APFixedPoint.cpp 14.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
//===- APFixedPoint.cpp - Fixed point constant handling ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Defines the implementation for the fixed point number interface.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APFixedPoint.h"

namespace llvm {

APFixedPoint APFixedPoint::convert(const FixedPointSemantics &DstSema,
                                   bool *Overflow) const {
  APSInt NewVal = Val;
  unsigned DstWidth = DstSema.getWidth();
  unsigned DstScale = DstSema.getScale();
  bool Upscaling = DstScale > getScale();
  if (Overflow)
    *Overflow = false;

  if (Upscaling) {
    NewVal = NewVal.extend(NewVal.getBitWidth() + DstScale - getScale());
    NewVal <<= (DstScale - getScale());
  } else {
    NewVal >>= (getScale() - DstScale);
  }

  auto Mask = APInt::getBitsSetFrom(
      NewVal.getBitWidth(),
      std::min(DstScale + DstSema.getIntegralBits(), NewVal.getBitWidth()));
  APInt Masked(NewVal & Mask);

  // Change in the bits above the sign
  if (!(Masked == Mask || Masked == 0)) {
    // Found overflow in the bits above the sign
    if (DstSema.isSaturated())
      NewVal = NewVal.isNegative() ? Mask : ~Mask;
    else if (Overflow)
      *Overflow = true;
  }

  // If the dst semantics are unsigned, but our value is signed and negative, we
  // clamp to zero.
  if (!DstSema.isSigned() && NewVal.isSigned() && NewVal.isNegative()) {
    // Found negative overflow for unsigned result
    if (DstSema.isSaturated())
      NewVal = 0;
    else if (Overflow)
      *Overflow = true;
  }

  NewVal = NewVal.extOrTrunc(DstWidth);
  NewVal.setIsSigned(DstSema.isSigned());
  return APFixedPoint(NewVal, DstSema);
}

int APFixedPoint::compare(const APFixedPoint &Other) const {
  APSInt ThisVal = getValue();
  APSInt OtherVal = Other.getValue();
  bool ThisSigned = Val.isSigned();
  bool OtherSigned = OtherVal.isSigned();
  unsigned OtherScale = Other.getScale();
  unsigned OtherWidth = OtherVal.getBitWidth();

  unsigned CommonWidth = std::max(Val.getBitWidth(), OtherWidth);

  // Prevent overflow in the event the widths are the same but the scales differ
  CommonWidth += getScale() >= OtherScale ? getScale() - OtherScale
                                          : OtherScale - getScale();

  ThisVal = ThisVal.extOrTrunc(CommonWidth);
  OtherVal = OtherVal.extOrTrunc(CommonWidth);

  unsigned CommonScale = std::max(getScale(), OtherScale);
  ThisVal = ThisVal.shl(CommonScale - getScale());
  OtherVal = OtherVal.shl(CommonScale - OtherScale);

  if (ThisSigned && OtherSigned) {
    if (ThisVal.sgt(OtherVal))
      return 1;
    else if (ThisVal.slt(OtherVal))
      return -1;
  } else if (!ThisSigned && !OtherSigned) {
    if (ThisVal.ugt(OtherVal))
      return 1;
    else if (ThisVal.ult(OtherVal))
      return -1;
  } else if (ThisSigned && !OtherSigned) {
    if (ThisVal.isSignBitSet())
      return -1;
    else if (ThisVal.ugt(OtherVal))
      return 1;
    else if (ThisVal.ult(OtherVal))
      return -1;
  } else {
    // !ThisSigned && OtherSigned
    if (OtherVal.isSignBitSet())
      return 1;
    else if (ThisVal.ugt(OtherVal))
      return 1;
    else if (ThisVal.ult(OtherVal))
      return -1;
  }

  return 0;
}

APFixedPoint APFixedPoint::getMax(const FixedPointSemantics &Sema) {
  bool IsUnsigned = !Sema.isSigned();
  auto Val = APSInt::getMaxValue(Sema.getWidth(), IsUnsigned);
  if (IsUnsigned && Sema.hasUnsignedPadding())
    Val = Val.lshr(1);
  return APFixedPoint(Val, Sema);
}

APFixedPoint APFixedPoint::getMin(const FixedPointSemantics &Sema) {
  auto Val = APSInt::getMinValue(Sema.getWidth(), !Sema.isSigned());
  return APFixedPoint(Val, Sema);
}

FixedPointSemantics FixedPointSemantics::getCommonSemantics(
    const FixedPointSemantics &Other) const {
  unsigned CommonScale = std::max(getScale(), Other.getScale());
  unsigned CommonWidth =
      std::max(getIntegralBits(), Other.getIntegralBits()) + CommonScale;

  bool ResultIsSigned = isSigned() || Other.isSigned();
  bool ResultIsSaturated = isSaturated() || Other.isSaturated();
  bool ResultHasUnsignedPadding = false;
  if (!ResultIsSigned) {
    // Both are unsigned.
    ResultHasUnsignedPadding = hasUnsignedPadding() &&
                               Other.hasUnsignedPadding() && !ResultIsSaturated;
  }

  // If the result is signed, add an extra bit for the sign. Otherwise, if it is
  // unsigned and has unsigned padding, we only need to add the extra padding
  // bit back if we are not saturating.
  if (ResultIsSigned || ResultHasUnsignedPadding)
    CommonWidth++;

  return FixedPointSemantics(CommonWidth, CommonScale, ResultIsSigned,
                             ResultIsSaturated, ResultHasUnsignedPadding);
}

APFixedPoint APFixedPoint::add(const APFixedPoint &Other,
                               bool *Overflow) const {
  auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
  APFixedPoint ConvertedThis = convert(CommonFXSema);
  APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
  APSInt ThisVal = ConvertedThis.getValue();
  APSInt OtherVal = ConvertedOther.getValue();
  bool Overflowed = false;

  APSInt Result;
  if (CommonFXSema.isSaturated()) {
    Result = CommonFXSema.isSigned() ? ThisVal.sadd_sat(OtherVal)
                                     : ThisVal.uadd_sat(OtherVal);
  } else {
    Result = ThisVal.isSigned() ? ThisVal.sadd_ov(OtherVal, Overflowed)
                                : ThisVal.uadd_ov(OtherVal, Overflowed);
  }

  if (Overflow)
    *Overflow = Overflowed;

  return APFixedPoint(Result, CommonFXSema);
}

APFixedPoint APFixedPoint::sub(const APFixedPoint &Other,
                               bool *Overflow) const {
  auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
  APFixedPoint ConvertedThis = convert(CommonFXSema);
  APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
  APSInt ThisVal = ConvertedThis.getValue();
  APSInt OtherVal = ConvertedOther.getValue();
  bool Overflowed = false;

  APSInt Result;
  if (CommonFXSema.isSaturated()) {
    Result = CommonFXSema.isSigned() ? ThisVal.ssub_sat(OtherVal)
                                     : ThisVal.usub_sat(OtherVal);
  } else {
    Result = ThisVal.isSigned() ? ThisVal.ssub_ov(OtherVal, Overflowed)
                                : ThisVal.usub_ov(OtherVal, Overflowed);
  }

  if (Overflow)
    *Overflow = Overflowed;

  return APFixedPoint(Result, CommonFXSema);
}

APFixedPoint APFixedPoint::mul(const APFixedPoint &Other,
                               bool *Overflow) const {
  auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
  APFixedPoint ConvertedThis = convert(CommonFXSema);
  APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
  APSInt ThisVal = ConvertedThis.getValue();
  APSInt OtherVal = ConvertedOther.getValue();
  bool Overflowed = false;

  // Widen the LHS and RHS so we can perform a full multiplication.
  unsigned Wide = CommonFXSema.getWidth() * 2;
  if (CommonFXSema.isSigned()) {
    ThisVal = ThisVal.sextOrSelf(Wide);
    OtherVal = OtherVal.sextOrSelf(Wide);
  } else {
    ThisVal = ThisVal.zextOrSelf(Wide);
    OtherVal = OtherVal.zextOrSelf(Wide);
  }

  // Perform the full multiplication and downscale to get the same scale.
  //
  // Note that the right shifts here perform an implicit downwards rounding.
  // This rounding could discard bits that would technically place the result
  // outside the representable range. We interpret the spec as allowing us to
  // perform the rounding step first, avoiding the overflow case that would
  // arise.
  APSInt Result;
  if (CommonFXSema.isSigned())
    Result = ThisVal.smul_ov(OtherVal, Overflowed)
                    .ashr(CommonFXSema.getScale());
  else
    Result = ThisVal.umul_ov(OtherVal, Overflowed)
                    .lshr(CommonFXSema.getScale());
  assert(!Overflowed && "Full multiplication cannot overflow!");
  Result.setIsSigned(CommonFXSema.isSigned());

  // If our result lies outside of the representative range of the common
  // semantic, we either have overflow or saturation.
  APSInt Max = APFixedPoint::getMax(CommonFXSema).getValue()
                                                 .extOrTrunc(Wide);
  APSInt Min = APFixedPoint::getMin(CommonFXSema).getValue()
                                                 .extOrTrunc(Wide);
  if (CommonFXSema.isSaturated()) {
    if (Result < Min)
      Result = Min;
    else if (Result > Max)
      Result = Max;
  } else
    Overflowed = Result < Min || Result > Max;

  if (Overflow)
    *Overflow = Overflowed;

  return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()),
                      CommonFXSema);
}

APFixedPoint APFixedPoint::div(const APFixedPoint &Other,
                               bool *Overflow) const {
  auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
  APFixedPoint ConvertedThis = convert(CommonFXSema);
  APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
  APSInt ThisVal = ConvertedThis.getValue();
  APSInt OtherVal = ConvertedOther.getValue();
  bool Overflowed = false;

  // Widen the LHS and RHS so we can perform a full division.
  unsigned Wide = CommonFXSema.getWidth() * 2;
  if (CommonFXSema.isSigned()) {
    ThisVal = ThisVal.sextOrSelf(Wide);
    OtherVal = OtherVal.sextOrSelf(Wide);
  } else {
    ThisVal = ThisVal.zextOrSelf(Wide);
    OtherVal = OtherVal.zextOrSelf(Wide);
  }

  // Upscale to compensate for the loss of precision from division, and
  // perform the full division.
  ThisVal = ThisVal.shl(CommonFXSema.getScale());
  APSInt Result;
  if (CommonFXSema.isSigned()) {
    APInt Rem;
    APInt::sdivrem(ThisVal, OtherVal, Result, Rem);
    // If the quotient is negative and the remainder is nonzero, round
    // towards negative infinity by subtracting epsilon from the result.
    if (ThisVal.isNegative() != OtherVal.isNegative() && !Rem.isNullValue())
      Result = Result - 1;
  } else
    Result = ThisVal.udiv(OtherVal);
  Result.setIsSigned(CommonFXSema.isSigned());

  // If our result lies outside of the representative range of the common
  // semantic, we either have overflow or saturation.
  APSInt Max = APFixedPoint::getMax(CommonFXSema).getValue()
                                                 .extOrTrunc(Wide);
  APSInt Min = APFixedPoint::getMin(CommonFXSema).getValue()
                                                 .extOrTrunc(Wide);
  if (CommonFXSema.isSaturated()) {
    if (Result < Min)
      Result = Min;
    else if (Result > Max)
      Result = Max;
  } else
    Overflowed = Result < Min || Result > Max;

  if (Overflow)
    *Overflow = Overflowed;

  return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()),
                      CommonFXSema);
}

APFixedPoint APFixedPoint::shl(unsigned Amt, bool *Overflow) const {
  APSInt ThisVal = Val;
  bool Overflowed = false;

  // Widen the LHS.
  unsigned Wide = Sema.getWidth() * 2;
  if (Sema.isSigned())
    ThisVal = ThisVal.sextOrSelf(Wide);
  else
    ThisVal = ThisVal.zextOrSelf(Wide);

  // Clamp the shift amount at the original width, and perform the shift.
  Amt = std::min(Amt, ThisVal.getBitWidth());
  APSInt Result = ThisVal << Amt;
  Result.setIsSigned(Sema.isSigned());

  // If our result lies outside of the representative range of the
  // semantic, we either have overflow or saturation.
  APSInt Max = APFixedPoint::getMax(Sema).getValue().extOrTrunc(Wide);
  APSInt Min = APFixedPoint::getMin(Sema).getValue().extOrTrunc(Wide);
  if (Sema.isSaturated()) {
    if (Result < Min)
      Result = Min;
    else if (Result > Max)
      Result = Max;
  } else
    Overflowed = Result < Min || Result > Max;

  if (Overflow)
    *Overflow = Overflowed;

  return APFixedPoint(Result.sextOrTrunc(Sema.getWidth()), Sema);
}

void APFixedPoint::toString(SmallVectorImpl<char> &Str) const {
  APSInt Val = getValue();
  unsigned Scale = getScale();

  if (Val.isSigned() && Val.isNegative() && Val != -Val) {
    Val = -Val;
    Str.push_back('-');
  }

  APSInt IntPart = Val >> Scale;

  // Add 4 digits to hold the value after multiplying 10 (the radix)
  unsigned Width = Val.getBitWidth() + 4;
  APInt FractPart = Val.zextOrTrunc(Scale).zext(Width);
  APInt FractPartMask = APInt::getAllOnesValue(Scale).zext(Width);
  APInt RadixInt = APInt(Width, 10);

  IntPart.toString(Str, /*Radix=*/10);
  Str.push_back('.');
  do {
    (FractPart * RadixInt)
        .lshr(Scale)
        .toString(Str, /*Radix=*/10, Val.isSigned());
    FractPart = (FractPart * RadixInt) & FractPartMask;
  } while (FractPart != 0);
}

APFixedPoint APFixedPoint::negate(bool *Overflow) const {
  if (!isSaturated()) {
    if (Overflow)
      *Overflow =
          (!isSigned() && Val != 0) || (isSigned() && Val.isMinSignedValue());
    return APFixedPoint(-Val, Sema);
  }

  // We never overflow for saturation
  if (Overflow)
    *Overflow = false;

  if (isSigned())
    return Val.isMinSignedValue() ? getMax(Sema) : APFixedPoint(-Val, Sema);
  else
    return APFixedPoint(Sema);
}

APSInt APFixedPoint::convertToInt(unsigned DstWidth, bool DstSign,
                                  bool *Overflow) const {
  APSInt Result = getIntPart();
  unsigned SrcWidth = getWidth();

  APSInt DstMin = APSInt::getMinValue(DstWidth, !DstSign);
  APSInt DstMax = APSInt::getMaxValue(DstWidth, !DstSign);

  if (SrcWidth < DstWidth) {
    Result = Result.extend(DstWidth);
  } else if (SrcWidth > DstWidth) {
    DstMin = DstMin.extend(SrcWidth);
    DstMax = DstMax.extend(SrcWidth);
  }

  if (Overflow) {
    if (Result.isSigned() && !DstSign) {
      *Overflow = Result.isNegative() || Result.ugt(DstMax);
    } else if (Result.isUnsigned() && DstSign) {
      *Overflow = Result.ugt(DstMax);
    } else {
      *Overflow = Result < DstMin || Result > DstMax;
    }
  }

  Result.setIsSigned(DstSign);
  return Result.extOrTrunc(DstWidth);
}

APFixedPoint APFixedPoint::getFromIntValue(const APSInt &Value,
                                           const FixedPointSemantics &DstFXSema,
                                           bool *Overflow) {
  FixedPointSemantics IntFXSema = FixedPointSemantics::GetIntegerSemantics(
      Value.getBitWidth(), Value.isSigned());
  return APFixedPoint(Value, IntFXSema).convert(DstFXSema, Overflow);
}

}  // namespace clang