicBlock::iterator(MI));

  if (!DefEmitted) {
    LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF");
    MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
    for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j)
      MI.RemoveOperand(j);
  } else {
    LLVM_DEBUG(dbgs() << "Eliminated: " << MI);
    MI.eraseFromParent();
  }

  // Udpate LiveIntervals.
  if (LIS)
    LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
}