IRMover.cpp 59.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
//===- lib/Linker/IRMover.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Linker/IRMover.h"
#include "LinkDiagnosticInfo.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/Support/Error.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <utility>
using namespace llvm;

//===----------------------------------------------------------------------===//
// TypeMap implementation.
//===----------------------------------------------------------------------===//

namespace {
class TypeMapTy : public ValueMapTypeRemapper {
  /// This is a mapping from a source type to a destination type to use.
  DenseMap<Type *, Type *> MappedTypes;

  /// When checking to see if two subgraphs are isomorphic, we speculatively
  /// add types to MappedTypes, but keep track of them here in case we need to
  /// roll back.
  SmallVector<Type *, 16> SpeculativeTypes;

  SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;

  /// This is a list of non-opaque structs in the source module that are mapped
  /// to an opaque struct in the destination module.
  SmallVector<StructType *, 16> SrcDefinitionsToResolve;

  /// This is the set of opaque types in the destination modules who are
  /// getting a body from the source module.
  SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;

public:
  TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
      : DstStructTypesSet(DstStructTypesSet) {}

  IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
  /// Indicate that the specified type in the destination module is conceptually
  /// equivalent to the specified type in the source module.
  void addTypeMapping(Type *DstTy, Type *SrcTy);

  /// Produce a body for an opaque type in the dest module from a type
  /// definition in the source module.
  void linkDefinedTypeBodies();

  /// Return the mapped type to use for the specified input type from the
  /// source module.
  Type *get(Type *SrcTy);
  Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);

  void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);

  FunctionType *get(FunctionType *T) {
    return cast<FunctionType>(get((Type *)T));
  }

private:
  Type *remapType(Type *SrcTy) override { return get(SrcTy); }

  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
};
}

void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
  assert(SpeculativeTypes.empty());
  assert(SpeculativeDstOpaqueTypes.empty());

  // Check to see if these types are recursively isomorphic and establish a
  // mapping between them if so.
  if (!areTypesIsomorphic(DstTy, SrcTy)) {
    // Oops, they aren't isomorphic.  Just discard this request by rolling out
    // any speculative mappings we've established.
    for (Type *Ty : SpeculativeTypes)
      MappedTypes.erase(Ty);

    SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
                                   SpeculativeDstOpaqueTypes.size());
    for (StructType *Ty : SpeculativeDstOpaqueTypes)
      DstResolvedOpaqueTypes.erase(Ty);
  } else {
    // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
    // and all its descendants to lower amount of renaming in LLVM context
    // Renaming occurs because we load all source modules to the same context
    // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
    // As a result we may get several different types in the destination
    // module, which are in fact the same.
    for (Type *Ty : SpeculativeTypes)
      if (auto *STy = dyn_cast<StructType>(Ty))
        if (STy->hasName())
          STy->setName("");
  }
  SpeculativeTypes.clear();
  SpeculativeDstOpaqueTypes.clear();
}

/// Recursively walk this pair of types, returning true if they are isomorphic,
/// false if they are not.
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
  // Two types with differing kinds are clearly not isomorphic.
  if (DstTy->getTypeID() != SrcTy->getTypeID())
    return false;

  // If we have an entry in the MappedTypes table, then we have our answer.
  Type *&Entry = MappedTypes[SrcTy];
  if (Entry)
    return Entry == DstTy;

  // Two identical types are clearly isomorphic.  Remember this
  // non-speculatively.
  if (DstTy == SrcTy) {
    Entry = DstTy;
    return true;
  }

  // Okay, we have two types with identical kinds that we haven't seen before.

  // If this is an opaque struct type, special case it.
  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
    // Mapping an opaque type to any struct, just keep the dest struct.
    if (SSTy->isOpaque()) {
      Entry = DstTy;
      SpeculativeTypes.push_back(SrcTy);
      return true;
    }

    // Mapping a non-opaque source type to an opaque dest.  If this is the first
    // type that we're mapping onto this destination type then we succeed.  Keep
    // the dest, but fill it in later. If this is the second (different) type
    // that we're trying to map onto the same opaque type then we fail.
    if (cast<StructType>(DstTy)->isOpaque()) {
      // We can only map one source type onto the opaque destination type.
      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
        return false;
      SrcDefinitionsToResolve.push_back(SSTy);
      SpeculativeTypes.push_back(SrcTy);
      SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
      Entry = DstTy;
      return true;
    }
  }

  // If the number of subtypes disagree between the two types, then we fail.
  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
    return false;

  // Fail if any of the extra properties (e.g. array size) of the type disagree.
  if (isa<IntegerType>(DstTy))
    return false; // bitwidth disagrees.
  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
      return false;
  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
      return false;
  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
    StructType *SSTy = cast<StructType>(SrcTy);
    if (DSTy->isLiteral() != SSTy->isLiteral() ||
        DSTy->isPacked() != SSTy->isPacked())
      return false;
  } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) {
    if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
      return false;
  } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) {
    if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount())
      return false;
  }

  // Otherwise, we speculate that these two types will line up and recursively
  // check the subelements.
  Entry = DstTy;
  SpeculativeTypes.push_back(SrcTy);

  for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
    if (!areTypesIsomorphic(DstTy->getContainedType(I),
                            SrcTy->getContainedType(I)))
      return false;

  // If everything seems to have lined up, then everything is great.
  return true;
}

void TypeMapTy::linkDefinedTypeBodies() {
  SmallVector<Type *, 16> Elements;
  for (StructType *SrcSTy : SrcDefinitionsToResolve) {
    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
    assert(DstSTy->isOpaque());

    // Map the body of the source type over to a new body for the dest type.
    Elements.resize(SrcSTy->getNumElements());
    for (unsigned I = 0, E = Elements.size(); I != E; ++I)
      Elements[I] = get(SrcSTy->getElementType(I));

    DstSTy->setBody(Elements, SrcSTy->isPacked());
    DstStructTypesSet.switchToNonOpaque(DstSTy);
  }
  SrcDefinitionsToResolve.clear();
  DstResolvedOpaqueTypes.clear();
}

void TypeMapTy::finishType(StructType *DTy, StructType *STy,
                           ArrayRef<Type *> ETypes) {
  DTy->setBody(ETypes, STy->isPacked());

  // Steal STy's name.
  if (STy->hasName()) {
    SmallString<16> TmpName = STy->getName();
    STy->setName("");
    DTy->setName(TmpName);
  }

  DstStructTypesSet.addNonOpaque(DTy);
}

Type *TypeMapTy::get(Type *Ty) {
  SmallPtrSet<StructType *, 8> Visited;
  return get(Ty, Visited);
}

Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
  // If we already have an entry for this type, return it.
  Type **Entry = &MappedTypes[Ty];
  if (*Entry)
    return *Entry;

  // These are types that LLVM itself will unique.
  bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();

  if (!IsUniqued) {
    StructType *STy = cast<StructType>(Ty);
    // This is actually a type from the destination module, this can be reached
    // when this type is loaded in another module, added to DstStructTypesSet,
    // and then we reach the same type in another module where it has not been
    // added to MappedTypes. (PR37684)
    if (STy->getContext().isODRUniquingDebugTypes() && !STy->isOpaque() &&
        DstStructTypesSet.hasType(STy))
      return *Entry = STy;

#ifndef NDEBUG
    for (auto &Pair : MappedTypes) {
      assert(!(Pair.first != Ty && Pair.second == Ty) &&
             "mapping to a source type");
    }
#endif

    if (!Visited.insert(STy).second) {
      StructType *DTy = StructType::create(Ty->getContext());
      return *Entry = DTy;
    }
  }

  // If this is not a recursive type, then just map all of the elements and
  // then rebuild the type from inside out.
  SmallVector<Type *, 4> ElementTypes;

  // If there are no element types to map, then the type is itself.  This is
  // true for the anonymous {} struct, things like 'float', integers, etc.
  if (Ty->getNumContainedTypes() == 0 && IsUniqued)
    return *Entry = Ty;

  // Remap all of the elements, keeping track of whether any of them change.
  bool AnyChange = false;
  ElementTypes.resize(Ty->getNumContainedTypes());
  for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
    ElementTypes[I] = get(Ty->getContainedType(I), Visited);
    AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
  }

  // If we found our type while recursively processing stuff, just use it.
  Entry = &MappedTypes[Ty];
  if (*Entry) {
    if (auto *DTy = dyn_cast<StructType>(*Entry)) {
      if (DTy->isOpaque()) {
        auto *STy = cast<StructType>(Ty);
        finishType(DTy, STy, ElementTypes);
      }
    }
    return *Entry;
  }

  // If all of the element types mapped directly over and the type is not
  // a named struct, then the type is usable as-is.
  if (!AnyChange && IsUniqued)
    return *Entry = Ty;

  // Otherwise, rebuild a modified type.
  switch (Ty->getTypeID()) {
  default:
    llvm_unreachable("unknown derived type to remap");
  case Type::ArrayTyID:
    return *Entry = ArrayType::get(ElementTypes[0],
                                   cast<ArrayType>(Ty)->getNumElements());
  case Type::ScalableVectorTyID:
    // FIXME: handle scalable vectors
  case Type::FixedVectorTyID:
    return *Entry = FixedVectorType::get(
               ElementTypes[0], cast<FixedVectorType>(Ty)->getNumElements());
  case Type::PointerTyID:
    return *Entry = PointerType::get(ElementTypes[0],
                                     cast<PointerType>(Ty)->getAddressSpace());
  case Type::FunctionTyID:
    return *Entry = FunctionType::get(ElementTypes[0],
                                      makeArrayRef(ElementTypes).slice(1),
                                      cast<FunctionType>(Ty)->isVarArg());
  case Type::StructTyID: {
    auto *STy = cast<StructType>(Ty);
    bool IsPacked = STy->isPacked();
    if (IsUniqued)
      return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);

    // If the type is opaque, we can just use it directly.
    if (STy->isOpaque()) {
      DstStructTypesSet.addOpaque(STy);
      return *Entry = Ty;
    }

    if (StructType *OldT =
            DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
      STy->setName("");
      return *Entry = OldT;
    }

    if (!AnyChange) {
      DstStructTypesSet.addNonOpaque(STy);
      return *Entry = Ty;
    }

    StructType *DTy = StructType::create(Ty->getContext());
    finishType(DTy, STy, ElementTypes);
    return *Entry = DTy;
  }
  }
}

LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
                                       const Twine &Msg)
    : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }

//===----------------------------------------------------------------------===//
// IRLinker implementation.
//===----------------------------------------------------------------------===//

namespace {
class IRLinker;

/// Creates prototypes for functions that are lazily linked on the fly. This
/// speeds up linking for modules with many/ lazily linked functions of which
/// few get used.
class GlobalValueMaterializer final : public ValueMaterializer {
  IRLinker &TheIRLinker;

public:
  GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
  Value *materialize(Value *V) override;
};

class LocalValueMaterializer final : public ValueMaterializer {
  IRLinker &TheIRLinker;

public:
  LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
  Value *materialize(Value *V) override;
};

/// Type of the Metadata map in \a ValueToValueMapTy.
typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;

/// This is responsible for keeping track of the state used for moving data
/// from SrcM to DstM.
class IRLinker {
  Module &DstM;
  std::unique_ptr<Module> SrcM;

  /// See IRMover::move().
  std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;

  TypeMapTy TypeMap;
  GlobalValueMaterializer GValMaterializer;
  LocalValueMaterializer LValMaterializer;

  /// A metadata map that's shared between IRLinker instances.
  MDMapT &SharedMDs;

  /// Mapping of values from what they used to be in Src, to what they are now
  /// in DstM.  ValueToValueMapTy is a ValueMap, which involves some overhead
  /// due to the use of Value handles which the Linker doesn't actually need,
  /// but this allows us to reuse the ValueMapper code.
  ValueToValueMapTy ValueMap;
  ValueToValueMapTy IndirectSymbolValueMap;

  DenseSet<GlobalValue *> ValuesToLink;
  std::vector<GlobalValue *> Worklist;
  std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;

  void maybeAdd(GlobalValue *GV) {
    if (ValuesToLink.insert(GV).second)
      Worklist.push_back(GV);
  }

  /// Whether we are importing globals for ThinLTO, as opposed to linking the
  /// source module. If this flag is set, it means that we can rely on some
  /// other object file to define any non-GlobalValue entities defined by the
  /// source module. This currently causes us to not link retained types in
  /// debug info metadata and module inline asm.
  bool IsPerformingImport;

  /// Set to true when all global value body linking is complete (including
  /// lazy linking). Used to prevent metadata linking from creating new
  /// references.
  bool DoneLinkingBodies = false;

  /// The Error encountered during materialization. We use an Optional here to
  /// avoid needing to manage an unconsumed success value.
  Optional<Error> FoundError;
  void setError(Error E) {
    if (E)
      FoundError = std::move(E);
  }

  /// Most of the errors produced by this module are inconvertible StringErrors.
  /// This convenience function lets us return one of those more easily.
  Error stringErr(const Twine &T) {
    return make_error<StringError>(T, inconvertibleErrorCode());
  }

  /// Entry point for mapping values and alternate context for mapping aliases.
  ValueMapper Mapper;
  unsigned IndirectSymbolMCID;

  /// Handles cloning of a global values from the source module into
  /// the destination module, including setting the attributes and visibility.
  GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);

  void emitWarning(const Twine &Message) {
    SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
  }

  /// Given a global in the source module, return the global in the
  /// destination module that is being linked to, if any.
  GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
    // If the source has no name it can't link.  If it has local linkage,
    // there is no name match-up going on.
    if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
      return nullptr;

    // Otherwise see if we have a match in the destination module's symtab.
    GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
    if (!DGV)
      return nullptr;

    // If we found a global with the same name in the dest module, but it has
    // internal linkage, we are really not doing any linkage here.
    if (DGV->hasLocalLinkage())
      return nullptr;

    // Otherwise, we do in fact link to the destination global.
    return DGV;
  }

  void computeTypeMapping();

  Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
                                             const GlobalVariable *SrcGV);

  /// Given the GlobaValue \p SGV in the source module, and the matching
  /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
  /// into the destination module.
  ///
  /// Note this code may call the client-provided \p AddLazyFor.
  bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
  Expected<Constant *> linkGlobalValueProto(GlobalValue *GV,
                                            bool ForIndirectSymbol);

  Error linkModuleFlagsMetadata();

  void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
  Error linkFunctionBody(Function &Dst, Function &Src);
  void linkIndirectSymbolBody(GlobalIndirectSymbol &Dst,
                              GlobalIndirectSymbol &Src);
  Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);

  /// Replace all types in the source AttributeList with the
  /// corresponding destination type.
  AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);

  /// Functions that take care of cloning a specific global value type
  /// into the destination module.
  GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
  Function *copyFunctionProto(const Function *SF);
  GlobalValue *copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS);

  /// Perform "replace all uses with" operations. These work items need to be
  /// performed as part of materialization, but we postpone them to happen after
  /// materialization is done. The materializer called by ValueMapper is not
  /// expected to delete constants, as ValueMapper is holding pointers to some
  /// of them, but constant destruction may be indirectly triggered by RAUW.
  /// Hence, the need to move this out of the materialization call chain.
  void flushRAUWWorklist();

  /// When importing for ThinLTO, prevent importing of types listed on
  /// the DICompileUnit that we don't need a copy of in the importing
  /// module.
  void prepareCompileUnitsForImport();
  void linkNamedMDNodes();

public:
  IRLinker(Module &DstM, MDMapT &SharedMDs,
           IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
           ArrayRef<GlobalValue *> ValuesToLink,
           std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
           bool IsPerformingImport)
      : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
        TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
        SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
        Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap,
               &GValMaterializer),
        IndirectSymbolMCID(Mapper.registerAlternateMappingContext(
            IndirectSymbolValueMap, &LValMaterializer)) {
    ValueMap.getMDMap() = std::move(SharedMDs);
    for (GlobalValue *GV : ValuesToLink)
      maybeAdd(GV);
    if (IsPerformingImport)
      prepareCompileUnitsForImport();
  }
  ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }

  Error run();
  Value *materialize(Value *V, bool ForIndirectSymbol);
};
}

/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
/// table. This is good for all clients except for us. Go through the trouble
/// to force this back.
static void forceRenaming(GlobalValue *GV, StringRef Name) {
  // If the global doesn't force its name or if it already has the right name,
  // there is nothing for us to do.
  if (GV->hasLocalLinkage() || GV->getName() == Name)
    return;

  Module *M = GV->getParent();

  // If there is a conflict, rename the conflict.
  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
    GV->takeName(ConflictGV);
    ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
  } else {
    GV->setName(Name); // Force the name back
  }
}

Value *GlobalValueMaterializer::materialize(Value *SGV) {
  return TheIRLinker.materialize(SGV, false);
}

Value *LocalValueMaterializer::materialize(Value *SGV) {
  return TheIRLinker.materialize(SGV, true);
}

Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) {
  auto *SGV = dyn_cast<GlobalValue>(V);
  if (!SGV)
    return nullptr;

  Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol);
  if (!NewProto) {
    setError(NewProto.takeError());
    return nullptr;
  }
  if (!*NewProto)
    return nullptr;

  GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
  if (!New)
    return *NewProto;

  // If we already created the body, just return.
  if (auto *F = dyn_cast<Function>(New)) {
    if (!F->isDeclaration())
      return New;
  } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
    if (V->hasInitializer() || V->hasAppendingLinkage())
      return New;
  } else {
    auto *IS = cast<GlobalIndirectSymbol>(New);
    if (IS->getIndirectSymbol())
      return New;
  }

  // When linking a global for an indirect symbol, it will always be linked.
  // However we need to check if it was not already scheduled to satisfy a
  // reference from a regular global value initializer. We know if it has been
  // schedule if the "New" GlobalValue that is mapped here for the indirect
  // symbol is the same as the one already mapped. If there is an entry in the
  // ValueMap but the value is different, it means that the value already had a
  // definition in the destination module (linkonce for instance), but we need a
  // new definition for the indirect symbol ("New" will be different.
  if (ForIndirectSymbol && ValueMap.lookup(SGV) == New)
    return New;

  if (ForIndirectSymbol || shouldLink(New, *SGV))
    setError(linkGlobalValueBody(*New, *SGV));

  return New;
}

/// Loop through the global variables in the src module and merge them into the
/// dest module.
GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
  // No linking to be performed or linking from the source: simply create an
  // identical version of the symbol over in the dest module... the
  // initializer will be filled in later by LinkGlobalInits.
  GlobalVariable *NewDGV =
      new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
                         SGVar->isConstant(), GlobalValue::ExternalLinkage,
                         /*init*/ nullptr, SGVar->getName(),
                         /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
                         SGVar->getAddressSpace());
  NewDGV->setAlignment(MaybeAlign(SGVar->getAlignment()));
  NewDGV->copyAttributesFrom(SGVar);
  return NewDGV;
}

AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
  for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
    if (Attrs.hasAttribute(i, Attribute::ByVal)) {
      Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType();
      if (!Ty)
        continue;

      Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal);
      Attrs = Attrs.addAttribute(
          C, i, Attribute::getWithByValType(C, TypeMap.get(Ty)));
    }
  }
  return Attrs;
}

/// Link the function in the source module into the destination module if
/// needed, setting up mapping information.
Function *IRLinker::copyFunctionProto(const Function *SF) {
  // If there is no linkage to be performed or we are linking from the source,
  // bring SF over.
  auto *F = Function::Create(TypeMap.get(SF->getFunctionType()),
                             GlobalValue::ExternalLinkage,
                             SF->getAddressSpace(), SF->getName(), &DstM);
  F->copyAttributesFrom(SF);
  F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
  return F;
}

/// Set up prototypes for any indirect symbols that come over from the source
/// module.
GlobalValue *
IRLinker::copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS) {
  // If there is no linkage to be performed or we're linking from the source,
  // bring over SGA.
  auto *Ty = TypeMap.get(SGIS->getValueType());
  GlobalIndirectSymbol *GIS;
  if (isa<GlobalAlias>(SGIS))
    GIS = GlobalAlias::create(Ty, SGIS->getAddressSpace(),
                              GlobalValue::ExternalLinkage, SGIS->getName(),
                              &DstM);
  else
    GIS = GlobalIFunc::create(Ty, SGIS->getAddressSpace(),
                              GlobalValue::ExternalLinkage, SGIS->getName(),
                              nullptr, &DstM);
  GIS->copyAttributesFrom(SGIS);
  return GIS;
}

GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
                                            bool ForDefinition) {
  GlobalValue *NewGV;
  if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
    NewGV = copyGlobalVariableProto(SGVar);
  } else if (auto *SF = dyn_cast<Function>(SGV)) {
    NewGV = copyFunctionProto(SF);
  } else {
    if (ForDefinition)
      NewGV = copyGlobalIndirectSymbolProto(cast<GlobalIndirectSymbol>(SGV));
    else if (SGV->getValueType()->isFunctionTy())
      NewGV =
          Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
                           GlobalValue::ExternalLinkage, SGV->getAddressSpace(),
                           SGV->getName(), &DstM);
    else
      NewGV =
          new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()),
                             /*isConstant*/ false, GlobalValue::ExternalLinkage,
                             /*init*/ nullptr, SGV->getName(),
                             /*insertbefore*/ nullptr,
                             SGV->getThreadLocalMode(), SGV->getAddressSpace());
  }

  if (ForDefinition)
    NewGV->setLinkage(SGV->getLinkage());
  else if (SGV->hasExternalWeakLinkage())
    NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);

  if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
    // Metadata for global variables and function declarations is copied eagerly.
    if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
      NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
  }

  // Remove these copied constants in case this stays a declaration, since
  // they point to the source module. If the def is linked the values will
  // be mapped in during linkFunctionBody.
  if (auto *NewF = dyn_cast<Function>(NewGV)) {
    NewF->setPersonalityFn(nullptr);
    NewF->setPrefixData(nullptr);
    NewF->setPrologueData(nullptr);
  }

  return NewGV;
}

static StringRef getTypeNamePrefix(StringRef Name) {
  size_t DotPos = Name.rfind('.');
  return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
          !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
             ? Name
             : Name.substr(0, DotPos);
}

/// Loop over all of the linked values to compute type mappings.  For example,
/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
/// types 'Foo' but one got renamed when the module was loaded into the same
/// LLVMContext.
void IRLinker::computeTypeMapping() {
  for (GlobalValue &SGV : SrcM->globals()) {
    GlobalValue *DGV = getLinkedToGlobal(&SGV);
    if (!DGV)
      continue;

    if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
      TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
      continue;
    }

    // Unify the element type of appending arrays.
    ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
    ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
  }

  for (GlobalValue &SGV : *SrcM)
    if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) {
      if (DGV->getType() == SGV.getType()) {
        // If the types of DGV and SGV are the same, it means that DGV is from
        // the source module and got added to DstM from a shared metadata.  We
        // shouldn't map this type to itself in case the type's components get
        // remapped to a new type from DstM (for instance, during the loop over
        // SrcM->getIdentifiedStructTypes() below).
        continue;
      }

      TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
    }

  for (GlobalValue &SGV : SrcM->aliases())
    if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
      TypeMap.addTypeMapping(DGV->getType(), SGV.getType());

  // Incorporate types by name, scanning all the types in the source module.
  // At this point, the destination module may have a type "%foo = { i32 }" for
  // example.  When the source module got loaded into the same LLVMContext, if
  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
  std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
  for (StructType *ST : Types) {
    if (!ST->hasName())
      continue;

    if (TypeMap.DstStructTypesSet.hasType(ST)) {
      // This is actually a type from the destination module.
      // getIdentifiedStructTypes() can have found it by walking debug info
      // metadata nodes, some of which get linked by name when ODR Type Uniquing
      // is enabled on the Context, from the source to the destination module.
      continue;
    }

    auto STTypePrefix = getTypeNamePrefix(ST->getName());
    if (STTypePrefix.size()== ST->getName().size())
      continue;

    // Check to see if the destination module has a struct with the prefix name.
    StructType *DST = DstM.getTypeByName(STTypePrefix);
    if (!DST)
      continue;

    // Don't use it if this actually came from the source module. They're in
    // the same LLVMContext after all. Also don't use it unless the type is
    // actually used in the destination module. This can happen in situations
    // like this:
    //
    //      Module A                         Module B
    //      --------                         --------
    //   %Z = type { %A }                %B = type { %C.1 }
    //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
    //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
    //   %C = type { i8* }               %B.3 = type { %C.1 }
    //
    // When we link Module B with Module A, the '%B' in Module B is
    // used. However, that would then use '%C.1'. But when we process '%C.1',
    // we prefer to take the '%C' version. So we are then left with both
    // '%C.1' and '%C' being used for the same types. This leads to some
    // variables using one type and some using the other.
    if (TypeMap.DstStructTypesSet.hasType(DST))
      TypeMap.addTypeMapping(DST, ST);
  }

  // Now that we have discovered all of the type equivalences, get a body for
  // any 'opaque' types in the dest module that are now resolved.
  TypeMap.linkDefinedTypeBodies();
}

static void getArrayElements(const Constant *C,
                             SmallVectorImpl<Constant *> &Dest) {
  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();

  for (unsigned i = 0; i != NumElements; ++i)
    Dest.push_back(C->getAggregateElement(i));
}

/// If there were any appending global variables, link them together now.
Expected<Constant *>
IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
                                const GlobalVariable *SrcGV) {
  Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
                    ->getElementType();

  // FIXME: This upgrade is done during linking to support the C API.  Once the
  // old form is deprecated, we should move this upgrade to
  // llvm::UpgradeGlobalVariable() and simplify the logic here and in
  // Mapper::mapAppendingVariable() in ValueMapper.cpp.
  StringRef Name = SrcGV->getName();
  bool IsNewStructor = false;
  bool IsOldStructor = false;
  if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
    if (cast<StructType>(EltTy)->getNumElements() == 3)
      IsNewStructor = true;
    else
      IsOldStructor = true;
  }

  PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
  if (IsOldStructor) {
    auto &ST = *cast<StructType>(EltTy);
    Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
    EltTy = StructType::get(SrcGV->getContext(), Tys, false);
  }

  uint64_t DstNumElements = 0;
  if (DstGV) {
    ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
    DstNumElements = DstTy->getNumElements();

    if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
      return stringErr(
          "Linking globals named '" + SrcGV->getName() +
          "': can only link appending global with another appending "
          "global!");

    // Check to see that they two arrays agree on type.
    if (EltTy != DstTy->getElementType())
      return stringErr("Appending variables with different element types!");
    if (DstGV->isConstant() != SrcGV->isConstant())
      return stringErr("Appending variables linked with different const'ness!");

    if (DstGV->getAlignment() != SrcGV->getAlignment())
      return stringErr(
          "Appending variables with different alignment need to be linked!");

    if (DstGV->getVisibility() != SrcGV->getVisibility())
      return stringErr(
          "Appending variables with different visibility need to be linked!");

    if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
      return stringErr(
          "Appending variables with different unnamed_addr need to be linked!");

    if (DstGV->getSection() != SrcGV->getSection())
      return stringErr(
          "Appending variables with different section name need to be linked!");
  }

  SmallVector<Constant *, 16> SrcElements;
  getArrayElements(SrcGV->getInitializer(), SrcElements);

  if (IsNewStructor) {
    auto It = remove_if(SrcElements, [this](Constant *E) {
      auto *Key =
          dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
      if (!Key)
        return false;
      GlobalValue *DGV = getLinkedToGlobal(Key);
      return !shouldLink(DGV, *Key);
    });
    SrcElements.erase(It, SrcElements.end());
  }
  uint64_t NewSize = DstNumElements + SrcElements.size();
  ArrayType *NewType = ArrayType::get(EltTy, NewSize);

  // Create the new global variable.
  GlobalVariable *NG = new GlobalVariable(
      DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
      /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
      SrcGV->getAddressSpace());

  NG->copyAttributesFrom(SrcGV);
  forceRenaming(NG, SrcGV->getName());

  Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));

  Mapper.scheduleMapAppendingVariable(*NG,
                                      DstGV ? DstGV->getInitializer() : nullptr,
                                      IsOldStructor, SrcElements);

  // Replace any uses of the two global variables with uses of the new
  // global.
  if (DstGV) {
    RAUWWorklist.push_back(
        std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType())));
  }

  return Ret;
}

bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
  if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
    return true;

  if (DGV && !DGV->isDeclarationForLinker())
    return false;

  if (SGV.isDeclaration() || DoneLinkingBodies)
    return false;

  // Callback to the client to give a chance to lazily add the Global to the
  // list of value to link.
  bool LazilyAdded = false;
  AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
    maybeAdd(&GV);
    LazilyAdded = true;
  });
  return LazilyAdded;
}

Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
                                                    bool ForIndirectSymbol) {
  GlobalValue *DGV = getLinkedToGlobal(SGV);

  bool ShouldLink = shouldLink(DGV, *SGV);

  // just missing from map
  if (ShouldLink) {
    auto I = ValueMap.find(SGV);
    if (I != ValueMap.end())
      return cast<Constant>(I->second);

    I = IndirectSymbolValueMap.find(SGV);
    if (I != IndirectSymbolValueMap.end())
      return cast<Constant>(I->second);
  }

  if (!ShouldLink && ForIndirectSymbol)
    DGV = nullptr;

  // Handle the ultra special appending linkage case first.
  assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
  if (SGV->hasAppendingLinkage())
    return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
                                 cast<GlobalVariable>(SGV));

  GlobalValue *NewGV;
  if (DGV && !ShouldLink) {
    NewGV = DGV;
  } else {
    // If we are done linking global value bodies (i.e. we are performing
    // metadata linking), don't link in the global value due to this
    // reference, simply map it to null.
    if (DoneLinkingBodies)
      return nullptr;

    NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol);
    if (ShouldLink || !ForIndirectSymbol)
      forceRenaming(NewGV, SGV->getName());
  }

  // Overloaded intrinsics have overloaded types names as part of their
  // names. If we renamed overloaded types we should rename the intrinsic
  // as well.
  if (Function *F = dyn_cast<Function>(NewGV))
    if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F))
      NewGV = Remangled.getValue();

  if (ShouldLink || ForIndirectSymbol) {
    if (const Comdat *SC = SGV->getComdat()) {
      if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
        Comdat *DC = DstM.getOrInsertComdat(SC->getName());
        DC->setSelectionKind(SC->getSelectionKind());
        GO->setComdat(DC);
      }
    }
  }

  if (!ShouldLink && ForIndirectSymbol)
    NewGV->setLinkage(GlobalValue::InternalLinkage);

  Constant *C = NewGV;
  // Only create a bitcast if necessary. In particular, with
  // DebugTypeODRUniquing we may reach metadata in the destination module
  // containing a GV from the source module, in which case SGV will be
  // the same as DGV and NewGV, and TypeMap.get() will assert since it
  // assumes it is being invoked on a type in the source module.
  if (DGV && NewGV != SGV) {
    C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
      NewGV, TypeMap.get(SGV->getType()));
  }

  if (DGV && NewGV != DGV) {
    // Schedule "replace all uses with" to happen after materializing is
    // done. It is not safe to do it now, since ValueMapper may be holding
    // pointers to constants that will get deleted if RAUW runs.
    RAUWWorklist.push_back(std::make_pair(
        DGV,
        ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType())));
  }

  return C;
}

/// Update the initializers in the Dest module now that all globals that may be
/// referenced are in Dest.
void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
  // Figure out what the initializer looks like in the dest module.
  Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
}

/// Copy the source function over into the dest function and fix up references
/// to values. At this point we know that Dest is an external function, and
/// that Src is not.
Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
  assert(Dst.isDeclaration() && !Src.isDeclaration());

  // Materialize if needed.
  if (Error Err = Src.materialize())
    return Err;

  // Link in the operands without remapping.
  if (Src.hasPrefixData())
    Dst.setPrefixData(Src.getPrefixData());
  if (Src.hasPrologueData())
    Dst.setPrologueData(Src.getPrologueData());
  if (Src.hasPersonalityFn())
    Dst.setPersonalityFn(Src.getPersonalityFn());

  // Copy over the metadata attachments without remapping.
  Dst.copyMetadata(&Src, 0);

  // Steal arguments and splice the body of Src into Dst.
  Dst.stealArgumentListFrom(Src);
  Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());

  // Everything has been moved over.  Remap it.
  Mapper.scheduleRemapFunction(Dst);
  return Error::success();
}

void IRLinker::linkIndirectSymbolBody(GlobalIndirectSymbol &Dst,
                                      GlobalIndirectSymbol &Src) {
  Mapper.scheduleMapGlobalIndirectSymbol(Dst, *Src.getIndirectSymbol(),
                                         IndirectSymbolMCID);
}

Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
  if (auto *F = dyn_cast<Function>(&Src))
    return linkFunctionBody(cast<Function>(Dst), *F);
  if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
    linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
    return Error::success();
  }
  linkIndirectSymbolBody(cast<GlobalIndirectSymbol>(Dst), cast<GlobalIndirectSymbol>(Src));
  return Error::success();
}

void IRLinker::flushRAUWWorklist() {
  for (const auto &Elem : RAUWWorklist) {
    GlobalValue *Old;
    Value *New;
    std::tie(Old, New) = Elem;

    Old->replaceAllUsesWith(New);
    Old->eraseFromParent();
  }
  RAUWWorklist.clear();
}

void IRLinker::prepareCompileUnitsForImport() {
  NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
  if (!SrcCompileUnits)
    return;
  // When importing for ThinLTO, prevent importing of types listed on
  // the DICompileUnit that we don't need a copy of in the importing
  // module. They will be emitted by the originating module.
  for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
    auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
    assert(CU && "Expected valid compile unit");
    // Enums, macros, and retained types don't need to be listed on the
    // imported DICompileUnit. This means they will only be imported
    // if reached from the mapped IR.
    CU->replaceEnumTypes(nullptr);
    CU->replaceMacros(nullptr);
    CU->replaceRetainedTypes(nullptr);

    // The original definition (or at least its debug info - if the variable is
    // internalized and optimized away) will remain in the source module, so
    // there's no need to import them.
    // If LLVM ever does more advanced optimizations on global variables
    // (removing/localizing write operations, for instance) that can track
    // through debug info, this decision may need to be revisited - but do so
    // with care when it comes to debug info size. Emitting small CUs containing
    // only a few imported entities into every destination module may be very
    // size inefficient.
    CU->replaceGlobalVariables(nullptr);

    // Imported entities only need to be mapped in if they have local
    // scope, as those might correspond to an imported entity inside a
    // function being imported (any locally scoped imported entities that
    // don't end up referenced by an imported function will not be emitted
    // into the object). Imported entities not in a local scope
    // (e.g. on the namespace) only need to be emitted by the originating
    // module. Create a list of the locally scoped imported entities, and
    // replace the source CUs imported entity list with the new list, so
    // only those are mapped in.
    // FIXME: Locally-scoped imported entities could be moved to the
    // functions they are local to instead of listing them on the CU, and
    // we would naturally only link in those needed by function importing.
    SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
    bool ReplaceImportedEntities = false;
    for (auto *IE : CU->getImportedEntities()) {
      DIScope *Scope = IE->getScope();
      assert(Scope && "Invalid Scope encoding!");
      if (isa<DILocalScope>(Scope))
        AllImportedModules.emplace_back(IE);
      else
        ReplaceImportedEntities = true;
    }
    if (ReplaceImportedEntities) {
      if (!AllImportedModules.empty())
        CU->replaceImportedEntities(MDTuple::get(
            CU->getContext(),
            SmallVector<Metadata *, 16>(AllImportedModules.begin(),
                                        AllImportedModules.end())));
      else
        // If there were no local scope imported entities, we can map
        // the whole list to nullptr.
        CU->replaceImportedEntities(nullptr);
    }
  }
}

/// Insert all of the named MDNodes in Src into the Dest module.
void IRLinker::linkNamedMDNodes() {
  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
  for (const NamedMDNode &NMD : SrcM->named_metadata()) {
    // Don't link module flags here. Do them separately.
    if (&NMD == SrcModFlags)
      continue;
    NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
    // Add Src elements into Dest node.
    for (const MDNode *Op : NMD.operands())
      DestNMD->addOperand(Mapper.mapMDNode(*Op));
  }
}

/// Merge the linker flags in Src into the Dest module.
Error IRLinker::linkModuleFlagsMetadata() {
  // If the source module has no module flags, we are done.
  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
  if (!SrcModFlags)
    return Error::success();

  // If the destination module doesn't have module flags yet, then just copy
  // over the source module's flags.
  NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
  if (DstModFlags->getNumOperands() == 0) {
    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
      DstModFlags->addOperand(SrcModFlags->getOperand(I));

    return Error::success();
  }

  // First build a map of the existing module flags and requirements.
  DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
  SmallSetVector<MDNode *, 16> Requirements;
  for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
    MDNode *Op = DstModFlags->getOperand(I);
    ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
    MDString *ID = cast<MDString>(Op->getOperand(1));

    if (Behavior->getZExtValue() == Module::Require) {
      Requirements.insert(cast<MDNode>(Op->getOperand(2)));
    } else {
      Flags[ID] = std::make_pair(Op, I);
    }
  }

  // Merge in the flags from the source module, and also collect its set of
  // requirements.
  for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
    MDNode *SrcOp = SrcModFlags->getOperand(I);
    ConstantInt *SrcBehavior =
        mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
    MDString *ID = cast<MDString>(SrcOp->getOperand(1));
    MDNode *DstOp;
    unsigned DstIndex;
    std::tie(DstOp, DstIndex) = Flags.lookup(ID);
    unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();

    // If this is a requirement, add it and continue.
    if (SrcBehaviorValue == Module::Require) {
      // If the destination module does not already have this requirement, add
      // it.
      if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
        DstModFlags->addOperand(SrcOp);
      }
      continue;
    }

    // If there is no existing flag with this ID, just add it.
    if (!DstOp) {
      Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
      DstModFlags->addOperand(SrcOp);
      continue;
    }

    // Otherwise, perform a merge.
    ConstantInt *DstBehavior =
        mdconst::extract<ConstantInt>(DstOp->getOperand(0));
    unsigned DstBehaviorValue = DstBehavior->getZExtValue();

    auto overrideDstValue = [&]() {
      DstModFlags->setOperand(DstIndex, SrcOp);
      Flags[ID].first = SrcOp;
    };

    // If either flag has override behavior, handle it first.
    if (DstBehaviorValue == Module::Override) {
      // Diagnose inconsistent flags which both have override behavior.
      if (SrcBehaviorValue == Module::Override &&
          SrcOp->getOperand(2) != DstOp->getOperand(2))
        return stringErr("linking module flags '" + ID->getString() +
                         "': IDs have conflicting override values in '" +
                         SrcM->getModuleIdentifier() + "' and '" +
                         DstM.getModuleIdentifier() + "'");
      continue;
    } else if (SrcBehaviorValue == Module::Override) {
      // Update the destination flag to that of the source.
      overrideDstValue();
      continue;
    }

    // Diagnose inconsistent merge behavior types.
    if (SrcBehaviorValue != DstBehaviorValue) {
      bool MaxAndWarn = (SrcBehaviorValue == Module::Max &&
                         DstBehaviorValue == Module::Warning) ||
                        (DstBehaviorValue == Module::Max &&
                         SrcBehaviorValue == Module::Warning);
      if (!MaxAndWarn)
        return stringErr("linking module flags '" + ID->getString() +
                         "': IDs have conflicting behaviors in '" +
                         SrcM->getModuleIdentifier() + "' and '" +
                         DstM.getModuleIdentifier() + "'");
    }

    auto replaceDstValue = [&](MDNode *New) {
      Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
      MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
      DstModFlags->setOperand(DstIndex, Flag);
      Flags[ID].first = Flag;
    };

    // Emit a warning if the values differ and either source or destination
    // request Warning behavior.
    if ((DstBehaviorValue == Module::Warning ||
         SrcBehaviorValue == Module::Warning) &&
        SrcOp->getOperand(2) != DstOp->getOperand(2)) {
      std::string Str;
      raw_string_ostream(Str)
          << "linking module flags '" << ID->getString()
          << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
          << "' from " << SrcM->getModuleIdentifier() << " with '"
          << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
          << ')';
      emitWarning(Str);
    }

    // Choose the maximum if either source or destination request Max behavior.
    if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) {
      ConstantInt *DstValue =
          mdconst::extract<ConstantInt>(DstOp->getOperand(2));
      ConstantInt *SrcValue =
          mdconst::extract<ConstantInt>(SrcOp->getOperand(2));

      // The resulting flag should have a Max behavior, and contain the maximum
      // value from between the source and destination values.
      Metadata *FlagOps[] = {
          (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID,
          (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp)
              ->getOperand(2)};
      MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
      DstModFlags->setOperand(DstIndex, Flag);
      Flags[ID].first = Flag;
      continue;
    }

    // Perform the merge for standard behavior types.
    switch (SrcBehaviorValue) {
    case Module::Require:
    case Module::Override:
      llvm_unreachable("not possible");
    case Module::Error: {
      // Emit an error if the values differ.
      if (SrcOp->getOperand(2) != DstOp->getOperand(2))
        return stringErr("linking module flags '" + ID->getString() +
                         "': IDs have conflicting values in '" +
                         SrcM->getModuleIdentifier() + "' and '" +
                         DstM.getModuleIdentifier() + "'");
      continue;
    }
    case Module::Warning: {
      break;
    }
    case Module::Max: {
      break;
    }
    case Module::Append: {
      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
      SmallVector<Metadata *, 8> MDs;
      MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
      MDs.append(DstValue->op_begin(), DstValue->op_end());
      MDs.append(SrcValue->op_begin(), SrcValue->op_end());

      replaceDstValue(MDNode::get(DstM.getContext(), MDs));
      break;
    }
    case Module::AppendUnique: {
      SmallSetVector<Metadata *, 16> Elts;
      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
      Elts.insert(DstValue->op_begin(), DstValue->op_end());
      Elts.insert(SrcValue->op_begin(), SrcValue->op_end());

      replaceDstValue(MDNode::get(DstM.getContext(),
                                  makeArrayRef(Elts.begin(), Elts.end())));
      break;
    }
    }

  }

  // Check all of the requirements.
  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
    MDNode *Requirement = Requirements[I];
    MDString *Flag = cast<MDString>(Requirement->getOperand(0));
    Metadata *ReqValue = Requirement->getOperand(1);

    MDNode *Op = Flags[Flag].first;
    if (!Op || Op->getOperand(2) != ReqValue)
      return stringErr("linking module flags '" + Flag->getString() +
                       "': does not have the required value");
  }
  return Error::success();
}

/// Return InlineAsm adjusted with target-specific directives if required.
/// For ARM and Thumb, we have to add directives to select the appropriate ISA
/// to support mixing module-level inline assembly from ARM and Thumb modules.
static std::string adjustInlineAsm(const std::string &InlineAsm,
                                   const Triple &Triple) {
  if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
    return ".text\n.balign 2\n.thumb\n" + InlineAsm;
  if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
    return ".text\n.balign 4\n.arm\n" + InlineAsm;
  return InlineAsm;
}

Error IRLinker::run() {
  // Ensure metadata materialized before value mapping.
  if (SrcM->getMaterializer())
    if (Error Err = SrcM->getMaterializer()->materializeMetadata())
      return Err;

  // Inherit the target data from the source module if the destination module
  // doesn't have one already.
  if (DstM.getDataLayout().isDefault())
    DstM.setDataLayout(SrcM->getDataLayout());

  if (SrcM->getDataLayout() != DstM.getDataLayout()) {
    emitWarning("Linking two modules of different data layouts: '" +
                SrcM->getModuleIdentifier() + "' is '" +
                SrcM->getDataLayoutStr() + "' whereas '" +
                DstM.getModuleIdentifier() + "' is '" +
                DstM.getDataLayoutStr() + "'\n");
  }

  // Copy the target triple from the source to dest if the dest's is empty.
  if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
    DstM.setTargetTriple(SrcM->getTargetTriple());

  Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());

  if (!SrcM->getTargetTriple().empty()&&
      !SrcTriple.isCompatibleWith(DstTriple))
    emitWarning("Linking two modules of different target triples: " +
                SrcM->getModuleIdentifier() + "' is '" +
                SrcM->getTargetTriple() + "' whereas '" +
                DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
                "'\n");

  DstM.setTargetTriple(SrcTriple.merge(DstTriple));

  // Append the module inline asm string.
  if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
    std::string SrcModuleInlineAsm = adjustInlineAsm(SrcM->getModuleInlineAsm(),
                                                     SrcTriple);
    if (DstM.getModuleInlineAsm().empty())
      DstM.setModuleInlineAsm(SrcModuleInlineAsm);
    else
      DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
                              SrcModuleInlineAsm);
  }

  // Loop over all of the linked values to compute type mappings.
  computeTypeMapping();

  std::reverse(Worklist.begin(), Worklist.end());
  while (!Worklist.empty()) {
    GlobalValue *GV = Worklist.back();
    Worklist.pop_back();

    // Already mapped.
    if (ValueMap.find(GV) != ValueMap.end() ||
        IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end())
      continue;

    assert(!GV->isDeclaration());
    Mapper.mapValue(*GV);
    if (FoundError)
      return std::move(*FoundError);
    flushRAUWWorklist();
  }

  // Note that we are done linking global value bodies. This prevents
  // metadata linking from creating new references.
  DoneLinkingBodies = true;
  Mapper.addFlags(RF_NullMapMissingGlobalValues);

  // Remap all of the named MDNodes in Src into the DstM module. We do this
  // after linking GlobalValues so that MDNodes that reference GlobalValues
  // are properly remapped.
  linkNamedMDNodes();

  // Merge the module flags into the DstM module.
  return linkModuleFlagsMetadata();
}

IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
    : ETypes(E), IsPacked(P) {}

IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
    : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}

bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
  return IsPacked == That.IsPacked && ETypes == That.ETypes;
}

bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
  return !this->operator==(That);
}

StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
  return DenseMapInfo<StructType *>::getEmptyKey();
}

StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
  return DenseMapInfo<StructType *>::getTombstoneKey();
}

unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
  return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
                      Key.IsPacked);
}

unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
  return getHashValue(KeyTy(ST));
}

bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
                                         const StructType *RHS) {
  if (RHS == getEmptyKey() || RHS == getTombstoneKey())
    return false;
  return LHS == KeyTy(RHS);
}

bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
                                         const StructType *RHS) {
  if (RHS == getEmptyKey() || RHS == getTombstoneKey())
    return LHS == RHS;
  return KeyTy(LHS) == KeyTy(RHS);
}

void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
  assert(!Ty->isOpaque());
  NonOpaqueStructTypes.insert(Ty);
}

void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
  assert(!Ty->isOpaque());
  NonOpaqueStructTypes.insert(Ty);
  bool Removed = OpaqueStructTypes.erase(Ty);
  (void)Removed;
  assert(Removed);
}

void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
  assert(Ty->isOpaque());
  OpaqueStructTypes.insert(Ty);
}

StructType *
IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
                                                bool IsPacked) {
  IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
  auto I = NonOpaqueStructTypes.find_as(Key);
  return I == NonOpaqueStructTypes.end() ? nullptr : *I;
}

bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
  if (Ty->isOpaque())
    return OpaqueStructTypes.count(Ty);
  auto I = NonOpaqueStructTypes.find(Ty);
  return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
}

IRMover::IRMover(Module &M) : Composite(M) {
  TypeFinder StructTypes;
  StructTypes.run(M, /* OnlyNamed */ false);
  for (StructType *Ty : StructTypes) {
    if (Ty->isOpaque())
      IdentifiedStructTypes.addOpaque(Ty);
    else
      IdentifiedStructTypes.addNonOpaque(Ty);
  }
  // Self-map metadatas in the destination module. This is needed when
  // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
  // destination module may be reached from the source module.
  for (auto *MD : StructTypes.getVisitedMetadata()) {
    SharedMDs[MD].reset(const_cast<MDNode *>(MD));
  }
}

Error IRMover::move(
    std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
    std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
    bool IsPerformingImport) {
  IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
                       std::move(Src), ValuesToLink, std::move(AddLazyFor),
                       IsPerformingImport);
  Error E = TheIRLinker.run();
  Composite.dropTriviallyDeadConstantArrays();
  return E;
}