ConstantsContext.h 26.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
//===-- ConstantsContext.h - Constants-related Context Interals -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines various helper methods and classes used by
// LLVMContextImpl for creating and managing constants.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_IR_CONSTANTSCONTEXT_H
#define LLVM_LIB_IR_CONSTANTSCONTEXT_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <utility>

#define DEBUG_TYPE "ir"

namespace llvm {

/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement unary constant exprs.
class UnaryConstantExpr final : public ConstantExpr {
public:
  UnaryConstantExpr(unsigned Opcode, Constant *C, Type *Ty)
    : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
    Op<0>() = C;
  }

  // allocate space for exactly one operand
  void *operator new(size_t s) {
    return User::operator new(s, 1);
  }

  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  static bool classof(const ConstantExpr *CE) {
    return Instruction::isCast(CE->getOpcode()) ||
           Instruction::isUnaryOp(CE->getOpcode());
  }
  static bool classof(const Value *V) {
    return isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V));
  }
};

/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement binary constant exprs.
class BinaryConstantExpr final : public ConstantExpr {
public:
  BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
                     unsigned Flags)
    : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
    Op<0>() = C1;
    Op<1>() = C2;
    SubclassOptionalData = Flags;
  }

  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  static bool classof(const ConstantExpr *CE) {
    return Instruction::isBinaryOp(CE->getOpcode());
  }
  static bool classof(const Value *V) {
    return isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V));
  }
};

/// SelectConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement select constant exprs.
class SelectConstantExpr final : public ConstantExpr {
public:
  SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
    : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
    Op<0>() = C1;
    Op<1>() = C2;
    Op<2>() = C3;
  }

  // allocate space for exactly three operands
  void *operator new(size_t s) {
    return User::operator new(s, 3);
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  static bool classof(const ConstantExpr *CE) {
    return CE->getOpcode() == Instruction::Select;
  }
  static bool classof(const Value *V) {
    return isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V));
  }
};

/// ExtractElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractelement constant exprs.
class ExtractElementConstantExpr final : public ConstantExpr {
public:
  ExtractElementConstantExpr(Constant *C1, Constant *C2)
    : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
                   Instruction::ExtractElement, &Op<0>(), 2) {
    Op<0>() = C1;
    Op<1>() = C2;
  }

  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  static bool classof(const ConstantExpr *CE) {
    return CE->getOpcode() == Instruction::ExtractElement;
  }
  static bool classof(const Value *V) {
    return isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V));
  }
};

/// InsertElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertelement constant exprs.
class InsertElementConstantExpr final : public ConstantExpr {
public:
  InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
    : ConstantExpr(C1->getType(), Instruction::InsertElement,
                   &Op<0>(), 3) {
    Op<0>() = C1;
    Op<1>() = C2;
    Op<2>() = C3;
  }

  // allocate space for exactly three operands
  void *operator new(size_t s) {
    return User::operator new(s, 3);
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  static bool classof(const ConstantExpr *CE) {
    return CE->getOpcode() == Instruction::InsertElement;
  }
  static bool classof(const Value *V) {
    return isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V));
  }
};

/// ShuffleVectorConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// shufflevector constant exprs.
class ShuffleVectorConstantExpr final : public ConstantExpr {
public:
  ShuffleVectorConstantExpr(Constant *C1, Constant *C2, ArrayRef<int> Mask)
      : ConstantExpr(VectorType::get(
                         cast<VectorType>(C1->getType())->getElementType(),
                         Mask.size(), isa<ScalableVectorType>(C1->getType())),
                     Instruction::ShuffleVector, &Op<0>(), 2) {
    assert(ShuffleVectorInst::isValidOperands(C1, C2, Mask) &&
           "Invalid shuffle vector instruction operands!");
    Op<0>() = C1;
    Op<1>() = C2;
    ShuffleMask.assign(Mask.begin(), Mask.end());
    ShuffleMaskForBitcode =
        ShuffleVectorInst::convertShuffleMaskForBitcode(Mask, getType());
  }

  SmallVector<int, 4> ShuffleMask;
  Constant *ShuffleMaskForBitcode;

  void *operator new(size_t s) { return User::operator new(s, 2); }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  static bool classof(const ConstantExpr *CE) {
    return CE->getOpcode() == Instruction::ShuffleVector;
  }
  static bool classof(const Value *V) {
    return isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V));
  }
};

/// ExtractValueConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractvalue constant exprs.
class ExtractValueConstantExpr final : public ConstantExpr {
public:
  ExtractValueConstantExpr(Constant *Agg, ArrayRef<unsigned> IdxList,
                           Type *DestTy)
      : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
        Indices(IdxList.begin(), IdxList.end()) {
    Op<0>() = Agg;
  }

  // allocate space for exactly one operand
  void *operator new(size_t s) {
    return User::operator new(s, 1);
  }

  /// Indices - These identify which value to extract.
  const SmallVector<unsigned, 4> Indices;

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  static bool classof(const ConstantExpr *CE) {
    return CE->getOpcode() == Instruction::ExtractValue;
  }
  static bool classof(const Value *V) {
    return isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V));
  }
};

/// InsertValueConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertvalue constant exprs.
class InsertValueConstantExpr final : public ConstantExpr {
public:
  InsertValueConstantExpr(Constant *Agg, Constant *Val,
                          ArrayRef<unsigned> IdxList, Type *DestTy)
      : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
        Indices(IdxList.begin(), IdxList.end()) {
    Op<0>() = Agg;
    Op<1>() = Val;
  }

  // allocate space for exactly one operand
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }

  /// Indices - These identify the position for the insertion.
  const SmallVector<unsigned, 4> Indices;

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  static bool classof(const ConstantExpr *CE) {
    return CE->getOpcode() == Instruction::InsertValue;
  }
  static bool classof(const Value *V) {
    return isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V));
  }
};

/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
/// used behind the scenes to implement getelementpr constant exprs.
class GetElementPtrConstantExpr final : public ConstantExpr {
  Type *SrcElementTy;
  Type *ResElementTy;

  GetElementPtrConstantExpr(Type *SrcElementTy, Constant *C,
                            ArrayRef<Constant *> IdxList, Type *DestTy);

public:
  static GetElementPtrConstantExpr *Create(Type *SrcElementTy, Constant *C,
                                           ArrayRef<Constant *> IdxList,
                                           Type *DestTy, unsigned Flags) {
    GetElementPtrConstantExpr *Result = new (IdxList.size() + 1)
        GetElementPtrConstantExpr(SrcElementTy, C, IdxList, DestTy);
    Result->SubclassOptionalData = Flags;
    return Result;
  }

  Type *getSourceElementType() const;
  Type *getResultElementType() const;

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  static bool classof(const ConstantExpr *CE) {
    return CE->getOpcode() == Instruction::GetElementPtr;
  }
  static bool classof(const Value *V) {
    return isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V));
  }
};

// CompareConstantExpr - This class is private to Constants.cpp, and is used
// behind the scenes to implement ICmp and FCmp constant expressions. This is
// needed in order to store the predicate value for these instructions.
class CompareConstantExpr final : public ConstantExpr {
public:
  unsigned short predicate;
  CompareConstantExpr(Type *ty, Instruction::OtherOps opc,
                      unsigned short pred,  Constant* LHS, Constant* RHS)
    : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
    Op<0>() = LHS;
    Op<1>() = RHS;
  }

  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  static bool classof(const ConstantExpr *CE) {
    return CE->getOpcode() == Instruction::ICmp ||
           CE->getOpcode() == Instruction::FCmp;
  }
  static bool classof(const Value *V) {
    return isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V));
  }
};

template <>
struct OperandTraits<UnaryConstantExpr>
    : public FixedNumOperandTraits<UnaryConstantExpr, 1> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)

template <>
struct OperandTraits<BinaryConstantExpr>
    : public FixedNumOperandTraits<BinaryConstantExpr, 2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)

template <>
struct OperandTraits<SelectConstantExpr>
    : public FixedNumOperandTraits<SelectConstantExpr, 3> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)

template <>
struct OperandTraits<ExtractElementConstantExpr>
    : public FixedNumOperandTraits<ExtractElementConstantExpr, 2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)

template <>
struct OperandTraits<InsertElementConstantExpr>
    : public FixedNumOperandTraits<InsertElementConstantExpr, 3> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)

template <>
struct OperandTraits<ShuffleVectorConstantExpr>
    : public FixedNumOperandTraits<ShuffleVectorConstantExpr, 2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)

template <>
struct OperandTraits<ExtractValueConstantExpr>
    : public FixedNumOperandTraits<ExtractValueConstantExpr, 1> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)

template <>
struct OperandTraits<InsertValueConstantExpr>
    : public FixedNumOperandTraits<InsertValueConstantExpr, 2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)

template <>
struct OperandTraits<GetElementPtrConstantExpr>
    : public VariadicOperandTraits<GetElementPtrConstantExpr, 1> {};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)

template <>
struct OperandTraits<CompareConstantExpr>
    : public FixedNumOperandTraits<CompareConstantExpr, 2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)

template <class ConstantClass> struct ConstantAggrKeyType;
struct InlineAsmKeyType;
struct ConstantExprKeyType;

template <class ConstantClass> struct ConstantInfo;
template <> struct ConstantInfo<ConstantExpr> {
  using ValType = ConstantExprKeyType;
  using TypeClass = Type;
};
template <> struct ConstantInfo<InlineAsm> {
  using ValType = InlineAsmKeyType;
  using TypeClass = PointerType;
};
template <> struct ConstantInfo<ConstantArray> {
  using ValType = ConstantAggrKeyType<ConstantArray>;
  using TypeClass = ArrayType;
};
template <> struct ConstantInfo<ConstantStruct> {
  using ValType = ConstantAggrKeyType<ConstantStruct>;
  using TypeClass = StructType;
};
template <> struct ConstantInfo<ConstantVector> {
  using ValType = ConstantAggrKeyType<ConstantVector>;
  using TypeClass = VectorType;
};

template <class ConstantClass> struct ConstantAggrKeyType {
  ArrayRef<Constant *> Operands;

  ConstantAggrKeyType(ArrayRef<Constant *> Operands) : Operands(Operands) {}

  ConstantAggrKeyType(ArrayRef<Constant *> Operands, const ConstantClass *)
      : Operands(Operands) {}

  ConstantAggrKeyType(const ConstantClass *C,
                      SmallVectorImpl<Constant *> &Storage) {
    assert(Storage.empty() && "Expected empty storage");
    for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
      Storage.push_back(C->getOperand(I));
    Operands = Storage;
  }

  bool operator==(const ConstantAggrKeyType &X) const {
    return Operands == X.Operands;
  }

  bool operator==(const ConstantClass *C) const {
    if (Operands.size() != C->getNumOperands())
      return false;
    for (unsigned I = 0, E = Operands.size(); I != E; ++I)
      if (Operands[I] != C->getOperand(I))
        return false;
    return true;
  }

  unsigned getHash() const {
    return hash_combine_range(Operands.begin(), Operands.end());
  }

  using TypeClass = typename ConstantInfo<ConstantClass>::TypeClass;

  ConstantClass *create(TypeClass *Ty) const {
    return new (Operands.size()) ConstantClass(Ty, Operands);
  }
};

struct InlineAsmKeyType {
  StringRef AsmString;
  StringRef Constraints;
  FunctionType *FTy;
  bool HasSideEffects;
  bool IsAlignStack;
  InlineAsm::AsmDialect AsmDialect;

  InlineAsmKeyType(StringRef AsmString, StringRef Constraints,
                   FunctionType *FTy, bool HasSideEffects, bool IsAlignStack,
                   InlineAsm::AsmDialect AsmDialect)
      : AsmString(AsmString), Constraints(Constraints), FTy(FTy),
        HasSideEffects(HasSideEffects), IsAlignStack(IsAlignStack),
        AsmDialect(AsmDialect) {}

  InlineAsmKeyType(const InlineAsm *Asm, SmallVectorImpl<Constant *> &)
      : AsmString(Asm->getAsmString()), Constraints(Asm->getConstraintString()),
        FTy(Asm->getFunctionType()), HasSideEffects(Asm->hasSideEffects()),
        IsAlignStack(Asm->isAlignStack()), AsmDialect(Asm->getDialect()) {}

  bool operator==(const InlineAsmKeyType &X) const {
    return HasSideEffects == X.HasSideEffects &&
           IsAlignStack == X.IsAlignStack && AsmDialect == X.AsmDialect &&
           AsmString == X.AsmString && Constraints == X.Constraints &&
           FTy == X.FTy;
  }

  bool operator==(const InlineAsm *Asm) const {
    return HasSideEffects == Asm->hasSideEffects() &&
           IsAlignStack == Asm->isAlignStack() &&
           AsmDialect == Asm->getDialect() &&
           AsmString == Asm->getAsmString() &&
           Constraints == Asm->getConstraintString() &&
           FTy == Asm->getFunctionType();
  }

  unsigned getHash() const {
    return hash_combine(AsmString, Constraints, HasSideEffects, IsAlignStack,
                        AsmDialect, FTy);
  }

  using TypeClass = ConstantInfo<InlineAsm>::TypeClass;

  InlineAsm *create(TypeClass *Ty) const {
    assert(PointerType::getUnqual(FTy) == Ty);
    return new InlineAsm(FTy, std::string(AsmString), std::string(Constraints),
                         HasSideEffects, IsAlignStack, AsmDialect);
  }
};

struct ConstantExprKeyType {
private:
  uint8_t Opcode;
  uint8_t SubclassOptionalData;
  uint16_t SubclassData;
  ArrayRef<Constant *> Ops;
  ArrayRef<unsigned> Indexes;
  ArrayRef<int> ShuffleMask;
  Type *ExplicitTy;

  static ArrayRef<int> getShuffleMaskIfValid(const ConstantExpr *CE) {
    if (CE->getOpcode() == Instruction::ShuffleVector)
      return CE->getShuffleMask();
    return None;
  }

  static ArrayRef<unsigned> getIndicesIfValid(const ConstantExpr *CE) {
    if (CE->hasIndices())
      return CE->getIndices();
    return None;
  }

  static Type *getSourceElementTypeIfValid(const ConstantExpr *CE) {
    if (auto *GEPCE = dyn_cast<GetElementPtrConstantExpr>(CE))
      return GEPCE->getSourceElementType();
    return nullptr;
  }

public:
  ConstantExprKeyType(unsigned Opcode, ArrayRef<Constant *> Ops,
                      unsigned short SubclassData = 0,
                      unsigned short SubclassOptionalData = 0,
                      ArrayRef<unsigned> Indexes = None,
                      ArrayRef<int> ShuffleMask = None,
                      Type *ExplicitTy = nullptr)
      : Opcode(Opcode), SubclassOptionalData(SubclassOptionalData),
        SubclassData(SubclassData), Ops(Ops), Indexes(Indexes),
        ShuffleMask(ShuffleMask), ExplicitTy(ExplicitTy) {}

  ConstantExprKeyType(ArrayRef<Constant *> Operands, const ConstantExpr *CE)
      : Opcode(CE->getOpcode()),
        SubclassOptionalData(CE->getRawSubclassOptionalData()),
        SubclassData(CE->isCompare() ? CE->getPredicate() : 0), Ops(Operands),
        Indexes(getIndicesIfValid(CE)), ShuffleMask(getShuffleMaskIfValid(CE)),
        ExplicitTy(getSourceElementTypeIfValid(CE)) {}

  ConstantExprKeyType(const ConstantExpr *CE,
                      SmallVectorImpl<Constant *> &Storage)
      : Opcode(CE->getOpcode()),
        SubclassOptionalData(CE->getRawSubclassOptionalData()),
        SubclassData(CE->isCompare() ? CE->getPredicate() : 0),
        Indexes(getIndicesIfValid(CE)), ShuffleMask(getShuffleMaskIfValid(CE)),
        ExplicitTy(getSourceElementTypeIfValid(CE)) {
    assert(Storage.empty() && "Expected empty storage");
    for (unsigned I = 0, E = CE->getNumOperands(); I != E; ++I)
      Storage.push_back(CE->getOperand(I));
    Ops = Storage;
  }

  bool operator==(const ConstantExprKeyType &X) const {
    return Opcode == X.Opcode && SubclassData == X.SubclassData &&
           SubclassOptionalData == X.SubclassOptionalData && Ops == X.Ops &&
           Indexes == X.Indexes && ShuffleMask == X.ShuffleMask &&
           ExplicitTy == X.ExplicitTy;
  }

  bool operator==(const ConstantExpr *CE) const {
    if (Opcode != CE->getOpcode())
      return false;
    if (SubclassOptionalData != CE->getRawSubclassOptionalData())
      return false;
    if (Ops.size() != CE->getNumOperands())
      return false;
    if (SubclassData != (CE->isCompare() ? CE->getPredicate() : 0))
      return false;
    for (unsigned I = 0, E = Ops.size(); I != E; ++I)
      if (Ops[I] != CE->getOperand(I))
        return false;
    if (Indexes != getIndicesIfValid(CE))
      return false;
    if (ShuffleMask != getShuffleMaskIfValid(CE))
      return false;
    if (ExplicitTy != getSourceElementTypeIfValid(CE))
      return false;
    return true;
  }

  unsigned getHash() const {
    return hash_combine(
        Opcode, SubclassOptionalData, SubclassData,
        hash_combine_range(Ops.begin(), Ops.end()),
        hash_combine_range(Indexes.begin(), Indexes.end()),
        hash_combine_range(ShuffleMask.begin(), ShuffleMask.end()), ExplicitTy);
  }

  using TypeClass = ConstantInfo<ConstantExpr>::TypeClass;

  ConstantExpr *create(TypeClass *Ty) const {
    switch (Opcode) {
    default:
      if (Instruction::isCast(Opcode) ||
          (Opcode >= Instruction::UnaryOpsBegin &&
           Opcode < Instruction::UnaryOpsEnd))
        return new UnaryConstantExpr(Opcode, Ops[0], Ty);
      if ((Opcode >= Instruction::BinaryOpsBegin &&
           Opcode < Instruction::BinaryOpsEnd))
        return new BinaryConstantExpr(Opcode, Ops[0], Ops[1],
                                      SubclassOptionalData);
      llvm_unreachable("Invalid ConstantExpr!");
    case Instruction::Select:
      return new SelectConstantExpr(Ops[0], Ops[1], Ops[2]);
    case Instruction::ExtractElement:
      return new ExtractElementConstantExpr(Ops[0], Ops[1]);
    case Instruction::InsertElement:
      return new InsertElementConstantExpr(Ops[0], Ops[1], Ops[2]);
    case Instruction::ShuffleVector:
      return new ShuffleVectorConstantExpr(Ops[0], Ops[1], ShuffleMask);
    case Instruction::InsertValue:
      return new InsertValueConstantExpr(Ops[0], Ops[1], Indexes, Ty);
    case Instruction::ExtractValue:
      return new ExtractValueConstantExpr(Ops[0], Indexes, Ty);
    case Instruction::GetElementPtr:
      return GetElementPtrConstantExpr::Create(ExplicitTy, Ops[0], Ops.slice(1),
                                               Ty, SubclassOptionalData);
    case Instruction::ICmp:
      return new CompareConstantExpr(Ty, Instruction::ICmp, SubclassData,
                                     Ops[0], Ops[1]);
    case Instruction::FCmp:
      return new CompareConstantExpr(Ty, Instruction::FCmp, SubclassData,
                                     Ops[0], Ops[1]);
    }
  }
};

// Free memory for a given constant.  Assumes the constant has already been
// removed from all relevant maps.
void deleteConstant(Constant *C);

template <class ConstantClass> class ConstantUniqueMap {
public:
  using ValType = typename ConstantInfo<ConstantClass>::ValType;
  using TypeClass = typename ConstantInfo<ConstantClass>::TypeClass;
  using LookupKey = std::pair<TypeClass *, ValType>;

  /// Key and hash together, so that we compute the hash only once and reuse it.
  using LookupKeyHashed = std::pair<unsigned, LookupKey>;

private:
  struct MapInfo {
    using ConstantClassInfo = DenseMapInfo<ConstantClass *>;

    static inline ConstantClass *getEmptyKey() {
      return ConstantClassInfo::getEmptyKey();
    }

    static inline ConstantClass *getTombstoneKey() {
      return ConstantClassInfo::getTombstoneKey();
    }

    static unsigned getHashValue(const ConstantClass *CP) {
      SmallVector<Constant *, 32> Storage;
      return getHashValue(LookupKey(CP->getType(), ValType(CP, Storage)));
    }

    static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) {
      return LHS == RHS;
    }

    static unsigned getHashValue(const LookupKey &Val) {
      return hash_combine(Val.first, Val.second.getHash());
    }

    static unsigned getHashValue(const LookupKeyHashed &Val) {
      return Val.first;
    }

    static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) {
      if (RHS == getEmptyKey() || RHS == getTombstoneKey())
        return false;
      if (LHS.first != RHS->getType())
        return false;
      return LHS.second == RHS;
    }

    static bool isEqual(const LookupKeyHashed &LHS, const ConstantClass *RHS) {
      return isEqual(LHS.second, RHS);
    }
  };

public:
  using MapTy = DenseSet<ConstantClass *, MapInfo>;

private:
  MapTy Map;

public:
  typename MapTy::iterator begin() { return Map.begin(); }
  typename MapTy::iterator end() { return Map.end(); }

  void freeConstants() {
    for (auto &I : Map)
      deleteConstant(I);
  }

private:
  ConstantClass *create(TypeClass *Ty, ValType V, LookupKeyHashed &HashKey) {
    ConstantClass *Result = V.create(Ty);

    assert(Result->getType() == Ty && "Type specified is not correct!");
    Map.insert_as(Result, HashKey);

    return Result;
  }

public:
  /// Return the specified constant from the map, creating it if necessary.
  ConstantClass *getOrCreate(TypeClass *Ty, ValType V) {
    LookupKey Key(Ty, V);
    /// Hash once, and reuse it for the lookup and the insertion if needed.
    LookupKeyHashed Lookup(MapInfo::getHashValue(Key), Key);

    ConstantClass *Result = nullptr;

    auto I = Map.find_as(Lookup);
    if (I == Map.end())
      Result = create(Ty, V, Lookup);
    else
      Result = *I;
    assert(Result && "Unexpected nullptr");

    return Result;
  }

  /// Remove this constant from the map
  void remove(ConstantClass *CP) {
    typename MapTy::iterator I = Map.find(CP);
    assert(I != Map.end() && "Constant not found in constant table!");
    assert(*I == CP && "Didn't find correct element?");
    Map.erase(I);
  }

  ConstantClass *replaceOperandsInPlace(ArrayRef<Constant *> Operands,
                                        ConstantClass *CP, Value *From,
                                        Constant *To, unsigned NumUpdated = 0,
                                        unsigned OperandNo = ~0u) {
    LookupKey Key(CP->getType(), ValType(Operands, CP));
    /// Hash once, and reuse it for the lookup and the insertion if needed.
    LookupKeyHashed Lookup(MapInfo::getHashValue(Key), Key);

    auto ItMap = Map.find_as(Lookup);
    if (ItMap != Map.end())
      return *ItMap;

    // Update to the new value.  Optimize for the case when we have a single
    // operand that we're changing, but handle bulk updates efficiently.
    remove(CP);
    if (NumUpdated == 1) {
      assert(OperandNo < CP->getNumOperands() && "Invalid index");
      assert(CP->getOperand(OperandNo) != To && "I didn't contain From!");
      CP->setOperand(OperandNo, To);
    } else {
      for (unsigned I = 0, E = CP->getNumOperands(); I != E; ++I)
        if (CP->getOperand(I) == From)
          CP->setOperand(I, To);
    }
    Map.insert_as(CP, Lookup);
    return nullptr;
  }

  void dump() const {
    LLVM_DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
  }
};

template <> inline void ConstantUniqueMap<InlineAsm>::freeConstants() {
  for (auto &I : Map)
    delete I;
}

} // end namespace llvm

#endif // LLVM_LIB_IR_CONSTANTSCONTEXT_H